1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/GlobalValue.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Support/CFG.h"
27 #include "llvm/Type.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SelectionDAGISel.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Support/CommandLine.h"
46 static cl::opt
<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden
);
48 STATISTIC(NumLoadMoved
, "Number of loads moved below TokenFactor");
50 //===----------------------------------------------------------------------===//
51 // Pattern Matcher Implementation
52 //===----------------------------------------------------------------------===//
55 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
56 /// SDValue's instead of register numbers for the leaves of the matched
58 struct X86ISelAddressMode
{
64 struct { // This is really a union, discriminated by BaseType!
77 unsigned Align
; // CP alignment.
78 unsigned char SymbolFlags
; // X86II::MO_*
81 : BaseType(RegBase
), Scale(1), IndexReg(), Disp(0),
82 Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0),
83 SymbolFlags(X86II::MO_NO_FLAG
) {
86 bool hasSymbolicDisplacement() const {
87 return GV
!= 0 || CP
!= 0 || ES
!= 0 || JT
!= -1;
90 bool hasBaseOrIndexReg() const {
91 return IndexReg
.getNode() != 0 || Base
.Reg
.getNode() != 0;
94 /// isRIPRelative - Return true if this addressing mode is already RIP
96 bool isRIPRelative() const {
97 if (BaseType
!= RegBase
) return false;
98 if (RegisterSDNode
*RegNode
=
99 dyn_cast_or_null
<RegisterSDNode
>(Base
.Reg
.getNode()))
100 return RegNode
->getReg() == X86::RIP
;
104 void setBaseReg(SDValue Reg
) {
110 errs() << "X86ISelAddressMode " << this << '\n';
111 errs() << "Base.Reg ";
112 if (Base
.Reg
.getNode() != 0)
113 Base
.Reg
.getNode()->dump();
116 errs() << " Base.FrameIndex " << Base
.FrameIndex
<< '\n'
117 << " Scale" << Scale
<< '\n'
119 if (IndexReg
.getNode() != 0)
120 IndexReg
.getNode()->dump();
123 errs() << " Disp " << Disp
<< '\n'
140 errs() << " JT" << JT
<< " Align" << Align
<< '\n';
146 //===--------------------------------------------------------------------===//
147 /// ISel - X86 specific code to select X86 machine instructions for
148 /// SelectionDAG operations.
150 class VISIBILITY_HIDDEN X86DAGToDAGISel
: public SelectionDAGISel
{
151 /// X86Lowering - This object fully describes how to lower LLVM code to an
152 /// X86-specific SelectionDAG.
153 X86TargetLowering
&X86Lowering
;
155 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
156 /// make the right decision when generating code for different targets.
157 const X86Subtarget
*Subtarget
;
159 /// OptForSize - If true, selector should try to optimize for code size
160 /// instead of performance.
164 explicit X86DAGToDAGISel(X86TargetMachine
&tm
, CodeGenOpt::Level OptLevel
)
165 : SelectionDAGISel(tm
, OptLevel
),
166 X86Lowering(*tm
.getTargetLowering()),
167 Subtarget(&tm
.getSubtarget
<X86Subtarget
>()),
170 virtual const char *getPassName() const {
171 return "X86 DAG->DAG Instruction Selection";
174 /// InstructionSelect - This callback is invoked by
175 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
176 virtual void InstructionSelect();
178 virtual void EmitFunctionEntryCode(Function
&Fn
, MachineFunction
&MF
);
181 bool IsLegalAndProfitableToFold(SDNode
*N
, SDNode
*U
, SDNode
*Root
) const;
183 // Include the pieces autogenerated from the target description.
184 #include "X86GenDAGISel.inc"
187 SDNode
*Select(SDValue N
);
188 SDNode
*SelectAtomic64(SDNode
*Node
, unsigned Opc
);
189 SDNode
*SelectAtomicLoadAdd(SDNode
*Node
, EVT NVT
);
191 bool MatchSegmentBaseAddress(SDValue N
, X86ISelAddressMode
&AM
);
192 bool MatchLoad(SDValue N
, X86ISelAddressMode
&AM
);
193 bool MatchWrapper(SDValue N
, X86ISelAddressMode
&AM
);
194 bool MatchAddress(SDValue N
, X86ISelAddressMode
&AM
);
195 bool MatchAddressRecursively(SDValue N
, X86ISelAddressMode
&AM
,
197 bool MatchAddressBase(SDValue N
, X86ISelAddressMode
&AM
);
198 bool SelectAddr(SDValue Op
, SDValue N
, SDValue
&Base
,
199 SDValue
&Scale
, SDValue
&Index
, SDValue
&Disp
,
201 bool SelectLEAAddr(SDValue Op
, SDValue N
, SDValue
&Base
,
202 SDValue
&Scale
, SDValue
&Index
, SDValue
&Disp
);
203 bool SelectTLSADDRAddr(SDValue Op
, SDValue N
, SDValue
&Base
,
204 SDValue
&Scale
, SDValue
&Index
, SDValue
&Disp
);
205 bool SelectScalarSSELoad(SDValue Op
, SDValue Pred
,
206 SDValue N
, SDValue
&Base
, SDValue
&Scale
,
207 SDValue
&Index
, SDValue
&Disp
,
209 SDValue
&InChain
, SDValue
&OutChain
);
210 bool TryFoldLoad(SDValue P
, SDValue N
,
211 SDValue
&Base
, SDValue
&Scale
,
212 SDValue
&Index
, SDValue
&Disp
,
214 void PreprocessForRMW();
215 void PreprocessForFPConvert();
217 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
218 /// inline asm expressions.
219 virtual bool SelectInlineAsmMemoryOperand(const SDValue
&Op
,
221 std::vector
<SDValue
> &OutOps
);
223 void EmitSpecialCodeForMain(MachineBasicBlock
*BB
, MachineFrameInfo
*MFI
);
225 inline void getAddressOperands(X86ISelAddressMode
&AM
, SDValue
&Base
,
226 SDValue
&Scale
, SDValue
&Index
,
227 SDValue
&Disp
, SDValue
&Segment
) {
228 Base
= (AM
.BaseType
== X86ISelAddressMode::FrameIndexBase
) ?
229 CurDAG
->getTargetFrameIndex(AM
.Base
.FrameIndex
, TLI
.getPointerTy()) :
231 Scale
= getI8Imm(AM
.Scale
);
233 // These are 32-bit even in 64-bit mode since RIP relative offset
236 Disp
= CurDAG
->getTargetGlobalAddress(AM
.GV
, MVT::i32
, AM
.Disp
,
239 Disp
= CurDAG
->getTargetConstantPool(AM
.CP
, MVT::i32
,
240 AM
.Align
, AM
.Disp
, AM
.SymbolFlags
);
242 Disp
= CurDAG
->getTargetExternalSymbol(AM
.ES
, MVT::i32
, AM
.SymbolFlags
);
243 else if (AM
.JT
!= -1)
244 Disp
= CurDAG
->getTargetJumpTable(AM
.JT
, MVT::i32
, AM
.SymbolFlags
);
246 Disp
= CurDAG
->getTargetConstant(AM
.Disp
, MVT::i32
);
248 if (AM
.Segment
.getNode())
249 Segment
= AM
.Segment
;
251 Segment
= CurDAG
->getRegister(0, MVT::i32
);
254 /// getI8Imm - Return a target constant with the specified value, of type
256 inline SDValue
getI8Imm(unsigned Imm
) {
257 return CurDAG
->getTargetConstant(Imm
, MVT::i8
);
260 /// getI16Imm - Return a target constant with the specified value, of type
262 inline SDValue
getI16Imm(unsigned Imm
) {
263 return CurDAG
->getTargetConstant(Imm
, MVT::i16
);
266 /// getI32Imm - Return a target constant with the specified value, of type
268 inline SDValue
getI32Imm(unsigned Imm
) {
269 return CurDAG
->getTargetConstant(Imm
, MVT::i32
);
272 /// getGlobalBaseReg - Return an SDNode that returns the value of
273 /// the global base register. Output instructions required to
274 /// initialize the global base register, if necessary.
276 SDNode
*getGlobalBaseReg();
278 /// getTargetMachine - Return a reference to the TargetMachine, casted
279 /// to the target-specific type.
280 const X86TargetMachine
&getTargetMachine() {
281 return static_cast<const X86TargetMachine
&>(TM
);
284 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
285 /// to the target-specific type.
286 const X86InstrInfo
*getInstrInfo() {
287 return getTargetMachine().getInstrInfo();
297 bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode
*N
, SDNode
*U
,
298 SDNode
*Root
) const {
299 if (OptLevel
== CodeGenOpt::None
) return false;
302 switch (U
->getOpcode()) {
310 SDValue Op1
= U
->getOperand(1);
312 // If the other operand is a 8-bit immediate we should fold the immediate
313 // instead. This reduces code size.
315 // movl 4(%esp), %eax
319 // addl 4(%esp), %eax
320 // The former is 2 bytes shorter. In case where the increment is 1, then
321 // the saving can be 4 bytes (by using incl %eax).
322 if (ConstantSDNode
*Imm
= dyn_cast
<ConstantSDNode
>(Op1
))
323 if (Imm
->getAPIntValue().isSignedIntN(8))
326 // If the other operand is a TLS address, we should fold it instead.
329 // leal i@NTPOFF(%eax), %eax
331 // movl $i@NTPOFF, %eax
333 // if the block also has an access to a second TLS address this will save
335 // FIXME: This is probably also true for non TLS addresses.
336 if (Op1
.getOpcode() == X86ISD::Wrapper
) {
337 SDValue Val
= Op1
.getOperand(0);
338 if (Val
.getOpcode() == ISD::TargetGlobalTLSAddress
)
344 // Proceed to 'generic' cycle finder code
345 return SelectionDAGISel::IsLegalAndProfitableToFold(N
, U
, Root
);
348 /// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
349 /// and move load below the TokenFactor. Replace store's chain operand with
350 /// load's chain result.
351 static void MoveBelowTokenFactor(SelectionDAG
*CurDAG
, SDValue Load
,
352 SDValue Store
, SDValue TF
) {
353 SmallVector
<SDValue
, 4> Ops
;
354 for (unsigned i
= 0, e
= TF
.getNode()->getNumOperands(); i
!= e
; ++i
)
355 if (Load
.getNode() == TF
.getOperand(i
).getNode())
356 Ops
.push_back(Load
.getOperand(0));
358 Ops
.push_back(TF
.getOperand(i
));
359 SDValue NewTF
= CurDAG
->UpdateNodeOperands(TF
, &Ops
[0], Ops
.size());
360 SDValue NewLoad
= CurDAG
->UpdateNodeOperands(Load
, NewTF
,
363 CurDAG
->UpdateNodeOperands(Store
, NewLoad
.getValue(1), Store
.getOperand(1),
364 Store
.getOperand(2), Store
.getOperand(3));
367 /// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG. The
368 /// chain produced by the load must only be used by the store's chain operand,
369 /// otherwise this may produce a cycle in the DAG.
371 static bool isRMWLoad(SDValue N
, SDValue Chain
, SDValue Address
,
373 if (N
.getOpcode() == ISD::BIT_CONVERT
)
376 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
);
377 if (!LD
|| LD
->isVolatile())
379 if (LD
->getAddressingMode() != ISD::UNINDEXED
)
382 ISD::LoadExtType ExtType
= LD
->getExtensionType();
383 if (ExtType
!= ISD::NON_EXTLOAD
&& ExtType
!= ISD::EXTLOAD
)
387 LD
->hasNUsesOfValue(1, 1) &&
388 N
.getOperand(1) == Address
&&
389 LD
->isOperandOf(Chain
.getNode())) {
396 /// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
397 /// operand and move load below the call's chain operand.
398 static void MoveBelowCallSeqStart(SelectionDAG
*CurDAG
, SDValue Load
,
399 SDValue Call
, SDValue CallSeqStart
) {
400 SmallVector
<SDValue
, 8> Ops
;
401 SDValue Chain
= CallSeqStart
.getOperand(0);
402 if (Chain
.getNode() == Load
.getNode())
403 Ops
.push_back(Load
.getOperand(0));
405 assert(Chain
.getOpcode() == ISD::TokenFactor
&&
406 "Unexpected CallSeqStart chain operand");
407 for (unsigned i
= 0, e
= Chain
.getNumOperands(); i
!= e
; ++i
)
408 if (Chain
.getOperand(i
).getNode() == Load
.getNode())
409 Ops
.push_back(Load
.getOperand(0));
411 Ops
.push_back(Chain
.getOperand(i
));
413 CurDAG
->getNode(ISD::TokenFactor
, Load
.getDebugLoc(),
414 MVT::Other
, &Ops
[0], Ops
.size());
416 Ops
.push_back(NewChain
);
418 for (unsigned i
= 1, e
= CallSeqStart
.getNumOperands(); i
!= e
; ++i
)
419 Ops
.push_back(CallSeqStart
.getOperand(i
));
420 CurDAG
->UpdateNodeOperands(CallSeqStart
, &Ops
[0], Ops
.size());
421 CurDAG
->UpdateNodeOperands(Load
, Call
.getOperand(0),
422 Load
.getOperand(1), Load
.getOperand(2));
424 Ops
.push_back(SDValue(Load
.getNode(), 1));
425 for (unsigned i
= 1, e
= Call
.getNode()->getNumOperands(); i
!= e
; ++i
)
426 Ops
.push_back(Call
.getOperand(i
));
427 CurDAG
->UpdateNodeOperands(Call
, &Ops
[0], Ops
.size());
430 /// isCalleeLoad - Return true if call address is a load and it can be
431 /// moved below CALLSEQ_START and the chains leading up to the call.
432 /// Return the CALLSEQ_START by reference as a second output.
433 static bool isCalleeLoad(SDValue Callee
, SDValue
&Chain
) {
434 if (Callee
.getNode() == Chain
.getNode() || !Callee
.hasOneUse())
436 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Callee
.getNode());
439 LD
->getAddressingMode() != ISD::UNINDEXED
||
440 LD
->getExtensionType() != ISD::NON_EXTLOAD
)
443 // Now let's find the callseq_start.
444 while (Chain
.getOpcode() != ISD::CALLSEQ_START
) {
445 if (!Chain
.hasOneUse())
447 Chain
= Chain
.getOperand(0);
450 if (Chain
.getOperand(0).getNode() == Callee
.getNode())
452 if (Chain
.getOperand(0).getOpcode() == ISD::TokenFactor
&&
453 Callee
.getValue(1).isOperandOf(Chain
.getOperand(0).getNode()) &&
454 Callee
.getValue(1).hasOneUse())
460 /// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
461 /// This is only run if not in -O0 mode.
462 /// This allows the instruction selector to pick more read-modify-write
463 /// instructions. This is a common case:
473 /// [TokenFactor] [Op]
480 /// The fact the store's chain operand != load's chain will prevent the
481 /// (store (op (load))) instruction from being selected. We can transform it to:
500 void X86DAGToDAGISel::PreprocessForRMW() {
501 for (SelectionDAG::allnodes_iterator I
= CurDAG
->allnodes_begin(),
502 E
= CurDAG
->allnodes_end(); I
!= E
; ++I
) {
503 if (I
->getOpcode() == X86ISD::CALL
) {
504 /// Also try moving call address load from outside callseq_start to just
505 /// before the call to allow it to be folded.
523 SDValue Chain
= I
->getOperand(0);
524 SDValue Load
= I
->getOperand(1);
525 if (!isCalleeLoad(Load
, Chain
))
527 MoveBelowCallSeqStart(CurDAG
, Load
, SDValue(I
, 0), Chain
);
532 if (!ISD::isNON_TRUNCStore(I
))
534 SDValue Chain
= I
->getOperand(0);
536 if (Chain
.getNode()->getOpcode() != ISD::TokenFactor
)
539 SDValue N1
= I
->getOperand(1);
540 SDValue N2
= I
->getOperand(2);
541 if ((N1
.getValueType().isFloatingPoint() &&
542 !N1
.getValueType().isVector()) ||
548 unsigned Opcode
= N1
.getNode()->getOpcode();
557 case ISD::VECTOR_SHUFFLE
: {
558 SDValue N10
= N1
.getOperand(0);
559 SDValue N11
= N1
.getOperand(1);
560 RModW
= isRMWLoad(N10
, Chain
, N2
, Load
);
562 RModW
= isRMWLoad(N11
, Chain
, N2
, Load
);
575 SDValue N10
= N1
.getOperand(0);
576 RModW
= isRMWLoad(N10
, Chain
, N2
, Load
);
582 MoveBelowTokenFactor(CurDAG
, Load
, SDValue(I
, 0), Chain
);
589 /// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
590 /// nodes that target the FP stack to be store and load to the stack. This is a
591 /// gross hack. We would like to simply mark these as being illegal, but when
592 /// we do that, legalize produces these when it expands calls, then expands
593 /// these in the same legalize pass. We would like dag combine to be able to
594 /// hack on these between the call expansion and the node legalization. As such
595 /// this pass basically does "really late" legalization of these inline with the
597 void X86DAGToDAGISel::PreprocessForFPConvert() {
598 for (SelectionDAG::allnodes_iterator I
= CurDAG
->allnodes_begin(),
599 E
= CurDAG
->allnodes_end(); I
!= E
; ) {
600 SDNode
*N
= I
++; // Preincrement iterator to avoid invalidation issues.
601 if (N
->getOpcode() != ISD::FP_ROUND
&& N
->getOpcode() != ISD::FP_EXTEND
)
604 // If the source and destination are SSE registers, then this is a legal
605 // conversion that should not be lowered.
606 EVT SrcVT
= N
->getOperand(0).getValueType();
607 EVT DstVT
= N
->getValueType(0);
608 bool SrcIsSSE
= X86Lowering
.isScalarFPTypeInSSEReg(SrcVT
);
609 bool DstIsSSE
= X86Lowering
.isScalarFPTypeInSSEReg(DstVT
);
610 if (SrcIsSSE
&& DstIsSSE
)
613 if (!SrcIsSSE
&& !DstIsSSE
) {
614 // If this is an FPStack extension, it is a noop.
615 if (N
->getOpcode() == ISD::FP_EXTEND
)
617 // If this is a value-preserving FPStack truncation, it is a noop.
618 if (N
->getConstantOperandVal(1))
622 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
623 // FPStack has extload and truncstore. SSE can fold direct loads into other
624 // operations. Based on this, decide what we want to do.
626 if (N
->getOpcode() == ISD::FP_ROUND
)
627 MemVT
= DstVT
; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
629 MemVT
= SrcIsSSE
? SrcVT
: DstVT
;
631 SDValue MemTmp
= CurDAG
->CreateStackTemporary(MemVT
);
632 DebugLoc dl
= N
->getDebugLoc();
634 // FIXME: optimize the case where the src/dest is a load or store?
635 SDValue Store
= CurDAG
->getTruncStore(CurDAG
->getEntryNode(), dl
,
637 MemTmp
, NULL
, 0, MemVT
);
638 SDValue Result
= CurDAG
->getExtLoad(ISD::EXTLOAD
, dl
, DstVT
, Store
, MemTmp
,
641 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
642 // extload we created. This will cause general havok on the dag because
643 // anything below the conversion could be folded into other existing nodes.
644 // To avoid invalidating 'I', back it up to the convert node.
646 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
648 // Now that we did that, the node is dead. Increment the iterator to the
649 // next node to process, then delete N.
651 CurDAG
->DeleteNode(N
);
655 /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
656 /// when it has created a SelectionDAG for us to codegen.
657 void X86DAGToDAGISel::InstructionSelect() {
658 const Function
*F
= MF
->getFunction();
659 OptForSize
= F
->hasFnAttr(Attribute::OptimizeForSize
);
662 if (OptLevel
!= CodeGenOpt::None
)
665 // FIXME: This should only happen when not compiled with -O0.
666 PreprocessForFPConvert();
668 // Codegen the basic block.
670 DEBUG(errs() << "===== Instruction selection begins:\n");
675 DEBUG(errs() << "===== Instruction selection ends:\n");
678 CurDAG
->RemoveDeadNodes();
681 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
682 /// the main function.
683 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock
*BB
,
684 MachineFrameInfo
*MFI
) {
685 const TargetInstrInfo
*TII
= TM
.getInstrInfo();
686 if (Subtarget
->isTargetCygMing())
687 BuildMI(BB
, DebugLoc::getUnknownLoc(),
688 TII
->get(X86::CALLpcrel32
)).addExternalSymbol("__main");
691 void X86DAGToDAGISel::EmitFunctionEntryCode(Function
&Fn
, MachineFunction
&MF
) {
692 // If this is main, emit special code for main.
693 MachineBasicBlock
*BB
= MF
.begin();
694 if (Fn
.hasExternalLinkage() && Fn
.getName() == "main")
695 EmitSpecialCodeForMain(BB
, MF
.getFrameInfo());
699 bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N
,
700 X86ISelAddressMode
&AM
) {
701 assert(N
.getOpcode() == X86ISD::SegmentBaseAddress
);
702 SDValue Segment
= N
.getOperand(0);
704 if (AM
.Segment
.getNode() == 0) {
705 AM
.Segment
= Segment
;
712 bool X86DAGToDAGISel::MatchLoad(SDValue N
, X86ISelAddressMode
&AM
) {
713 // This optimization is valid because the GNU TLS model defines that
714 // gs:0 (or fs:0 on X86-64) contains its own address.
715 // For more information see http://people.redhat.com/drepper/tls.pdf
717 SDValue Address
= N
.getOperand(1);
718 if (Address
.getOpcode() == X86ISD::SegmentBaseAddress
&&
719 !MatchSegmentBaseAddress (Address
, AM
))
725 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
726 /// into an addressing mode. These wrap things that will resolve down into a
727 /// symbol reference. If no match is possible, this returns true, otherwise it
729 bool X86DAGToDAGISel::MatchWrapper(SDValue N
, X86ISelAddressMode
&AM
) {
730 // If the addressing mode already has a symbol as the displacement, we can
731 // never match another symbol.
732 if (AM
.hasSymbolicDisplacement())
735 SDValue N0
= N
.getOperand(0);
736 CodeModel::Model M
= TM
.getCodeModel();
738 // Handle X86-64 rip-relative addresses. We check this before checking direct
739 // folding because RIP is preferable to non-RIP accesses.
740 if (Subtarget
->is64Bit() &&
741 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
742 // they cannot be folded into immediate fields.
743 // FIXME: This can be improved for kernel and other models?
744 (M
== CodeModel::Small
|| M
== CodeModel::Kernel
) &&
745 // Base and index reg must be 0 in order to use %rip as base and lowering
747 !AM
.hasBaseOrIndexReg() && N
.getOpcode() == X86ISD::WrapperRIP
) {
748 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(N0
)) {
749 int64_t Offset
= AM
.Disp
+ G
->getOffset();
750 if (!X86::isOffsetSuitableForCodeModel(Offset
, M
)) return true;
751 AM
.GV
= G
->getGlobal();
753 AM
.SymbolFlags
= G
->getTargetFlags();
754 } else if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(N0
)) {
755 int64_t Offset
= AM
.Disp
+ CP
->getOffset();
756 if (!X86::isOffsetSuitableForCodeModel(Offset
, M
)) return true;
757 AM
.CP
= CP
->getConstVal();
758 AM
.Align
= CP
->getAlignment();
760 AM
.SymbolFlags
= CP
->getTargetFlags();
761 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(N0
)) {
762 AM
.ES
= S
->getSymbol();
763 AM
.SymbolFlags
= S
->getTargetFlags();
765 JumpTableSDNode
*J
= cast
<JumpTableSDNode
>(N0
);
766 AM
.JT
= J
->getIndex();
767 AM
.SymbolFlags
= J
->getTargetFlags();
770 if (N
.getOpcode() == X86ISD::WrapperRIP
)
771 AM
.setBaseReg(CurDAG
->getRegister(X86::RIP
, MVT::i64
));
775 // Handle the case when globals fit in our immediate field: This is true for
776 // X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit
777 // mode, this results in a non-RIP-relative computation.
778 if (!Subtarget
->is64Bit() ||
779 ((M
== CodeModel::Small
|| M
== CodeModel::Kernel
) &&
780 TM
.getRelocationModel() == Reloc::Static
)) {
781 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(N0
)) {
782 AM
.GV
= G
->getGlobal();
783 AM
.Disp
+= G
->getOffset();
784 AM
.SymbolFlags
= G
->getTargetFlags();
785 } else if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(N0
)) {
786 AM
.CP
= CP
->getConstVal();
787 AM
.Align
= CP
->getAlignment();
788 AM
.Disp
+= CP
->getOffset();
789 AM
.SymbolFlags
= CP
->getTargetFlags();
790 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(N0
)) {
791 AM
.ES
= S
->getSymbol();
792 AM
.SymbolFlags
= S
->getTargetFlags();
794 JumpTableSDNode
*J
= cast
<JumpTableSDNode
>(N0
);
795 AM
.JT
= J
->getIndex();
796 AM
.SymbolFlags
= J
->getTargetFlags();
804 /// MatchAddress - Add the specified node to the specified addressing mode,
805 /// returning true if it cannot be done. This just pattern matches for the
807 bool X86DAGToDAGISel::MatchAddress(SDValue N
, X86ISelAddressMode
&AM
) {
808 if (MatchAddressRecursively(N
, AM
, 0))
811 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
812 // a smaller encoding and avoids a scaled-index.
814 AM
.BaseType
== X86ISelAddressMode::RegBase
&&
815 AM
.Base
.Reg
.getNode() == 0) {
816 AM
.Base
.Reg
= AM
.IndexReg
;
820 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
821 // because it has a smaller encoding.
822 // TODO: Which other code models can use this?
823 if (TM
.getCodeModel() == CodeModel::Small
&&
824 Subtarget
->is64Bit() &&
826 AM
.BaseType
== X86ISelAddressMode::RegBase
&&
827 AM
.Base
.Reg
.getNode() == 0 &&
828 AM
.IndexReg
.getNode() == 0 &&
829 AM
.SymbolFlags
== X86II::MO_NO_FLAG
&&
830 AM
.hasSymbolicDisplacement())
831 AM
.Base
.Reg
= CurDAG
->getRegister(X86::RIP
, MVT::i64
);
836 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N
, X86ISelAddressMode
&AM
,
838 bool is64Bit
= Subtarget
->is64Bit();
839 DebugLoc dl
= N
.getDebugLoc();
841 errs() << "MatchAddress: ";
846 return MatchAddressBase(N
, AM
);
848 CodeModel::Model M
= TM
.getCodeModel();
850 // If this is already a %rip relative address, we can only merge immediates
851 // into it. Instead of handling this in every case, we handle it here.
852 // RIP relative addressing: %rip + 32-bit displacement!
853 if (AM
.isRIPRelative()) {
854 // FIXME: JumpTable and ExternalSymbol address currently don't like
855 // displacements. It isn't very important, but this should be fixed for
857 if (!AM
.ES
&& AM
.JT
!= -1) return true;
859 if (ConstantSDNode
*Cst
= dyn_cast
<ConstantSDNode
>(N
)) {
860 int64_t Val
= AM
.Disp
+ Cst
->getSExtValue();
861 if (X86::isOffsetSuitableForCodeModel(Val
, M
,
862 AM
.hasSymbolicDisplacement())) {
870 switch (N
.getOpcode()) {
872 case ISD::Constant
: {
873 uint64_t Val
= cast
<ConstantSDNode
>(N
)->getSExtValue();
875 X86::isOffsetSuitableForCodeModel(AM
.Disp
+ Val
, M
,
876 AM
.hasSymbolicDisplacement())) {
883 case X86ISD::SegmentBaseAddress
:
884 if (!MatchSegmentBaseAddress(N
, AM
))
888 case X86ISD::Wrapper
:
889 case X86ISD::WrapperRIP
:
890 if (!MatchWrapper(N
, AM
))
895 if (!MatchLoad(N
, AM
))
899 case ISD::FrameIndex
:
900 if (AM
.BaseType
== X86ISelAddressMode::RegBase
901 && AM
.Base
.Reg
.getNode() == 0) {
902 AM
.BaseType
= X86ISelAddressMode::FrameIndexBase
;
903 AM
.Base
.FrameIndex
= cast
<FrameIndexSDNode
>(N
)->getIndex();
909 if (AM
.IndexReg
.getNode() != 0 || AM
.Scale
!= 1)
913 *CN
= dyn_cast
<ConstantSDNode
>(N
.getNode()->getOperand(1))) {
914 unsigned Val
= CN
->getZExtValue();
915 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
916 // that the base operand remains free for further matching. If
917 // the base doesn't end up getting used, a post-processing step
918 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
919 if (Val
== 1 || Val
== 2 || Val
== 3) {
921 SDValue ShVal
= N
.getNode()->getOperand(0);
923 // Okay, we know that we have a scale by now. However, if the scaled
924 // value is an add of something and a constant, we can fold the
925 // constant into the disp field here.
926 if (ShVal
.getNode()->getOpcode() == ISD::ADD
&& ShVal
.hasOneUse() &&
927 isa
<ConstantSDNode
>(ShVal
.getNode()->getOperand(1))) {
928 AM
.IndexReg
= ShVal
.getNode()->getOperand(0);
929 ConstantSDNode
*AddVal
=
930 cast
<ConstantSDNode
>(ShVal
.getNode()->getOperand(1));
931 uint64_t Disp
= AM
.Disp
+ (AddVal
->getSExtValue() << Val
);
933 X86::isOffsetSuitableForCodeModel(Disp
, M
,
934 AM
.hasSymbolicDisplacement()))
948 // A mul_lohi where we need the low part can be folded as a plain multiply.
949 if (N
.getResNo() != 0) break;
952 case X86ISD::MUL_IMM
:
953 // X*[3,5,9] -> X+X*[2,4,8]
954 if (AM
.BaseType
== X86ISelAddressMode::RegBase
&&
955 AM
.Base
.Reg
.getNode() == 0 &&
956 AM
.IndexReg
.getNode() == 0) {
958 *CN
= dyn_cast
<ConstantSDNode
>(N
.getNode()->getOperand(1)))
959 if (CN
->getZExtValue() == 3 || CN
->getZExtValue() == 5 ||
960 CN
->getZExtValue() == 9) {
961 AM
.Scale
= unsigned(CN
->getZExtValue())-1;
963 SDValue MulVal
= N
.getNode()->getOperand(0);
966 // Okay, we know that we have a scale by now. However, if the scaled
967 // value is an add of something and a constant, we can fold the
968 // constant into the disp field here.
969 if (MulVal
.getNode()->getOpcode() == ISD::ADD
&& MulVal
.hasOneUse() &&
970 isa
<ConstantSDNode
>(MulVal
.getNode()->getOperand(1))) {
971 Reg
= MulVal
.getNode()->getOperand(0);
972 ConstantSDNode
*AddVal
=
973 cast
<ConstantSDNode
>(MulVal
.getNode()->getOperand(1));
974 uint64_t Disp
= AM
.Disp
+ AddVal
->getSExtValue() *
977 X86::isOffsetSuitableForCodeModel(Disp
, M
,
978 AM
.hasSymbolicDisplacement()))
981 Reg
= N
.getNode()->getOperand(0);
983 Reg
= N
.getNode()->getOperand(0);
986 AM
.IndexReg
= AM
.Base
.Reg
= Reg
;
993 // Given A-B, if A can be completely folded into the address and
994 // the index field with the index field unused, use -B as the index.
995 // This is a win if a has multiple parts that can be folded into
996 // the address. Also, this saves a mov if the base register has
997 // other uses, since it avoids a two-address sub instruction, however
998 // it costs an additional mov if the index register has other uses.
1000 // Test if the LHS of the sub can be folded.
1001 X86ISelAddressMode Backup
= AM
;
1002 if (MatchAddressRecursively(N
.getNode()->getOperand(0), AM
, Depth
+1)) {
1006 // Test if the index field is free for use.
1007 if (AM
.IndexReg
.getNode() || AM
.isRIPRelative()) {
1012 SDValue RHS
= N
.getNode()->getOperand(1);
1013 // If the RHS involves a register with multiple uses, this
1014 // transformation incurs an extra mov, due to the neg instruction
1015 // clobbering its operand.
1016 if (!RHS
.getNode()->hasOneUse() ||
1017 RHS
.getNode()->getOpcode() == ISD::CopyFromReg
||
1018 RHS
.getNode()->getOpcode() == ISD::TRUNCATE
||
1019 RHS
.getNode()->getOpcode() == ISD::ANY_EXTEND
||
1020 (RHS
.getNode()->getOpcode() == ISD::ZERO_EXTEND
&&
1021 RHS
.getNode()->getOperand(0).getValueType() == MVT::i32
))
1023 // If the base is a register with multiple uses, this
1024 // transformation may save a mov.
1025 if ((AM
.BaseType
== X86ISelAddressMode::RegBase
&&
1026 AM
.Base
.Reg
.getNode() &&
1027 !AM
.Base
.Reg
.getNode()->hasOneUse()) ||
1028 AM
.BaseType
== X86ISelAddressMode::FrameIndexBase
)
1030 // If the folded LHS was interesting, this transformation saves
1031 // address arithmetic.
1032 if ((AM
.hasSymbolicDisplacement() && !Backup
.hasSymbolicDisplacement()) +
1033 ((AM
.Disp
!= 0) && (Backup
.Disp
== 0)) +
1034 (AM
.Segment
.getNode() && !Backup
.Segment
.getNode()) >= 2)
1036 // If it doesn't look like it may be an overall win, don't do it.
1042 // Ok, the transformation is legal and appears profitable. Go for it.
1043 SDValue Zero
= CurDAG
->getConstant(0, N
.getValueType());
1044 SDValue Neg
= CurDAG
->getNode(ISD::SUB
, dl
, N
.getValueType(), Zero
, RHS
);
1048 // Insert the new nodes into the topological ordering.
1049 if (Zero
.getNode()->getNodeId() == -1 ||
1050 Zero
.getNode()->getNodeId() > N
.getNode()->getNodeId()) {
1051 CurDAG
->RepositionNode(N
.getNode(), Zero
.getNode());
1052 Zero
.getNode()->setNodeId(N
.getNode()->getNodeId());
1054 if (Neg
.getNode()->getNodeId() == -1 ||
1055 Neg
.getNode()->getNodeId() > N
.getNode()->getNodeId()) {
1056 CurDAG
->RepositionNode(N
.getNode(), Neg
.getNode());
1057 Neg
.getNode()->setNodeId(N
.getNode()->getNodeId());
1063 X86ISelAddressMode Backup
= AM
;
1064 if (!MatchAddressRecursively(N
.getNode()->getOperand(0), AM
, Depth
+1) &&
1065 !MatchAddressRecursively(N
.getNode()->getOperand(1), AM
, Depth
+1))
1068 if (!MatchAddressRecursively(N
.getNode()->getOperand(1), AM
, Depth
+1) &&
1069 !MatchAddressRecursively(N
.getNode()->getOperand(0), AM
, Depth
+1))
1073 // If we couldn't fold both operands into the address at the same time,
1074 // see if we can just put each operand into a register and fold at least
1076 if (AM
.BaseType
== X86ISelAddressMode::RegBase
&&
1077 !AM
.Base
.Reg
.getNode() &&
1078 !AM
.IndexReg
.getNode()) {
1079 AM
.Base
.Reg
= N
.getNode()->getOperand(0);
1080 AM
.IndexReg
= N
.getNode()->getOperand(1);
1088 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1089 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
1090 X86ISelAddressMode Backup
= AM
;
1091 uint64_t Offset
= CN
->getSExtValue();
1092 // Start with the LHS as an addr mode.
1093 if (!MatchAddressRecursively(N
.getOperand(0), AM
, Depth
+1) &&
1094 // Address could not have picked a GV address for the displacement.
1096 // On x86-64, the resultant disp must fit in 32-bits.
1098 X86::isOffsetSuitableForCodeModel(AM
.Disp
+ Offset
, M
,
1099 AM
.hasSymbolicDisplacement())) &&
1100 // Check to see if the LHS & C is zero.
1101 CurDAG
->MaskedValueIsZero(N
.getOperand(0), CN
->getAPIntValue())) {
1110 // Perform some heroic transforms on an and of a constant-count shift
1111 // with a constant to enable use of the scaled offset field.
1113 SDValue Shift
= N
.getOperand(0);
1114 if (Shift
.getNumOperands() != 2) break;
1116 // Scale must not be used already.
1117 if (AM
.IndexReg
.getNode() != 0 || AM
.Scale
!= 1) break;
1119 SDValue X
= Shift
.getOperand(0);
1120 ConstantSDNode
*C2
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
1121 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(Shift
.getOperand(1));
1122 if (!C1
|| !C2
) break;
1124 // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1125 // allows us to convert the shift and and into an h-register extract and
1127 if (Shift
.getOpcode() == ISD::SRL
&& Shift
.hasOneUse()) {
1128 unsigned ScaleLog
= 8 - C1
->getZExtValue();
1129 if (ScaleLog
> 0 && ScaleLog
< 4 &&
1130 C2
->getZExtValue() == (UINT64_C(0xff) << ScaleLog
)) {
1131 SDValue Eight
= CurDAG
->getConstant(8, MVT::i8
);
1132 SDValue Mask
= CurDAG
->getConstant(0xff, N
.getValueType());
1133 SDValue Srl
= CurDAG
->getNode(ISD::SRL
, dl
, N
.getValueType(),
1135 SDValue And
= CurDAG
->getNode(ISD::AND
, dl
, N
.getValueType(),
1137 SDValue ShlCount
= CurDAG
->getConstant(ScaleLog
, MVT::i8
);
1138 SDValue Shl
= CurDAG
->getNode(ISD::SHL
, dl
, N
.getValueType(),
1141 // Insert the new nodes into the topological ordering.
1142 if (Eight
.getNode()->getNodeId() == -1 ||
1143 Eight
.getNode()->getNodeId() > X
.getNode()->getNodeId()) {
1144 CurDAG
->RepositionNode(X
.getNode(), Eight
.getNode());
1145 Eight
.getNode()->setNodeId(X
.getNode()->getNodeId());
1147 if (Mask
.getNode()->getNodeId() == -1 ||
1148 Mask
.getNode()->getNodeId() > X
.getNode()->getNodeId()) {
1149 CurDAG
->RepositionNode(X
.getNode(), Mask
.getNode());
1150 Mask
.getNode()->setNodeId(X
.getNode()->getNodeId());
1152 if (Srl
.getNode()->getNodeId() == -1 ||
1153 Srl
.getNode()->getNodeId() > Shift
.getNode()->getNodeId()) {
1154 CurDAG
->RepositionNode(Shift
.getNode(), Srl
.getNode());
1155 Srl
.getNode()->setNodeId(Shift
.getNode()->getNodeId());
1157 if (And
.getNode()->getNodeId() == -1 ||
1158 And
.getNode()->getNodeId() > N
.getNode()->getNodeId()) {
1159 CurDAG
->RepositionNode(N
.getNode(), And
.getNode());
1160 And
.getNode()->setNodeId(N
.getNode()->getNodeId());
1162 if (ShlCount
.getNode()->getNodeId() == -1 ||
1163 ShlCount
.getNode()->getNodeId() > X
.getNode()->getNodeId()) {
1164 CurDAG
->RepositionNode(X
.getNode(), ShlCount
.getNode());
1165 ShlCount
.getNode()->setNodeId(N
.getNode()->getNodeId());
1167 if (Shl
.getNode()->getNodeId() == -1 ||
1168 Shl
.getNode()->getNodeId() > N
.getNode()->getNodeId()) {
1169 CurDAG
->RepositionNode(N
.getNode(), Shl
.getNode());
1170 Shl
.getNode()->setNodeId(N
.getNode()->getNodeId());
1172 CurDAG
->ReplaceAllUsesWith(N
, Shl
);
1174 AM
.Scale
= (1 << ScaleLog
);
1179 // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1180 // allows us to fold the shift into this addressing mode.
1181 if (Shift
.getOpcode() != ISD::SHL
) break;
1183 // Not likely to be profitable if either the AND or SHIFT node has more
1184 // than one use (unless all uses are for address computation). Besides,
1185 // isel mechanism requires their node ids to be reused.
1186 if (!N
.hasOneUse() || !Shift
.hasOneUse())
1189 // Verify that the shift amount is something we can fold.
1190 unsigned ShiftCst
= C1
->getZExtValue();
1191 if (ShiftCst
!= 1 && ShiftCst
!= 2 && ShiftCst
!= 3)
1194 // Get the new AND mask, this folds to a constant.
1195 SDValue NewANDMask
= CurDAG
->getNode(ISD::SRL
, dl
, N
.getValueType(),
1196 SDValue(C2
, 0), SDValue(C1
, 0));
1197 SDValue NewAND
= CurDAG
->getNode(ISD::AND
, dl
, N
.getValueType(), X
,
1199 SDValue NewSHIFT
= CurDAG
->getNode(ISD::SHL
, dl
, N
.getValueType(),
1200 NewAND
, SDValue(C1
, 0));
1202 // Insert the new nodes into the topological ordering.
1203 if (C1
->getNodeId() > X
.getNode()->getNodeId()) {
1204 CurDAG
->RepositionNode(X
.getNode(), C1
);
1205 C1
->setNodeId(X
.getNode()->getNodeId());
1207 if (NewANDMask
.getNode()->getNodeId() == -1 ||
1208 NewANDMask
.getNode()->getNodeId() > X
.getNode()->getNodeId()) {
1209 CurDAG
->RepositionNode(X
.getNode(), NewANDMask
.getNode());
1210 NewANDMask
.getNode()->setNodeId(X
.getNode()->getNodeId());
1212 if (NewAND
.getNode()->getNodeId() == -1 ||
1213 NewAND
.getNode()->getNodeId() > Shift
.getNode()->getNodeId()) {
1214 CurDAG
->RepositionNode(Shift
.getNode(), NewAND
.getNode());
1215 NewAND
.getNode()->setNodeId(Shift
.getNode()->getNodeId());
1217 if (NewSHIFT
.getNode()->getNodeId() == -1 ||
1218 NewSHIFT
.getNode()->getNodeId() > N
.getNode()->getNodeId()) {
1219 CurDAG
->RepositionNode(N
.getNode(), NewSHIFT
.getNode());
1220 NewSHIFT
.getNode()->setNodeId(N
.getNode()->getNodeId());
1223 CurDAG
->ReplaceAllUsesWith(N
, NewSHIFT
);
1225 AM
.Scale
= 1 << ShiftCst
;
1226 AM
.IndexReg
= NewAND
;
1231 return MatchAddressBase(N
, AM
);
1234 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1235 /// specified addressing mode without any further recursion.
1236 bool X86DAGToDAGISel::MatchAddressBase(SDValue N
, X86ISelAddressMode
&AM
) {
1237 // Is the base register already occupied?
1238 if (AM
.BaseType
!= X86ISelAddressMode::RegBase
|| AM
.Base
.Reg
.getNode()) {
1239 // If so, check to see if the scale index register is set.
1240 if (AM
.IndexReg
.getNode() == 0) {
1246 // Otherwise, we cannot select it.
1250 // Default, generate it as a register.
1251 AM
.BaseType
= X86ISelAddressMode::RegBase
;
1256 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1257 /// It returns the operands which make up the maximal addressing mode it can
1258 /// match by reference.
1259 bool X86DAGToDAGISel::SelectAddr(SDValue Op
, SDValue N
, SDValue
&Base
,
1260 SDValue
&Scale
, SDValue
&Index
,
1261 SDValue
&Disp
, SDValue
&Segment
) {
1262 X86ISelAddressMode AM
;
1264 if (AvoidDupAddrCompute
&& !N
.hasOneUse()) {
1265 unsigned Opcode
= N
.getOpcode();
1266 if (Opcode
!= ISD::Constant
&& Opcode
!= ISD::FrameIndex
&&
1267 Opcode
!= X86ISD::Wrapper
&& Opcode
!= X86ISD::WrapperRIP
) {
1268 // If we are able to fold N into addressing mode, then we'll allow it even
1269 // if N has multiple uses. In general, addressing computation is used as
1270 // addresses by all of its uses. But watch out for CopyToReg uses, that
1271 // means the address computation is liveout. It will be computed by a LEA
1272 // so we want to avoid computing the address twice.
1273 for (SDNode::use_iterator UI
= N
.getNode()->use_begin(),
1274 UE
= N
.getNode()->use_end(); UI
!= UE
; ++UI
) {
1275 if (UI
->getOpcode() == ISD::CopyToReg
) {
1276 MatchAddressBase(N
, AM
);
1284 if (!Done
&& MatchAddress(N
, AM
))
1287 EVT VT
= N
.getValueType();
1288 if (AM
.BaseType
== X86ISelAddressMode::RegBase
) {
1289 if (!AM
.Base
.Reg
.getNode())
1290 AM
.Base
.Reg
= CurDAG
->getRegister(0, VT
);
1293 if (!AM
.IndexReg
.getNode())
1294 AM
.IndexReg
= CurDAG
->getRegister(0, VT
);
1296 getAddressOperands(AM
, Base
, Scale
, Index
, Disp
, Segment
);
1300 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
1301 /// match a load whose top elements are either undef or zeros. The load flavor
1302 /// is derived from the type of N, which is either v4f32 or v2f64.
1303 bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op
, SDValue Pred
,
1304 SDValue N
, SDValue
&Base
,
1305 SDValue
&Scale
, SDValue
&Index
,
1306 SDValue
&Disp
, SDValue
&Segment
,
1308 SDValue
&OutChain
) {
1309 if (N
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
1310 InChain
= N
.getOperand(0).getValue(1);
1311 if (ISD::isNON_EXTLoad(InChain
.getNode()) &&
1312 InChain
.getValue(0).hasOneUse() &&
1314 IsLegalAndProfitableToFold(N
.getNode(), Pred
.getNode(), Op
.getNode())) {
1315 LoadSDNode
*LD
= cast
<LoadSDNode
>(InChain
);
1316 if (!SelectAddr(Op
, LD
->getBasePtr(), Base
, Scale
, Index
, Disp
, Segment
))
1318 OutChain
= LD
->getChain();
1323 // Also handle the case where we explicitly require zeros in the top
1324 // elements. This is a vector shuffle from the zero vector.
1325 if (N
.getOpcode() == X86ISD::VZEXT_MOVL
&& N
.getNode()->hasOneUse() &&
1326 // Check to see if the top elements are all zeros (or bitcast of zeros).
1327 N
.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR
&&
1328 N
.getOperand(0).getNode()->hasOneUse() &&
1329 ISD::isNON_EXTLoad(N
.getOperand(0).getOperand(0).getNode()) &&
1330 N
.getOperand(0).getOperand(0).hasOneUse()) {
1331 // Okay, this is a zero extending load. Fold it.
1332 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
.getOperand(0).getOperand(0));
1333 if (!SelectAddr(Op
, LD
->getBasePtr(), Base
, Scale
, Index
, Disp
, Segment
))
1335 OutChain
= LD
->getChain();
1336 InChain
= SDValue(LD
, 1);
1343 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1344 /// mode it matches can be cost effectively emitted as an LEA instruction.
1345 bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op
, SDValue N
,
1346 SDValue
&Base
, SDValue
&Scale
,
1347 SDValue
&Index
, SDValue
&Disp
) {
1348 X86ISelAddressMode AM
;
1350 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1352 SDValue Copy
= AM
.Segment
;
1353 SDValue T
= CurDAG
->getRegister(0, MVT::i32
);
1355 if (MatchAddress(N
, AM
))
1357 assert (T
== AM
.Segment
);
1360 EVT VT
= N
.getValueType();
1361 unsigned Complexity
= 0;
1362 if (AM
.BaseType
== X86ISelAddressMode::RegBase
)
1363 if (AM
.Base
.Reg
.getNode())
1366 AM
.Base
.Reg
= CurDAG
->getRegister(0, VT
);
1367 else if (AM
.BaseType
== X86ISelAddressMode::FrameIndexBase
)
1370 if (AM
.IndexReg
.getNode())
1373 AM
.IndexReg
= CurDAG
->getRegister(0, VT
);
1375 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1380 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1381 // to a LEA. This is determined with some expermentation but is by no means
1382 // optimal (especially for code size consideration). LEA is nice because of
1383 // its three-address nature. Tweak the cost function again when we can run
1384 // convertToThreeAddress() at register allocation time.
1385 if (AM
.hasSymbolicDisplacement()) {
1386 // For X86-64, we should always use lea to materialize RIP relative
1388 if (Subtarget
->is64Bit())
1394 if (AM
.Disp
&& (AM
.Base
.Reg
.getNode() || AM
.IndexReg
.getNode()))
1397 // If it isn't worth using an LEA, reject it.
1398 if (Complexity
<= 2)
1402 getAddressOperands(AM
, Base
, Scale
, Index
, Disp
, Segment
);
1406 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1407 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op
, SDValue N
, SDValue
&Base
,
1408 SDValue
&Scale
, SDValue
&Index
,
1410 assert(Op
.getOpcode() == X86ISD::TLSADDR
);
1411 assert(N
.getOpcode() == ISD::TargetGlobalTLSAddress
);
1412 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
1414 X86ISelAddressMode AM
;
1415 AM
.GV
= GA
->getGlobal();
1416 AM
.Disp
+= GA
->getOffset();
1417 AM
.Base
.Reg
= CurDAG
->getRegister(0, N
.getValueType());
1418 AM
.SymbolFlags
= GA
->getTargetFlags();
1420 if (N
.getValueType() == MVT::i32
) {
1422 AM
.IndexReg
= CurDAG
->getRegister(X86::EBX
, MVT::i32
);
1424 AM
.IndexReg
= CurDAG
->getRegister(0, MVT::i64
);
1428 getAddressOperands(AM
, Base
, Scale
, Index
, Disp
, Segment
);
1433 bool X86DAGToDAGISel::TryFoldLoad(SDValue P
, SDValue N
,
1434 SDValue
&Base
, SDValue
&Scale
,
1435 SDValue
&Index
, SDValue
&Disp
,
1437 if (ISD::isNON_EXTLoad(N
.getNode()) &&
1439 IsLegalAndProfitableToFold(N
.getNode(), P
.getNode(), P
.getNode()))
1440 return SelectAddr(P
, N
.getOperand(1), Base
, Scale
, Index
, Disp
, Segment
);
1444 /// getGlobalBaseReg - Return an SDNode that returns the value of
1445 /// the global base register. Output instructions required to
1446 /// initialize the global base register, if necessary.
1448 SDNode
*X86DAGToDAGISel::getGlobalBaseReg() {
1449 unsigned GlobalBaseReg
= getInstrInfo()->getGlobalBaseReg(MF
);
1450 return CurDAG
->getRegister(GlobalBaseReg
, TLI
.getPointerTy()).getNode();
1453 static SDNode
*FindCallStartFromCall(SDNode
*Node
) {
1454 if (Node
->getOpcode() == ISD::CALLSEQ_START
) return Node
;
1455 assert(Node
->getOperand(0).getValueType() == MVT::Other
&&
1456 "Node doesn't have a token chain argument!");
1457 return FindCallStartFromCall(Node
->getOperand(0).getNode());
1460 SDNode
*X86DAGToDAGISel::SelectAtomic64(SDNode
*Node
, unsigned Opc
) {
1461 SDValue Chain
= Node
->getOperand(0);
1462 SDValue In1
= Node
->getOperand(1);
1463 SDValue In2L
= Node
->getOperand(2);
1464 SDValue In2H
= Node
->getOperand(3);
1465 SDValue Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
;
1466 if (!SelectAddr(In1
, In1
, Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
))
1468 SDValue LSI
= Node
->getOperand(4); // MemOperand
1469 const SDValue Ops
[] = { Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
, In2L
, In2H
, LSI
, Chain
};
1470 return CurDAG
->getTargetNode(Opc
, Node
->getDebugLoc(),
1471 MVT::i32
, MVT::i32
, MVT::Other
, Ops
,
1472 array_lengthof(Ops
));
1475 SDNode
*X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode
*Node
, EVT NVT
) {
1476 if (Node
->hasAnyUseOfValue(0))
1479 // Optimize common patterns for __sync_add_and_fetch and
1480 // __sync_sub_and_fetch where the result is not used. This allows us
1481 // to use "lock" version of add, sub, inc, dec instructions.
1482 // FIXME: Do not use special instructions but instead add the "lock"
1483 // prefix to the target node somehow. The extra information will then be
1484 // transferred to machine instruction and it denotes the prefix.
1485 SDValue Chain
= Node
->getOperand(0);
1486 SDValue Ptr
= Node
->getOperand(1);
1487 SDValue Val
= Node
->getOperand(2);
1488 SDValue Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
;
1489 if (!SelectAddr(Ptr
, Ptr
, Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
))
1492 bool isInc
= false, isDec
= false, isSub
= false, isCN
= false;
1493 ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Val
);
1496 int64_t CNVal
= CN
->getSExtValue();
1499 else if (CNVal
== -1)
1501 else if (CNVal
>= 0)
1502 Val
= CurDAG
->getTargetConstant(CNVal
, NVT
);
1505 Val
= CurDAG
->getTargetConstant(-CNVal
, NVT
);
1507 } else if (Val
.hasOneUse() &&
1508 Val
.getOpcode() == ISD::SUB
&&
1509 X86::isZeroNode(Val
.getOperand(0))) {
1511 Val
= Val
.getOperand(1);
1515 switch (NVT
.getSimpleVT().SimpleTy
) {
1519 Opc
= X86::LOCK_INC8m
;
1521 Opc
= X86::LOCK_DEC8m
;
1524 Opc
= X86::LOCK_SUB8mi
;
1526 Opc
= X86::LOCK_SUB8mr
;
1529 Opc
= X86::LOCK_ADD8mi
;
1531 Opc
= X86::LOCK_ADD8mr
;
1536 Opc
= X86::LOCK_INC16m
;
1538 Opc
= X86::LOCK_DEC16m
;
1541 if (Predicate_i16immSExt8(Val
.getNode()))
1542 Opc
= X86::LOCK_SUB16mi8
;
1544 Opc
= X86::LOCK_SUB16mi
;
1546 Opc
= X86::LOCK_SUB16mr
;
1549 if (Predicate_i16immSExt8(Val
.getNode()))
1550 Opc
= X86::LOCK_ADD16mi8
;
1552 Opc
= X86::LOCK_ADD16mi
;
1554 Opc
= X86::LOCK_ADD16mr
;
1559 Opc
= X86::LOCK_INC32m
;
1561 Opc
= X86::LOCK_DEC32m
;
1564 if (Predicate_i32immSExt8(Val
.getNode()))
1565 Opc
= X86::LOCK_SUB32mi8
;
1567 Opc
= X86::LOCK_SUB32mi
;
1569 Opc
= X86::LOCK_SUB32mr
;
1572 if (Predicate_i32immSExt8(Val
.getNode()))
1573 Opc
= X86::LOCK_ADD32mi8
;
1575 Opc
= X86::LOCK_ADD32mi
;
1577 Opc
= X86::LOCK_ADD32mr
;
1582 Opc
= X86::LOCK_INC64m
;
1584 Opc
= X86::LOCK_DEC64m
;
1586 Opc
= X86::LOCK_SUB64mr
;
1588 if (Predicate_i64immSExt8(Val
.getNode()))
1589 Opc
= X86::LOCK_SUB64mi8
;
1590 else if (Predicate_i64immSExt32(Val
.getNode()))
1591 Opc
= X86::LOCK_SUB64mi32
;
1594 Opc
= X86::LOCK_ADD64mr
;
1596 if (Predicate_i64immSExt8(Val
.getNode()))
1597 Opc
= X86::LOCK_ADD64mi8
;
1598 else if (Predicate_i64immSExt32(Val
.getNode()))
1599 Opc
= X86::LOCK_ADD64mi32
;
1605 DebugLoc dl
= Node
->getDebugLoc();
1606 SDValue Undef
= SDValue(CurDAG
->getTargetNode(TargetInstrInfo::IMPLICIT_DEF
,
1608 SDValue MemOp
= CurDAG
->getMemOperand(cast
<MemSDNode
>(Node
)->getMemOperand());
1609 if (isInc
|| isDec
) {
1610 SDValue Ops
[] = { Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
, MemOp
, Chain
};
1611 SDValue Ret
= SDValue(CurDAG
->getTargetNode(Opc
, dl
, MVT::Other
, Ops
, 7), 0);
1612 SDValue RetVals
[] = { Undef
, Ret
};
1613 return CurDAG
->getMergeValues(RetVals
, 2, dl
).getNode();
1615 SDValue Ops
[] = { Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
, Val
, MemOp
, Chain
};
1616 SDValue Ret
= SDValue(CurDAG
->getTargetNode(Opc
, dl
, MVT::Other
, Ops
, 8), 0);
1617 SDValue RetVals
[] = { Undef
, Ret
};
1618 return CurDAG
->getMergeValues(RetVals
, 2, dl
).getNode();
1622 SDNode
*X86DAGToDAGISel::Select(SDValue N
) {
1623 SDNode
*Node
= N
.getNode();
1624 EVT NVT
= Node
->getValueType(0);
1626 unsigned Opcode
= Node
->getOpcode();
1627 DebugLoc dl
= Node
->getDebugLoc();
1631 errs() << std::string(Indent
, ' ') << "Selecting: ";
1638 if (Node
->isMachineOpcode()) {
1641 errs() << std::string(Indent
-2, ' ') << "== ";
1647 return NULL
; // Already selected.
1652 case X86ISD::GlobalBaseReg
:
1653 return getGlobalBaseReg();
1655 case X86ISD::ATOMOR64_DAG
:
1656 return SelectAtomic64(Node
, X86::ATOMOR6432
);
1657 case X86ISD::ATOMXOR64_DAG
:
1658 return SelectAtomic64(Node
, X86::ATOMXOR6432
);
1659 case X86ISD::ATOMADD64_DAG
:
1660 return SelectAtomic64(Node
, X86::ATOMADD6432
);
1661 case X86ISD::ATOMSUB64_DAG
:
1662 return SelectAtomic64(Node
, X86::ATOMSUB6432
);
1663 case X86ISD::ATOMNAND64_DAG
:
1664 return SelectAtomic64(Node
, X86::ATOMNAND6432
);
1665 case X86ISD::ATOMAND64_DAG
:
1666 return SelectAtomic64(Node
, X86::ATOMAND6432
);
1667 case X86ISD::ATOMSWAP64_DAG
:
1668 return SelectAtomic64(Node
, X86::ATOMSWAP6432
);
1670 case ISD::ATOMIC_LOAD_ADD
: {
1671 SDNode
*RetVal
= SelectAtomicLoadAdd(Node
, NVT
);
1677 case ISD::SMUL_LOHI
:
1678 case ISD::UMUL_LOHI
: {
1679 SDValue N0
= Node
->getOperand(0);
1680 SDValue N1
= Node
->getOperand(1);
1682 bool isSigned
= Opcode
== ISD::SMUL_LOHI
;
1684 switch (NVT
.getSimpleVT().SimpleTy
) {
1685 default: llvm_unreachable("Unsupported VT!");
1686 case MVT::i8
: Opc
= X86::MUL8r
; MOpc
= X86::MUL8m
; break;
1687 case MVT::i16
: Opc
= X86::MUL16r
; MOpc
= X86::MUL16m
; break;
1688 case MVT::i32
: Opc
= X86::MUL32r
; MOpc
= X86::MUL32m
; break;
1689 case MVT::i64
: Opc
= X86::MUL64r
; MOpc
= X86::MUL64m
; break;
1692 switch (NVT
.getSimpleVT().SimpleTy
) {
1693 default: llvm_unreachable("Unsupported VT!");
1694 case MVT::i8
: Opc
= X86::IMUL8r
; MOpc
= X86::IMUL8m
; break;
1695 case MVT::i16
: Opc
= X86::IMUL16r
; MOpc
= X86::IMUL16m
; break;
1696 case MVT::i32
: Opc
= X86::IMUL32r
; MOpc
= X86::IMUL32m
; break;
1697 case MVT::i64
: Opc
= X86::IMUL64r
; MOpc
= X86::IMUL64m
; break;
1701 unsigned LoReg
, HiReg
;
1702 switch (NVT
.getSimpleVT().SimpleTy
) {
1703 default: llvm_unreachable("Unsupported VT!");
1704 case MVT::i8
: LoReg
= X86::AL
; HiReg
= X86::AH
; break;
1705 case MVT::i16
: LoReg
= X86::AX
; HiReg
= X86::DX
; break;
1706 case MVT::i32
: LoReg
= X86::EAX
; HiReg
= X86::EDX
; break;
1707 case MVT::i64
: LoReg
= X86::RAX
; HiReg
= X86::RDX
; break;
1710 SDValue Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
;
1711 bool foldedLoad
= TryFoldLoad(N
, N1
, Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
);
1712 // Multiply is commmutative.
1714 foldedLoad
= TryFoldLoad(N
, N0
, Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
);
1719 SDValue InFlag
= CurDAG
->getCopyToReg(CurDAG
->getEntryNode(), dl
, LoReg
,
1720 N0
, SDValue()).getValue(1);
1723 SDValue Ops
[] = { Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
, N1
.getOperand(0),
1726 CurDAG
->getTargetNode(MOpc
, dl
, MVT::Other
, MVT::Flag
, Ops
,
1727 array_lengthof(Ops
));
1728 InFlag
= SDValue(CNode
, 1);
1729 // Update the chain.
1730 ReplaceUses(N1
.getValue(1), SDValue(CNode
, 0));
1733 SDValue(CurDAG
->getTargetNode(Opc
, dl
, MVT::Flag
, N1
, InFlag
), 0);
1736 // Copy the low half of the result, if it is needed.
1737 if (!N
.getValue(0).use_empty()) {
1738 SDValue Result
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), dl
,
1739 LoReg
, NVT
, InFlag
);
1740 InFlag
= Result
.getValue(2);
1741 ReplaceUses(N
.getValue(0), Result
);
1744 errs() << std::string(Indent
-2, ' ') << "=> ";
1745 Result
.getNode()->dump(CurDAG
);
1750 // Copy the high half of the result, if it is needed.
1751 if (!N
.getValue(1).use_empty()) {
1753 if (HiReg
== X86::AH
&& Subtarget
->is64Bit()) {
1754 // Prevent use of AH in a REX instruction by referencing AX instead.
1755 // Shift it down 8 bits.
1756 Result
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), dl
,
1757 X86::AX
, MVT::i16
, InFlag
);
1758 InFlag
= Result
.getValue(2);
1759 Result
= SDValue(CurDAG
->getTargetNode(X86::SHR16ri
, dl
, MVT::i16
,
1761 CurDAG
->getTargetConstant(8, MVT::i8
)), 0);
1762 // Then truncate it down to i8.
1763 Result
= CurDAG
->getTargetExtractSubreg(X86::SUBREG_8BIT
, dl
,
1766 Result
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), dl
,
1767 HiReg
, NVT
, InFlag
);
1768 InFlag
= Result
.getValue(2);
1770 ReplaceUses(N
.getValue(1), Result
);
1773 errs() << std::string(Indent
-2, ' ') << "=> ";
1774 Result
.getNode()->dump(CurDAG
);
1788 case ISD::UDIVREM
: {
1789 SDValue N0
= Node
->getOperand(0);
1790 SDValue N1
= Node
->getOperand(1);
1792 bool isSigned
= Opcode
== ISD::SDIVREM
;
1794 switch (NVT
.getSimpleVT().SimpleTy
) {
1795 default: llvm_unreachable("Unsupported VT!");
1796 case MVT::i8
: Opc
= X86::DIV8r
; MOpc
= X86::DIV8m
; break;
1797 case MVT::i16
: Opc
= X86::DIV16r
; MOpc
= X86::DIV16m
; break;
1798 case MVT::i32
: Opc
= X86::DIV32r
; MOpc
= X86::DIV32m
; break;
1799 case MVT::i64
: Opc
= X86::DIV64r
; MOpc
= X86::DIV64m
; break;
1802 switch (NVT
.getSimpleVT().SimpleTy
) {
1803 default: llvm_unreachable("Unsupported VT!");
1804 case MVT::i8
: Opc
= X86::IDIV8r
; MOpc
= X86::IDIV8m
; break;
1805 case MVT::i16
: Opc
= X86::IDIV16r
; MOpc
= X86::IDIV16m
; break;
1806 case MVT::i32
: Opc
= X86::IDIV32r
; MOpc
= X86::IDIV32m
; break;
1807 case MVT::i64
: Opc
= X86::IDIV64r
; MOpc
= X86::IDIV64m
; break;
1811 unsigned LoReg
, HiReg
;
1812 unsigned ClrOpcode
, SExtOpcode
;
1813 switch (NVT
.getSimpleVT().SimpleTy
) {
1814 default: llvm_unreachable("Unsupported VT!");
1816 LoReg
= X86::AL
; HiReg
= X86::AH
;
1818 SExtOpcode
= X86::CBW
;
1821 LoReg
= X86::AX
; HiReg
= X86::DX
;
1822 ClrOpcode
= X86::MOV16r0
;
1823 SExtOpcode
= X86::CWD
;
1826 LoReg
= X86::EAX
; HiReg
= X86::EDX
;
1827 ClrOpcode
= X86::MOV32r0
;
1828 SExtOpcode
= X86::CDQ
;
1831 LoReg
= X86::RAX
; HiReg
= X86::RDX
;
1832 ClrOpcode
= ~0U; // NOT USED.
1833 SExtOpcode
= X86::CQO
;
1837 SDValue Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
;
1838 bool foldedLoad
= TryFoldLoad(N
, N1
, Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
);
1839 bool signBitIsZero
= CurDAG
->SignBitIsZero(N0
);
1842 if (NVT
== MVT::i8
&& (!isSigned
|| signBitIsZero
)) {
1843 // Special case for div8, just use a move with zero extension to AX to
1844 // clear the upper 8 bits (AH).
1845 SDValue Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
, Move
, Chain
;
1846 if (TryFoldLoad(N
, N0
, Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
)) {
1847 SDValue Ops
[] = { Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
, N0
.getOperand(0) };
1849 SDValue(CurDAG
->getTargetNode(X86::MOVZX16rm8
, dl
, MVT::i16
,
1851 array_lengthof(Ops
)), 0);
1852 Chain
= Move
.getValue(1);
1853 ReplaceUses(N0
.getValue(1), Chain
);
1856 SDValue(CurDAG
->getTargetNode(X86::MOVZX16rr8
, dl
, MVT::i16
, N0
),0);
1857 Chain
= CurDAG
->getEntryNode();
1859 Chain
= CurDAG
->getCopyToReg(Chain
, dl
, X86::AX
, Move
, SDValue());
1860 InFlag
= Chain
.getValue(1);
1863 CurDAG
->getCopyToReg(CurDAG
->getEntryNode(), dl
,
1864 LoReg
, N0
, SDValue()).getValue(1);
1865 if (isSigned
&& !signBitIsZero
) {
1866 // Sign extend the low part into the high part.
1868 SDValue(CurDAG
->getTargetNode(SExtOpcode
, dl
, MVT::Flag
, InFlag
),0);
1870 // Zero out the high part, effectively zero extending the input.
1873 if (NVT
.getSimpleVT() == MVT::i64
) {
1874 ClrNode
= SDValue(CurDAG
->getTargetNode(X86::MOV32r0
, dl
, MVT::i32
),
1876 // We just did a 32-bit clear, insert it into a 64-bit register to
1877 // clear the whole 64-bit reg.
1879 SDValue(CurDAG
->getTargetNode(TargetInstrInfo::IMPLICIT_DEF
,
1882 CurDAG
->getTargetConstant(X86::SUBREG_32BIT
, MVT::i32
);
1884 SDValue(CurDAG
->getTargetNode(TargetInstrInfo::INSERT_SUBREG
, dl
,
1885 MVT::i64
, Undef
, ClrNode
, SubRegNo
),
1888 ClrNode
= SDValue(CurDAG
->getTargetNode(ClrOpcode
, dl
, NVT
), 0);
1891 InFlag
= CurDAG
->getCopyToReg(CurDAG
->getEntryNode(), dl
, HiReg
,
1892 ClrNode
, InFlag
).getValue(1);
1897 SDValue Ops
[] = { Tmp0
, Tmp1
, Tmp2
, Tmp3
, Tmp4
, N1
.getOperand(0),
1900 CurDAG
->getTargetNode(MOpc
, dl
, MVT::Other
, MVT::Flag
, Ops
,
1901 array_lengthof(Ops
));
1902 InFlag
= SDValue(CNode
, 1);
1903 // Update the chain.
1904 ReplaceUses(N1
.getValue(1), SDValue(CNode
, 0));
1907 SDValue(CurDAG
->getTargetNode(Opc
, dl
, MVT::Flag
, N1
, InFlag
), 0);
1910 // Copy the division (low) result, if it is needed.
1911 if (!N
.getValue(0).use_empty()) {
1912 SDValue Result
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), dl
,
1913 LoReg
, NVT
, InFlag
);
1914 InFlag
= Result
.getValue(2);
1915 ReplaceUses(N
.getValue(0), Result
);
1918 errs() << std::string(Indent
-2, ' ') << "=> ";
1919 Result
.getNode()->dump(CurDAG
);
1924 // Copy the remainder (high) result, if it is needed.
1925 if (!N
.getValue(1).use_empty()) {
1927 if (HiReg
== X86::AH
&& Subtarget
->is64Bit()) {
1928 // Prevent use of AH in a REX instruction by referencing AX instead.
1929 // Shift it down 8 bits.
1930 Result
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), dl
,
1931 X86::AX
, MVT::i16
, InFlag
);
1932 InFlag
= Result
.getValue(2);
1933 Result
= SDValue(CurDAG
->getTargetNode(X86::SHR16ri
, dl
, MVT::i16
,
1935 CurDAG
->getTargetConstant(8, MVT::i8
)),
1937 // Then truncate it down to i8.
1938 Result
= CurDAG
->getTargetExtractSubreg(X86::SUBREG_8BIT
, dl
,
1941 Result
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), dl
,
1942 HiReg
, NVT
, InFlag
);
1943 InFlag
= Result
.getValue(2);
1945 ReplaceUses(N
.getValue(1), Result
);
1948 errs() << std::string(Indent
-2, ' ') << "=> ";
1949 Result
.getNode()->dump(CurDAG
);
1963 SDValue N0
= Node
->getOperand(0);
1964 SDValue N1
= Node
->getOperand(1);
1966 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
1967 // use a smaller encoding.
1968 if (N0
.getNode()->getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
1969 N0
.getValueType() != MVT::i8
&&
1970 X86::isZeroNode(N1
)) {
1971 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getNode()->getOperand(1));
1974 // For example, convert "testl %eax, $8" to "testb %al, $8"
1975 if ((C
->getZExtValue() & ~UINT64_C(0xff)) == 0) {
1976 SDValue Imm
= CurDAG
->getTargetConstant(C
->getZExtValue(), MVT::i8
);
1977 SDValue Reg
= N0
.getNode()->getOperand(0);
1979 // On x86-32, only the ABCD registers have 8-bit subregisters.
1980 if (!Subtarget
->is64Bit()) {
1981 TargetRegisterClass
*TRC
= 0;
1982 switch (N0
.getValueType().getSimpleVT().SimpleTy
) {
1983 case MVT::i32
: TRC
= &X86::GR32_ABCDRegClass
; break;
1984 case MVT::i16
: TRC
= &X86::GR16_ABCDRegClass
; break;
1985 default: llvm_unreachable("Unsupported TEST operand type!");
1987 SDValue RC
= CurDAG
->getTargetConstant(TRC
->getID(), MVT::i32
);
1988 Reg
= SDValue(CurDAG
->getTargetNode(X86::COPY_TO_REGCLASS
, dl
,
1989 Reg
.getValueType(), Reg
, RC
), 0);
1992 // Extract the l-register.
1993 SDValue Subreg
= CurDAG
->getTargetExtractSubreg(X86::SUBREG_8BIT
, dl
,
1997 return CurDAG
->getTargetNode(X86::TEST8ri
, dl
, MVT::i32
, Subreg
, Imm
);
2000 // For example, "testl %eax, $2048" to "testb %ah, $8".
2001 if ((C
->getZExtValue() & ~UINT64_C(0xff00)) == 0) {
2002 // Shift the immediate right by 8 bits.
2003 SDValue ShiftedImm
= CurDAG
->getTargetConstant(C
->getZExtValue() >> 8,
2005 SDValue Reg
= N0
.getNode()->getOperand(0);
2007 // Put the value in an ABCD register.
2008 TargetRegisterClass
*TRC
= 0;
2009 switch (N0
.getValueType().getSimpleVT().SimpleTy
) {
2010 case MVT::i64
: TRC
= &X86::GR64_ABCDRegClass
; break;
2011 case MVT::i32
: TRC
= &X86::GR32_ABCDRegClass
; break;
2012 case MVT::i16
: TRC
= &X86::GR16_ABCDRegClass
; break;
2013 default: llvm_unreachable("Unsupported TEST operand type!");
2015 SDValue RC
= CurDAG
->getTargetConstant(TRC
->getID(), MVT::i32
);
2016 Reg
= SDValue(CurDAG
->getTargetNode(X86::COPY_TO_REGCLASS
, dl
,
2017 Reg
.getValueType(), Reg
, RC
), 0);
2019 // Extract the h-register.
2020 SDValue Subreg
= CurDAG
->getTargetExtractSubreg(X86::SUBREG_8BIT_HI
, dl
,
2023 // Emit a testb. No special NOREX tricks are needed since there's
2024 // only one GPR operand!
2025 return CurDAG
->getTargetNode(X86::TEST8ri
, dl
, MVT::i32
,
2026 Subreg
, ShiftedImm
);
2029 // For example, "testl %eax, $32776" to "testw %ax, $32776".
2030 if ((C
->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2031 N0
.getValueType() != MVT::i16
) {
2032 SDValue Imm
= CurDAG
->getTargetConstant(C
->getZExtValue(), MVT::i16
);
2033 SDValue Reg
= N0
.getNode()->getOperand(0);
2035 // Extract the 16-bit subregister.
2036 SDValue Subreg
= CurDAG
->getTargetExtractSubreg(X86::SUBREG_16BIT
, dl
,
2040 return CurDAG
->getTargetNode(X86::TEST16ri
, dl
, MVT::i32
, Subreg
, Imm
);
2043 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2044 if ((C
->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2045 N0
.getValueType() == MVT::i64
) {
2046 SDValue Imm
= CurDAG
->getTargetConstant(C
->getZExtValue(), MVT::i32
);
2047 SDValue Reg
= N0
.getNode()->getOperand(0);
2049 // Extract the 32-bit subregister.
2050 SDValue Subreg
= CurDAG
->getTargetExtractSubreg(X86::SUBREG_32BIT
, dl
,
2054 return CurDAG
->getTargetNode(X86::TEST32ri
, dl
, MVT::i32
, Subreg
, Imm
);
2061 SDNode
*ResNode
= SelectCode(N
);
2065 errs() << std::string(Indent
-2, ' ') << "=> ";
2066 if (ResNode
== NULL
|| ResNode
== N
.getNode())
2067 N
.getNode()->dump(CurDAG
);
2069 ResNode
->dump(CurDAG
);
2078 bool X86DAGToDAGISel::
2079 SelectInlineAsmMemoryOperand(const SDValue
&Op
, char ConstraintCode
,
2080 std::vector
<SDValue
> &OutOps
) {
2081 SDValue Op0
, Op1
, Op2
, Op3
, Op4
;
2082 switch (ConstraintCode
) {
2083 case 'o': // offsetable ??
2084 case 'v': // not offsetable ??
2085 default: return true;
2087 if (!SelectAddr(Op
, Op
, Op0
, Op1
, Op2
, Op3
, Op4
))
2092 OutOps
.push_back(Op0
);
2093 OutOps
.push_back(Op1
);
2094 OutOps
.push_back(Op2
);
2095 OutOps
.push_back(Op3
);
2096 OutOps
.push_back(Op4
);
2100 /// createX86ISelDag - This pass converts a legalized DAG into a
2101 /// X86-specific DAG, ready for instruction scheduling.
2103 FunctionPass
*llvm::createX86ISelDag(X86TargetMachine
&TM
,
2104 llvm::CodeGenOpt::Level OptLevel
) {
2105 return new X86DAGToDAGISel(TM
, OptLevel
);