pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Target / X86 / X86ISelDAGToDAG.cpp
blob21681f9c4d0d736e3d027c442e0036becd66e67a
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/GlobalValue.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Support/CFG.h"
27 #include "llvm/Type.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SelectionDAGISel.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/Statistic.h"
43 using namespace llvm;
45 #include "llvm/Support/CommandLine.h"
46 static cl::opt<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden);
48 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
50 //===----------------------------------------------------------------------===//
51 // Pattern Matcher Implementation
52 //===----------------------------------------------------------------------===//
54 namespace {
55 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
56 /// SDValue's instead of register numbers for the leaves of the matched
57 /// tree.
58 struct X86ISelAddressMode {
59 enum {
60 RegBase,
61 FrameIndexBase
62 } BaseType;
64 struct { // This is really a union, discriminated by BaseType!
65 SDValue Reg;
66 int FrameIndex;
67 } Base;
69 unsigned Scale;
70 SDValue IndexReg;
71 int32_t Disp;
72 SDValue Segment;
73 GlobalValue *GV;
74 Constant *CP;
75 const char *ES;
76 int JT;
77 unsigned Align; // CP alignment.
78 unsigned char SymbolFlags; // X86II::MO_*
80 X86ISelAddressMode()
81 : BaseType(RegBase), Scale(1), IndexReg(), Disp(0),
82 Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0),
83 SymbolFlags(X86II::MO_NO_FLAG) {
86 bool hasSymbolicDisplacement() const {
87 return GV != 0 || CP != 0 || ES != 0 || JT != -1;
90 bool hasBaseOrIndexReg() const {
91 return IndexReg.getNode() != 0 || Base.Reg.getNode() != 0;
94 /// isRIPRelative - Return true if this addressing mode is already RIP
95 /// relative.
96 bool isRIPRelative() const {
97 if (BaseType != RegBase) return false;
98 if (RegisterSDNode *RegNode =
99 dyn_cast_or_null<RegisterSDNode>(Base.Reg.getNode()))
100 return RegNode->getReg() == X86::RIP;
101 return false;
104 void setBaseReg(SDValue Reg) {
105 BaseType = RegBase;
106 Base.Reg = Reg;
109 void dump() {
110 errs() << "X86ISelAddressMode " << this << '\n';
111 errs() << "Base.Reg ";
112 if (Base.Reg.getNode() != 0)
113 Base.Reg.getNode()->dump();
114 else
115 errs() << "nul";
116 errs() << " Base.FrameIndex " << Base.FrameIndex << '\n'
117 << " Scale" << Scale << '\n'
118 << "IndexReg ";
119 if (IndexReg.getNode() != 0)
120 IndexReg.getNode()->dump();
121 else
122 errs() << "nul";
123 errs() << " Disp " << Disp << '\n'
124 << "GV ";
125 if (GV)
126 GV->dump();
127 else
128 errs() << "nul";
129 errs() << " CP ";
130 if (CP)
131 CP->dump();
132 else
133 errs() << "nul";
134 errs() << '\n'
135 << "ES ";
136 if (ES)
137 errs() << ES;
138 else
139 errs() << "nul";
140 errs() << " JT" << JT << " Align" << Align << '\n';
145 namespace {
146 //===--------------------------------------------------------------------===//
147 /// ISel - X86 specific code to select X86 machine instructions for
148 /// SelectionDAG operations.
150 class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
151 /// X86Lowering - This object fully describes how to lower LLVM code to an
152 /// X86-specific SelectionDAG.
153 X86TargetLowering &X86Lowering;
155 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
156 /// make the right decision when generating code for different targets.
157 const X86Subtarget *Subtarget;
159 /// OptForSize - If true, selector should try to optimize for code size
160 /// instead of performance.
161 bool OptForSize;
163 public:
164 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
165 : SelectionDAGISel(tm, OptLevel),
166 X86Lowering(*tm.getTargetLowering()),
167 Subtarget(&tm.getSubtarget<X86Subtarget>()),
168 OptForSize(false) {}
170 virtual const char *getPassName() const {
171 return "X86 DAG->DAG Instruction Selection";
174 /// InstructionSelect - This callback is invoked by
175 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
176 virtual void InstructionSelect();
178 virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
180 virtual
181 bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
183 // Include the pieces autogenerated from the target description.
184 #include "X86GenDAGISel.inc"
186 private:
187 SDNode *Select(SDValue N);
188 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
189 SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
191 bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
192 bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
193 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
194 bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
195 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
196 unsigned Depth);
197 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
198 bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
199 SDValue &Scale, SDValue &Index, SDValue &Disp,
200 SDValue &Segment);
201 bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
202 SDValue &Scale, SDValue &Index, SDValue &Disp);
203 bool SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
204 SDValue &Scale, SDValue &Index, SDValue &Disp);
205 bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
206 SDValue N, SDValue &Base, SDValue &Scale,
207 SDValue &Index, SDValue &Disp,
208 SDValue &Segment,
209 SDValue &InChain, SDValue &OutChain);
210 bool TryFoldLoad(SDValue P, SDValue N,
211 SDValue &Base, SDValue &Scale,
212 SDValue &Index, SDValue &Disp,
213 SDValue &Segment);
214 void PreprocessForRMW();
215 void PreprocessForFPConvert();
217 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
218 /// inline asm expressions.
219 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
220 char ConstraintCode,
221 std::vector<SDValue> &OutOps);
223 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
225 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
226 SDValue &Scale, SDValue &Index,
227 SDValue &Disp, SDValue &Segment) {
228 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
229 CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
230 AM.Base.Reg;
231 Scale = getI8Imm(AM.Scale);
232 Index = AM.IndexReg;
233 // These are 32-bit even in 64-bit mode since RIP relative offset
234 // is 32-bit.
235 if (AM.GV)
236 Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp,
237 AM.SymbolFlags);
238 else if (AM.CP)
239 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
240 AM.Align, AM.Disp, AM.SymbolFlags);
241 else if (AM.ES)
242 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
243 else if (AM.JT != -1)
244 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
245 else
246 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
248 if (AM.Segment.getNode())
249 Segment = AM.Segment;
250 else
251 Segment = CurDAG->getRegister(0, MVT::i32);
254 /// getI8Imm - Return a target constant with the specified value, of type
255 /// i8.
256 inline SDValue getI8Imm(unsigned Imm) {
257 return CurDAG->getTargetConstant(Imm, MVT::i8);
260 /// getI16Imm - Return a target constant with the specified value, of type
261 /// i16.
262 inline SDValue getI16Imm(unsigned Imm) {
263 return CurDAG->getTargetConstant(Imm, MVT::i16);
266 /// getI32Imm - Return a target constant with the specified value, of type
267 /// i32.
268 inline SDValue getI32Imm(unsigned Imm) {
269 return CurDAG->getTargetConstant(Imm, MVT::i32);
272 /// getGlobalBaseReg - Return an SDNode that returns the value of
273 /// the global base register. Output instructions required to
274 /// initialize the global base register, if necessary.
276 SDNode *getGlobalBaseReg();
278 /// getTargetMachine - Return a reference to the TargetMachine, casted
279 /// to the target-specific type.
280 const X86TargetMachine &getTargetMachine() {
281 return static_cast<const X86TargetMachine &>(TM);
284 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
285 /// to the target-specific type.
286 const X86InstrInfo *getInstrInfo() {
287 return getTargetMachine().getInstrInfo();
290 #ifndef NDEBUG
291 unsigned Indent;
292 #endif
297 bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
298 SDNode *Root) const {
299 if (OptLevel == CodeGenOpt::None) return false;
301 if (U == Root)
302 switch (U->getOpcode()) {
303 default: break;
304 case ISD::ADD:
305 case ISD::ADDC:
306 case ISD::ADDE:
307 case ISD::AND:
308 case ISD::OR:
309 case ISD::XOR: {
310 SDValue Op1 = U->getOperand(1);
312 // If the other operand is a 8-bit immediate we should fold the immediate
313 // instead. This reduces code size.
314 // e.g.
315 // movl 4(%esp), %eax
316 // addl $4, %eax
317 // vs.
318 // movl $4, %eax
319 // addl 4(%esp), %eax
320 // The former is 2 bytes shorter. In case where the increment is 1, then
321 // the saving can be 4 bytes (by using incl %eax).
322 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
323 if (Imm->getAPIntValue().isSignedIntN(8))
324 return false;
326 // If the other operand is a TLS address, we should fold it instead.
327 // This produces
328 // movl %gs:0, %eax
329 // leal i@NTPOFF(%eax), %eax
330 // instead of
331 // movl $i@NTPOFF, %eax
332 // addl %gs:0, %eax
333 // if the block also has an access to a second TLS address this will save
334 // a load.
335 // FIXME: This is probably also true for non TLS addresses.
336 if (Op1.getOpcode() == X86ISD::Wrapper) {
337 SDValue Val = Op1.getOperand(0);
338 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
339 return false;
344 // Proceed to 'generic' cycle finder code
345 return SelectionDAGISel::IsLegalAndProfitableToFold(N, U, Root);
348 /// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
349 /// and move load below the TokenFactor. Replace store's chain operand with
350 /// load's chain result.
351 static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
352 SDValue Store, SDValue TF) {
353 SmallVector<SDValue, 4> Ops;
354 for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
355 if (Load.getNode() == TF.getOperand(i).getNode())
356 Ops.push_back(Load.getOperand(0));
357 else
358 Ops.push_back(TF.getOperand(i));
359 SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
360 SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF,
361 Load.getOperand(1),
362 Load.getOperand(2));
363 CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1),
364 Store.getOperand(2), Store.getOperand(3));
367 /// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG. The
368 /// chain produced by the load must only be used by the store's chain operand,
369 /// otherwise this may produce a cycle in the DAG.
370 ///
371 static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
372 SDValue &Load) {
373 if (N.getOpcode() == ISD::BIT_CONVERT)
374 N = N.getOperand(0);
376 LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
377 if (!LD || LD->isVolatile())
378 return false;
379 if (LD->getAddressingMode() != ISD::UNINDEXED)
380 return false;
382 ISD::LoadExtType ExtType = LD->getExtensionType();
383 if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
384 return false;
386 if (N.hasOneUse() &&
387 LD->hasNUsesOfValue(1, 1) &&
388 N.getOperand(1) == Address &&
389 LD->isOperandOf(Chain.getNode())) {
390 Load = N;
391 return true;
393 return false;
396 /// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
397 /// operand and move load below the call's chain operand.
398 static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
399 SDValue Call, SDValue CallSeqStart) {
400 SmallVector<SDValue, 8> Ops;
401 SDValue Chain = CallSeqStart.getOperand(0);
402 if (Chain.getNode() == Load.getNode())
403 Ops.push_back(Load.getOperand(0));
404 else {
405 assert(Chain.getOpcode() == ISD::TokenFactor &&
406 "Unexpected CallSeqStart chain operand");
407 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
408 if (Chain.getOperand(i).getNode() == Load.getNode())
409 Ops.push_back(Load.getOperand(0));
410 else
411 Ops.push_back(Chain.getOperand(i));
412 SDValue NewChain =
413 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
414 MVT::Other, &Ops[0], Ops.size());
415 Ops.clear();
416 Ops.push_back(NewChain);
418 for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
419 Ops.push_back(CallSeqStart.getOperand(i));
420 CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
421 CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
422 Load.getOperand(1), Load.getOperand(2));
423 Ops.clear();
424 Ops.push_back(SDValue(Load.getNode(), 1));
425 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
426 Ops.push_back(Call.getOperand(i));
427 CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
430 /// isCalleeLoad - Return true if call address is a load and it can be
431 /// moved below CALLSEQ_START and the chains leading up to the call.
432 /// Return the CALLSEQ_START by reference as a second output.
433 static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
434 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
435 return false;
436 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
437 if (!LD ||
438 LD->isVolatile() ||
439 LD->getAddressingMode() != ISD::UNINDEXED ||
440 LD->getExtensionType() != ISD::NON_EXTLOAD)
441 return false;
443 // Now let's find the callseq_start.
444 while (Chain.getOpcode() != ISD::CALLSEQ_START) {
445 if (!Chain.hasOneUse())
446 return false;
447 Chain = Chain.getOperand(0);
450 if (Chain.getOperand(0).getNode() == Callee.getNode())
451 return true;
452 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
453 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
454 Callee.getValue(1).hasOneUse())
455 return true;
456 return false;
460 /// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
461 /// This is only run if not in -O0 mode.
462 /// This allows the instruction selector to pick more read-modify-write
463 /// instructions. This is a common case:
465 /// [Load chain]
466 /// ^
467 /// |
468 /// [Load]
469 /// ^ ^
470 /// | |
471 /// / \-
472 /// / |
473 /// [TokenFactor] [Op]
474 /// ^ ^
475 /// | |
476 /// \ /
477 /// \ /
478 /// [Store]
480 /// The fact the store's chain operand != load's chain will prevent the
481 /// (store (op (load))) instruction from being selected. We can transform it to:
483 /// [Load chain]
484 /// ^
485 /// |
486 /// [TokenFactor]
487 /// ^
488 /// |
489 /// [Load]
490 /// ^ ^
491 /// | |
492 /// | \-
493 /// | |
494 /// | [Op]
495 /// | ^
496 /// | |
497 /// \ /
498 /// \ /
499 /// [Store]
500 void X86DAGToDAGISel::PreprocessForRMW() {
501 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
502 E = CurDAG->allnodes_end(); I != E; ++I) {
503 if (I->getOpcode() == X86ISD::CALL) {
504 /// Also try moving call address load from outside callseq_start to just
505 /// before the call to allow it to be folded.
507 /// [Load chain]
508 /// ^
509 /// |
510 /// [Load]
511 /// ^ ^
512 /// | |
513 /// / \--
514 /// / |
515 ///[CALLSEQ_START] |
516 /// ^ |
517 /// | |
518 /// [LOAD/C2Reg] |
519 /// | |
520 /// \ /
521 /// \ /
522 /// [CALL]
523 SDValue Chain = I->getOperand(0);
524 SDValue Load = I->getOperand(1);
525 if (!isCalleeLoad(Load, Chain))
526 continue;
527 MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
528 ++NumLoadMoved;
529 continue;
532 if (!ISD::isNON_TRUNCStore(I))
533 continue;
534 SDValue Chain = I->getOperand(0);
536 if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
537 continue;
539 SDValue N1 = I->getOperand(1);
540 SDValue N2 = I->getOperand(2);
541 if ((N1.getValueType().isFloatingPoint() &&
542 !N1.getValueType().isVector()) ||
543 !N1.hasOneUse())
544 continue;
546 bool RModW = false;
547 SDValue Load;
548 unsigned Opcode = N1.getNode()->getOpcode();
549 switch (Opcode) {
550 case ISD::ADD:
551 case ISD::MUL:
552 case ISD::AND:
553 case ISD::OR:
554 case ISD::XOR:
555 case ISD::ADDC:
556 case ISD::ADDE:
557 case ISD::VECTOR_SHUFFLE: {
558 SDValue N10 = N1.getOperand(0);
559 SDValue N11 = N1.getOperand(1);
560 RModW = isRMWLoad(N10, Chain, N2, Load);
561 if (!RModW)
562 RModW = isRMWLoad(N11, Chain, N2, Load);
563 break;
565 case ISD::SUB:
566 case ISD::SHL:
567 case ISD::SRA:
568 case ISD::SRL:
569 case ISD::ROTL:
570 case ISD::ROTR:
571 case ISD::SUBC:
572 case ISD::SUBE:
573 case X86ISD::SHLD:
574 case X86ISD::SHRD: {
575 SDValue N10 = N1.getOperand(0);
576 RModW = isRMWLoad(N10, Chain, N2, Load);
577 break;
581 if (RModW) {
582 MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
583 ++NumLoadMoved;
589 /// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
590 /// nodes that target the FP stack to be store and load to the stack. This is a
591 /// gross hack. We would like to simply mark these as being illegal, but when
592 /// we do that, legalize produces these when it expands calls, then expands
593 /// these in the same legalize pass. We would like dag combine to be able to
594 /// hack on these between the call expansion and the node legalization. As such
595 /// this pass basically does "really late" legalization of these inline with the
596 /// X86 isel pass.
597 void X86DAGToDAGISel::PreprocessForFPConvert() {
598 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
599 E = CurDAG->allnodes_end(); I != E; ) {
600 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
601 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
602 continue;
604 // If the source and destination are SSE registers, then this is a legal
605 // conversion that should not be lowered.
606 EVT SrcVT = N->getOperand(0).getValueType();
607 EVT DstVT = N->getValueType(0);
608 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
609 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
610 if (SrcIsSSE && DstIsSSE)
611 continue;
613 if (!SrcIsSSE && !DstIsSSE) {
614 // If this is an FPStack extension, it is a noop.
615 if (N->getOpcode() == ISD::FP_EXTEND)
616 continue;
617 // If this is a value-preserving FPStack truncation, it is a noop.
618 if (N->getConstantOperandVal(1))
619 continue;
622 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
623 // FPStack has extload and truncstore. SSE can fold direct loads into other
624 // operations. Based on this, decide what we want to do.
625 EVT MemVT;
626 if (N->getOpcode() == ISD::FP_ROUND)
627 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
628 else
629 MemVT = SrcIsSSE ? SrcVT : DstVT;
631 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
632 DebugLoc dl = N->getDebugLoc();
634 // FIXME: optimize the case where the src/dest is a load or store?
635 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
636 N->getOperand(0),
637 MemTmp, NULL, 0, MemVT);
638 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
639 NULL, 0, MemVT);
641 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
642 // extload we created. This will cause general havok on the dag because
643 // anything below the conversion could be folded into other existing nodes.
644 // To avoid invalidating 'I', back it up to the convert node.
645 --I;
646 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
648 // Now that we did that, the node is dead. Increment the iterator to the
649 // next node to process, then delete N.
650 ++I;
651 CurDAG->DeleteNode(N);
655 /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
656 /// when it has created a SelectionDAG for us to codegen.
657 void X86DAGToDAGISel::InstructionSelect() {
658 const Function *F = MF->getFunction();
659 OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
661 DEBUG(BB->dump());
662 if (OptLevel != CodeGenOpt::None)
663 PreprocessForRMW();
665 // FIXME: This should only happen when not compiled with -O0.
666 PreprocessForFPConvert();
668 // Codegen the basic block.
669 #ifndef NDEBUG
670 DEBUG(errs() << "===== Instruction selection begins:\n");
671 Indent = 0;
672 #endif
673 SelectRoot(*CurDAG);
674 #ifndef NDEBUG
675 DEBUG(errs() << "===== Instruction selection ends:\n");
676 #endif
678 CurDAG->RemoveDeadNodes();
681 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
682 /// the main function.
683 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
684 MachineFrameInfo *MFI) {
685 const TargetInstrInfo *TII = TM.getInstrInfo();
686 if (Subtarget->isTargetCygMing())
687 BuildMI(BB, DebugLoc::getUnknownLoc(),
688 TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
691 void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
692 // If this is main, emit special code for main.
693 MachineBasicBlock *BB = MF.begin();
694 if (Fn.hasExternalLinkage() && Fn.getName() == "main")
695 EmitSpecialCodeForMain(BB, MF.getFrameInfo());
699 bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
700 X86ISelAddressMode &AM) {
701 assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
702 SDValue Segment = N.getOperand(0);
704 if (AM.Segment.getNode() == 0) {
705 AM.Segment = Segment;
706 return false;
709 return true;
712 bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
713 // This optimization is valid because the GNU TLS model defines that
714 // gs:0 (or fs:0 on X86-64) contains its own address.
715 // For more information see http://people.redhat.com/drepper/tls.pdf
717 SDValue Address = N.getOperand(1);
718 if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
719 !MatchSegmentBaseAddress (Address, AM))
720 return false;
722 return true;
725 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
726 /// into an addressing mode. These wrap things that will resolve down into a
727 /// symbol reference. If no match is possible, this returns true, otherwise it
728 /// returns false.
729 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
730 // If the addressing mode already has a symbol as the displacement, we can
731 // never match another symbol.
732 if (AM.hasSymbolicDisplacement())
733 return true;
735 SDValue N0 = N.getOperand(0);
736 CodeModel::Model M = TM.getCodeModel();
738 // Handle X86-64 rip-relative addresses. We check this before checking direct
739 // folding because RIP is preferable to non-RIP accesses.
740 if (Subtarget->is64Bit() &&
741 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
742 // they cannot be folded into immediate fields.
743 // FIXME: This can be improved for kernel and other models?
744 (M == CodeModel::Small || M == CodeModel::Kernel) &&
745 // Base and index reg must be 0 in order to use %rip as base and lowering
746 // must allow RIP.
747 !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
748 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
749 int64_t Offset = AM.Disp + G->getOffset();
750 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
751 AM.GV = G->getGlobal();
752 AM.Disp = Offset;
753 AM.SymbolFlags = G->getTargetFlags();
754 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
755 int64_t Offset = AM.Disp + CP->getOffset();
756 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
757 AM.CP = CP->getConstVal();
758 AM.Align = CP->getAlignment();
759 AM.Disp = Offset;
760 AM.SymbolFlags = CP->getTargetFlags();
761 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
762 AM.ES = S->getSymbol();
763 AM.SymbolFlags = S->getTargetFlags();
764 } else {
765 JumpTableSDNode *J = cast<JumpTableSDNode>(N0);
766 AM.JT = J->getIndex();
767 AM.SymbolFlags = J->getTargetFlags();
770 if (N.getOpcode() == X86ISD::WrapperRIP)
771 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
772 return false;
775 // Handle the case when globals fit in our immediate field: This is true for
776 // X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit
777 // mode, this results in a non-RIP-relative computation.
778 if (!Subtarget->is64Bit() ||
779 ((M == CodeModel::Small || M == CodeModel::Kernel) &&
780 TM.getRelocationModel() == Reloc::Static)) {
781 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
782 AM.GV = G->getGlobal();
783 AM.Disp += G->getOffset();
784 AM.SymbolFlags = G->getTargetFlags();
785 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
786 AM.CP = CP->getConstVal();
787 AM.Align = CP->getAlignment();
788 AM.Disp += CP->getOffset();
789 AM.SymbolFlags = CP->getTargetFlags();
790 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
791 AM.ES = S->getSymbol();
792 AM.SymbolFlags = S->getTargetFlags();
793 } else {
794 JumpTableSDNode *J = cast<JumpTableSDNode>(N0);
795 AM.JT = J->getIndex();
796 AM.SymbolFlags = J->getTargetFlags();
798 return false;
801 return true;
804 /// MatchAddress - Add the specified node to the specified addressing mode,
805 /// returning true if it cannot be done. This just pattern matches for the
806 /// addressing mode.
807 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
808 if (MatchAddressRecursively(N, AM, 0))
809 return true;
811 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
812 // a smaller encoding and avoids a scaled-index.
813 if (AM.Scale == 2 &&
814 AM.BaseType == X86ISelAddressMode::RegBase &&
815 AM.Base.Reg.getNode() == 0) {
816 AM.Base.Reg = AM.IndexReg;
817 AM.Scale = 1;
820 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
821 // because it has a smaller encoding.
822 // TODO: Which other code models can use this?
823 if (TM.getCodeModel() == CodeModel::Small &&
824 Subtarget->is64Bit() &&
825 AM.Scale == 1 &&
826 AM.BaseType == X86ISelAddressMode::RegBase &&
827 AM.Base.Reg.getNode() == 0 &&
828 AM.IndexReg.getNode() == 0 &&
829 AM.SymbolFlags == X86II::MO_NO_FLAG &&
830 AM.hasSymbolicDisplacement())
831 AM.Base.Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
833 return false;
836 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
837 unsigned Depth) {
838 bool is64Bit = Subtarget->is64Bit();
839 DebugLoc dl = N.getDebugLoc();
840 DEBUG({
841 errs() << "MatchAddress: ";
842 AM.dump();
844 // Limit recursion.
845 if (Depth > 5)
846 return MatchAddressBase(N, AM);
848 CodeModel::Model M = TM.getCodeModel();
850 // If this is already a %rip relative address, we can only merge immediates
851 // into it. Instead of handling this in every case, we handle it here.
852 // RIP relative addressing: %rip + 32-bit displacement!
853 if (AM.isRIPRelative()) {
854 // FIXME: JumpTable and ExternalSymbol address currently don't like
855 // displacements. It isn't very important, but this should be fixed for
856 // consistency.
857 if (!AM.ES && AM.JT != -1) return true;
859 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
860 int64_t Val = AM.Disp + Cst->getSExtValue();
861 if (X86::isOffsetSuitableForCodeModel(Val, M,
862 AM.hasSymbolicDisplacement())) {
863 AM.Disp = Val;
864 return false;
867 return true;
870 switch (N.getOpcode()) {
871 default: break;
872 case ISD::Constant: {
873 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
874 if (!is64Bit ||
875 X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
876 AM.hasSymbolicDisplacement())) {
877 AM.Disp += Val;
878 return false;
880 break;
883 case X86ISD::SegmentBaseAddress:
884 if (!MatchSegmentBaseAddress(N, AM))
885 return false;
886 break;
888 case X86ISD::Wrapper:
889 case X86ISD::WrapperRIP:
890 if (!MatchWrapper(N, AM))
891 return false;
892 break;
894 case ISD::LOAD:
895 if (!MatchLoad(N, AM))
896 return false;
897 break;
899 case ISD::FrameIndex:
900 if (AM.BaseType == X86ISelAddressMode::RegBase
901 && AM.Base.Reg.getNode() == 0) {
902 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
903 AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
904 return false;
906 break;
908 case ISD::SHL:
909 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
910 break;
912 if (ConstantSDNode
913 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
914 unsigned Val = CN->getZExtValue();
915 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
916 // that the base operand remains free for further matching. If
917 // the base doesn't end up getting used, a post-processing step
918 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
919 if (Val == 1 || Val == 2 || Val == 3) {
920 AM.Scale = 1 << Val;
921 SDValue ShVal = N.getNode()->getOperand(0);
923 // Okay, we know that we have a scale by now. However, if the scaled
924 // value is an add of something and a constant, we can fold the
925 // constant into the disp field here.
926 if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
927 isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
928 AM.IndexReg = ShVal.getNode()->getOperand(0);
929 ConstantSDNode *AddVal =
930 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
931 uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
932 if (!is64Bit ||
933 X86::isOffsetSuitableForCodeModel(Disp, M,
934 AM.hasSymbolicDisplacement()))
935 AM.Disp = Disp;
936 else
937 AM.IndexReg = ShVal;
938 } else {
939 AM.IndexReg = ShVal;
941 return false;
943 break;
946 case ISD::SMUL_LOHI:
947 case ISD::UMUL_LOHI:
948 // A mul_lohi where we need the low part can be folded as a plain multiply.
949 if (N.getResNo() != 0) break;
950 // FALL THROUGH
951 case ISD::MUL:
952 case X86ISD::MUL_IMM:
953 // X*[3,5,9] -> X+X*[2,4,8]
954 if (AM.BaseType == X86ISelAddressMode::RegBase &&
955 AM.Base.Reg.getNode() == 0 &&
956 AM.IndexReg.getNode() == 0) {
957 if (ConstantSDNode
958 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
959 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
960 CN->getZExtValue() == 9) {
961 AM.Scale = unsigned(CN->getZExtValue())-1;
963 SDValue MulVal = N.getNode()->getOperand(0);
964 SDValue Reg;
966 // Okay, we know that we have a scale by now. However, if the scaled
967 // value is an add of something and a constant, we can fold the
968 // constant into the disp field here.
969 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
970 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
971 Reg = MulVal.getNode()->getOperand(0);
972 ConstantSDNode *AddVal =
973 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
974 uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
975 CN->getZExtValue();
976 if (!is64Bit ||
977 X86::isOffsetSuitableForCodeModel(Disp, M,
978 AM.hasSymbolicDisplacement()))
979 AM.Disp = Disp;
980 else
981 Reg = N.getNode()->getOperand(0);
982 } else {
983 Reg = N.getNode()->getOperand(0);
986 AM.IndexReg = AM.Base.Reg = Reg;
987 return false;
990 break;
992 case ISD::SUB: {
993 // Given A-B, if A can be completely folded into the address and
994 // the index field with the index field unused, use -B as the index.
995 // This is a win if a has multiple parts that can be folded into
996 // the address. Also, this saves a mov if the base register has
997 // other uses, since it avoids a two-address sub instruction, however
998 // it costs an additional mov if the index register has other uses.
1000 // Test if the LHS of the sub can be folded.
1001 X86ISelAddressMode Backup = AM;
1002 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1003 AM = Backup;
1004 break;
1006 // Test if the index field is free for use.
1007 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1008 AM = Backup;
1009 break;
1011 int Cost = 0;
1012 SDValue RHS = N.getNode()->getOperand(1);
1013 // If the RHS involves a register with multiple uses, this
1014 // transformation incurs an extra mov, due to the neg instruction
1015 // clobbering its operand.
1016 if (!RHS.getNode()->hasOneUse() ||
1017 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1018 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1019 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1020 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1021 RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1022 ++Cost;
1023 // If the base is a register with multiple uses, this
1024 // transformation may save a mov.
1025 if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1026 AM.Base.Reg.getNode() &&
1027 !AM.Base.Reg.getNode()->hasOneUse()) ||
1028 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1029 --Cost;
1030 // If the folded LHS was interesting, this transformation saves
1031 // address arithmetic.
1032 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1033 ((AM.Disp != 0) && (Backup.Disp == 0)) +
1034 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1035 --Cost;
1036 // If it doesn't look like it may be an overall win, don't do it.
1037 if (Cost >= 0) {
1038 AM = Backup;
1039 break;
1042 // Ok, the transformation is legal and appears profitable. Go for it.
1043 SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1044 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1045 AM.IndexReg = Neg;
1046 AM.Scale = 1;
1048 // Insert the new nodes into the topological ordering.
1049 if (Zero.getNode()->getNodeId() == -1 ||
1050 Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1051 CurDAG->RepositionNode(N.getNode(), Zero.getNode());
1052 Zero.getNode()->setNodeId(N.getNode()->getNodeId());
1054 if (Neg.getNode()->getNodeId() == -1 ||
1055 Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1056 CurDAG->RepositionNode(N.getNode(), Neg.getNode());
1057 Neg.getNode()->setNodeId(N.getNode()->getNodeId());
1059 return false;
1062 case ISD::ADD: {
1063 X86ISelAddressMode Backup = AM;
1064 if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) &&
1065 !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1))
1066 return false;
1067 AM = Backup;
1068 if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) &&
1069 !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1))
1070 return false;
1071 AM = Backup;
1073 // If we couldn't fold both operands into the address at the same time,
1074 // see if we can just put each operand into a register and fold at least
1075 // the add.
1076 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1077 !AM.Base.Reg.getNode() &&
1078 !AM.IndexReg.getNode()) {
1079 AM.Base.Reg = N.getNode()->getOperand(0);
1080 AM.IndexReg = N.getNode()->getOperand(1);
1081 AM.Scale = 1;
1082 return false;
1084 break;
1087 case ISD::OR:
1088 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1089 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1090 X86ISelAddressMode Backup = AM;
1091 uint64_t Offset = CN->getSExtValue();
1092 // Start with the LHS as an addr mode.
1093 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1094 // Address could not have picked a GV address for the displacement.
1095 AM.GV == NULL &&
1096 // On x86-64, the resultant disp must fit in 32-bits.
1097 (!is64Bit ||
1098 X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
1099 AM.hasSymbolicDisplacement())) &&
1100 // Check to see if the LHS & C is zero.
1101 CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
1102 AM.Disp += Offset;
1103 return false;
1105 AM = Backup;
1107 break;
1109 case ISD::AND: {
1110 // Perform some heroic transforms on an and of a constant-count shift
1111 // with a constant to enable use of the scaled offset field.
1113 SDValue Shift = N.getOperand(0);
1114 if (Shift.getNumOperands() != 2) break;
1116 // Scale must not be used already.
1117 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1119 SDValue X = Shift.getOperand(0);
1120 ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1121 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1122 if (!C1 || !C2) break;
1124 // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1125 // allows us to convert the shift and and into an h-register extract and
1126 // a scaled index.
1127 if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1128 unsigned ScaleLog = 8 - C1->getZExtValue();
1129 if (ScaleLog > 0 && ScaleLog < 4 &&
1130 C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1131 SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1132 SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1133 SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1134 X, Eight);
1135 SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1136 Srl, Mask);
1137 SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1138 SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1139 And, ShlCount);
1141 // Insert the new nodes into the topological ordering.
1142 if (Eight.getNode()->getNodeId() == -1 ||
1143 Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1144 CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1145 Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1147 if (Mask.getNode()->getNodeId() == -1 ||
1148 Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1149 CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1150 Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1152 if (Srl.getNode()->getNodeId() == -1 ||
1153 Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1154 CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1155 Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1157 if (And.getNode()->getNodeId() == -1 ||
1158 And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1159 CurDAG->RepositionNode(N.getNode(), And.getNode());
1160 And.getNode()->setNodeId(N.getNode()->getNodeId());
1162 if (ShlCount.getNode()->getNodeId() == -1 ||
1163 ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1164 CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1165 ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1167 if (Shl.getNode()->getNodeId() == -1 ||
1168 Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1169 CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1170 Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1172 CurDAG->ReplaceAllUsesWith(N, Shl);
1173 AM.IndexReg = And;
1174 AM.Scale = (1 << ScaleLog);
1175 return false;
1179 // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1180 // allows us to fold the shift into this addressing mode.
1181 if (Shift.getOpcode() != ISD::SHL) break;
1183 // Not likely to be profitable if either the AND or SHIFT node has more
1184 // than one use (unless all uses are for address computation). Besides,
1185 // isel mechanism requires their node ids to be reused.
1186 if (!N.hasOneUse() || !Shift.hasOneUse())
1187 break;
1189 // Verify that the shift amount is something we can fold.
1190 unsigned ShiftCst = C1->getZExtValue();
1191 if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1192 break;
1194 // Get the new AND mask, this folds to a constant.
1195 SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1196 SDValue(C2, 0), SDValue(C1, 0));
1197 SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1198 NewANDMask);
1199 SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1200 NewAND, SDValue(C1, 0));
1202 // Insert the new nodes into the topological ordering.
1203 if (C1->getNodeId() > X.getNode()->getNodeId()) {
1204 CurDAG->RepositionNode(X.getNode(), C1);
1205 C1->setNodeId(X.getNode()->getNodeId());
1207 if (NewANDMask.getNode()->getNodeId() == -1 ||
1208 NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1209 CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1210 NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1212 if (NewAND.getNode()->getNodeId() == -1 ||
1213 NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1214 CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1215 NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1217 if (NewSHIFT.getNode()->getNodeId() == -1 ||
1218 NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1219 CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1220 NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1223 CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1225 AM.Scale = 1 << ShiftCst;
1226 AM.IndexReg = NewAND;
1227 return false;
1231 return MatchAddressBase(N, AM);
1234 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1235 /// specified addressing mode without any further recursion.
1236 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1237 // Is the base register already occupied?
1238 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1239 // If so, check to see if the scale index register is set.
1240 if (AM.IndexReg.getNode() == 0) {
1241 AM.IndexReg = N;
1242 AM.Scale = 1;
1243 return false;
1246 // Otherwise, we cannot select it.
1247 return true;
1250 // Default, generate it as a register.
1251 AM.BaseType = X86ISelAddressMode::RegBase;
1252 AM.Base.Reg = N;
1253 return false;
1256 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1257 /// It returns the operands which make up the maximal addressing mode it can
1258 /// match by reference.
1259 bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1260 SDValue &Scale, SDValue &Index,
1261 SDValue &Disp, SDValue &Segment) {
1262 X86ISelAddressMode AM;
1263 bool Done = false;
1264 if (AvoidDupAddrCompute && !N.hasOneUse()) {
1265 unsigned Opcode = N.getOpcode();
1266 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex &&
1267 Opcode != X86ISD::Wrapper && Opcode != X86ISD::WrapperRIP) {
1268 // If we are able to fold N into addressing mode, then we'll allow it even
1269 // if N has multiple uses. In general, addressing computation is used as
1270 // addresses by all of its uses. But watch out for CopyToReg uses, that
1271 // means the address computation is liveout. It will be computed by a LEA
1272 // so we want to avoid computing the address twice.
1273 for (SDNode::use_iterator UI = N.getNode()->use_begin(),
1274 UE = N.getNode()->use_end(); UI != UE; ++UI) {
1275 if (UI->getOpcode() == ISD::CopyToReg) {
1276 MatchAddressBase(N, AM);
1277 Done = true;
1278 break;
1284 if (!Done && MatchAddress(N, AM))
1285 return false;
1287 EVT VT = N.getValueType();
1288 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1289 if (!AM.Base.Reg.getNode())
1290 AM.Base.Reg = CurDAG->getRegister(0, VT);
1293 if (!AM.IndexReg.getNode())
1294 AM.IndexReg = CurDAG->getRegister(0, VT);
1296 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1297 return true;
1300 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
1301 /// match a load whose top elements are either undef or zeros. The load flavor
1302 /// is derived from the type of N, which is either v4f32 or v2f64.
1303 bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1304 SDValue N, SDValue &Base,
1305 SDValue &Scale, SDValue &Index,
1306 SDValue &Disp, SDValue &Segment,
1307 SDValue &InChain,
1308 SDValue &OutChain) {
1309 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1310 InChain = N.getOperand(0).getValue(1);
1311 if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1312 InChain.getValue(0).hasOneUse() &&
1313 N.hasOneUse() &&
1314 IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
1315 LoadSDNode *LD = cast<LoadSDNode>(InChain);
1316 if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1317 return false;
1318 OutChain = LD->getChain();
1319 return true;
1323 // Also handle the case where we explicitly require zeros in the top
1324 // elements. This is a vector shuffle from the zero vector.
1325 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1326 // Check to see if the top elements are all zeros (or bitcast of zeros).
1327 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1328 N.getOperand(0).getNode()->hasOneUse() &&
1329 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1330 N.getOperand(0).getOperand(0).hasOneUse()) {
1331 // Okay, this is a zero extending load. Fold it.
1332 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1333 if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1334 return false;
1335 OutChain = LD->getChain();
1336 InChain = SDValue(LD, 1);
1337 return true;
1339 return false;
1343 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1344 /// mode it matches can be cost effectively emitted as an LEA instruction.
1345 bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1346 SDValue &Base, SDValue &Scale,
1347 SDValue &Index, SDValue &Disp) {
1348 X86ISelAddressMode AM;
1350 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1351 // segments.
1352 SDValue Copy = AM.Segment;
1353 SDValue T = CurDAG->getRegister(0, MVT::i32);
1354 AM.Segment = T;
1355 if (MatchAddress(N, AM))
1356 return false;
1357 assert (T == AM.Segment);
1358 AM.Segment = Copy;
1360 EVT VT = N.getValueType();
1361 unsigned Complexity = 0;
1362 if (AM.BaseType == X86ISelAddressMode::RegBase)
1363 if (AM.Base.Reg.getNode())
1364 Complexity = 1;
1365 else
1366 AM.Base.Reg = CurDAG->getRegister(0, VT);
1367 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1368 Complexity = 4;
1370 if (AM.IndexReg.getNode())
1371 Complexity++;
1372 else
1373 AM.IndexReg = CurDAG->getRegister(0, VT);
1375 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1376 // a simple shift.
1377 if (AM.Scale > 1)
1378 Complexity++;
1380 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1381 // to a LEA. This is determined with some expermentation but is by no means
1382 // optimal (especially for code size consideration). LEA is nice because of
1383 // its three-address nature. Tweak the cost function again when we can run
1384 // convertToThreeAddress() at register allocation time.
1385 if (AM.hasSymbolicDisplacement()) {
1386 // For X86-64, we should always use lea to materialize RIP relative
1387 // addresses.
1388 if (Subtarget->is64Bit())
1389 Complexity = 4;
1390 else
1391 Complexity += 2;
1394 if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1395 Complexity++;
1397 // If it isn't worth using an LEA, reject it.
1398 if (Complexity <= 2)
1399 return false;
1401 SDValue Segment;
1402 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1403 return true;
1406 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1407 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
1408 SDValue &Scale, SDValue &Index,
1409 SDValue &Disp) {
1410 assert(Op.getOpcode() == X86ISD::TLSADDR);
1411 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1412 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1414 X86ISelAddressMode AM;
1415 AM.GV = GA->getGlobal();
1416 AM.Disp += GA->getOffset();
1417 AM.Base.Reg = CurDAG->getRegister(0, N.getValueType());
1418 AM.SymbolFlags = GA->getTargetFlags();
1420 if (N.getValueType() == MVT::i32) {
1421 AM.Scale = 1;
1422 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1423 } else {
1424 AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1427 SDValue Segment;
1428 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1429 return true;
1433 bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1434 SDValue &Base, SDValue &Scale,
1435 SDValue &Index, SDValue &Disp,
1436 SDValue &Segment) {
1437 if (ISD::isNON_EXTLoad(N.getNode()) &&
1438 N.hasOneUse() &&
1439 IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
1440 return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1441 return false;
1444 /// getGlobalBaseReg - Return an SDNode that returns the value of
1445 /// the global base register. Output instructions required to
1446 /// initialize the global base register, if necessary.
1448 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1449 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1450 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1453 static SDNode *FindCallStartFromCall(SDNode *Node) {
1454 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1455 assert(Node->getOperand(0).getValueType() == MVT::Other &&
1456 "Node doesn't have a token chain argument!");
1457 return FindCallStartFromCall(Node->getOperand(0).getNode());
1460 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1461 SDValue Chain = Node->getOperand(0);
1462 SDValue In1 = Node->getOperand(1);
1463 SDValue In2L = Node->getOperand(2);
1464 SDValue In2H = Node->getOperand(3);
1465 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1466 if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1467 return NULL;
1468 SDValue LSI = Node->getOperand(4); // MemOperand
1469 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, LSI, Chain};
1470 return CurDAG->getTargetNode(Opc, Node->getDebugLoc(),
1471 MVT::i32, MVT::i32, MVT::Other, Ops,
1472 array_lengthof(Ops));
1475 SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1476 if (Node->hasAnyUseOfValue(0))
1477 return 0;
1479 // Optimize common patterns for __sync_add_and_fetch and
1480 // __sync_sub_and_fetch where the result is not used. This allows us
1481 // to use "lock" version of add, sub, inc, dec instructions.
1482 // FIXME: Do not use special instructions but instead add the "lock"
1483 // prefix to the target node somehow. The extra information will then be
1484 // transferred to machine instruction and it denotes the prefix.
1485 SDValue Chain = Node->getOperand(0);
1486 SDValue Ptr = Node->getOperand(1);
1487 SDValue Val = Node->getOperand(2);
1488 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1489 if (!SelectAddr(Ptr, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1490 return 0;
1492 bool isInc = false, isDec = false, isSub = false, isCN = false;
1493 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1494 if (CN) {
1495 isCN = true;
1496 int64_t CNVal = CN->getSExtValue();
1497 if (CNVal == 1)
1498 isInc = true;
1499 else if (CNVal == -1)
1500 isDec = true;
1501 else if (CNVal >= 0)
1502 Val = CurDAG->getTargetConstant(CNVal, NVT);
1503 else {
1504 isSub = true;
1505 Val = CurDAG->getTargetConstant(-CNVal, NVT);
1507 } else if (Val.hasOneUse() &&
1508 Val.getOpcode() == ISD::SUB &&
1509 X86::isZeroNode(Val.getOperand(0))) {
1510 isSub = true;
1511 Val = Val.getOperand(1);
1514 unsigned Opc = 0;
1515 switch (NVT.getSimpleVT().SimpleTy) {
1516 default: return 0;
1517 case MVT::i8:
1518 if (isInc)
1519 Opc = X86::LOCK_INC8m;
1520 else if (isDec)
1521 Opc = X86::LOCK_DEC8m;
1522 else if (isSub) {
1523 if (isCN)
1524 Opc = X86::LOCK_SUB8mi;
1525 else
1526 Opc = X86::LOCK_SUB8mr;
1527 } else {
1528 if (isCN)
1529 Opc = X86::LOCK_ADD8mi;
1530 else
1531 Opc = X86::LOCK_ADD8mr;
1533 break;
1534 case MVT::i16:
1535 if (isInc)
1536 Opc = X86::LOCK_INC16m;
1537 else if (isDec)
1538 Opc = X86::LOCK_DEC16m;
1539 else if (isSub) {
1540 if (isCN) {
1541 if (Predicate_i16immSExt8(Val.getNode()))
1542 Opc = X86::LOCK_SUB16mi8;
1543 else
1544 Opc = X86::LOCK_SUB16mi;
1545 } else
1546 Opc = X86::LOCK_SUB16mr;
1547 } else {
1548 if (isCN) {
1549 if (Predicate_i16immSExt8(Val.getNode()))
1550 Opc = X86::LOCK_ADD16mi8;
1551 else
1552 Opc = X86::LOCK_ADD16mi;
1553 } else
1554 Opc = X86::LOCK_ADD16mr;
1556 break;
1557 case MVT::i32:
1558 if (isInc)
1559 Opc = X86::LOCK_INC32m;
1560 else if (isDec)
1561 Opc = X86::LOCK_DEC32m;
1562 else if (isSub) {
1563 if (isCN) {
1564 if (Predicate_i32immSExt8(Val.getNode()))
1565 Opc = X86::LOCK_SUB32mi8;
1566 else
1567 Opc = X86::LOCK_SUB32mi;
1568 } else
1569 Opc = X86::LOCK_SUB32mr;
1570 } else {
1571 if (isCN) {
1572 if (Predicate_i32immSExt8(Val.getNode()))
1573 Opc = X86::LOCK_ADD32mi8;
1574 else
1575 Opc = X86::LOCK_ADD32mi;
1576 } else
1577 Opc = X86::LOCK_ADD32mr;
1579 break;
1580 case MVT::i64:
1581 if (isInc)
1582 Opc = X86::LOCK_INC64m;
1583 else if (isDec)
1584 Opc = X86::LOCK_DEC64m;
1585 else if (isSub) {
1586 Opc = X86::LOCK_SUB64mr;
1587 if (isCN) {
1588 if (Predicate_i64immSExt8(Val.getNode()))
1589 Opc = X86::LOCK_SUB64mi8;
1590 else if (Predicate_i64immSExt32(Val.getNode()))
1591 Opc = X86::LOCK_SUB64mi32;
1593 } else {
1594 Opc = X86::LOCK_ADD64mr;
1595 if (isCN) {
1596 if (Predicate_i64immSExt8(Val.getNode()))
1597 Opc = X86::LOCK_ADD64mi8;
1598 else if (Predicate_i64immSExt32(Val.getNode()))
1599 Opc = X86::LOCK_ADD64mi32;
1602 break;
1605 DebugLoc dl = Node->getDebugLoc();
1606 SDValue Undef = SDValue(CurDAG->getTargetNode(TargetInstrInfo::IMPLICIT_DEF,
1607 dl, NVT), 0);
1608 SDValue MemOp = CurDAG->getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
1609 if (isInc || isDec) {
1610 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, MemOp, Chain };
1611 SDValue Ret = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Ops, 7), 0);
1612 SDValue RetVals[] = { Undef, Ret };
1613 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1614 } else {
1615 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, MemOp, Chain };
1616 SDValue Ret = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Ops, 8), 0);
1617 SDValue RetVals[] = { Undef, Ret };
1618 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1622 SDNode *X86DAGToDAGISel::Select(SDValue N) {
1623 SDNode *Node = N.getNode();
1624 EVT NVT = Node->getValueType(0);
1625 unsigned Opc, MOpc;
1626 unsigned Opcode = Node->getOpcode();
1627 DebugLoc dl = Node->getDebugLoc();
1629 #ifndef NDEBUG
1630 DEBUG({
1631 errs() << std::string(Indent, ' ') << "Selecting: ";
1632 Node->dump(CurDAG);
1633 errs() << '\n';
1635 Indent += 2;
1636 #endif
1638 if (Node->isMachineOpcode()) {
1639 #ifndef NDEBUG
1640 DEBUG({
1641 errs() << std::string(Indent-2, ' ') << "== ";
1642 Node->dump(CurDAG);
1643 errs() << '\n';
1645 Indent -= 2;
1646 #endif
1647 return NULL; // Already selected.
1650 switch (Opcode) {
1651 default: break;
1652 case X86ISD::GlobalBaseReg:
1653 return getGlobalBaseReg();
1655 case X86ISD::ATOMOR64_DAG:
1656 return SelectAtomic64(Node, X86::ATOMOR6432);
1657 case X86ISD::ATOMXOR64_DAG:
1658 return SelectAtomic64(Node, X86::ATOMXOR6432);
1659 case X86ISD::ATOMADD64_DAG:
1660 return SelectAtomic64(Node, X86::ATOMADD6432);
1661 case X86ISD::ATOMSUB64_DAG:
1662 return SelectAtomic64(Node, X86::ATOMSUB6432);
1663 case X86ISD::ATOMNAND64_DAG:
1664 return SelectAtomic64(Node, X86::ATOMNAND6432);
1665 case X86ISD::ATOMAND64_DAG:
1666 return SelectAtomic64(Node, X86::ATOMAND6432);
1667 case X86ISD::ATOMSWAP64_DAG:
1668 return SelectAtomic64(Node, X86::ATOMSWAP6432);
1670 case ISD::ATOMIC_LOAD_ADD: {
1671 SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1672 if (RetVal)
1673 return RetVal;
1674 break;
1677 case ISD::SMUL_LOHI:
1678 case ISD::UMUL_LOHI: {
1679 SDValue N0 = Node->getOperand(0);
1680 SDValue N1 = Node->getOperand(1);
1682 bool isSigned = Opcode == ISD::SMUL_LOHI;
1683 if (!isSigned) {
1684 switch (NVT.getSimpleVT().SimpleTy) {
1685 default: llvm_unreachable("Unsupported VT!");
1686 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
1687 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1688 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1689 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1691 } else {
1692 switch (NVT.getSimpleVT().SimpleTy) {
1693 default: llvm_unreachable("Unsupported VT!");
1694 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
1695 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1696 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1697 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1701 unsigned LoReg, HiReg;
1702 switch (NVT.getSimpleVT().SimpleTy) {
1703 default: llvm_unreachable("Unsupported VT!");
1704 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
1705 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
1706 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1707 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1710 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1711 bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1712 // Multiply is commmutative.
1713 if (!foldedLoad) {
1714 foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1715 if (foldedLoad)
1716 std::swap(N0, N1);
1719 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1720 N0, SDValue()).getValue(1);
1722 if (foldedLoad) {
1723 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1724 InFlag };
1725 SDNode *CNode =
1726 CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1727 array_lengthof(Ops));
1728 InFlag = SDValue(CNode, 1);
1729 // Update the chain.
1730 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1731 } else {
1732 InFlag =
1733 SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1736 // Copy the low half of the result, if it is needed.
1737 if (!N.getValue(0).use_empty()) {
1738 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1739 LoReg, NVT, InFlag);
1740 InFlag = Result.getValue(2);
1741 ReplaceUses(N.getValue(0), Result);
1742 #ifndef NDEBUG
1743 DEBUG({
1744 errs() << std::string(Indent-2, ' ') << "=> ";
1745 Result.getNode()->dump(CurDAG);
1746 errs() << '\n';
1748 #endif
1750 // Copy the high half of the result, if it is needed.
1751 if (!N.getValue(1).use_empty()) {
1752 SDValue Result;
1753 if (HiReg == X86::AH && Subtarget->is64Bit()) {
1754 // Prevent use of AH in a REX instruction by referencing AX instead.
1755 // Shift it down 8 bits.
1756 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1757 X86::AX, MVT::i16, InFlag);
1758 InFlag = Result.getValue(2);
1759 Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1760 Result,
1761 CurDAG->getTargetConstant(8, MVT::i8)), 0);
1762 // Then truncate it down to i8.
1763 Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
1764 MVT::i8, Result);
1765 } else {
1766 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1767 HiReg, NVT, InFlag);
1768 InFlag = Result.getValue(2);
1770 ReplaceUses(N.getValue(1), Result);
1771 #ifndef NDEBUG
1772 DEBUG({
1773 errs() << std::string(Indent-2, ' ') << "=> ";
1774 Result.getNode()->dump(CurDAG);
1775 errs() << '\n';
1777 #endif
1780 #ifndef NDEBUG
1781 Indent -= 2;
1782 #endif
1784 return NULL;
1787 case ISD::SDIVREM:
1788 case ISD::UDIVREM: {
1789 SDValue N0 = Node->getOperand(0);
1790 SDValue N1 = Node->getOperand(1);
1792 bool isSigned = Opcode == ISD::SDIVREM;
1793 if (!isSigned) {
1794 switch (NVT.getSimpleVT().SimpleTy) {
1795 default: llvm_unreachable("Unsupported VT!");
1796 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
1797 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1798 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1799 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1801 } else {
1802 switch (NVT.getSimpleVT().SimpleTy) {
1803 default: llvm_unreachable("Unsupported VT!");
1804 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
1805 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1806 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1807 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1811 unsigned LoReg, HiReg;
1812 unsigned ClrOpcode, SExtOpcode;
1813 switch (NVT.getSimpleVT().SimpleTy) {
1814 default: llvm_unreachable("Unsupported VT!");
1815 case MVT::i8:
1816 LoReg = X86::AL; HiReg = X86::AH;
1817 ClrOpcode = 0;
1818 SExtOpcode = X86::CBW;
1819 break;
1820 case MVT::i16:
1821 LoReg = X86::AX; HiReg = X86::DX;
1822 ClrOpcode = X86::MOV16r0;
1823 SExtOpcode = X86::CWD;
1824 break;
1825 case MVT::i32:
1826 LoReg = X86::EAX; HiReg = X86::EDX;
1827 ClrOpcode = X86::MOV32r0;
1828 SExtOpcode = X86::CDQ;
1829 break;
1830 case MVT::i64:
1831 LoReg = X86::RAX; HiReg = X86::RDX;
1832 ClrOpcode = ~0U; // NOT USED.
1833 SExtOpcode = X86::CQO;
1834 break;
1837 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1838 bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1839 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1841 SDValue InFlag;
1842 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1843 // Special case for div8, just use a move with zero extension to AX to
1844 // clear the upper 8 bits (AH).
1845 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1846 if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1847 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1848 Move =
1849 SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16,
1850 MVT::Other, Ops,
1851 array_lengthof(Ops)), 0);
1852 Chain = Move.getValue(1);
1853 ReplaceUses(N0.getValue(1), Chain);
1854 } else {
1855 Move =
1856 SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1857 Chain = CurDAG->getEntryNode();
1859 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1860 InFlag = Chain.getValue(1);
1861 } else {
1862 InFlag =
1863 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1864 LoReg, N0, SDValue()).getValue(1);
1865 if (isSigned && !signBitIsZero) {
1866 // Sign extend the low part into the high part.
1867 InFlag =
1868 SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1869 } else {
1870 // Zero out the high part, effectively zero extending the input.
1871 SDValue ClrNode;
1873 if (NVT.getSimpleVT() == MVT::i64) {
1874 ClrNode = SDValue(CurDAG->getTargetNode(X86::MOV32r0, dl, MVT::i32),
1876 // We just did a 32-bit clear, insert it into a 64-bit register to
1877 // clear the whole 64-bit reg.
1878 SDValue Undef =
1879 SDValue(CurDAG->getTargetNode(TargetInstrInfo::IMPLICIT_DEF,
1880 dl, MVT::i64), 0);
1881 SDValue SubRegNo =
1882 CurDAG->getTargetConstant(X86::SUBREG_32BIT, MVT::i32);
1883 ClrNode =
1884 SDValue(CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG, dl,
1885 MVT::i64, Undef, ClrNode, SubRegNo),
1887 } else {
1888 ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT), 0);
1891 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
1892 ClrNode, InFlag).getValue(1);
1896 if (foldedLoad) {
1897 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1898 InFlag };
1899 SDNode *CNode =
1900 CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1901 array_lengthof(Ops));
1902 InFlag = SDValue(CNode, 1);
1903 // Update the chain.
1904 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1905 } else {
1906 InFlag =
1907 SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1910 // Copy the division (low) result, if it is needed.
1911 if (!N.getValue(0).use_empty()) {
1912 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1913 LoReg, NVT, InFlag);
1914 InFlag = Result.getValue(2);
1915 ReplaceUses(N.getValue(0), Result);
1916 #ifndef NDEBUG
1917 DEBUG({
1918 errs() << std::string(Indent-2, ' ') << "=> ";
1919 Result.getNode()->dump(CurDAG);
1920 errs() << '\n';
1922 #endif
1924 // Copy the remainder (high) result, if it is needed.
1925 if (!N.getValue(1).use_empty()) {
1926 SDValue Result;
1927 if (HiReg == X86::AH && Subtarget->is64Bit()) {
1928 // Prevent use of AH in a REX instruction by referencing AX instead.
1929 // Shift it down 8 bits.
1930 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1931 X86::AX, MVT::i16, InFlag);
1932 InFlag = Result.getValue(2);
1933 Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1934 Result,
1935 CurDAG->getTargetConstant(8, MVT::i8)),
1937 // Then truncate it down to i8.
1938 Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
1939 MVT::i8, Result);
1940 } else {
1941 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1942 HiReg, NVT, InFlag);
1943 InFlag = Result.getValue(2);
1945 ReplaceUses(N.getValue(1), Result);
1946 #ifndef NDEBUG
1947 DEBUG({
1948 errs() << std::string(Indent-2, ' ') << "=> ";
1949 Result.getNode()->dump(CurDAG);
1950 errs() << '\n';
1952 #endif
1955 #ifndef NDEBUG
1956 Indent -= 2;
1957 #endif
1959 return NULL;
1962 case X86ISD::CMP: {
1963 SDValue N0 = Node->getOperand(0);
1964 SDValue N1 = Node->getOperand(1);
1966 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
1967 // use a smaller encoding.
1968 if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
1969 N0.getValueType() != MVT::i8 &&
1970 X86::isZeroNode(N1)) {
1971 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
1972 if (!C) break;
1974 // For example, convert "testl %eax, $8" to "testb %al, $8"
1975 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0) {
1976 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
1977 SDValue Reg = N0.getNode()->getOperand(0);
1979 // On x86-32, only the ABCD registers have 8-bit subregisters.
1980 if (!Subtarget->is64Bit()) {
1981 TargetRegisterClass *TRC = 0;
1982 switch (N0.getValueType().getSimpleVT().SimpleTy) {
1983 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
1984 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
1985 default: llvm_unreachable("Unsupported TEST operand type!");
1987 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
1988 Reg = SDValue(CurDAG->getTargetNode(X86::COPY_TO_REGCLASS, dl,
1989 Reg.getValueType(), Reg, RC), 0);
1992 // Extract the l-register.
1993 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
1994 MVT::i8, Reg);
1996 // Emit a testb.
1997 return CurDAG->getTargetNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2000 // For example, "testl %eax, $2048" to "testb %ah, $8".
2001 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0) {
2002 // Shift the immediate right by 8 bits.
2003 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2004 MVT::i8);
2005 SDValue Reg = N0.getNode()->getOperand(0);
2007 // Put the value in an ABCD register.
2008 TargetRegisterClass *TRC = 0;
2009 switch (N0.getValueType().getSimpleVT().SimpleTy) {
2010 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2011 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2012 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2013 default: llvm_unreachable("Unsupported TEST operand type!");
2015 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2016 Reg = SDValue(CurDAG->getTargetNode(X86::COPY_TO_REGCLASS, dl,
2017 Reg.getValueType(), Reg, RC), 0);
2019 // Extract the h-register.
2020 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT_HI, dl,
2021 MVT::i8, Reg);
2023 // Emit a testb. No special NOREX tricks are needed since there's
2024 // only one GPR operand!
2025 return CurDAG->getTargetNode(X86::TEST8ri, dl, MVT::i32,
2026 Subreg, ShiftedImm);
2029 // For example, "testl %eax, $32776" to "testw %ax, $32776".
2030 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2031 N0.getValueType() != MVT::i16) {
2032 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2033 SDValue Reg = N0.getNode()->getOperand(0);
2035 // Extract the 16-bit subregister.
2036 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_16BIT, dl,
2037 MVT::i16, Reg);
2039 // Emit a testw.
2040 return CurDAG->getTargetNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2043 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2044 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2045 N0.getValueType() == MVT::i64) {
2046 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2047 SDValue Reg = N0.getNode()->getOperand(0);
2049 // Extract the 32-bit subregister.
2050 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_32BIT, dl,
2051 MVT::i32, Reg);
2053 // Emit a testl.
2054 return CurDAG->getTargetNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2057 break;
2061 SDNode *ResNode = SelectCode(N);
2063 #ifndef NDEBUG
2064 DEBUG({
2065 errs() << std::string(Indent-2, ' ') << "=> ";
2066 if (ResNode == NULL || ResNode == N.getNode())
2067 N.getNode()->dump(CurDAG);
2068 else
2069 ResNode->dump(CurDAG);
2070 errs() << '\n';
2072 Indent -= 2;
2073 #endif
2075 return ResNode;
2078 bool X86DAGToDAGISel::
2079 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2080 std::vector<SDValue> &OutOps) {
2081 SDValue Op0, Op1, Op2, Op3, Op4;
2082 switch (ConstraintCode) {
2083 case 'o': // offsetable ??
2084 case 'v': // not offsetable ??
2085 default: return true;
2086 case 'm': // memory
2087 if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4))
2088 return true;
2089 break;
2092 OutOps.push_back(Op0);
2093 OutOps.push_back(Op1);
2094 OutOps.push_back(Op2);
2095 OutOps.push_back(Op3);
2096 OutOps.push_back(Op4);
2097 return false;
2100 /// createX86ISelDag - This pass converts a legalized DAG into a
2101 /// X86-specific DAG, ready for instruction scheduling.
2103 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2104 llvm::CodeGenOpt::Level OptLevel) {
2105 return new X86DAGToDAGISel(TM, OptLevel);