1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #ifndef X86ISELLOWERING_H
16 #define X86ISELLOWERING_H
18 #include "X86Subtarget.h"
19 #include "X86RegisterInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/CodeGen/FastISel.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
28 // X86 Specific DAG Nodes
30 // Start the numbering where the builtin ops leave off.
31 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
33 /// BSF - Bit scan forward.
34 /// BSR - Bit scan reverse.
38 /// SHLD, SHRD - Double shift instructions. These correspond to
39 /// X86::SHLDxx and X86::SHRDxx instructions.
43 /// FAND - Bitwise logical AND of floating point values. This corresponds
44 /// to X86::ANDPS or X86::ANDPD.
47 /// FOR - Bitwise logical OR of floating point values. This corresponds
48 /// to X86::ORPS or X86::ORPD.
51 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
52 /// to X86::XORPS or X86::XORPD.
55 /// FSRL - Bitwise logical right shift of floating point values. These
56 /// corresponds to X86::PSRLDQ.
59 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
60 /// integer source in memory and FP reg result. This corresponds to the
61 /// X86::FILD*m instructions. It has three inputs (token chain, address,
62 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
63 /// also produces a flag).
67 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
68 /// integer destination in memory and a FP reg source. This corresponds
69 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
70 /// has two inputs (token chain and address) and two outputs (int value
76 /// FLD - This instruction implements an extending load to FP stack slots.
77 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
78 /// operand, ptr to load from, and a ValueType node indicating the type
82 /// FST - This instruction implements a truncating store to FP stack
83 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
84 /// chain operand, value to store, address, and a ValueType to store it
88 /// CALL - These operations represent an abstract X86 call
89 /// instruction, which includes a bunch of information. In particular the
90 /// operands of these node are:
92 /// #0 - The incoming token chain
94 /// #2 - The number of arg bytes the caller pushes on the stack.
95 /// #3 - The number of arg bytes the callee pops off the stack.
96 /// #4 - The value to pass in AL/AX/EAX (optional)
97 /// #5 - The value to pass in DL/DX/EDX (optional)
99 /// The result values of these nodes are:
101 /// #0 - The outgoing token chain
102 /// #1 - The first register result value (optional)
103 /// #2 - The second register result value (optional)
107 /// RDTSC_DAG - This operation implements the lowering for
111 /// X86 compare and logical compare instructions.
114 /// X86 bit-test instructions.
117 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag
118 /// operand produced by a CMP instruction.
121 /// X86 conditional moves. Operand 0 and operand 1 are the two values
122 /// to select from. Operand 2 is the condition code, and operand 3 is the
123 /// flag operand produced by a CMP or TEST instruction. It also writes a
127 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
128 /// is the block to branch if condition is true, operand 2 is the
129 /// condition code, and operand 3 is the flag operand produced by a CMP
130 /// or TEST instruction.
133 /// Return with a flag operand. Operand 0 is the chain operand, operand
134 /// 1 is the number of bytes of stack to pop.
137 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
140 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
143 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
144 /// at function entry, used for PIC code.
147 /// Wrapper - A wrapper node for TargetConstantPool,
148 /// TargetExternalSymbol, and TargetGlobalAddress.
151 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
152 /// relative displacements.
155 /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
156 /// i32, corresponds to X86::PEXTRB.
159 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
160 /// i32, corresponds to X86::PEXTRW.
163 /// INSERTPS - Insert any element of a 4 x float vector into any element
164 /// of a destination 4 x floatvector.
167 /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
168 /// corresponds to X86::PINSRB.
171 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
172 /// corresponds to X86::PINSRW.
175 /// PSHUFB - Shuffle 16 8-bit values within a vector.
178 /// FMAX, FMIN - Floating point max and min.
182 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
183 /// approximation. Note that these typically require refinement
184 /// in order to obtain suitable precision.
187 // TLSADDR - Thread Local Storage.
190 // SegmentBaseAddress - The address segment:0
193 // EH_RETURN - Exception Handling helpers.
196 /// TC_RETURN - Tail call return.
198 /// operand #1 callee (register or absolute)
199 /// operand #2 stack adjustment
200 /// operand #3 optional in flag
203 // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
207 // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
208 // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
209 // Atomic 64-bit binary operations.
218 // FNSTCW16m - Store FP control world into i16 memory.
221 // VZEXT_MOVL - Vector move low and zero extend.
224 // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
227 // VSHL, VSRL - Vector logical left / right shift.
230 // CMPPD, CMPPS - Vector double/float comparison.
231 // CMPPD, CMPPS - Vector double/float comparison.
234 // PCMP* - Vector integer comparisons.
235 PCMPEQB
, PCMPEQW
, PCMPEQD
, PCMPEQQ
,
236 PCMPGTB
, PCMPGTW
, PCMPGTD
, PCMPGTQ
,
238 // ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
239 ADD
, SUB
, SMUL
, UMUL
,
242 // MUL_IMM - X86 specific multiply by immediate.
245 // PTEST - Vector bitwise comparisons
248 // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
249 // according to %al. An operator is needed so that this can be expanded
250 // with control flow.
251 VASTART_SAVE_XMM_REGS
255 /// Define some predicates that are used for node matching.
257 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
258 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
259 bool isPSHUFDMask(ShuffleVectorSDNode
*N
);
261 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
262 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
263 bool isPSHUFHWMask(ShuffleVectorSDNode
*N
);
265 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
266 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
267 bool isPSHUFLWMask(ShuffleVectorSDNode
*N
);
269 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
270 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
271 bool isSHUFPMask(ShuffleVectorSDNode
*N
);
273 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
274 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
275 bool isMOVHLPSMask(ShuffleVectorSDNode
*N
);
277 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
278 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
280 bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode
*N
);
282 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
283 /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
284 bool isMOVLPMask(ShuffleVectorSDNode
*N
);
286 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
287 /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
288 /// as well as MOVLHPS.
289 bool isMOVHPMask(ShuffleVectorSDNode
*N
);
291 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
292 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
293 bool isUNPCKLMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false);
295 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
296 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
297 bool isUNPCKHMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false);
299 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
300 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
302 bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode
*N
);
304 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
305 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
307 bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode
*N
);
309 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
310 /// specifies a shuffle of elements that is suitable for input to MOVSS,
311 /// MOVSD, and MOVD, i.e. setting the lowest element.
312 bool isMOVLMask(ShuffleVectorSDNode
*N
);
314 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
315 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
316 bool isMOVSHDUPMask(ShuffleVectorSDNode
*N
);
318 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
319 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
320 bool isMOVSLDUPMask(ShuffleVectorSDNode
*N
);
322 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
323 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
324 bool isMOVDDUPMask(ShuffleVectorSDNode
*N
);
326 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
327 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
329 unsigned getShuffleSHUFImmediate(SDNode
*N
);
331 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
332 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
334 unsigned getShufflePSHUFHWImmediate(SDNode
*N
);
336 /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
337 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
339 unsigned getShufflePSHUFLWImmediate(SDNode
*N
);
341 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
343 bool isZeroNode(SDValue Elt
);
345 /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
346 /// fit into displacement field of the instruction.
347 bool isOffsetSuitableForCodeModel(int64_t Offset
, CodeModel::Model M
,
348 bool hasSymbolicDisplacement
= true);
351 //===--------------------------------------------------------------------===//
352 // X86TargetLowering - X86 Implementation of the TargetLowering interface
353 class X86TargetLowering
: public TargetLowering
{
354 int VarArgsFrameIndex
; // FrameIndex for start of varargs area.
355 int RegSaveFrameIndex
; // X86-64 vararg func register save area.
356 unsigned VarArgsGPOffset
; // X86-64 vararg func int reg offset.
357 unsigned VarArgsFPOffset
; // X86-64 vararg func fp reg offset.
358 int BytesToPopOnReturn
; // Number of arg bytes ret should pop.
359 int BytesCallerReserves
; // Number of arg bytes caller makes.
362 explicit X86TargetLowering(X86TargetMachine
&TM
);
364 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
366 SDValue
getPICJumpTableRelocBase(SDValue Table
,
367 SelectionDAG
&DAG
) const;
369 // Return the number of bytes that a function should pop when it returns (in
370 // addition to the space used by the return address).
372 unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn
; }
374 // Return the number of bytes that the caller reserves for arguments passed
376 unsigned getBytesCallerReserves() const { return BytesCallerReserves
; }
378 /// getStackPtrReg - Return the stack pointer register we are using: either
380 unsigned getStackPtrReg() const { return X86StackPtr
; }
382 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
383 /// function arguments in the caller parameter area. For X86, aggregates
384 /// that contains are placed at 16-byte boundaries while the rest are at
385 /// 4-byte boundaries.
386 virtual unsigned getByValTypeAlignment(const Type
*Ty
) const;
388 /// getOptimalMemOpType - Returns the target specific optimal type for load
389 /// and store operations as a result of memset, memcpy, and memmove
390 /// lowering. It returns EVT::iAny if SelectionDAG should be responsible for
392 virtual EVT
getOptimalMemOpType(uint64_t Size
, unsigned Align
,
393 bool isSrcConst
, bool isSrcStr
,
394 SelectionDAG
&DAG
) const;
396 /// allowsUnalignedMemoryAccesses - Returns true if the target allows
397 /// unaligned memory accesses. of the specified type.
398 virtual bool allowsUnalignedMemoryAccesses(EVT VT
) const {
402 /// LowerOperation - Provide custom lowering hooks for some operations.
404 virtual SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
);
406 /// ReplaceNodeResults - Replace the results of node with an illegal result
407 /// type with new values built out of custom code.
409 virtual void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
413 virtual SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
415 virtual MachineBasicBlock
*EmitInstrWithCustomInserter(MachineInstr
*MI
,
416 MachineBasicBlock
*MBB
) const;
419 /// getTargetNodeName - This method returns the name of a target specific
421 virtual const char *getTargetNodeName(unsigned Opcode
) const;
423 /// getSetCCResultType - Return the ISD::SETCC ValueType
424 virtual MVT::SimpleValueType
getSetCCResultType(EVT VT
) const;
426 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
427 /// in Mask are known to be either zero or one and return them in the
428 /// KnownZero/KnownOne bitsets.
429 virtual void computeMaskedBitsForTargetNode(const SDValue Op
,
433 const SelectionDAG
&DAG
,
434 unsigned Depth
= 0) const;
437 isGAPlusOffset(SDNode
*N
, GlobalValue
* &GA
, int64_t &Offset
) const;
439 SDValue
getReturnAddressFrameIndex(SelectionDAG
&DAG
);
441 virtual bool ExpandInlineAsm(CallInst
*CI
) const;
443 ConstraintType
getConstraintType(const std::string
&Constraint
) const;
445 std::vector
<unsigned>
446 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
449 virtual const char *LowerXConstraint(EVT ConstraintVT
) const;
451 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
452 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
453 /// true it means one of the asm constraint of the inline asm instruction
454 /// being processed is 'm'.
455 virtual void LowerAsmOperandForConstraint(SDValue Op
,
456 char ConstraintLetter
,
458 std::vector
<SDValue
> &Ops
,
459 SelectionDAG
&DAG
) const;
461 /// getRegForInlineAsmConstraint - Given a physical register constraint
462 /// (e.g. {edx}), return the register number and the register class for the
463 /// register. This should only be used for C_Register constraints. On
464 /// error, this returns a register number of 0.
465 std::pair
<unsigned, const TargetRegisterClass
*>
466 getRegForInlineAsmConstraint(const std::string
&Constraint
,
469 /// isLegalAddressingMode - Return true if the addressing mode represented
470 /// by AM is legal for this target, for a load/store of the specified type.
471 virtual bool isLegalAddressingMode(const AddrMode
&AM
, const Type
*Ty
)const;
473 /// isTruncateFree - Return true if it's free to truncate a value of
474 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
475 /// register EAX to i16 by referencing its sub-register AX.
476 virtual bool isTruncateFree(const Type
*Ty1
, const Type
*Ty2
) const;
477 virtual bool isTruncateFree(EVT VT1
, EVT VT2
) const;
479 /// isZExtFree - Return true if any actual instruction that defines a
480 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
481 /// register. This does not necessarily include registers defined in
482 /// unknown ways, such as incoming arguments, or copies from unknown
483 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
484 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
485 /// all instructions that define 32-bit values implicit zero-extend the
486 /// result out to 64 bits.
487 virtual bool isZExtFree(const Type
*Ty1
, const Type
*Ty2
) const;
488 virtual bool isZExtFree(EVT VT1
, EVT VT2
) const;
490 /// isNarrowingProfitable - Return true if it's profitable to narrow
491 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
492 /// from i32 to i8 but not from i32 to i16.
493 virtual bool isNarrowingProfitable(EVT VT1
, EVT VT2
) const;
495 /// isShuffleMaskLegal - Targets can use this to indicate that they only
496 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
497 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
498 /// values are assumed to be legal.
499 virtual bool isShuffleMaskLegal(const SmallVectorImpl
<int> &Mask
,
502 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
503 /// used by Targets can use this to indicate if there is a suitable
504 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
506 virtual bool isVectorClearMaskLegal(const SmallVectorImpl
<int> &Mask
,
509 /// ShouldShrinkFPConstant - If true, then instruction selection should
510 /// seek to shrink the FP constant of the specified type to a smaller type
511 /// in order to save space and / or reduce runtime.
512 virtual bool ShouldShrinkFPConstant(EVT VT
) const {
513 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
514 // expensive than a straight movsd. On the other hand, it's important to
515 // shrink long double fp constant since fldt is very slow.
516 return !X86ScalarSSEf64
|| VT
== MVT::f80
;
519 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
520 /// for tail call optimization. Targets which want to do tail call
521 /// optimization should implement this function.
523 IsEligibleForTailCallOptimization(SDValue Callee
,
524 CallingConv::ID CalleeCC
,
526 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
527 SelectionDAG
& DAG
) const;
529 virtual const X86Subtarget
* getSubtarget() {
533 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
534 /// computed in an SSE register, not on the X87 floating point stack.
535 bool isScalarFPTypeInSSEReg(EVT VT
) const {
536 return (VT
== MVT::f64
&& X86ScalarSSEf64
) || // f64 is when SSE2
537 (VT
== MVT::f32
&& X86ScalarSSEf32
); // f32 is when SSE1
540 /// getWidenVectorType: given a vector type, returns the type to widen
541 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
542 /// If there is no vector type that we want to widen to, returns EVT::Other
543 /// When and were to widen is target dependent based on the cost of
544 /// scalarizing vs using the wider vector type.
545 virtual EVT
getWidenVectorType(EVT VT
) const;
547 /// createFastISel - This method returns a target specific FastISel object,
548 /// or null if the target does not support "fast" ISel.
550 createFastISel(MachineFunction
&mf
,
551 MachineModuleInfo
*mmi
, DwarfWriter
*dw
,
552 DenseMap
<const Value
*, unsigned> &,
553 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &,
554 DenseMap
<const AllocaInst
*, int> &
556 , SmallSet
<Instruction
*, 8> &
560 /// getFunctionAlignment - Return the Log2 alignment of this function.
561 virtual unsigned getFunctionAlignment(const Function
*F
) const;
564 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
565 /// make the right decision when generating code for different targets.
566 const X86Subtarget
*Subtarget
;
567 const X86RegisterInfo
*RegInfo
;
568 const TargetData
*TD
;
570 /// X86StackPtr - X86 physical register used as stack ptr.
571 unsigned X86StackPtr
;
573 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
574 /// floating point ops.
575 /// When SSE is available, use it for f32 operations.
576 /// When SSE2 is available, use it for f64 operations.
577 bool X86ScalarSSEf32
;
578 bool X86ScalarSSEf64
;
580 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
581 CallingConv::ID CallConv
, bool isVarArg
,
582 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
583 DebugLoc dl
, SelectionDAG
&DAG
,
584 SmallVectorImpl
<SDValue
> &InVals
);
585 SDValue
LowerMemArgument(SDValue Chain
,
586 CallingConv::ID CallConv
,
587 const SmallVectorImpl
<ISD::InputArg
> &ArgInfo
,
588 DebugLoc dl
, SelectionDAG
&DAG
,
589 const CCValAssign
&VA
, MachineFrameInfo
*MFI
,
591 SDValue
LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
, SDValue Arg
,
592 DebugLoc dl
, SelectionDAG
&DAG
,
593 const CCValAssign
&VA
,
594 ISD::ArgFlagsTy Flags
);
596 // Call lowering helpers.
597 bool IsCalleePop(bool isVarArg
, CallingConv::ID CallConv
);
598 SDValue
EmitTailCallLoadRetAddr(SelectionDAG
&DAG
, SDValue
&OutRetAddr
,
599 SDValue Chain
, bool IsTailCall
, bool Is64Bit
,
600 int FPDiff
, DebugLoc dl
);
602 CCAssignFn
*CCAssignFnForNode(CallingConv::ID CallConv
) const;
603 NameDecorationStyle
NameDecorationForCallConv(CallingConv::ID CallConv
);
604 unsigned GetAlignedArgumentStackSize(unsigned StackSize
, SelectionDAG
&DAG
);
606 std::pair
<SDValue
,SDValue
> FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
,
609 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
);
610 SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
);
611 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
);
612 SDValue
LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
);
613 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
);
614 SDValue
LowerINSERT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
);
615 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
);
616 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
);
617 SDValue
LowerGlobalAddress(const GlobalValue
*GV
, DebugLoc dl
,
618 int64_t Offset
, SelectionDAG
&DAG
) const;
619 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
);
620 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
);
621 SDValue
LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
);
622 SDValue
LowerShift(SDValue Op
, SelectionDAG
&DAG
);
623 SDValue
BuildFILD(SDValue Op
, EVT SrcVT
, SDValue Chain
, SDValue StackSlot
,
625 SDValue
LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
);
626 SDValue
LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
);
627 SDValue
LowerUINT_TO_FP_i64(SDValue Op
, SelectionDAG
&DAG
);
628 SDValue
LowerUINT_TO_FP_i32(SDValue Op
, SelectionDAG
&DAG
);
629 SDValue
LowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
);
630 SDValue
LowerFP_TO_UINT(SDValue Op
, SelectionDAG
&DAG
);
631 SDValue
LowerFABS(SDValue Op
, SelectionDAG
&DAG
);
632 SDValue
LowerFNEG(SDValue Op
, SelectionDAG
&DAG
);
633 SDValue
LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
);
634 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
);
635 SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
);
636 SDValue
LowerSELECT(SDValue Op
, SelectionDAG
&DAG
);
637 SDValue
LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
);
638 SDValue
LowerMEMSET(SDValue Op
, SelectionDAG
&DAG
);
639 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
);
640 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
);
641 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
);
642 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
);
643 SDValue
LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
);
644 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
);
645 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
);
646 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
);
647 SDValue
LowerFRAME_TO_ARGS_OFFSET(SDValue Op
, SelectionDAG
&DAG
);
648 SDValue
LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
);
649 SDValue
LowerTRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
);
650 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
);
651 SDValue
LowerCTLZ(SDValue Op
, SelectionDAG
&DAG
);
652 SDValue
LowerCTTZ(SDValue Op
, SelectionDAG
&DAG
);
653 SDValue
LowerMUL_V2I64(SDValue Op
, SelectionDAG
&DAG
);
654 SDValue
LowerXALUO(SDValue Op
, SelectionDAG
&DAG
);
656 SDValue
LowerCMP_SWAP(SDValue Op
, SelectionDAG
&DAG
);
657 SDValue
LowerLOAD_SUB(SDValue Op
, SelectionDAG
&DAG
);
658 SDValue
LowerREADCYCLECOUNTER(SDValue Op
, SelectionDAG
&DAG
);
661 LowerFormalArguments(SDValue Chain
,
662 CallingConv::ID CallConv
, bool isVarArg
,
663 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
664 DebugLoc dl
, SelectionDAG
&DAG
,
665 SmallVectorImpl
<SDValue
> &InVals
);
667 LowerCall(SDValue Chain
, SDValue Callee
,
668 CallingConv::ID CallConv
, bool isVarArg
, bool isTailCall
,
669 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
670 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
671 DebugLoc dl
, SelectionDAG
&DAG
,
672 SmallVectorImpl
<SDValue
> &InVals
);
675 LowerReturn(SDValue Chain
,
676 CallingConv::ID CallConv
, bool isVarArg
,
677 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
678 DebugLoc dl
, SelectionDAG
&DAG
);
680 void ReplaceATOMIC_BINARY_64(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
681 SelectionDAG
&DAG
, unsigned NewOp
);
683 SDValue
EmitTargetCodeForMemset(SelectionDAG
&DAG
, DebugLoc dl
,
685 SDValue Dst
, SDValue Src
,
686 SDValue Size
, unsigned Align
,
687 const Value
*DstSV
, uint64_t DstSVOff
);
688 SDValue
EmitTargetCodeForMemcpy(SelectionDAG
&DAG
, DebugLoc dl
,
690 SDValue Dst
, SDValue Src
,
691 SDValue Size
, unsigned Align
,
693 const Value
*DstSV
, uint64_t DstSVOff
,
694 const Value
*SrcSV
, uint64_t SrcSVOff
);
696 /// Utility function to emit string processing sse4.2 instructions
697 /// that return in xmm0.
698 // This takes the instruction to expand, the associated machine basic
699 // block, the number of args, and whether or not the second arg is
701 MachineBasicBlock
*EmitPCMP(MachineInstr
*BInstr
, MachineBasicBlock
*BB
,
702 unsigned argNum
, bool inMem
) const;
704 /// Utility function to emit atomic bitwise operations (and, or, xor).
705 // It takes the bitwise instruction to expand, the associated machine basic
706 // block, and the associated X86 opcodes for reg/reg and reg/imm.
707 MachineBasicBlock
*EmitAtomicBitwiseWithCustomInserter(
708 MachineInstr
*BInstr
,
709 MachineBasicBlock
*BB
,
717 TargetRegisterClass
*RC
,
718 bool invSrc
= false) const;
720 MachineBasicBlock
*EmitAtomicBit6432WithCustomInserter(
721 MachineInstr
*BInstr
,
722 MachineBasicBlock
*BB
,
727 bool invSrc
= false) const;
729 /// Utility function to emit atomic min and max. It takes the min/max
730 /// instruction to expand, the associated basic block, and the associated
731 /// cmov opcode for moving the min or max value.
732 MachineBasicBlock
*EmitAtomicMinMaxWithCustomInserter(MachineInstr
*BInstr
,
733 MachineBasicBlock
*BB
,
734 unsigned cmovOpc
) const;
736 /// Utility function to emit the xmm reg save portion of va_start.
737 MachineBasicBlock
*EmitVAStartSaveXMMRegsWithCustomInserter(
738 MachineInstr
*BInstr
,
739 MachineBasicBlock
*BB
) const;
741 MachineBasicBlock
*EmitLoweredSelect(MachineInstr
*I
,
742 MachineBasicBlock
*BB
) const;
744 /// Emit nodes that will be selected as "test Op0,Op0", or something
745 /// equivalent, for use with the given x86 condition code.
746 SDValue
EmitTest(SDValue Op0
, unsigned X86CC
, SelectionDAG
&DAG
);
748 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
749 /// equivalent, for use with the given x86 condition code.
750 SDValue
EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
,
755 FastISel
*createFastISel(MachineFunction
&mf
,
756 MachineModuleInfo
*mmi
, DwarfWriter
*dw
,
757 DenseMap
<const Value
*, unsigned> &,
758 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &,
759 DenseMap
<const AllocaInst
*, int> &
761 , SmallSet
<Instruction
*, 8> &
767 #endif // X86ISELLOWERING_H