pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Transforms / IPO / GlobalOpt.cpp
blob63bc03d7872bb6a12242e0e34fc5d9eafd3e3e40
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken. If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "globalopt"
17 #include "llvm/Transforms/IPO.h"
18 #include "llvm/CallingConv.h"
19 #include "llvm/Constants.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/LLVMContext.h"
24 #include "llvm/Module.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Support/CallSite.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/GetElementPtrTypeIterator.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include <algorithm>
41 using namespace llvm;
43 STATISTIC(NumMarked , "Number of globals marked constant");
44 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
45 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
46 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
47 STATISTIC(NumDeleted , "Number of globals deleted");
48 STATISTIC(NumFnDeleted , "Number of functions deleted");
49 STATISTIC(NumGlobUses , "Number of global uses devirtualized");
50 STATISTIC(NumLocalized , "Number of globals localized");
51 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
52 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
53 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
54 STATISTIC(NumNestRemoved , "Number of nest attributes removed");
55 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
56 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
58 namespace {
59 struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
60 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62 static char ID; // Pass identification, replacement for typeid
63 GlobalOpt() : ModulePass(&ID) {}
65 bool runOnModule(Module &M);
67 private:
68 GlobalVariable *FindGlobalCtors(Module &M);
69 bool OptimizeFunctions(Module &M);
70 bool OptimizeGlobalVars(Module &M);
71 bool OptimizeGlobalAliases(Module &M);
72 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
73 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
77 char GlobalOpt::ID = 0;
78 static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
80 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
82 namespace {
84 /// GlobalStatus - As we analyze each global, keep track of some information
85 /// about it. If we find out that the address of the global is taken, none of
86 /// this info will be accurate.
87 struct VISIBILITY_HIDDEN GlobalStatus {
88 /// isLoaded - True if the global is ever loaded. If the global isn't ever
89 /// loaded it can be deleted.
90 bool isLoaded;
92 /// StoredType - Keep track of what stores to the global look like.
93 ///
94 enum StoredType {
95 /// NotStored - There is no store to this global. It can thus be marked
96 /// constant.
97 NotStored,
99 /// isInitializerStored - This global is stored to, but the only thing
100 /// stored is the constant it was initialized with. This is only tracked
101 /// for scalar globals.
102 isInitializerStored,
104 /// isStoredOnce - This global is stored to, but only its initializer and
105 /// one other value is ever stored to it. If this global isStoredOnce, we
106 /// track the value stored to it in StoredOnceValue below. This is only
107 /// tracked for scalar globals.
108 isStoredOnce,
110 /// isStored - This global is stored to by multiple values or something else
111 /// that we cannot track.
112 isStored
113 } StoredType;
115 /// StoredOnceValue - If only one value (besides the initializer constant) is
116 /// ever stored to this global, keep track of what value it is.
117 Value *StoredOnceValue;
119 /// AccessingFunction/HasMultipleAccessingFunctions - These start out
120 /// null/false. When the first accessing function is noticed, it is recorded.
121 /// When a second different accessing function is noticed,
122 /// HasMultipleAccessingFunctions is set to true.
123 Function *AccessingFunction;
124 bool HasMultipleAccessingFunctions;
126 /// HasNonInstructionUser - Set to true if this global has a user that is not
127 /// an instruction (e.g. a constant expr or GV initializer).
128 bool HasNonInstructionUser;
130 /// HasPHIUser - Set to true if this global has a user that is a PHI node.
131 bool HasPHIUser;
133 GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
134 AccessingFunction(0), HasMultipleAccessingFunctions(false),
135 HasNonInstructionUser(false), HasPHIUser(false) {}
140 // SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
141 // by constants itself. Note that constants cannot be cyclic, so this test is
142 // pretty easy to implement recursively.
144 static bool SafeToDestroyConstant(Constant *C) {
145 if (isa<GlobalValue>(C)) return false;
147 for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
148 if (Constant *CU = dyn_cast<Constant>(*UI)) {
149 if (!SafeToDestroyConstant(CU)) return false;
150 } else
151 return false;
152 return true;
156 /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
157 /// structure. If the global has its address taken, return true to indicate we
158 /// can't do anything with it.
160 static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
161 SmallPtrSet<PHINode*, 16> &PHIUsers) {
162 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
163 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
164 GS.HasNonInstructionUser = true;
166 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
168 } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
169 if (!GS.HasMultipleAccessingFunctions) {
170 Function *F = I->getParent()->getParent();
171 if (GS.AccessingFunction == 0)
172 GS.AccessingFunction = F;
173 else if (GS.AccessingFunction != F)
174 GS.HasMultipleAccessingFunctions = true;
176 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
177 GS.isLoaded = true;
178 if (LI->isVolatile()) return true; // Don't hack on volatile loads.
179 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
180 // Don't allow a store OF the address, only stores TO the address.
181 if (SI->getOperand(0) == V) return true;
183 if (SI->isVolatile()) return true; // Don't hack on volatile stores.
185 // If this is a direct store to the global (i.e., the global is a scalar
186 // value, not an aggregate), keep more specific information about
187 // stores.
188 if (GS.StoredType != GlobalStatus::isStored) {
189 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
190 Value *StoredVal = SI->getOperand(0);
191 if (StoredVal == GV->getInitializer()) {
192 if (GS.StoredType < GlobalStatus::isInitializerStored)
193 GS.StoredType = GlobalStatus::isInitializerStored;
194 } else if (isa<LoadInst>(StoredVal) &&
195 cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
196 // G = G
197 if (GS.StoredType < GlobalStatus::isInitializerStored)
198 GS.StoredType = GlobalStatus::isInitializerStored;
199 } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
200 GS.StoredType = GlobalStatus::isStoredOnce;
201 GS.StoredOnceValue = StoredVal;
202 } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
203 GS.StoredOnceValue == StoredVal) {
204 // noop.
205 } else {
206 GS.StoredType = GlobalStatus::isStored;
208 } else {
209 GS.StoredType = GlobalStatus::isStored;
212 } else if (isa<GetElementPtrInst>(I)) {
213 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
214 } else if (isa<SelectInst>(I)) {
215 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
216 } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
217 // PHI nodes we can check just like select or GEP instructions, but we
218 // have to be careful about infinite recursion.
219 if (PHIUsers.insert(PN)) // Not already visited.
220 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
221 GS.HasPHIUser = true;
222 } else if (isa<CmpInst>(I)) {
223 } else if (isa<MemTransferInst>(I)) {
224 if (I->getOperand(1) == V)
225 GS.StoredType = GlobalStatus::isStored;
226 if (I->getOperand(2) == V)
227 GS.isLoaded = true;
228 } else if (isa<MemSetInst>(I)) {
229 assert(I->getOperand(1) == V && "Memset only takes one pointer!");
230 GS.StoredType = GlobalStatus::isStored;
231 } else {
232 return true; // Any other non-load instruction might take address!
234 } else if (Constant *C = dyn_cast<Constant>(*UI)) {
235 GS.HasNonInstructionUser = true;
236 // We might have a dead and dangling constant hanging off of here.
237 if (!SafeToDestroyConstant(C))
238 return true;
239 } else {
240 GS.HasNonInstructionUser = true;
241 // Otherwise must be some other user.
242 return true;
245 return false;
248 static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
249 LLVMContext &Context) {
250 ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
251 if (!CI) return 0;
252 unsigned IdxV = CI->getZExtValue();
254 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
255 if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
256 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
257 if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
258 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
259 if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
260 } else if (isa<ConstantAggregateZero>(Agg)) {
261 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
262 if (IdxV < STy->getNumElements())
263 return Constant::getNullValue(STy->getElementType(IdxV));
264 } else if (const SequentialType *STy =
265 dyn_cast<SequentialType>(Agg->getType())) {
266 return Constant::getNullValue(STy->getElementType());
268 } else if (isa<UndefValue>(Agg)) {
269 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
270 if (IdxV < STy->getNumElements())
271 return UndefValue::get(STy->getElementType(IdxV));
272 } else if (const SequentialType *STy =
273 dyn_cast<SequentialType>(Agg->getType())) {
274 return UndefValue::get(STy->getElementType());
277 return 0;
281 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
282 /// users of the global, cleaning up the obvious ones. This is largely just a
283 /// quick scan over the use list to clean up the easy and obvious cruft. This
284 /// returns true if it made a change.
285 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
286 LLVMContext &Context) {
287 bool Changed = false;
288 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
289 User *U = *UI++;
291 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
292 if (Init) {
293 // Replace the load with the initializer.
294 LI->replaceAllUsesWith(Init);
295 LI->eraseFromParent();
296 Changed = true;
298 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
299 // Store must be unreachable or storing Init into the global.
300 SI->eraseFromParent();
301 Changed = true;
302 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
303 if (CE->getOpcode() == Instruction::GetElementPtr) {
304 Constant *SubInit = 0;
305 if (Init)
306 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
307 Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context);
308 } else if (CE->getOpcode() == Instruction::BitCast &&
309 isa<PointerType>(CE->getType())) {
310 // Pointer cast, delete any stores and memsets to the global.
311 Changed |= CleanupConstantGlobalUsers(CE, 0, Context);
314 if (CE->use_empty()) {
315 CE->destroyConstant();
316 Changed = true;
318 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
319 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
320 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
321 // and will invalidate our notion of what Init is.
322 Constant *SubInit = 0;
323 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
324 ConstantExpr *CE =
325 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context));
326 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
327 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
329 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, Context);
331 if (GEP->use_empty()) {
332 GEP->eraseFromParent();
333 Changed = true;
335 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
336 if (MI->getRawDest() == V) {
337 MI->eraseFromParent();
338 Changed = true;
341 } else if (Constant *C = dyn_cast<Constant>(U)) {
342 // If we have a chain of dead constantexprs or other things dangling from
343 // us, and if they are all dead, nuke them without remorse.
344 if (SafeToDestroyConstant(C)) {
345 C->destroyConstant();
346 // This could have invalidated UI, start over from scratch.
347 CleanupConstantGlobalUsers(V, Init, Context);
348 return true;
352 return Changed;
355 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
356 /// user of a derived expression from a global that we want to SROA.
357 static bool isSafeSROAElementUse(Value *V) {
358 // We might have a dead and dangling constant hanging off of here.
359 if (Constant *C = dyn_cast<Constant>(V))
360 return SafeToDestroyConstant(C);
362 Instruction *I = dyn_cast<Instruction>(V);
363 if (!I) return false;
365 // Loads are ok.
366 if (isa<LoadInst>(I)) return true;
368 // Stores *to* the pointer are ok.
369 if (StoreInst *SI = dyn_cast<StoreInst>(I))
370 return SI->getOperand(0) != V;
372 // Otherwise, it must be a GEP.
373 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
374 if (GEPI == 0) return false;
376 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
377 !cast<Constant>(GEPI->getOperand(1))->isNullValue())
378 return false;
380 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
381 I != E; ++I)
382 if (!isSafeSROAElementUse(*I))
383 return false;
384 return true;
388 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
389 /// Look at it and its uses and decide whether it is safe to SROA this global.
391 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
392 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
393 if (!isa<GetElementPtrInst>(U) &&
394 (!isa<ConstantExpr>(U) ||
395 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
396 return false;
398 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
399 // don't like < 3 operand CE's, and we don't like non-constant integer
400 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
401 // value of C.
402 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
403 !cast<Constant>(U->getOperand(1))->isNullValue() ||
404 !isa<ConstantInt>(U->getOperand(2)))
405 return false;
407 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
408 ++GEPI; // Skip over the pointer index.
410 // If this is a use of an array allocation, do a bit more checking for sanity.
411 if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
412 uint64_t NumElements = AT->getNumElements();
413 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
415 // Check to make sure that index falls within the array. If not,
416 // something funny is going on, so we won't do the optimization.
418 if (Idx->getZExtValue() >= NumElements)
419 return false;
421 // We cannot scalar repl this level of the array unless any array
422 // sub-indices are in-range constants. In particular, consider:
423 // A[0][i]. We cannot know that the user isn't doing invalid things like
424 // allowing i to index an out-of-range subscript that accesses A[1].
426 // Scalar replacing *just* the outer index of the array is probably not
427 // going to be a win anyway, so just give up.
428 for (++GEPI; // Skip array index.
429 GEPI != E;
430 ++GEPI) {
431 uint64_t NumElements;
432 if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
433 NumElements = SubArrayTy->getNumElements();
434 else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
435 NumElements = SubVectorTy->getNumElements();
436 else {
437 assert(isa<StructType>(*GEPI) &&
438 "Indexed GEP type is not array, vector, or struct!");
439 continue;
442 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
443 if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
444 return false;
448 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
449 if (!isSafeSROAElementUse(*I))
450 return false;
451 return true;
454 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
455 /// is safe for us to perform this transformation.
457 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
458 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
459 UI != E; ++UI) {
460 if (!IsUserOfGlobalSafeForSRA(*UI, GV))
461 return false;
463 return true;
467 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
468 /// variable. This opens the door for other optimizations by exposing the
469 /// behavior of the program in a more fine-grained way. We have determined that
470 /// this transformation is safe already. We return the first global variable we
471 /// insert so that the caller can reprocess it.
472 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
473 LLVMContext &Context) {
474 // Make sure this global only has simple uses that we can SRA.
475 if (!GlobalUsersSafeToSRA(GV))
476 return 0;
478 assert(GV->hasLocalLinkage() && !GV->isConstant());
479 Constant *Init = GV->getInitializer();
480 const Type *Ty = Init->getType();
482 std::vector<GlobalVariable*> NewGlobals;
483 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
485 // Get the alignment of the global, either explicit or target-specific.
486 unsigned StartAlignment = GV->getAlignment();
487 if (StartAlignment == 0)
488 StartAlignment = TD.getABITypeAlignment(GV->getType());
490 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
491 NewGlobals.reserve(STy->getNumElements());
492 const StructLayout &Layout = *TD.getStructLayout(STy);
493 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
494 Constant *In = getAggregateConstantElement(Init,
495 ConstantInt::get(Type::getInt32Ty(Context), i),
496 Context);
497 assert(In && "Couldn't get element of initializer?");
498 GlobalVariable *NGV = new GlobalVariable(Context,
499 STy->getElementType(i), false,
500 GlobalVariable::InternalLinkage,
501 In, GV->getName()+"."+Twine(i),
502 GV->isThreadLocal(),
503 GV->getType()->getAddressSpace());
504 Globals.insert(GV, NGV);
505 NewGlobals.push_back(NGV);
507 // Calculate the known alignment of the field. If the original aggregate
508 // had 256 byte alignment for example, something might depend on that:
509 // propagate info to each field.
510 uint64_t FieldOffset = Layout.getElementOffset(i);
511 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
512 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
513 NGV->setAlignment(NewAlign);
515 } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
516 unsigned NumElements = 0;
517 if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
518 NumElements = ATy->getNumElements();
519 else
520 NumElements = cast<VectorType>(STy)->getNumElements();
522 if (NumElements > 16 && GV->hasNUsesOrMore(16))
523 return 0; // It's not worth it.
524 NewGlobals.reserve(NumElements);
526 uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
527 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
528 for (unsigned i = 0, e = NumElements; i != e; ++i) {
529 Constant *In = getAggregateConstantElement(Init,
530 ConstantInt::get(Type::getInt32Ty(Context), i),
531 Context);
532 assert(In && "Couldn't get element of initializer?");
534 GlobalVariable *NGV = new GlobalVariable(Context,
535 STy->getElementType(), false,
536 GlobalVariable::InternalLinkage,
537 In, GV->getName()+"."+Twine(i),
538 GV->isThreadLocal(),
539 GV->getType()->getAddressSpace());
540 Globals.insert(GV, NGV);
541 NewGlobals.push_back(NGV);
543 // Calculate the known alignment of the field. If the original aggregate
544 // had 256 byte alignment for example, something might depend on that:
545 // propagate info to each field.
546 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
547 if (NewAlign > EltAlign)
548 NGV->setAlignment(NewAlign);
552 if (NewGlobals.empty())
553 return 0;
555 DEBUG(errs() << "PERFORMING GLOBAL SRA ON: " << *GV);
557 Constant *NullInt = Constant::getNullValue(Type::getInt32Ty(Context));
559 // Loop over all of the uses of the global, replacing the constantexpr geps,
560 // with smaller constantexpr geps or direct references.
561 while (!GV->use_empty()) {
562 User *GEP = GV->use_back();
563 assert(((isa<ConstantExpr>(GEP) &&
564 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
565 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
567 // Ignore the 1th operand, which has to be zero or else the program is quite
568 // broken (undefined). Get the 2nd operand, which is the structure or array
569 // index.
570 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
571 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
573 Value *NewPtr = NewGlobals[Val];
575 // Form a shorter GEP if needed.
576 if (GEP->getNumOperands() > 3) {
577 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
578 SmallVector<Constant*, 8> Idxs;
579 Idxs.push_back(NullInt);
580 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
581 Idxs.push_back(CE->getOperand(i));
582 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
583 &Idxs[0], Idxs.size());
584 } else {
585 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
586 SmallVector<Value*, 8> Idxs;
587 Idxs.push_back(NullInt);
588 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
589 Idxs.push_back(GEPI->getOperand(i));
590 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
591 GEPI->getName()+"."+Twine(Val),GEPI);
594 GEP->replaceAllUsesWith(NewPtr);
596 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
597 GEPI->eraseFromParent();
598 else
599 cast<ConstantExpr>(GEP)->destroyConstant();
602 // Delete the old global, now that it is dead.
603 Globals.erase(GV);
604 ++NumSRA;
606 // Loop over the new globals array deleting any globals that are obviously
607 // dead. This can arise due to scalarization of a structure or an array that
608 // has elements that are dead.
609 unsigned FirstGlobal = 0;
610 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
611 if (NewGlobals[i]->use_empty()) {
612 Globals.erase(NewGlobals[i]);
613 if (FirstGlobal == i) ++FirstGlobal;
616 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
619 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
620 /// value will trap if the value is dynamically null. PHIs keeps track of any
621 /// phi nodes we've seen to avoid reprocessing them.
622 static bool AllUsesOfValueWillTrapIfNull(Value *V,
623 SmallPtrSet<PHINode*, 8> &PHIs) {
624 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
625 if (isa<LoadInst>(*UI)) {
626 // Will trap.
627 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
628 if (SI->getOperand(0) == V) {
629 //cerr << "NONTRAPPING USE: " << **UI;
630 return false; // Storing the value.
632 } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
633 if (CI->getOperand(0) != V) {
634 //cerr << "NONTRAPPING USE: " << **UI;
635 return false; // Not calling the ptr
637 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
638 if (II->getOperand(0) != V) {
639 //cerr << "NONTRAPPING USE: " << **UI;
640 return false; // Not calling the ptr
642 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
643 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
644 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
645 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
646 } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
647 // If we've already seen this phi node, ignore it, it has already been
648 // checked.
649 if (PHIs.insert(PN))
650 return AllUsesOfValueWillTrapIfNull(PN, PHIs);
651 } else if (isa<ICmpInst>(*UI) &&
652 isa<ConstantPointerNull>(UI->getOperand(1))) {
653 // Ignore setcc X, null
654 } else {
655 //cerr << "NONTRAPPING USE: " << **UI;
656 return false;
658 return true;
661 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
662 /// from GV will trap if the loaded value is null. Note that this also permits
663 /// comparisons of the loaded value against null, as a special case.
664 static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
665 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
666 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
667 SmallPtrSet<PHINode*, 8> PHIs;
668 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
669 return false;
670 } else if (isa<StoreInst>(*UI)) {
671 // Ignore stores to the global.
672 } else {
673 // We don't know or understand this user, bail out.
674 //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
675 return false;
678 return true;
681 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV,
682 LLVMContext &Context) {
683 bool Changed = false;
684 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
685 Instruction *I = cast<Instruction>(*UI++);
686 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
687 LI->setOperand(0, NewV);
688 Changed = true;
689 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
690 if (SI->getOperand(1) == V) {
691 SI->setOperand(1, NewV);
692 Changed = true;
694 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
695 if (I->getOperand(0) == V) {
696 // Calling through the pointer! Turn into a direct call, but be careful
697 // that the pointer is not also being passed as an argument.
698 I->setOperand(0, NewV);
699 Changed = true;
700 bool PassedAsArg = false;
701 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
702 if (I->getOperand(i) == V) {
703 PassedAsArg = true;
704 I->setOperand(i, NewV);
707 if (PassedAsArg) {
708 // Being passed as an argument also. Be careful to not invalidate UI!
709 UI = V->use_begin();
712 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
713 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
714 ConstantExpr::getCast(CI->getOpcode(),
715 NewV, CI->getType()), Context);
716 if (CI->use_empty()) {
717 Changed = true;
718 CI->eraseFromParent();
720 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
721 // Should handle GEP here.
722 SmallVector<Constant*, 8> Idxs;
723 Idxs.reserve(GEPI->getNumOperands()-1);
724 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
725 i != e; ++i)
726 if (Constant *C = dyn_cast<Constant>(*i))
727 Idxs.push_back(C);
728 else
729 break;
730 if (Idxs.size() == GEPI->getNumOperands()-1)
731 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
732 ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
733 Idxs.size()), Context);
734 if (GEPI->use_empty()) {
735 Changed = true;
736 GEPI->eraseFromParent();
741 return Changed;
745 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
746 /// value stored into it. If there are uses of the loaded value that would trap
747 /// if the loaded value is dynamically null, then we know that they cannot be
748 /// reachable with a null optimize away the load.
749 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
750 LLVMContext &Context) {
751 bool Changed = false;
753 // Keep track of whether we are able to remove all the uses of the global
754 // other than the store that defines it.
755 bool AllNonStoreUsesGone = true;
757 // Replace all uses of loads with uses of uses of the stored value.
758 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
759 User *GlobalUser = *GUI++;
760 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
761 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV, Context);
762 // If we were able to delete all uses of the loads
763 if (LI->use_empty()) {
764 LI->eraseFromParent();
765 Changed = true;
766 } else {
767 AllNonStoreUsesGone = false;
769 } else if (isa<StoreInst>(GlobalUser)) {
770 // Ignore the store that stores "LV" to the global.
771 assert(GlobalUser->getOperand(1) == GV &&
772 "Must be storing *to* the global");
773 } else {
774 AllNonStoreUsesGone = false;
776 // If we get here we could have other crazy uses that are transitively
777 // loaded.
778 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
779 isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
783 if (Changed) {
784 DEBUG(errs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
785 ++NumGlobUses;
788 // If we nuked all of the loads, then none of the stores are needed either,
789 // nor is the global.
790 if (AllNonStoreUsesGone) {
791 DEBUG(errs() << " *** GLOBAL NOW DEAD!\n");
792 CleanupConstantGlobalUsers(GV, 0, Context);
793 if (GV->use_empty()) {
794 GV->eraseFromParent();
795 ++NumDeleted;
797 Changed = true;
799 return Changed;
802 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
803 /// instructions that are foldable.
804 static void ConstantPropUsersOf(Value *V, LLVMContext &Context) {
805 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
806 if (Instruction *I = dyn_cast<Instruction>(*UI++))
807 if (Constant *NewC = ConstantFoldInstruction(I, Context)) {
808 I->replaceAllUsesWith(NewC);
810 // Advance UI to the next non-I use to avoid invalidating it!
811 // Instructions could multiply use V.
812 while (UI != E && *UI == I)
813 ++UI;
814 I->eraseFromParent();
818 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
819 /// variable, and transforms the program as if it always contained the result of
820 /// the specified malloc. Because it is always the result of the specified
821 /// malloc, there is no reason to actually DO the malloc. Instead, turn the
822 /// malloc into a global, and any loads of GV as uses of the new global.
823 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
824 MallocInst *MI,
825 LLVMContext &Context) {
826 DEBUG(errs() << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *MI);
827 ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
829 if (NElements->getZExtValue() != 1) {
830 // If we have an array allocation, transform it to a single element
831 // allocation to make the code below simpler.
832 Type *NewTy = ArrayType::get(MI->getAllocatedType(),
833 NElements->getZExtValue());
834 MallocInst *NewMI =
835 new MallocInst(NewTy, Constant::getNullValue(Type::getInt32Ty(Context)),
836 MI->getAlignment(), MI->getName(), MI);
837 Value* Indices[2];
838 Indices[0] = Indices[1] = Constant::getNullValue(Type::getInt32Ty(Context));
839 Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
840 NewMI->getName()+".el0", MI);
841 MI->replaceAllUsesWith(NewGEP);
842 MI->eraseFromParent();
843 MI = NewMI;
846 // Create the new global variable. The contents of the malloc'd memory is
847 // undefined, so initialize with an undef value.
848 // FIXME: This new global should have the alignment returned by malloc. Code
849 // could depend on malloc returning large alignment (on the mac, 16 bytes) but
850 // this would only guarantee some lower alignment.
851 Constant *Init = UndefValue::get(MI->getAllocatedType());
852 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
853 MI->getAllocatedType(), false,
854 GlobalValue::InternalLinkage, Init,
855 GV->getName()+".body",
857 GV->isThreadLocal());
859 // Anything that used the malloc now uses the global directly.
860 MI->replaceAllUsesWith(NewGV);
862 Constant *RepValue = NewGV;
863 if (NewGV->getType() != GV->getType()->getElementType())
864 RepValue = ConstantExpr::getBitCast(RepValue,
865 GV->getType()->getElementType());
867 // If there is a comparison against null, we will insert a global bool to
868 // keep track of whether the global was initialized yet or not.
869 GlobalVariable *InitBool =
870 new GlobalVariable(Context, Type::getInt1Ty(Context), false,
871 GlobalValue::InternalLinkage,
872 ConstantInt::getFalse(Context), GV->getName()+".init",
873 GV->isThreadLocal());
874 bool InitBoolUsed = false;
876 // Loop over all uses of GV, processing them in turn.
877 std::vector<StoreInst*> Stores;
878 while (!GV->use_empty())
879 if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
880 while (!LI->use_empty()) {
881 Use &LoadUse = LI->use_begin().getUse();
882 if (!isa<ICmpInst>(LoadUse.getUser()))
883 LoadUse = RepValue;
884 else {
885 ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
886 // Replace the cmp X, 0 with a use of the bool value.
887 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
888 InitBoolUsed = true;
889 switch (CI->getPredicate()) {
890 default: llvm_unreachable("Unknown ICmp Predicate!");
891 case ICmpInst::ICMP_ULT:
892 case ICmpInst::ICMP_SLT:
893 LV = ConstantInt::getFalse(Context); // X < null -> always false
894 break;
895 case ICmpInst::ICMP_ULE:
896 case ICmpInst::ICMP_SLE:
897 case ICmpInst::ICMP_EQ:
898 LV = BinaryOperator::CreateNot(LV, "notinit", CI);
899 break;
900 case ICmpInst::ICMP_NE:
901 case ICmpInst::ICMP_UGE:
902 case ICmpInst::ICMP_SGE:
903 case ICmpInst::ICMP_UGT:
904 case ICmpInst::ICMP_SGT:
905 break; // no change.
907 CI->replaceAllUsesWith(LV);
908 CI->eraseFromParent();
911 LI->eraseFromParent();
912 } else {
913 StoreInst *SI = cast<StoreInst>(GV->use_back());
914 // The global is initialized when the store to it occurs.
915 new StoreInst(ConstantInt::getTrue(Context), InitBool, SI);
916 SI->eraseFromParent();
919 // If the initialization boolean was used, insert it, otherwise delete it.
920 if (!InitBoolUsed) {
921 while (!InitBool->use_empty()) // Delete initializations
922 cast<Instruction>(InitBool->use_back())->eraseFromParent();
923 delete InitBool;
924 } else
925 GV->getParent()->getGlobalList().insert(GV, InitBool);
928 // Now the GV is dead, nuke it and the malloc.
929 GV->eraseFromParent();
930 MI->eraseFromParent();
932 // To further other optimizations, loop over all users of NewGV and try to
933 // constant prop them. This will promote GEP instructions with constant
934 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
935 ConstantPropUsersOf(NewGV, Context);
936 if (RepValue != NewGV)
937 ConstantPropUsersOf(RepValue, Context);
939 return NewGV;
942 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
943 /// to make sure that there are no complex uses of V. We permit simple things
944 /// like dereferencing the pointer, but not storing through the address, unless
945 /// it is to the specified global.
946 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
947 GlobalVariable *GV,
948 SmallPtrSet<PHINode*, 8> &PHIs) {
949 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
950 Instruction *Inst = cast<Instruction>(*UI);
952 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
953 continue; // Fine, ignore.
956 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
957 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
958 return false; // Storing the pointer itself... bad.
959 continue; // Otherwise, storing through it, or storing into GV... fine.
962 if (isa<GetElementPtrInst>(Inst)) {
963 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
964 return false;
965 continue;
968 if (PHINode *PN = dyn_cast<PHINode>(Inst)) {
969 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
970 // cycles.
971 if (PHIs.insert(PN))
972 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
973 return false;
974 continue;
977 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
978 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
979 return false;
980 continue;
983 return false;
985 return true;
988 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
989 /// somewhere. Transform all uses of the allocation into loads from the
990 /// global and uses of the resultant pointer. Further, delete the store into
991 /// GV. This assumes that these value pass the
992 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
993 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
994 GlobalVariable *GV) {
995 while (!Alloc->use_empty()) {
996 Instruction *U = cast<Instruction>(*Alloc->use_begin());
997 Instruction *InsertPt = U;
998 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
999 // If this is the store of the allocation into the global, remove it.
1000 if (SI->getOperand(1) == GV) {
1001 SI->eraseFromParent();
1002 continue;
1004 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1005 // Insert the load in the corresponding predecessor, not right before the
1006 // PHI.
1007 InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1008 } else if (isa<BitCastInst>(U)) {
1009 // Must be bitcast between the malloc and store to initialize the global.
1010 ReplaceUsesOfMallocWithGlobal(U, GV);
1011 U->eraseFromParent();
1012 continue;
1013 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1014 // If this is a "GEP bitcast" and the user is a store to the global, then
1015 // just process it as a bitcast.
1016 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1017 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1018 if (SI->getOperand(1) == GV) {
1019 // Must be bitcast GEP between the malloc and store to initialize
1020 // the global.
1021 ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1022 GEPI->eraseFromParent();
1023 continue;
1027 // Insert a load from the global, and use it instead of the malloc.
1028 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1029 U->replaceUsesOfWith(Alloc, NL);
1033 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1034 /// of a load) are simple enough to perform heap SRA on. This permits GEP's
1035 /// that index through the array and struct field, icmps of null, and PHIs.
1036 static bool LoadUsesSimpleEnoughForHeapSRA(Value *V,
1037 SmallPtrSet<PHINode*, 32> &LoadUsingPHIs,
1038 SmallPtrSet<PHINode*, 32> &LoadUsingPHIsPerLoad) {
1039 // We permit two users of the load: setcc comparing against the null
1040 // pointer, and a getelementptr of a specific form.
1041 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1042 Instruction *User = cast<Instruction>(*UI);
1044 // Comparison against null is ok.
1045 if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1046 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1047 return false;
1048 continue;
1051 // getelementptr is also ok, but only a simple form.
1052 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1053 // Must index into the array and into the struct.
1054 if (GEPI->getNumOperands() < 3)
1055 return false;
1057 // Otherwise the GEP is ok.
1058 continue;
1061 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1062 if (!LoadUsingPHIsPerLoad.insert(PN))
1063 // This means some phi nodes are dependent on each other.
1064 // Avoid infinite looping!
1065 return false;
1066 if (!LoadUsingPHIs.insert(PN))
1067 // If we have already analyzed this PHI, then it is safe.
1068 continue;
1070 // Make sure all uses of the PHI are simple enough to transform.
1071 if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1072 LoadUsingPHIs, LoadUsingPHIsPerLoad))
1073 return false;
1075 continue;
1078 // Otherwise we don't know what this is, not ok.
1079 return false;
1082 return true;
1086 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1087 /// GV are simple enough to perform HeapSRA, return true.
1088 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
1089 MallocInst *MI) {
1090 SmallPtrSet<PHINode*, 32> LoadUsingPHIs;
1091 SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad;
1092 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
1093 ++UI)
1094 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1095 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1096 LoadUsingPHIsPerLoad))
1097 return false;
1098 LoadUsingPHIsPerLoad.clear();
1101 // If we reach here, we know that all uses of the loads and transitive uses
1102 // (through PHI nodes) are simple enough to transform. However, we don't know
1103 // that all inputs the to the PHI nodes are in the same equivalence sets.
1104 // Check to verify that all operands of the PHIs are either PHIS that can be
1105 // transformed, loads from GV, or MI itself.
1106 for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(),
1107 E = LoadUsingPHIs.end(); I != E; ++I) {
1108 PHINode *PN = *I;
1109 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1110 Value *InVal = PN->getIncomingValue(op);
1112 // PHI of the stored value itself is ok.
1113 if (InVal == MI) continue;
1115 if (PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1116 // One of the PHIs in our set is (optimistically) ok.
1117 if (LoadUsingPHIs.count(InPN))
1118 continue;
1119 return false;
1122 // Load from GV is ok.
1123 if (LoadInst *LI = dyn_cast<LoadInst>(InVal))
1124 if (LI->getOperand(0) == GV)
1125 continue;
1127 // UNDEF? NULL?
1129 // Anything else is rejected.
1130 return false;
1134 return true;
1137 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1138 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1139 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1140 LLVMContext &Context) {
1141 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1143 if (FieldNo >= FieldVals.size())
1144 FieldVals.resize(FieldNo+1);
1146 // If we already have this value, just reuse the previously scalarized
1147 // version.
1148 if (Value *FieldVal = FieldVals[FieldNo])
1149 return FieldVal;
1151 // Depending on what instruction this is, we have several cases.
1152 Value *Result;
1153 if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1154 // This is a scalarized version of the load from the global. Just create
1155 // a new Load of the scalarized global.
1156 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1157 InsertedScalarizedValues,
1158 PHIsToRewrite, Context),
1159 LI->getName()+".f"+Twine(FieldNo), LI);
1160 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1161 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1162 // field.
1163 const StructType *ST =
1164 cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1166 Result =
1167 PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1168 PN->getName()+".f"+Twine(FieldNo), PN);
1169 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1170 } else {
1171 llvm_unreachable("Unknown usable value");
1172 Result = 0;
1175 return FieldVals[FieldNo] = Result;
1178 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1179 /// the load, rewrite the derived value to use the HeapSRoA'd load.
1180 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1181 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1182 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1183 LLVMContext &Context) {
1184 // If this is a comparison against null, handle it.
1185 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1186 assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1187 // If we have a setcc of the loaded pointer, we can use a setcc of any
1188 // field.
1189 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1190 InsertedScalarizedValues, PHIsToRewrite,
1191 Context);
1193 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1194 Constant::getNullValue(NPtr->getType()),
1195 SCI->getName());
1196 SCI->replaceAllUsesWith(New);
1197 SCI->eraseFromParent();
1198 return;
1201 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1202 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1203 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1204 && "Unexpected GEPI!");
1206 // Load the pointer for this field.
1207 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1208 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1209 InsertedScalarizedValues, PHIsToRewrite,
1210 Context);
1212 // Create the new GEP idx vector.
1213 SmallVector<Value*, 8> GEPIdx;
1214 GEPIdx.push_back(GEPI->getOperand(1));
1215 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1217 Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1218 GEPIdx.begin(), GEPIdx.end(),
1219 GEPI->getName(), GEPI);
1220 GEPI->replaceAllUsesWith(NGEPI);
1221 GEPI->eraseFromParent();
1222 return;
1225 // Recursively transform the users of PHI nodes. This will lazily create the
1226 // PHIs that are needed for individual elements. Keep track of what PHIs we
1227 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1228 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1229 // already been seen first by another load, so its uses have already been
1230 // processed.
1231 PHINode *PN = cast<PHINode>(LoadUser);
1232 bool Inserted;
1233 DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1234 tie(InsertPos, Inserted) =
1235 InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1236 if (!Inserted) return;
1238 // If this is the first time we've seen this PHI, recursively process all
1239 // users.
1240 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1241 Instruction *User = cast<Instruction>(*UI++);
1242 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1243 Context);
1247 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
1248 /// is a value loaded from the global. Eliminate all uses of Ptr, making them
1249 /// use FieldGlobals instead. All uses of loaded values satisfy
1250 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1251 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1252 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1253 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1254 LLVMContext &Context) {
1255 for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1256 UI != E; ) {
1257 Instruction *User = cast<Instruction>(*UI++);
1258 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1259 Context);
1262 if (Load->use_empty()) {
1263 Load->eraseFromParent();
1264 InsertedScalarizedValues.erase(Load);
1268 /// PerformHeapAllocSRoA - MI is an allocation of an array of structures. Break
1269 /// it up into multiple allocations of arrays of the fields.
1270 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI,
1271 LLVMContext &Context){
1272 DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *MI);
1273 const StructType *STy = cast<StructType>(MI->getAllocatedType());
1275 // There is guaranteed to be at least one use of the malloc (storing
1276 // it into GV). If there are other uses, change them to be uses of
1277 // the global to simplify later code. This also deletes the store
1278 // into GV.
1279 ReplaceUsesOfMallocWithGlobal(MI, GV);
1281 // Okay, at this point, there are no users of the malloc. Insert N
1282 // new mallocs at the same place as MI, and N globals.
1283 std::vector<Value*> FieldGlobals;
1284 std::vector<MallocInst*> FieldMallocs;
1286 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1287 const Type *FieldTy = STy->getElementType(FieldNo);
1288 const Type *PFieldTy = PointerType::getUnqual(FieldTy);
1290 GlobalVariable *NGV =
1291 new GlobalVariable(*GV->getParent(),
1292 PFieldTy, false, GlobalValue::InternalLinkage,
1293 Constant::getNullValue(PFieldTy),
1294 GV->getName() + ".f" + Twine(FieldNo), GV,
1295 GV->isThreadLocal());
1296 FieldGlobals.push_back(NGV);
1298 MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1299 MI->getName() + ".f" + Twine(FieldNo), MI);
1300 FieldMallocs.push_back(NMI);
1301 new StoreInst(NMI, NGV, MI);
1304 // The tricky aspect of this transformation is handling the case when malloc
1305 // fails. In the original code, malloc failing would set the result pointer
1306 // of malloc to null. In this case, some mallocs could succeed and others
1307 // could fail. As such, we emit code that looks like this:
1308 // F0 = malloc(field0)
1309 // F1 = malloc(field1)
1310 // F2 = malloc(field2)
1311 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1312 // if (F0) { free(F0); F0 = 0; }
1313 // if (F1) { free(F1); F1 = 0; }
1314 // if (F2) { free(F2); F2 = 0; }
1315 // }
1316 Value *RunningOr = 0;
1317 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1318 Value *Cond = new ICmpInst(MI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1319 Constant::getNullValue(FieldMallocs[i]->getType()),
1320 "isnull");
1321 if (!RunningOr)
1322 RunningOr = Cond; // First seteq
1323 else
1324 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", MI);
1327 // Split the basic block at the old malloc.
1328 BasicBlock *OrigBB = MI->getParent();
1329 BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1331 // Create the block to check the first condition. Put all these blocks at the
1332 // end of the function as they are unlikely to be executed.
1333 BasicBlock *NullPtrBlock = BasicBlock::Create(Context, "malloc_ret_null",
1334 OrigBB->getParent());
1336 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1337 // branch on RunningOr.
1338 OrigBB->getTerminator()->eraseFromParent();
1339 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1341 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1342 // pointer, because some may be null while others are not.
1343 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1344 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1345 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1346 Constant::getNullValue(GVVal->getType()),
1347 "tmp");
1348 BasicBlock *FreeBlock = BasicBlock::Create(Context, "free_it",
1349 OrigBB->getParent());
1350 BasicBlock *NextBlock = BasicBlock::Create(Context, "next",
1351 OrigBB->getParent());
1352 BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1354 // Fill in FreeBlock.
1355 new FreeInst(GVVal, FreeBlock);
1356 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1357 FreeBlock);
1358 BranchInst::Create(NextBlock, FreeBlock);
1360 NullPtrBlock = NextBlock;
1363 BranchInst::Create(ContBB, NullPtrBlock);
1365 // MI is no longer needed, remove it.
1366 MI->eraseFromParent();
1368 /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1369 /// update all uses of the load, keep track of what scalarized loads are
1370 /// inserted for a given load.
1371 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1372 InsertedScalarizedValues[GV] = FieldGlobals;
1374 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1376 // Okay, the malloc site is completely handled. All of the uses of GV are now
1377 // loads, and all uses of those loads are simple. Rewrite them to use loads
1378 // of the per-field globals instead.
1379 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1380 Instruction *User = cast<Instruction>(*UI++);
1382 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1383 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite,
1384 Context);
1385 continue;
1388 // Must be a store of null.
1389 StoreInst *SI = cast<StoreInst>(User);
1390 assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1391 "Unexpected heap-sra user!");
1393 // Insert a store of null into each global.
1394 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1395 const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1396 Constant *Null = Constant::getNullValue(PT->getElementType());
1397 new StoreInst(Null, FieldGlobals[i], SI);
1399 // Erase the original store.
1400 SI->eraseFromParent();
1403 // While we have PHIs that are interesting to rewrite, do it.
1404 while (!PHIsToRewrite.empty()) {
1405 PHINode *PN = PHIsToRewrite.back().first;
1406 unsigned FieldNo = PHIsToRewrite.back().second;
1407 PHIsToRewrite.pop_back();
1408 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1409 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1411 // Add all the incoming values. This can materialize more phis.
1412 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1413 Value *InVal = PN->getIncomingValue(i);
1414 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1415 PHIsToRewrite, Context);
1416 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1420 // Drop all inter-phi links and any loads that made it this far.
1421 for (DenseMap<Value*, std::vector<Value*> >::iterator
1422 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1423 I != E; ++I) {
1424 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1425 PN->dropAllReferences();
1426 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1427 LI->dropAllReferences();
1430 // Delete all the phis and loads now that inter-references are dead.
1431 for (DenseMap<Value*, std::vector<Value*> >::iterator
1432 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1433 I != E; ++I) {
1434 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1435 PN->eraseFromParent();
1436 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1437 LI->eraseFromParent();
1440 // The old global is now dead, remove it.
1441 GV->eraseFromParent();
1443 ++NumHeapSRA;
1444 return cast<GlobalVariable>(FieldGlobals[0]);
1447 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1448 /// pointer global variable with a single value stored it that is a malloc or
1449 /// cast of malloc.
1450 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1451 MallocInst *MI,
1452 Module::global_iterator &GVI,
1453 TargetData *TD,
1454 LLVMContext &Context) {
1455 // If this is a malloc of an abstract type, don't touch it.
1456 if (!MI->getAllocatedType()->isSized())
1457 return false;
1459 // We can't optimize this global unless all uses of it are *known* to be
1460 // of the malloc value, not of the null initializer value (consider a use
1461 // that compares the global's value against zero to see if the malloc has
1462 // been reached). To do this, we check to see if all uses of the global
1463 // would trap if the global were null: this proves that they must all
1464 // happen after the malloc.
1465 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1466 return false;
1468 // We can't optimize this if the malloc itself is used in a complex way,
1469 // for example, being stored into multiple globals. This allows the
1470 // malloc to be stored into the specified global, loaded setcc'd, and
1471 // GEP'd. These are all things we could transform to using the global
1472 // for.
1474 SmallPtrSet<PHINode*, 8> PHIs;
1475 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1476 return false;
1480 // If we have a global that is only initialized with a fixed size malloc,
1481 // transform the program to use global memory instead of malloc'd memory.
1482 // This eliminates dynamic allocation, avoids an indirection accessing the
1483 // data, and exposes the resultant global to further GlobalOpt.
1484 if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1485 // Restrict this transformation to only working on small allocations
1486 // (2048 bytes currently), as we don't want to introduce a 16M global or
1487 // something.
1488 if (TD &&
1489 NElements->getZExtValue()*
1490 TD->getTypeAllocSize(MI->getAllocatedType()) < 2048) {
1491 GVI = OptimizeGlobalAddressOfMalloc(GV, MI, Context);
1492 return true;
1496 // If the allocation is an array of structures, consider transforming this
1497 // into multiple malloc'd arrays, one for each field. This is basically
1498 // SRoA for malloc'd memory.
1499 const Type *AllocTy = MI->getAllocatedType();
1501 // If this is an allocation of a fixed size array of structs, analyze as a
1502 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1503 if (!MI->isArrayAllocation())
1504 if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1505 AllocTy = AT->getElementType();
1507 if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) {
1508 // This the structure has an unreasonable number of fields, leave it
1509 // alone.
1510 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1511 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1513 // If this is a fixed size array, transform the Malloc to be an alloc of
1514 // structs. malloc [100 x struct],1 -> malloc struct, 100
1515 if (const ArrayType *AT = dyn_cast<ArrayType>(MI->getAllocatedType())) {
1516 MallocInst *NewMI =
1517 new MallocInst(AllocSTy,
1518 ConstantInt::get(Type::getInt32Ty(Context),
1519 AT->getNumElements()),
1520 "", MI);
1521 NewMI->takeName(MI);
1522 Value *Cast = new BitCastInst(NewMI, MI->getType(), "tmp", MI);
1523 MI->replaceAllUsesWith(Cast);
1524 MI->eraseFromParent();
1525 MI = NewMI;
1528 GVI = PerformHeapAllocSRoA(GV, MI, Context);
1529 return true;
1533 return false;
1536 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1537 // that only one value (besides its initializer) is ever stored to the global.
1538 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1539 Module::global_iterator &GVI,
1540 TargetData *TD, LLVMContext &Context) {
1541 // Ignore no-op GEPs and bitcasts.
1542 StoredOnceVal = StoredOnceVal->stripPointerCasts();
1544 // If we are dealing with a pointer global that is initialized to null and
1545 // only has one (non-null) value stored into it, then we can optimize any
1546 // users of the loaded value (often calls and loads) that would trap if the
1547 // value was null.
1548 if (isa<PointerType>(GV->getInitializer()->getType()) &&
1549 GV->getInitializer()->isNullValue()) {
1550 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1551 if (GV->getInitializer()->getType() != SOVC->getType())
1552 SOVC =
1553 ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1555 // Optimize away any trapping uses of the loaded value.
1556 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, Context))
1557 return true;
1558 } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1559 if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD, Context))
1560 return true;
1564 return false;
1567 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1568 /// two values ever stored into GV are its initializer and OtherVal. See if we
1569 /// can shrink the global into a boolean and select between the two values
1570 /// whenever it is used. This exposes the values to other scalar optimizations.
1571 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal,
1572 LLVMContext &Context) {
1573 const Type *GVElType = GV->getType()->getElementType();
1575 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1576 // an FP value, pointer or vector, don't do this optimization because a select
1577 // between them is very expensive and unlikely to lead to later
1578 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1579 // where v1 and v2 both require constant pool loads, a big loss.
1580 if (GVElType == Type::getInt1Ty(Context) || GVElType->isFloatingPoint() ||
1581 isa<PointerType>(GVElType) || isa<VectorType>(GVElType))
1582 return false;
1584 // Walk the use list of the global seeing if all the uses are load or store.
1585 // If there is anything else, bail out.
1586 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1587 if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1588 return false;
1590 DEBUG(errs() << " *** SHRINKING TO BOOL: " << *GV);
1592 // Create the new global, initializing it to false.
1593 GlobalVariable *NewGV = new GlobalVariable(Context,
1594 Type::getInt1Ty(Context), false,
1595 GlobalValue::InternalLinkage, ConstantInt::getFalse(Context),
1596 GV->getName()+".b",
1597 GV->isThreadLocal());
1598 GV->getParent()->getGlobalList().insert(GV, NewGV);
1600 Constant *InitVal = GV->getInitializer();
1601 assert(InitVal->getType() != Type::getInt1Ty(Context) &&
1602 "No reason to shrink to bool!");
1604 // If initialized to zero and storing one into the global, we can use a cast
1605 // instead of a select to synthesize the desired value.
1606 bool IsOneZero = false;
1607 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1608 IsOneZero = InitVal->isNullValue() && CI->isOne();
1610 while (!GV->use_empty()) {
1611 Instruction *UI = cast<Instruction>(GV->use_back());
1612 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1613 // Change the store into a boolean store.
1614 bool StoringOther = SI->getOperand(0) == OtherVal;
1615 // Only do this if we weren't storing a loaded value.
1616 Value *StoreVal;
1617 if (StoringOther || SI->getOperand(0) == InitVal)
1618 StoreVal = ConstantInt::get(Type::getInt1Ty(Context), StoringOther);
1619 else {
1620 // Otherwise, we are storing a previously loaded copy. To do this,
1621 // change the copy from copying the original value to just copying the
1622 // bool.
1623 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1625 // If we're already replaced the input, StoredVal will be a cast or
1626 // select instruction. If not, it will be a load of the original
1627 // global.
1628 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1629 assert(LI->getOperand(0) == GV && "Not a copy!");
1630 // Insert a new load, to preserve the saved value.
1631 StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1632 } else {
1633 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1634 "This is not a form that we understand!");
1635 StoreVal = StoredVal->getOperand(0);
1636 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1639 new StoreInst(StoreVal, NewGV, SI);
1640 } else {
1641 // Change the load into a load of bool then a select.
1642 LoadInst *LI = cast<LoadInst>(UI);
1643 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1644 Value *NSI;
1645 if (IsOneZero)
1646 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1647 else
1648 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1649 NSI->takeName(LI);
1650 LI->replaceAllUsesWith(NSI);
1652 UI->eraseFromParent();
1655 GV->eraseFromParent();
1656 return true;
1660 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
1661 /// it if possible. If we make a change, return true.
1662 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1663 Module::global_iterator &GVI) {
1664 SmallPtrSet<PHINode*, 16> PHIUsers;
1665 GlobalStatus GS;
1666 GV->removeDeadConstantUsers();
1668 if (GV->use_empty()) {
1669 DEBUG(errs() << "GLOBAL DEAD: " << *GV);
1670 GV->eraseFromParent();
1671 ++NumDeleted;
1672 return true;
1675 if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1676 #if 0
1677 cerr << "Global: " << *GV;
1678 cerr << " isLoaded = " << GS.isLoaded << "\n";
1679 cerr << " StoredType = ";
1680 switch (GS.StoredType) {
1681 case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1682 case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1683 case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1684 case GlobalStatus::isStored: cerr << "stored\n"; break;
1686 if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1687 cerr << " StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1688 if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1689 cerr << " AccessingFunction = " << GS.AccessingFunction->getName()
1690 << "\n";
1691 cerr << " HasMultipleAccessingFunctions = "
1692 << GS.HasMultipleAccessingFunctions << "\n";
1693 cerr << " HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1694 cerr << "\n";
1695 #endif
1697 // If this is a first class global and has only one accessing function
1698 // and this function is main (which we know is not recursive we can make
1699 // this global a local variable) we replace the global with a local alloca
1700 // in this function.
1702 // NOTE: It doesn't make sense to promote non single-value types since we
1703 // are just replacing static memory to stack memory.
1705 // If the global is in different address space, don't bring it to stack.
1706 if (!GS.HasMultipleAccessingFunctions &&
1707 GS.AccessingFunction && !GS.HasNonInstructionUser &&
1708 GV->getType()->getElementType()->isSingleValueType() &&
1709 GS.AccessingFunction->getName() == "main" &&
1710 GS.AccessingFunction->hasExternalLinkage() &&
1711 GV->getType()->getAddressSpace() == 0) {
1712 DEBUG(errs() << "LOCALIZING GLOBAL: " << *GV);
1713 Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1714 const Type* ElemTy = GV->getType()->getElementType();
1715 // FIXME: Pass Global's alignment when globals have alignment
1716 AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1717 if (!isa<UndefValue>(GV->getInitializer()))
1718 new StoreInst(GV->getInitializer(), Alloca, FirstI);
1720 GV->replaceAllUsesWith(Alloca);
1721 GV->eraseFromParent();
1722 ++NumLocalized;
1723 return true;
1726 // If the global is never loaded (but may be stored to), it is dead.
1727 // Delete it now.
1728 if (!GS.isLoaded) {
1729 DEBUG(errs() << "GLOBAL NEVER LOADED: " << *GV);
1731 // Delete any stores we can find to the global. We may not be able to
1732 // make it completely dead though.
1733 bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1734 GV->getContext());
1736 // If the global is dead now, delete it.
1737 if (GV->use_empty()) {
1738 GV->eraseFromParent();
1739 ++NumDeleted;
1740 Changed = true;
1742 return Changed;
1744 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1745 DEBUG(errs() << "MARKING CONSTANT: " << *GV);
1746 GV->setConstant(true);
1748 // Clean up any obviously simplifiable users now.
1749 CleanupConstantGlobalUsers(GV, GV->getInitializer(), GV->getContext());
1751 // If the global is dead now, just nuke it.
1752 if (GV->use_empty()) {
1753 DEBUG(errs() << " *** Marking constant allowed us to simplify "
1754 << "all users and delete global!\n");
1755 GV->eraseFromParent();
1756 ++NumDeleted;
1759 ++NumMarked;
1760 return true;
1761 } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1762 if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1763 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD,
1764 GV->getContext())) {
1765 GVI = FirstNewGV; // Don't skip the newly produced globals!
1766 return true;
1768 } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1769 // If the initial value for the global was an undef value, and if only
1770 // one other value was stored into it, we can just change the
1771 // initializer to be the stored value, then delete all stores to the
1772 // global. This allows us to mark it constant.
1773 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1774 if (isa<UndefValue>(GV->getInitializer())) {
1775 // Change the initial value here.
1776 GV->setInitializer(SOVConstant);
1778 // Clean up any obviously simplifiable users now.
1779 CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1780 GV->getContext());
1782 if (GV->use_empty()) {
1783 DEBUG(errs() << " *** Substituting initializer allowed us to "
1784 << "simplify all users and delete global!\n");
1785 GV->eraseFromParent();
1786 ++NumDeleted;
1787 } else {
1788 GVI = GV;
1790 ++NumSubstitute;
1791 return true;
1794 // Try to optimize globals based on the knowledge that only one value
1795 // (besides its initializer) is ever stored to the global.
1796 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1797 getAnalysisIfAvailable<TargetData>(),
1798 GV->getContext()))
1799 return true;
1801 // Otherwise, if the global was not a boolean, we can shrink it to be a
1802 // boolean.
1803 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1804 if (TryToShrinkGlobalToBoolean(GV, SOVConstant, GV->getContext())) {
1805 ++NumShrunkToBool;
1806 return true;
1810 return false;
1813 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1814 /// function, changing them to FastCC.
1815 static void ChangeCalleesToFastCall(Function *F) {
1816 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1817 CallSite User(cast<Instruction>(*UI));
1818 User.setCallingConv(CallingConv::Fast);
1822 static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1823 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1824 if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1825 continue;
1827 // There can be only one.
1828 return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1831 return Attrs;
1834 static void RemoveNestAttribute(Function *F) {
1835 F->setAttributes(StripNest(F->getAttributes()));
1836 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1837 CallSite User(cast<Instruction>(*UI));
1838 User.setAttributes(StripNest(User.getAttributes()));
1842 bool GlobalOpt::OptimizeFunctions(Module &M) {
1843 bool Changed = false;
1844 // Optimize functions.
1845 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1846 Function *F = FI++;
1847 // Functions without names cannot be referenced outside this module.
1848 if (!F->hasName() && !F->isDeclaration())
1849 F->setLinkage(GlobalValue::InternalLinkage);
1850 F->removeDeadConstantUsers();
1851 if (F->use_empty() && (F->hasLocalLinkage() ||
1852 F->hasLinkOnceLinkage())) {
1853 M.getFunctionList().erase(F);
1854 Changed = true;
1855 ++NumFnDeleted;
1856 } else if (F->hasLocalLinkage()) {
1857 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1858 !F->hasAddressTaken()) {
1859 // If this function has C calling conventions, is not a varargs
1860 // function, and is only called directly, promote it to use the Fast
1861 // calling convention.
1862 F->setCallingConv(CallingConv::Fast);
1863 ChangeCalleesToFastCall(F);
1864 ++NumFastCallFns;
1865 Changed = true;
1868 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1869 !F->hasAddressTaken()) {
1870 // The function is not used by a trampoline intrinsic, so it is safe
1871 // to remove the 'nest' attribute.
1872 RemoveNestAttribute(F);
1873 ++NumNestRemoved;
1874 Changed = true;
1878 return Changed;
1881 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1882 bool Changed = false;
1883 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1884 GVI != E; ) {
1885 GlobalVariable *GV = GVI++;
1886 // Global variables without names cannot be referenced outside this module.
1887 if (!GV->hasName() && !GV->isDeclaration())
1888 GV->setLinkage(GlobalValue::InternalLinkage);
1889 if (!GV->isConstant() && GV->hasLocalLinkage() &&
1890 GV->hasInitializer())
1891 Changed |= ProcessInternalGlobal(GV, GVI);
1893 return Changed;
1896 /// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1897 /// initializers have an init priority of 65535.
1898 GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1899 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1900 I != E; ++I)
1901 if (I->getName() == "llvm.global_ctors") {
1902 // Found it, verify it's an array of { int, void()* }.
1903 const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1904 if (!ATy) return 0;
1905 const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1906 if (!STy || STy->getNumElements() != 2 ||
1907 STy->getElementType(0) != Type::getInt32Ty(M.getContext())) return 0;
1908 const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1909 if (!PFTy) return 0;
1910 const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1911 if (!FTy || FTy->getReturnType() != Type::getVoidTy(M.getContext()) ||
1912 FTy->isVarArg() || FTy->getNumParams() != 0)
1913 return 0;
1915 // Verify that the initializer is simple enough for us to handle.
1916 if (!I->hasDefinitiveInitializer()) return 0;
1917 ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1918 if (!CA) return 0;
1919 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1920 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1921 if (isa<ConstantPointerNull>(CS->getOperand(1)))
1922 continue;
1924 // Must have a function or null ptr.
1925 if (!isa<Function>(CS->getOperand(1)))
1926 return 0;
1928 // Init priority must be standard.
1929 ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1930 if (!CI || CI->getZExtValue() != 65535)
1931 return 0;
1932 } else {
1933 return 0;
1936 return I;
1938 return 0;
1941 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1942 /// return a list of the functions and null terminator as a vector.
1943 static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1944 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1945 std::vector<Function*> Result;
1946 Result.reserve(CA->getNumOperands());
1947 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1948 ConstantStruct *CS = cast<ConstantStruct>(*i);
1949 Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1951 return Result;
1954 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1955 /// specified array, returning the new global to use.
1956 static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1957 const std::vector<Function*> &Ctors,
1958 LLVMContext &Context) {
1959 // If we made a change, reassemble the initializer list.
1960 std::vector<Constant*> CSVals;
1961 CSVals.push_back(ConstantInt::get(Type::getInt32Ty(Context), 65535));
1962 CSVals.push_back(0);
1964 // Create the new init list.
1965 std::vector<Constant*> CAList;
1966 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1967 if (Ctors[i]) {
1968 CSVals[1] = Ctors[i];
1969 } else {
1970 const Type *FTy = FunctionType::get(Type::getVoidTy(Context), false);
1971 const PointerType *PFTy = PointerType::getUnqual(FTy);
1972 CSVals[1] = Constant::getNullValue(PFTy);
1973 CSVals[0] = ConstantInt::get(Type::getInt32Ty(Context), 2147483647);
1975 CAList.push_back(ConstantStruct::get(Context, CSVals));
1978 // Create the array initializer.
1979 const Type *StructTy =
1980 cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1981 Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
1982 CAList.size()), CAList);
1984 // If we didn't change the number of elements, don't create a new GV.
1985 if (CA->getType() == GCL->getInitializer()->getType()) {
1986 GCL->setInitializer(CA);
1987 return GCL;
1990 // Create the new global and insert it next to the existing list.
1991 GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(),
1992 GCL->isConstant(),
1993 GCL->getLinkage(), CA, "",
1994 GCL->isThreadLocal());
1995 GCL->getParent()->getGlobalList().insert(GCL, NGV);
1996 NGV->takeName(GCL);
1998 // Nuke the old list, replacing any uses with the new one.
1999 if (!GCL->use_empty()) {
2000 Constant *V = NGV;
2001 if (V->getType() != GCL->getType())
2002 V = ConstantExpr::getBitCast(V, GCL->getType());
2003 GCL->replaceAllUsesWith(V);
2005 GCL->eraseFromParent();
2007 if (Ctors.size())
2008 return NGV;
2009 else
2010 return 0;
2014 static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
2015 Value *V) {
2016 if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2017 Constant *R = ComputedValues[V];
2018 assert(R && "Reference to an uncomputed value!");
2019 return R;
2022 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2023 /// enough for us to understand. In particular, if it is a cast of something,
2024 /// we punt. We basically just support direct accesses to globals and GEP's of
2025 /// globals. This should be kept up to date with CommitValueTo.
2026 static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext &Context) {
2027 // Conservatively, avoid aggregate types. This is because we don't
2028 // want to worry about them partially overlapping other stores.
2029 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2030 return false;
2032 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2033 // Do not allow weak/linkonce/dllimport/dllexport linkage or
2034 // external globals.
2035 return GV->hasDefinitiveInitializer();
2037 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2038 // Handle a constantexpr gep.
2039 if (CE->getOpcode() == Instruction::GetElementPtr &&
2040 isa<GlobalVariable>(CE->getOperand(0)) &&
2041 cast<GEPOperator>(CE)->isInBounds()) {
2042 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2043 // Do not allow weak/linkonce/dllimport/dllexport linkage or
2044 // external globals.
2045 if (!GV->hasDefinitiveInitializer())
2046 return false;
2048 // The first index must be zero.
2049 ConstantInt *CI = dyn_cast<ConstantInt>(*next(CE->op_begin()));
2050 if (!CI || !CI->isZero()) return false;
2052 // The remaining indices must be compile-time known integers within the
2053 // notional bounds of the corresponding static array types.
2054 if (!CE->isGEPWithNoNotionalOverIndexing())
2055 return false;
2057 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
2058 Context);
2060 return false;
2063 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2064 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
2065 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2066 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2067 ConstantExpr *Addr, unsigned OpNo,
2068 LLVMContext &Context) {
2069 // Base case of the recursion.
2070 if (OpNo == Addr->getNumOperands()) {
2071 assert(Val->getType() == Init->getType() && "Type mismatch!");
2072 return Val;
2075 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2076 std::vector<Constant*> Elts;
2078 // Break up the constant into its elements.
2079 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2080 for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2081 Elts.push_back(cast<Constant>(*i));
2082 } else if (isa<ConstantAggregateZero>(Init)) {
2083 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2084 Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2085 } else if (isa<UndefValue>(Init)) {
2086 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2087 Elts.push_back(UndefValue::get(STy->getElementType(i)));
2088 } else {
2089 llvm_unreachable("This code is out of sync with "
2090 " ConstantFoldLoadThroughGEPConstantExpr");
2093 // Replace the element that we are supposed to.
2094 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2095 unsigned Idx = CU->getZExtValue();
2096 assert(Idx < STy->getNumElements() && "Struct index out of range!");
2097 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1, Context);
2099 // Return the modified struct.
2100 return ConstantStruct::get(Context, &Elts[0], Elts.size(), STy->isPacked());
2101 } else {
2102 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2103 const ArrayType *ATy = cast<ArrayType>(Init->getType());
2105 // Break up the array into elements.
2106 std::vector<Constant*> Elts;
2107 if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2108 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2109 Elts.push_back(cast<Constant>(*i));
2110 } else if (isa<ConstantAggregateZero>(Init)) {
2111 Constant *Elt = Constant::getNullValue(ATy->getElementType());
2112 Elts.assign(ATy->getNumElements(), Elt);
2113 } else if (isa<UndefValue>(Init)) {
2114 Constant *Elt = UndefValue::get(ATy->getElementType());
2115 Elts.assign(ATy->getNumElements(), Elt);
2116 } else {
2117 llvm_unreachable("This code is out of sync with "
2118 " ConstantFoldLoadThroughGEPConstantExpr");
2121 assert(CI->getZExtValue() < ATy->getNumElements());
2122 Elts[CI->getZExtValue()] =
2123 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1, Context);
2124 return ConstantArray::get(ATy, Elts);
2128 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
2129 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2130 static void CommitValueTo(Constant *Val, Constant *Addr,
2131 LLVMContext &Context) {
2132 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2133 assert(GV->hasInitializer());
2134 GV->setInitializer(Val);
2135 return;
2138 ConstantExpr *CE = cast<ConstantExpr>(Addr);
2139 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2141 Constant *Init = GV->getInitializer();
2142 Init = EvaluateStoreInto(Init, Val, CE, 2, Context);
2143 GV->setInitializer(Init);
2146 /// ComputeLoadResult - Return the value that would be computed by a load from
2147 /// P after the stores reflected by 'memory' have been performed. If we can't
2148 /// decide, return null.
2149 static Constant *ComputeLoadResult(Constant *P,
2150 const DenseMap<Constant*, Constant*> &Memory,
2151 LLVMContext &Context) {
2152 // If this memory location has been recently stored, use the stored value: it
2153 // is the most up-to-date.
2154 DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2155 if (I != Memory.end()) return I->second;
2157 // Access it.
2158 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2159 if (GV->hasDefinitiveInitializer())
2160 return GV->getInitializer();
2161 return 0;
2164 // Handle a constantexpr getelementptr.
2165 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2166 if (CE->getOpcode() == Instruction::GetElementPtr &&
2167 isa<GlobalVariable>(CE->getOperand(0))) {
2168 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2169 if (GV->hasDefinitiveInitializer())
2170 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
2171 Context);
2174 return 0; // don't know how to evaluate.
2177 /// EvaluateFunction - Evaluate a call to function F, returning true if
2178 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2179 /// arguments for the function.
2180 static bool EvaluateFunction(Function *F, Constant *&RetVal,
2181 const SmallVectorImpl<Constant*> &ActualArgs,
2182 std::vector<Function*> &CallStack,
2183 DenseMap<Constant*, Constant*> &MutatedMemory,
2184 std::vector<GlobalVariable*> &AllocaTmps) {
2185 // Check to see if this function is already executing (recursion). If so,
2186 // bail out. TODO: we might want to accept limited recursion.
2187 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2188 return false;
2190 LLVMContext &Context = F->getContext();
2192 CallStack.push_back(F);
2194 /// Values - As we compute SSA register values, we store their contents here.
2195 DenseMap<Value*, Constant*> Values;
2197 // Initialize arguments to the incoming values specified.
2198 unsigned ArgNo = 0;
2199 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2200 ++AI, ++ArgNo)
2201 Values[AI] = ActualArgs[ArgNo];
2203 /// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
2204 /// we can only evaluate any one basic block at most once. This set keeps
2205 /// track of what we have executed so we can detect recursive cases etc.
2206 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2208 // CurInst - The current instruction we're evaluating.
2209 BasicBlock::iterator CurInst = F->begin()->begin();
2211 // This is the main evaluation loop.
2212 while (1) {
2213 Constant *InstResult = 0;
2215 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2216 if (SI->isVolatile()) return false; // no volatile accesses.
2217 Constant *Ptr = getVal(Values, SI->getOperand(1));
2218 if (!isSimpleEnoughPointerToCommit(Ptr, Context))
2219 // If this is too complex for us to commit, reject it.
2220 return false;
2221 Constant *Val = getVal(Values, SI->getOperand(0));
2222 MutatedMemory[Ptr] = Val;
2223 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2224 InstResult = ConstantExpr::get(BO->getOpcode(),
2225 getVal(Values, BO->getOperand(0)),
2226 getVal(Values, BO->getOperand(1)));
2227 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2228 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2229 getVal(Values, CI->getOperand(0)),
2230 getVal(Values, CI->getOperand(1)));
2231 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2232 InstResult = ConstantExpr::getCast(CI->getOpcode(),
2233 getVal(Values, CI->getOperand(0)),
2234 CI->getType());
2235 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2236 InstResult =
2237 ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2238 getVal(Values, SI->getOperand(1)),
2239 getVal(Values, SI->getOperand(2)));
2240 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2241 Constant *P = getVal(Values, GEP->getOperand(0));
2242 SmallVector<Constant*, 8> GEPOps;
2243 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2244 i != e; ++i)
2245 GEPOps.push_back(getVal(Values, *i));
2246 InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2247 ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2248 ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2249 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2250 if (LI->isVolatile()) return false; // no volatile accesses.
2251 InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2252 MutatedMemory, Context);
2253 if (InstResult == 0) return false; // Could not evaluate load.
2254 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2255 if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.
2256 const Type *Ty = AI->getType()->getElementType();
2257 AllocaTmps.push_back(new GlobalVariable(Context, Ty, false,
2258 GlobalValue::InternalLinkage,
2259 UndefValue::get(Ty),
2260 AI->getName()));
2261 InstResult = AllocaTmps.back();
2262 } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2264 // Debug info can safely be ignored here.
2265 if (isa<DbgInfoIntrinsic>(CI)) {
2266 ++CurInst;
2267 continue;
2270 // Cannot handle inline asm.
2271 if (isa<InlineAsm>(CI->getOperand(0))) return false;
2273 // Resolve function pointers.
2274 Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2275 if (!Callee) return false; // Cannot resolve.
2277 SmallVector<Constant*, 8> Formals;
2278 for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
2279 i != e; ++i)
2280 Formals.push_back(getVal(Values, *i));
2282 if (Callee->isDeclaration()) {
2283 // If this is a function we can constant fold, do it.
2284 if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2285 Formals.size())) {
2286 InstResult = C;
2287 } else {
2288 return false;
2290 } else {
2291 if (Callee->getFunctionType()->isVarArg())
2292 return false;
2294 Constant *RetVal;
2295 // Execute the call, if successful, use the return value.
2296 if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2297 MutatedMemory, AllocaTmps))
2298 return false;
2299 InstResult = RetVal;
2301 } else if (isa<TerminatorInst>(CurInst)) {
2302 BasicBlock *NewBB = 0;
2303 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2304 if (BI->isUnconditional()) {
2305 NewBB = BI->getSuccessor(0);
2306 } else {
2307 ConstantInt *Cond =
2308 dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2309 if (!Cond) return false; // Cannot determine.
2311 NewBB = BI->getSuccessor(!Cond->getZExtValue());
2313 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2314 ConstantInt *Val =
2315 dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2316 if (!Val) return false; // Cannot determine.
2317 NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2318 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2319 if (RI->getNumOperands())
2320 RetVal = getVal(Values, RI->getOperand(0));
2322 CallStack.pop_back(); // return from fn.
2323 return true; // We succeeded at evaluating this ctor!
2324 } else {
2325 // invoke, unwind, unreachable.
2326 return false; // Cannot handle this terminator.
2329 // Okay, we succeeded in evaluating this control flow. See if we have
2330 // executed the new block before. If so, we have a looping function,
2331 // which we cannot evaluate in reasonable time.
2332 if (!ExecutedBlocks.insert(NewBB))
2333 return false; // looped!
2335 // Okay, we have never been in this block before. Check to see if there
2336 // are any PHI nodes. If so, evaluate them with information about where
2337 // we came from.
2338 BasicBlock *OldBB = CurInst->getParent();
2339 CurInst = NewBB->begin();
2340 PHINode *PN;
2341 for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2342 Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2344 // Do NOT increment CurInst. We know that the terminator had no value.
2345 continue;
2346 } else {
2347 // Did not know how to evaluate this!
2348 return false;
2351 if (!CurInst->use_empty())
2352 Values[CurInst] = InstResult;
2354 // Advance program counter.
2355 ++CurInst;
2359 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2360 /// we can. Return true if we can, false otherwise.
2361 static bool EvaluateStaticConstructor(Function *F) {
2362 /// MutatedMemory - For each store we execute, we update this map. Loads
2363 /// check this to get the most up-to-date value. If evaluation is successful,
2364 /// this state is committed to the process.
2365 DenseMap<Constant*, Constant*> MutatedMemory;
2367 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2368 /// to represent its body. This vector is needed so we can delete the
2369 /// temporary globals when we are done.
2370 std::vector<GlobalVariable*> AllocaTmps;
2372 /// CallStack - This is used to detect recursion. In pathological situations
2373 /// we could hit exponential behavior, but at least there is nothing
2374 /// unbounded.
2375 std::vector<Function*> CallStack;
2377 // Call the function.
2378 Constant *RetValDummy;
2379 bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2380 SmallVector<Constant*, 0>(), CallStack,
2381 MutatedMemory, AllocaTmps);
2382 if (EvalSuccess) {
2383 // We succeeded at evaluation: commit the result.
2384 DEBUG(errs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2385 << F->getName() << "' to " << MutatedMemory.size()
2386 << " stores.\n");
2387 for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2388 E = MutatedMemory.end(); I != E; ++I)
2389 CommitValueTo(I->second, I->first, F->getContext());
2392 // At this point, we are done interpreting. If we created any 'alloca'
2393 // temporaries, release them now.
2394 while (!AllocaTmps.empty()) {
2395 GlobalVariable *Tmp = AllocaTmps.back();
2396 AllocaTmps.pop_back();
2398 // If there are still users of the alloca, the program is doing something
2399 // silly, e.g. storing the address of the alloca somewhere and using it
2400 // later. Since this is undefined, we'll just make it be null.
2401 if (!Tmp->use_empty())
2402 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2403 delete Tmp;
2406 return EvalSuccess;
2411 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2412 /// Return true if anything changed.
2413 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2414 std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2415 bool MadeChange = false;
2416 if (Ctors.empty()) return false;
2418 // Loop over global ctors, optimizing them when we can.
2419 for (unsigned i = 0; i != Ctors.size(); ++i) {
2420 Function *F = Ctors[i];
2421 // Found a null terminator in the middle of the list, prune off the rest of
2422 // the list.
2423 if (F == 0) {
2424 if (i != Ctors.size()-1) {
2425 Ctors.resize(i+1);
2426 MadeChange = true;
2428 break;
2431 // We cannot simplify external ctor functions.
2432 if (F->empty()) continue;
2434 // If we can evaluate the ctor at compile time, do.
2435 if (EvaluateStaticConstructor(F)) {
2436 Ctors.erase(Ctors.begin()+i);
2437 MadeChange = true;
2438 --i;
2439 ++NumCtorsEvaluated;
2440 continue;
2444 if (!MadeChange) return false;
2446 GCL = InstallGlobalCtors(GCL, Ctors, GCL->getContext());
2447 return true;
2450 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2451 bool Changed = false;
2453 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2454 I != E;) {
2455 Module::alias_iterator J = I++;
2456 // Aliases without names cannot be referenced outside this module.
2457 if (!J->hasName() && !J->isDeclaration())
2458 J->setLinkage(GlobalValue::InternalLinkage);
2459 // If the aliasee may change at link time, nothing can be done - bail out.
2460 if (J->mayBeOverridden())
2461 continue;
2463 Constant *Aliasee = J->getAliasee();
2464 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2465 Target->removeDeadConstantUsers();
2466 bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2468 // Make all users of the alias use the aliasee instead.
2469 if (!J->use_empty()) {
2470 J->replaceAllUsesWith(Aliasee);
2471 ++NumAliasesResolved;
2472 Changed = true;
2475 // If the aliasee has internal linkage, give it the name and linkage
2476 // of the alias, and delete the alias. This turns:
2477 // define internal ... @f(...)
2478 // @a = alias ... @f
2479 // into:
2480 // define ... @a(...)
2481 if (!Target->hasLocalLinkage())
2482 continue;
2484 // The transform is only useful if the alias does not have internal linkage.
2485 if (J->hasLocalLinkage())
2486 continue;
2488 // Do not perform the transform if multiple aliases potentially target the
2489 // aliasee. This check also ensures that it is safe to replace the section
2490 // and other attributes of the aliasee with those of the alias.
2491 if (!hasOneUse)
2492 continue;
2494 // Give the aliasee the name, linkage and other attributes of the alias.
2495 Target->takeName(J);
2496 Target->setLinkage(J->getLinkage());
2497 Target->GlobalValue::copyAttributesFrom(J);
2499 // Delete the alias.
2500 M.getAliasList().erase(J);
2501 ++NumAliasesRemoved;
2502 Changed = true;
2505 return Changed;
2508 bool GlobalOpt::runOnModule(Module &M) {
2509 bool Changed = false;
2511 // Try to find the llvm.globalctors list.
2512 GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2514 bool LocalChange = true;
2515 while (LocalChange) {
2516 LocalChange = false;
2518 // Delete functions that are trivially dead, ccc -> fastcc
2519 LocalChange |= OptimizeFunctions(M);
2521 // Optimize global_ctors list.
2522 if (GlobalCtors)
2523 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2525 // Optimize non-address-taken globals.
2526 LocalChange |= OptimizeGlobalVars(M);
2528 // Resolve aliases, when possible.
2529 LocalChange |= OptimizeGlobalAliases(M);
2530 Changed |= LocalChange;
2533 // TODO: Move all global ctors functions to the end of the module for code
2534 // layout.
2536 return Changed;