1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "codegenprepare"
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/InlineAsm.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/IntrinsicInst.h"
24 #include "llvm/LLVMContext.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Analysis/ProfileInfo.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetLowering.h"
29 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/Assembly/Writer.h"
35 #include "llvm/Support/CallSite.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/GetElementPtrTypeIterator.h"
39 #include "llvm/Support/PatternMatch.h"
40 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm::PatternMatch
;
44 static cl::opt
<bool> FactorCommonPreds("split-critical-paths-tweak",
45 cl::init(false), cl::Hidden
);
48 class CodeGenPrepare
: public FunctionPass
{
49 /// TLI - Keep a pointer of a TargetLowering to consult for determining
50 /// transformation profitability.
51 const TargetLowering
*TLI
;
54 /// BackEdges - Keep a set of all the loop back edges.
56 SmallSet
<std::pair
<const BasicBlock
*, const BasicBlock
*>, 8> BackEdges
;
58 static char ID
; // Pass identification, replacement for typeid
59 explicit CodeGenPrepare(const TargetLowering
*tli
= 0)
60 : FunctionPass(&ID
), TLI(tli
) {}
61 bool runOnFunction(Function
&F
);
63 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
64 AU
.addPreserved
<ProfileInfo
>();
68 bool EliminateMostlyEmptyBlocks(Function
&F
);
69 bool CanMergeBlocks(const BasicBlock
*BB
, const BasicBlock
*DestBB
) const;
70 void EliminateMostlyEmptyBlock(BasicBlock
*BB
);
71 bool OptimizeBlock(BasicBlock
&BB
);
72 bool OptimizeMemoryInst(Instruction
*I
, Value
*Addr
, const Type
*AccessTy
,
73 DenseMap
<Value
*,Value
*> &SunkAddrs
);
74 bool OptimizeInlineAsmInst(Instruction
*I
, CallSite CS
,
75 DenseMap
<Value
*,Value
*> &SunkAddrs
);
76 bool OptimizeExtUses(Instruction
*I
);
77 void findLoopBackEdges(const Function
&F
);
81 char CodeGenPrepare::ID
= 0;
82 static RegisterPass
<CodeGenPrepare
> X("codegenprepare",
83 "Optimize for code generation");
85 FunctionPass
*llvm::createCodeGenPreparePass(const TargetLowering
*TLI
) {
86 return new CodeGenPrepare(TLI
);
89 /// findLoopBackEdges - Do a DFS walk to find loop back edges.
91 void CodeGenPrepare::findLoopBackEdges(const Function
&F
) {
92 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
93 FindFunctionBackedges(F
, Edges
);
95 BackEdges
.insert(Edges
.begin(), Edges
.end());
99 bool CodeGenPrepare::runOnFunction(Function
&F
) {
100 bool EverMadeChange
= false;
102 PI
= getAnalysisIfAvailable
<ProfileInfo
>();
103 // First pass, eliminate blocks that contain only PHI nodes and an
104 // unconditional branch.
105 EverMadeChange
|= EliminateMostlyEmptyBlocks(F
);
107 // Now find loop back edges.
108 findLoopBackEdges(F
);
110 bool MadeChange
= true;
113 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
114 MadeChange
|= OptimizeBlock(*BB
);
115 EverMadeChange
|= MadeChange
;
117 return EverMadeChange
;
120 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
121 /// debug info directives, and an unconditional branch. Passes before isel
122 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
123 /// isel. Start by eliminating these blocks so we can split them the way we
125 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function
&F
) {
126 bool MadeChange
= false;
127 // Note that this intentionally skips the entry block.
128 for (Function::iterator I
= ++F
.begin(), E
= F
.end(); I
!= E
; ) {
129 BasicBlock
*BB
= I
++;
131 // If this block doesn't end with an uncond branch, ignore it.
132 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
133 if (!BI
|| !BI
->isUnconditional())
136 // If the instruction before the branch (skipping debug info) isn't a phi
137 // node, then other stuff is happening here.
138 BasicBlock::iterator BBI
= BI
;
139 if (BBI
!= BB
->begin()) {
141 while (isa
<DbgInfoIntrinsic
>(BBI
)) {
142 if (BBI
== BB
->begin())
146 if (!isa
<DbgInfoIntrinsic
>(BBI
) && !isa
<PHINode
>(BBI
))
150 // Do not break infinite loops.
151 BasicBlock
*DestBB
= BI
->getSuccessor(0);
155 if (!CanMergeBlocks(BB
, DestBB
))
158 EliminateMostlyEmptyBlock(BB
);
164 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
165 /// single uncond branch between them, and BB contains no other non-phi
167 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock
*BB
,
168 const BasicBlock
*DestBB
) const {
169 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
170 // the successor. If there are more complex condition (e.g. preheaders),
171 // don't mess around with them.
172 BasicBlock::const_iterator BBI
= BB
->begin();
173 while (const PHINode
*PN
= dyn_cast
<PHINode
>(BBI
++)) {
174 for (Value::use_const_iterator UI
= PN
->use_begin(), E
= PN
->use_end();
176 const Instruction
*User
= cast
<Instruction
>(*UI
);
177 if (User
->getParent() != DestBB
|| !isa
<PHINode
>(User
))
179 // If User is inside DestBB block and it is a PHINode then check
180 // incoming value. If incoming value is not from BB then this is
181 // a complex condition (e.g. preheaders) we want to avoid here.
182 if (User
->getParent() == DestBB
) {
183 if (const PHINode
*UPN
= dyn_cast
<PHINode
>(User
))
184 for (unsigned I
= 0, E
= UPN
->getNumIncomingValues(); I
!= E
; ++I
) {
185 Instruction
*Insn
= dyn_cast
<Instruction
>(UPN
->getIncomingValue(I
));
186 if (Insn
&& Insn
->getParent() == BB
&&
187 Insn
->getParent() != UPN
->getIncomingBlock(I
))
194 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
195 // and DestBB may have conflicting incoming values for the block. If so, we
196 // can't merge the block.
197 const PHINode
*DestBBPN
= dyn_cast
<PHINode
>(DestBB
->begin());
198 if (!DestBBPN
) return true; // no conflict.
200 // Collect the preds of BB.
201 SmallPtrSet
<const BasicBlock
*, 16> BBPreds
;
202 if (const PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
203 // It is faster to get preds from a PHI than with pred_iterator.
204 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
205 BBPreds
.insert(BBPN
->getIncomingBlock(i
));
207 BBPreds
.insert(pred_begin(BB
), pred_end(BB
));
210 // Walk the preds of DestBB.
211 for (unsigned i
= 0, e
= DestBBPN
->getNumIncomingValues(); i
!= e
; ++i
) {
212 BasicBlock
*Pred
= DestBBPN
->getIncomingBlock(i
);
213 if (BBPreds
.count(Pred
)) { // Common predecessor?
214 BBI
= DestBB
->begin();
215 while (const PHINode
*PN
= dyn_cast
<PHINode
>(BBI
++)) {
216 const Value
*V1
= PN
->getIncomingValueForBlock(Pred
);
217 const Value
*V2
= PN
->getIncomingValueForBlock(BB
);
219 // If V2 is a phi node in BB, look up what the mapped value will be.
220 if (const PHINode
*V2PN
= dyn_cast
<PHINode
>(V2
))
221 if (V2PN
->getParent() == BB
)
222 V2
= V2PN
->getIncomingValueForBlock(Pred
);
224 // If there is a conflict, bail out.
225 if (V1
!= V2
) return false;
234 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
235 /// an unconditional branch in it.
236 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock
*BB
) {
237 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
238 BasicBlock
*DestBB
= BI
->getSuccessor(0);
240 DEBUG(errs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB
<< *DestBB
);
242 // If the destination block has a single pred, then this is a trivial edge,
244 if (BasicBlock
*SinglePred
= DestBB
->getSinglePredecessor()) {
245 if (SinglePred
!= DestBB
) {
246 // Remember if SinglePred was the entry block of the function. If so, we
247 // will need to move BB back to the entry position.
248 bool isEntry
= SinglePred
== &SinglePred
->getParent()->getEntryBlock();
249 MergeBasicBlockIntoOnlyPred(DestBB
, this);
251 if (isEntry
&& BB
!= &BB
->getParent()->getEntryBlock())
252 BB
->moveBefore(&BB
->getParent()->getEntryBlock());
254 DEBUG(errs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
259 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
260 // to handle the new incoming edges it is about to have.
262 for (BasicBlock::iterator BBI
= DestBB
->begin();
263 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
264 // Remove the incoming value for BB, and remember it.
265 Value
*InVal
= PN
->removeIncomingValue(BB
, false);
267 // Two options: either the InVal is a phi node defined in BB or it is some
268 // value that dominates BB.
269 PHINode
*InValPhi
= dyn_cast
<PHINode
>(InVal
);
270 if (InValPhi
&& InValPhi
->getParent() == BB
) {
271 // Add all of the input values of the input PHI as inputs of this phi.
272 for (unsigned i
= 0, e
= InValPhi
->getNumIncomingValues(); i
!= e
; ++i
)
273 PN
->addIncoming(InValPhi
->getIncomingValue(i
),
274 InValPhi
->getIncomingBlock(i
));
276 // Otherwise, add one instance of the dominating value for each edge that
277 // we will be adding.
278 if (PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
279 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
280 PN
->addIncoming(InVal
, BBPN
->getIncomingBlock(i
));
282 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
283 PN
->addIncoming(InVal
, *PI
);
288 // The PHIs are now updated, change everything that refers to BB to use
289 // DestBB and remove BB.
290 BB
->replaceAllUsesWith(DestBB
);
292 PI
->replaceAllUses(BB
, DestBB
);
293 PI
->removeEdge(ProfileInfo::getEdge(BB
, DestBB
));
295 BB
->eraseFromParent();
297 DEBUG(errs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
301 /// SplitEdgeNicely - Split the critical edge from TI to its specified
302 /// successor if it will improve codegen. We only do this if the successor has
303 /// phi nodes (otherwise critical edges are ok). If there is already another
304 /// predecessor of the succ that is empty (and thus has no phi nodes), use it
305 /// instead of introducing a new block.
306 static void SplitEdgeNicely(TerminatorInst
*TI
, unsigned SuccNum
,
307 SmallSet
<std::pair
<const BasicBlock
*,
308 const BasicBlock
*>, 8> &BackEdges
,
310 BasicBlock
*TIBB
= TI
->getParent();
311 BasicBlock
*Dest
= TI
->getSuccessor(SuccNum
);
312 assert(isa
<PHINode
>(Dest
->begin()) &&
313 "This should only be called if Dest has a PHI!");
315 // Do not split edges to EH landing pads.
316 if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(TI
)) {
317 if (Invoke
->getSuccessor(1) == Dest
)
321 // As a hack, never split backedges of loops. Even though the copy for any
322 // PHIs inserted on the backedge would be dead for exits from the loop, we
323 // assume that the cost of *splitting* the backedge would be too high.
324 if (BackEdges
.count(std::make_pair(TIBB
, Dest
)))
327 if (!FactorCommonPreds
) {
328 /// TIPHIValues - This array is lazily computed to determine the values of
329 /// PHIs in Dest that TI would provide.
330 SmallVector
<Value
*, 32> TIPHIValues
;
332 // Check to see if Dest has any blocks that can be used as a split edge for
334 for (pred_iterator PI
= pred_begin(Dest
), E
= pred_end(Dest
); PI
!= E
; ++PI
) {
335 BasicBlock
*Pred
= *PI
;
336 // To be usable, the pred has to end with an uncond branch to the dest.
337 BranchInst
*PredBr
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
338 if (!PredBr
|| !PredBr
->isUnconditional())
340 // Must be empty other than the branch and debug info.
341 BasicBlock::iterator I
= Pred
->begin();
342 while (isa
<DbgInfoIntrinsic
>(I
))
344 if (dyn_cast
<Instruction
>(I
) != PredBr
)
346 // Cannot be the entry block; its label does not get emitted.
347 if (Pred
== &(Dest
->getParent()->getEntryBlock()))
350 // Finally, since we know that Dest has phi nodes in it, we have to make
351 // sure that jumping to Pred will have the same effect as going to Dest in
352 // terms of PHI values.
355 bool FoundMatch
= true;
356 for (BasicBlock::iterator I
= Dest
->begin();
357 (PN
= dyn_cast
<PHINode
>(I
)); ++I
, ++PHINo
) {
358 if (PHINo
== TIPHIValues
.size())
359 TIPHIValues
.push_back(PN
->getIncomingValueForBlock(TIBB
));
361 // If the PHI entry doesn't work, we can't use this pred.
362 if (TIPHIValues
[PHINo
] != PN
->getIncomingValueForBlock(Pred
)) {
368 // If we found a workable predecessor, change TI to branch to Succ.
370 ProfileInfo
*PI
= P
->getAnalysisIfAvailable
<ProfileInfo
>();
372 PI
->splitEdge(TIBB
, Dest
, Pred
);
373 Dest
->removePredecessor(TIBB
);
374 TI
->setSuccessor(SuccNum
, Pred
);
379 SplitCriticalEdge(TI
, SuccNum
, P
, true);
384 SmallVector
<Value
*, 8> TIPHIValues
;
385 for (BasicBlock::iterator I
= Dest
->begin();
386 (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
387 TIPHIValues
.push_back(PN
->getIncomingValueForBlock(TIBB
));
389 SmallVector
<BasicBlock
*, 8> IdenticalPreds
;
390 for (pred_iterator PI
= pred_begin(Dest
), E
= pred_end(Dest
); PI
!= E
; ++PI
) {
391 BasicBlock
*Pred
= *PI
;
392 if (BackEdges
.count(std::make_pair(Pred
, Dest
)))
395 IdenticalPreds
.push_back(Pred
);
397 bool Identical
= true;
399 for (BasicBlock::iterator I
= Dest
->begin();
400 (PN
= dyn_cast
<PHINode
>(I
)); ++I
, ++PHINo
)
401 if (TIPHIValues
[PHINo
] != PN
->getIncomingValueForBlock(Pred
)) {
406 IdenticalPreds
.push_back(Pred
);
410 assert(!IdenticalPreds
.empty());
411 SplitBlockPredecessors(Dest
, &IdenticalPreds
[0], IdenticalPreds
.size(),
416 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
417 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
418 /// sink it into user blocks to reduce the number of virtual
419 /// registers that must be created and coalesced.
421 /// Return true if any changes are made.
423 static bool OptimizeNoopCopyExpression(CastInst
*CI
, const TargetLowering
&TLI
){
424 // If this is a noop copy,
425 EVT SrcVT
= TLI
.getValueType(CI
->getOperand(0)->getType());
426 EVT DstVT
= TLI
.getValueType(CI
->getType());
428 // This is an fp<->int conversion?
429 if (SrcVT
.isInteger() != DstVT
.isInteger())
432 // If this is an extension, it will be a zero or sign extension, which
434 if (SrcVT
.bitsLT(DstVT
)) return false;
436 // If these values will be promoted, find out what they will be promoted
437 // to. This helps us consider truncates on PPC as noop copies when they
439 if (TLI
.getTypeAction(CI
->getContext(), SrcVT
) == TargetLowering::Promote
)
440 SrcVT
= TLI
.getTypeToTransformTo(CI
->getContext(), SrcVT
);
441 if (TLI
.getTypeAction(CI
->getContext(), DstVT
) == TargetLowering::Promote
)
442 DstVT
= TLI
.getTypeToTransformTo(CI
->getContext(), DstVT
);
444 // If, after promotion, these are the same types, this is a noop copy.
448 BasicBlock
*DefBB
= CI
->getParent();
450 /// InsertedCasts - Only insert a cast in each block once.
451 DenseMap
<BasicBlock
*, CastInst
*> InsertedCasts
;
453 bool MadeChange
= false;
454 for (Value::use_iterator UI
= CI
->use_begin(), E
= CI
->use_end();
456 Use
&TheUse
= UI
.getUse();
457 Instruction
*User
= cast
<Instruction
>(*UI
);
459 // Figure out which BB this cast is used in. For PHI's this is the
460 // appropriate predecessor block.
461 BasicBlock
*UserBB
= User
->getParent();
462 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
463 UserBB
= PN
->getIncomingBlock(UI
);
466 // Preincrement use iterator so we don't invalidate it.
469 // If this user is in the same block as the cast, don't change the cast.
470 if (UserBB
== DefBB
) continue;
472 // If we have already inserted a cast into this block, use it.
473 CastInst
*&InsertedCast
= InsertedCasts
[UserBB
];
476 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
479 CastInst::Create(CI
->getOpcode(), CI
->getOperand(0), CI
->getType(), "",
484 // Replace a use of the cast with a use of the new cast.
485 TheUse
= InsertedCast
;
488 // If we removed all uses, nuke the cast.
489 if (CI
->use_empty()) {
490 CI
->eraseFromParent();
497 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
498 /// the number of virtual registers that must be created and coalesced. This is
499 /// a clear win except on targets with multiple condition code registers
500 /// (PowerPC), where it might lose; some adjustment may be wanted there.
502 /// Return true if any changes are made.
503 static bool OptimizeCmpExpression(CmpInst
*CI
) {
504 BasicBlock
*DefBB
= CI
->getParent();
506 /// InsertedCmp - Only insert a cmp in each block once.
507 DenseMap
<BasicBlock
*, CmpInst
*> InsertedCmps
;
509 bool MadeChange
= false;
510 for (Value::use_iterator UI
= CI
->use_begin(), E
= CI
->use_end();
512 Use
&TheUse
= UI
.getUse();
513 Instruction
*User
= cast
<Instruction
>(*UI
);
515 // Preincrement use iterator so we don't invalidate it.
518 // Don't bother for PHI nodes.
519 if (isa
<PHINode
>(User
))
522 // Figure out which BB this cmp is used in.
523 BasicBlock
*UserBB
= User
->getParent();
525 // If this user is in the same block as the cmp, don't change the cmp.
526 if (UserBB
== DefBB
) continue;
528 // If we have already inserted a cmp into this block, use it.
529 CmpInst
*&InsertedCmp
= InsertedCmps
[UserBB
];
532 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
535 CmpInst::Create(CI
->getOpcode(),
536 CI
->getPredicate(), CI
->getOperand(0),
537 CI
->getOperand(1), "", InsertPt
);
541 // Replace a use of the cmp with a use of the new cmp.
542 TheUse
= InsertedCmp
;
545 // If we removed all uses, nuke the cmp.
547 CI
->eraseFromParent();
552 //===----------------------------------------------------------------------===//
553 // Memory Optimization
554 //===----------------------------------------------------------------------===//
556 /// IsNonLocalValue - Return true if the specified values are defined in a
557 /// different basic block than BB.
558 static bool IsNonLocalValue(Value
*V
, BasicBlock
*BB
) {
559 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
560 return I
->getParent() != BB
;
564 /// OptimizeMemoryInst - Load and Store Instructions have often have
565 /// addressing modes that can do significant amounts of computation. As such,
566 /// instruction selection will try to get the load or store to do as much
567 /// computation as possible for the program. The problem is that isel can only
568 /// see within a single block. As such, we sink as much legal addressing mode
569 /// stuff into the block as possible.
571 /// This method is used to optimize both load/store and inline asms with memory
573 bool CodeGenPrepare::OptimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
574 const Type
*AccessTy
,
575 DenseMap
<Value
*,Value
*> &SunkAddrs
) {
576 // Figure out what addressing mode will be built up for this operation.
577 SmallVector
<Instruction
*, 16> AddrModeInsts
;
578 ExtAddrMode AddrMode
= AddressingModeMatcher::Match(Addr
, AccessTy
,MemoryInst
,
579 AddrModeInsts
, *TLI
);
581 // Check to see if any of the instructions supersumed by this addr mode are
582 // non-local to I's BB.
583 bool AnyNonLocal
= false;
584 for (unsigned i
= 0, e
= AddrModeInsts
.size(); i
!= e
; ++i
) {
585 if (IsNonLocalValue(AddrModeInsts
[i
], MemoryInst
->getParent())) {
591 // If all the instructions matched are already in this BB, don't do anything.
593 DEBUG(errs() << "CGP: Found local addrmode: " << AddrMode
<< "\n");
597 // Insert this computation right after this user. Since our caller is
598 // scanning from the top of the BB to the bottom, reuse of the expr are
599 // guaranteed to happen later.
600 BasicBlock::iterator InsertPt
= MemoryInst
;
602 // Now that we determined the addressing expression we want to use and know
603 // that we have to sink it into this block. Check to see if we have already
604 // done this for some other load/store instr in this block. If so, reuse the
606 Value
*&SunkAddr
= SunkAddrs
[Addr
];
608 DEBUG(errs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
<< " for "
610 if (SunkAddr
->getType() != Addr
->getType())
611 SunkAddr
= new BitCastInst(SunkAddr
, Addr
->getType(), "tmp", InsertPt
);
613 DEBUG(errs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
<< " for "
615 const Type
*IntPtrTy
=
616 TLI
->getTargetData()->getIntPtrType(AccessTy
->getContext());
619 // Start with the scale value.
620 if (AddrMode
.Scale
) {
621 Value
*V
= AddrMode
.ScaledReg
;
622 if (V
->getType() == IntPtrTy
) {
624 } else if (isa
<PointerType
>(V
->getType())) {
625 V
= new PtrToIntInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
626 } else if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
627 cast
<IntegerType
>(V
->getType())->getBitWidth()) {
628 V
= new TruncInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
630 V
= new SExtInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
632 if (AddrMode
.Scale
!= 1)
633 V
= BinaryOperator::CreateMul(V
, ConstantInt::get(IntPtrTy
,
635 "sunkaddr", InsertPt
);
639 // Add in the base register.
640 if (AddrMode
.BaseReg
) {
641 Value
*V
= AddrMode
.BaseReg
;
642 if (isa
<PointerType
>(V
->getType()))
643 V
= new PtrToIntInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
644 if (V
->getType() != IntPtrTy
)
645 V
= CastInst::CreateIntegerCast(V
, IntPtrTy
, /*isSigned=*/true,
646 "sunkaddr", InsertPt
);
648 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
653 // Add in the BaseGV if present.
654 if (AddrMode
.BaseGV
) {
655 Value
*V
= new PtrToIntInst(AddrMode
.BaseGV
, IntPtrTy
, "sunkaddr",
658 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
663 // Add in the Base Offset if present.
664 if (AddrMode
.BaseOffs
) {
665 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
667 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
673 SunkAddr
= Constant::getNullValue(Addr
->getType());
675 SunkAddr
= new IntToPtrInst(Result
, Addr
->getType(), "sunkaddr",InsertPt
);
678 MemoryInst
->replaceUsesOfWith(Addr
, SunkAddr
);
680 if (Addr
->use_empty())
681 RecursivelyDeleteTriviallyDeadInstructions(Addr
);
685 /// OptimizeInlineAsmInst - If there are any memory operands, use
686 /// OptimizeMemoryInst to sink their address computing into the block when
687 /// possible / profitable.
688 bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction
*I
, CallSite CS
,
689 DenseMap
<Value
*,Value
*> &SunkAddrs
) {
690 bool MadeChange
= false;
691 InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
693 // Do a prepass over the constraints, canonicalizing them, and building up the
694 // ConstraintOperands list.
695 std::vector
<InlineAsm::ConstraintInfo
>
696 ConstraintInfos
= IA
->ParseConstraints();
698 /// ConstraintOperands - Information about all of the constraints.
699 std::vector
<TargetLowering::AsmOperandInfo
> ConstraintOperands
;
700 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
701 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
703 push_back(TargetLowering::AsmOperandInfo(ConstraintInfos
[i
]));
704 TargetLowering::AsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
706 // Compute the value type for each operand.
707 switch (OpInfo
.Type
) {
708 case InlineAsm::isOutput
:
709 if (OpInfo
.isIndirect
)
710 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
712 case InlineAsm::isInput
:
713 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
715 case InlineAsm::isClobber
:
720 // Compute the constraint code and ConstraintType to use.
721 TLI
->ComputeConstraintToUse(OpInfo
, SDValue(),
722 OpInfo
.ConstraintType
== TargetLowering::C_Memory
);
724 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
726 Value
*OpVal
= OpInfo
.CallOperandVal
;
727 MadeChange
|= OptimizeMemoryInst(I
, OpVal
, OpVal
->getType(), SunkAddrs
);
734 bool CodeGenPrepare::OptimizeExtUses(Instruction
*I
) {
735 BasicBlock
*DefBB
= I
->getParent();
737 // If both result of the {s|z}xt and its source are live out, rewrite all
738 // other uses of the source with result of extension.
739 Value
*Src
= I
->getOperand(0);
740 if (Src
->hasOneUse())
743 // Only do this xform if truncating is free.
744 if (TLI
&& !TLI
->isTruncateFree(I
->getType(), Src
->getType()))
747 // Only safe to perform the optimization if the source is also defined in
749 if (!isa
<Instruction
>(Src
) || DefBB
!= cast
<Instruction
>(Src
)->getParent())
752 bool DefIsLiveOut
= false;
753 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
755 Instruction
*User
= cast
<Instruction
>(*UI
);
757 // Figure out which BB this ext is used in.
758 BasicBlock
*UserBB
= User
->getParent();
759 if (UserBB
== DefBB
) continue;
766 // Make sure non of the uses are PHI nodes.
767 for (Value::use_iterator UI
= Src
->use_begin(), E
= Src
->use_end();
769 Instruction
*User
= cast
<Instruction
>(*UI
);
770 BasicBlock
*UserBB
= User
->getParent();
771 if (UserBB
== DefBB
) continue;
772 // Be conservative. We don't want this xform to end up introducing
773 // reloads just before load / store instructions.
774 if (isa
<PHINode
>(User
) || isa
<LoadInst
>(User
) || isa
<StoreInst
>(User
))
778 // InsertedTruncs - Only insert one trunc in each block once.
779 DenseMap
<BasicBlock
*, Instruction
*> InsertedTruncs
;
781 bool MadeChange
= false;
782 for (Value::use_iterator UI
= Src
->use_begin(), E
= Src
->use_end();
784 Use
&TheUse
= UI
.getUse();
785 Instruction
*User
= cast
<Instruction
>(*UI
);
787 // Figure out which BB this ext is used in.
788 BasicBlock
*UserBB
= User
->getParent();
789 if (UserBB
== DefBB
) continue;
791 // Both src and def are live in this block. Rewrite the use.
792 Instruction
*&InsertedTrunc
= InsertedTruncs
[UserBB
];
794 if (!InsertedTrunc
) {
795 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
797 InsertedTrunc
= new TruncInst(I
, Src
->getType(), "", InsertPt
);
800 // Replace a use of the {s|z}ext source with a use of the result.
801 TheUse
= InsertedTrunc
;
809 // In this pass we look for GEP and cast instructions that are used
810 // across basic blocks and rewrite them to improve basic-block-at-a-time
812 bool CodeGenPrepare::OptimizeBlock(BasicBlock
&BB
) {
813 bool MadeChange
= false;
815 // Split all critical edges where the dest block has a PHI.
816 TerminatorInst
*BBTI
= BB
.getTerminator();
817 if (BBTI
->getNumSuccessors() > 1) {
818 for (unsigned i
= 0, e
= BBTI
->getNumSuccessors(); i
!= e
; ++i
) {
819 BasicBlock
*SuccBB
= BBTI
->getSuccessor(i
);
820 if (isa
<PHINode
>(SuccBB
->begin()) && isCriticalEdge(BBTI
, i
, true))
821 SplitEdgeNicely(BBTI
, i
, BackEdges
, this);
825 // Keep track of non-local addresses that have been sunk into this block.
826 // This allows us to avoid inserting duplicate code for blocks with multiple
827 // load/stores of the same address.
828 DenseMap
<Value
*, Value
*> SunkAddrs
;
830 for (BasicBlock::iterator BBI
= BB
.begin(), E
= BB
.end(); BBI
!= E
; ) {
831 Instruction
*I
= BBI
++;
833 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
834 // If the source of the cast is a constant, then this should have
835 // already been constant folded. The only reason NOT to constant fold
836 // it is if something (e.g. LSR) was careful to place the constant
837 // evaluation in a block other than then one that uses it (e.g. to hoist
838 // the address of globals out of a loop). If this is the case, we don't
839 // want to forward-subst the cast.
840 if (isa
<Constant
>(CI
->getOperand(0)))
845 Change
= OptimizeNoopCopyExpression(CI
, *TLI
);
846 MadeChange
|= Change
;
849 if (!Change
&& (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)))
850 MadeChange
|= OptimizeExtUses(I
);
851 } else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
)) {
852 MadeChange
|= OptimizeCmpExpression(CI
);
853 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
855 MadeChange
|= OptimizeMemoryInst(I
, I
->getOperand(0), LI
->getType(),
857 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
859 MadeChange
|= OptimizeMemoryInst(I
, SI
->getOperand(1),
860 SI
->getOperand(0)->getType(),
862 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
863 if (GEPI
->hasAllZeroIndices()) {
864 /// The GEP operand must be a pointer, so must its result -> BitCast
865 Instruction
*NC
= new BitCastInst(GEPI
->getOperand(0), GEPI
->getType(),
866 GEPI
->getName(), GEPI
);
867 GEPI
->replaceAllUsesWith(NC
);
868 GEPI
->eraseFromParent();
872 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
873 // If we found an inline asm expession, and if the target knows how to
874 // lower it to normal LLVM code, do so now.
875 if (TLI
&& isa
<InlineAsm
>(CI
->getCalledValue())) {
876 if (TLI
->ExpandInlineAsm(CI
)) {
878 // Avoid processing instructions out of order, which could cause
879 // reuse before a value is defined.
882 // Sink address computing for memory operands into the block.
883 MadeChange
|= OptimizeInlineAsmInst(I
, &(*CI
), SunkAddrs
);