pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Transforms / Scalar / LoopDeletion.cpp
blob5f93756a05c07388cd8280620f59629298d84078
1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "loop-delete"
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/SmallVector.h"
23 using namespace llvm;
25 STATISTIC(NumDeleted, "Number of loops deleted");
27 namespace {
28 class LoopDeletion : public LoopPass {
29 public:
30 static char ID; // Pass ID, replacement for typeid
31 LoopDeletion() : LoopPass(&ID) {}
33 // Possibly eliminate loop L if it is dead.
34 bool runOnLoop(Loop* L, LPPassManager& LPM);
36 bool SingleDominatingExit(Loop* L,
37 SmallVector<BasicBlock*, 4>& exitingBlocks);
38 bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
39 SmallVector<BasicBlock*, 4>& exitBlocks,
40 bool &Changed, BasicBlock *Preheader);
42 virtual void getAnalysisUsage(AnalysisUsage& AU) const {
43 AU.addRequired<ScalarEvolution>();
44 AU.addRequired<DominatorTree>();
45 AU.addRequired<LoopInfo>();
46 AU.addRequiredID(LoopSimplifyID);
47 AU.addRequiredID(LCSSAID);
49 AU.addPreserved<ScalarEvolution>();
50 AU.addPreserved<DominatorTree>();
51 AU.addPreserved<LoopInfo>();
52 AU.addPreservedID(LoopSimplifyID);
53 AU.addPreservedID(LCSSAID);
54 AU.addPreserved<DominanceFrontier>();
59 char LoopDeletion::ID = 0;
60 static RegisterPass<LoopDeletion> X("loop-deletion", "Delete dead loops");
62 Pass* llvm::createLoopDeletionPass() {
63 return new LoopDeletion();
66 /// SingleDominatingExit - Checks that there is only a single blocks that
67 /// branches out of the loop, and that it also g the latch block. Loops
68 /// with multiple or non-latch-dominating exiting blocks could be dead, but we'd
69 /// have to do more extensive analysis to make sure, for instance, that the
70 /// control flow logic involved was or could be made loop-invariant.
71 bool LoopDeletion::SingleDominatingExit(Loop* L,
72 SmallVector<BasicBlock*, 4>& exitingBlocks) {
74 if (exitingBlocks.size() != 1)
75 return false;
77 BasicBlock* latch = L->getLoopLatch();
78 if (!latch)
79 return false;
81 DominatorTree& DT = getAnalysis<DominatorTree>();
82 return DT.dominates(exitingBlocks[0], latch);
85 /// IsLoopDead - Determined if a loop is dead. This assumes that we've already
86 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
87 /// form.
88 bool LoopDeletion::IsLoopDead(Loop* L,
89 SmallVector<BasicBlock*, 4>& exitingBlocks,
90 SmallVector<BasicBlock*, 4>& exitBlocks,
91 bool &Changed, BasicBlock *Preheader) {
92 BasicBlock* exitingBlock = exitingBlocks[0];
93 BasicBlock* exitBlock = exitBlocks[0];
95 // Make sure that all PHI entries coming from the loop are loop invariant.
96 // Because the code is in LCSSA form, any values used outside of the loop
97 // must pass through a PHI in the exit block, meaning that this check is
98 // sufficient to guarantee that no loop-variant values are used outside
99 // of the loop.
100 BasicBlock::iterator BI = exitBlock->begin();
101 while (PHINode* P = dyn_cast<PHINode>(BI)) {
102 Value* incoming = P->getIncomingValueForBlock(exitingBlock);
103 if (Instruction* I = dyn_cast<Instruction>(incoming))
104 if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
105 return false;
107 BI++;
110 // Make sure that no instructions in the block have potential side-effects.
111 // This includes instructions that could write to memory, and loads that are
112 // marked volatile. This could be made more aggressive by using aliasing
113 // information to identify readonly and readnone calls.
114 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
115 LI != LE; ++LI) {
116 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
117 BI != BE; ++BI) {
118 if (BI->mayHaveSideEffects())
119 return false;
123 return true;
126 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
127 /// observable behavior of the program other than finite running time. Note
128 /// we do ensure that this never remove a loop that might be infinite, as doing
129 /// so could change the halting/non-halting nature of a program.
130 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
131 /// in order to make various safety checks work.
132 bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
133 // We can only remove the loop if there is a preheader that we can
134 // branch from after removing it.
135 BasicBlock* preheader = L->getLoopPreheader();
136 if (!preheader)
137 return false;
139 // We can't remove loops that contain subloops. If the subloops were dead,
140 // they would already have been removed in earlier executions of this pass.
141 if (L->begin() != L->end())
142 return false;
144 SmallVector<BasicBlock*, 4> exitingBlocks;
145 L->getExitingBlocks(exitingBlocks);
147 SmallVector<BasicBlock*, 4> exitBlocks;
148 L->getUniqueExitBlocks(exitBlocks);
150 // We require that the loop only have a single exit block. Otherwise, we'd
151 // be in the situation of needing to be able to solve statically which exit
152 // block will be branched to, or trying to preserve the branching logic in
153 // a loop invariant manner.
154 if (exitBlocks.size() != 1)
155 return false;
157 // Loops with multiple exits or exits that don't dominate the latch
158 // are too complicated to handle correctly.
159 if (!SingleDominatingExit(L, exitingBlocks))
160 return false;
162 // Finally, we have to check that the loop really is dead.
163 bool Changed = false;
164 if (!IsLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
165 return Changed;
167 // Don't remove loops for which we can't solve the trip count.
168 // They could be infinite, in which case we'd be changing program behavior.
169 ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
170 const SCEV *S = SE.getBackedgeTakenCount(L);
171 if (isa<SCEVCouldNotCompute>(S))
172 return Changed;
174 // Now that we know the removal is safe, remove the loop by changing the
175 // branch from the preheader to go to the single exit block.
176 BasicBlock* exitBlock = exitBlocks[0];
177 BasicBlock* exitingBlock = exitingBlocks[0];
179 // Because we're deleting a large chunk of code at once, the sequence in which
180 // we remove things is very important to avoid invalidation issues. Don't
181 // mess with this unless you have good reason and know what you're doing.
183 // Tell ScalarEvolution that the loop is deleted. Do this before
184 // deleting the loop so that ScalarEvolution can look at the loop
185 // to determine what it needs to clean up.
186 SE.forgetLoopBackedgeTakenCount(L);
188 // Connect the preheader directly to the exit block.
189 TerminatorInst* TI = preheader->getTerminator();
190 TI->replaceUsesOfWith(L->getHeader(), exitBlock);
192 // Rewrite phis in the exit block to get their inputs from
193 // the preheader instead of the exiting block.
194 BasicBlock::iterator BI = exitBlock->begin();
195 while (PHINode* P = dyn_cast<PHINode>(BI)) {
196 P->replaceUsesOfWith(exitingBlock, preheader);
197 BI++;
200 // Update the dominator tree and remove the instructions and blocks that will
201 // be deleted from the reference counting scheme.
202 DominatorTree& DT = getAnalysis<DominatorTree>();
203 DominanceFrontier* DF = getAnalysisIfAvailable<DominanceFrontier>();
204 SmallPtrSet<DomTreeNode*, 8> ChildNodes;
205 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
206 LI != LE; ++LI) {
207 // Move all of the block's children to be children of the preheader, which
208 // allows us to remove the domtree entry for the block.
209 ChildNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
210 for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
211 DE = ChildNodes.end(); DI != DE; ++DI) {
212 DT.changeImmediateDominator(*DI, DT[preheader]);
213 if (DF) DF->changeImmediateDominator((*DI)->getBlock(), preheader, &DT);
216 ChildNodes.clear();
217 DT.eraseNode(*LI);
218 if (DF) DF->removeBlock(*LI);
220 // Remove the block from the reference counting scheme, so that we can
221 // delete it freely later.
222 (*LI)->dropAllReferences();
225 // Erase the instructions and the blocks without having to worry
226 // about ordering because we already dropped the references.
227 // NOTE: This iteration is safe because erasing the block does not remove its
228 // entry from the loop's block list. We do that in the next section.
229 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
230 LI != LE; ++LI)
231 (*LI)->eraseFromParent();
233 // Finally, the blocks from loopinfo. This has to happen late because
234 // otherwise our loop iterators won't work.
235 LoopInfo& loopInfo = getAnalysis<LoopInfo>();
236 SmallPtrSet<BasicBlock*, 8> blocks;
237 blocks.insert(L->block_begin(), L->block_end());
238 for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
239 E = blocks.end(); I != E; ++I)
240 loopInfo.removeBlock(*I);
242 // The last step is to inform the loop pass manager that we've
243 // eliminated this loop.
244 LPM.deleteLoopFromQueue(L);
245 Changed = true;
247 NumDeleted++;
249 return Changed;