1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "loop-reduce"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/Type.h"
29 #include "llvm/DerivedTypes.h"
30 #include "llvm/Analysis/Dominators.h"
31 #include "llvm/Analysis/IVUsers.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopPass.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/Support/CFG.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ValueHandle.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetLowering.h"
48 STATISTIC(NumReduced
, "Number of IV uses strength reduced");
49 STATISTIC(NumInserted
, "Number of PHIs inserted");
50 STATISTIC(NumVariable
, "Number of PHIs with variable strides");
51 STATISTIC(NumEliminated
, "Number of strides eliminated");
52 STATISTIC(NumShadow
, "Number of Shadow IVs optimized");
53 STATISTIC(NumImmSunk
, "Number of common expr immediates sunk into uses");
54 STATISTIC(NumLoopCond
, "Number of loop terminating conds optimized");
56 static cl::opt
<bool> EnableFullLSRMode("enable-full-lsr",
64 /// IVInfo - This structure keeps track of one IV expression inserted during
65 /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
66 /// well as the PHI node and increment value created for rewrite.
72 IVExpr(const SCEV
*const stride
, const SCEV
*const base
, PHINode
*phi
)
73 : Stride(stride
), Base(base
), PHI(phi
) {}
76 /// IVsOfOneStride - This structure keeps track of all IV expression inserted
77 /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
78 struct IVsOfOneStride
{
79 std::vector
<IVExpr
> IVs
;
81 void addIV(const SCEV
*const Stride
, const SCEV
*const Base
, PHINode
*PHI
) {
82 IVs
.push_back(IVExpr(Stride
, Base
, PHI
));
86 class LoopStrengthReduce
: public LoopPass
{
93 /// IVsByStride - Keep track of all IVs that have been inserted for a
94 /// particular stride.
95 std::map
<const SCEV
*, IVsOfOneStride
> IVsByStride
;
97 /// StrideNoReuse - Keep track of all the strides whose ivs cannot be
98 /// reused (nor should they be rewritten to reuse other strides).
99 SmallSet
<const SCEV
*, 4> StrideNoReuse
;
101 /// DeadInsts - Keep track of instructions we may have made dead, so that
102 /// we can remove them after we are done working.
103 SmallVector
<WeakVH
, 16> DeadInsts
;
105 /// TLI - Keep a pointer of a TargetLowering to consult for determining
106 /// transformation profitability.
107 const TargetLowering
*TLI
;
110 static char ID
; // Pass ID, replacement for typeid
111 explicit LoopStrengthReduce(const TargetLowering
*tli
= NULL
) :
112 LoopPass(&ID
), TLI(tli
) {
115 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
117 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
118 // We split critical edges, so we change the CFG. However, we do update
119 // many analyses if they are around.
120 AU
.addPreservedID(LoopSimplifyID
);
121 AU
.addPreserved
<LoopInfo
>();
122 AU
.addPreserved
<DominanceFrontier
>();
123 AU
.addPreserved
<DominatorTree
>();
125 AU
.addRequiredID(LoopSimplifyID
);
126 AU
.addRequired
<LoopInfo
>();
127 AU
.addRequired
<DominatorTree
>();
128 AU
.addRequired
<ScalarEvolution
>();
129 AU
.addPreserved
<ScalarEvolution
>();
130 AU
.addRequired
<IVUsers
>();
131 AU
.addPreserved
<IVUsers
>();
135 ICmpInst
*ChangeCompareStride(Loop
*L
, ICmpInst
*Cond
,
136 IVStrideUse
* &CondUse
,
137 const SCEV
*const * &CondStride
);
139 void OptimizeIndvars(Loop
*L
);
140 void OptimizeLoopCountIV(Loop
*L
);
141 void OptimizeLoopTermCond(Loop
*L
);
143 /// OptimizeShadowIV - If IV is used in a int-to-float cast
144 /// inside the loop then try to eliminate the cast opeation.
145 void OptimizeShadowIV(Loop
*L
);
147 /// OptimizeMax - Rewrite the loop's terminating condition
148 /// if it uses a max computation.
149 ICmpInst
*OptimizeMax(Loop
*L
, ICmpInst
*Cond
,
150 IVStrideUse
* &CondUse
);
152 bool FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
,
153 const SCEV
*const * &CondStride
);
154 bool RequiresTypeConversion(const Type
*Ty
, const Type
*NewTy
);
155 const SCEV
*CheckForIVReuse(bool, bool, bool, const SCEV
*const&,
156 IVExpr
&, const Type
*,
157 const std::vector
<BasedUser
>& UsersToProcess
);
158 bool ValidScale(bool, int64_t,
159 const std::vector
<BasedUser
>& UsersToProcess
);
160 bool ValidOffset(bool, int64_t, int64_t,
161 const std::vector
<BasedUser
>& UsersToProcess
);
162 const SCEV
*CollectIVUsers(const SCEV
*const &Stride
,
163 IVUsersOfOneStride
&Uses
,
165 bool &AllUsesAreAddresses
,
166 bool &AllUsesAreOutsideLoop
,
167 std::vector
<BasedUser
> &UsersToProcess
);
168 bool ShouldUseFullStrengthReductionMode(
169 const std::vector
<BasedUser
> &UsersToProcess
,
171 bool AllUsesAreAddresses
,
173 void PrepareToStrengthReduceFully(
174 std::vector
<BasedUser
> &UsersToProcess
,
176 const SCEV
*CommonExprs
,
178 SCEVExpander
&PreheaderRewriter
);
179 void PrepareToStrengthReduceFromSmallerStride(
180 std::vector
<BasedUser
> &UsersToProcess
,
182 const IVExpr
&ReuseIV
,
183 Instruction
*PreInsertPt
);
184 void PrepareToStrengthReduceWithNewPhi(
185 std::vector
<BasedUser
> &UsersToProcess
,
187 const SCEV
*CommonExprs
,
189 Instruction
*IVIncInsertPt
,
191 SCEVExpander
&PreheaderRewriter
);
192 void StrengthReduceStridedIVUsers(const SCEV
*const &Stride
,
193 IVUsersOfOneStride
&Uses
,
195 void DeleteTriviallyDeadInstructions();
199 char LoopStrengthReduce::ID
= 0;
200 static RegisterPass
<LoopStrengthReduce
>
201 X("loop-reduce", "Loop Strength Reduction");
203 Pass
*llvm::createLoopStrengthReducePass(const TargetLowering
*TLI
) {
204 return new LoopStrengthReduce(TLI
);
207 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
208 /// specified set are trivially dead, delete them and see if this makes any of
209 /// their operands subsequently dead.
210 void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
211 if (DeadInsts
.empty()) return;
213 while (!DeadInsts
.empty()) {
214 Instruction
*I
= dyn_cast_or_null
<Instruction
>(DeadInsts
.back());
215 DeadInsts
.pop_back();
217 if (I
== 0 || !isInstructionTriviallyDead(I
))
220 for (User::op_iterator OI
= I
->op_begin(), E
= I
->op_end(); OI
!= E
; ++OI
) {
221 if (Instruction
*U
= dyn_cast
<Instruction
>(*OI
)) {
224 DeadInsts
.push_back(U
);
228 I
->eraseFromParent();
233 /// containsAddRecFromDifferentLoop - Determine whether expression S involves a
234 /// subexpression that is an AddRec from a loop other than L. An outer loop
235 /// of L is OK, but not an inner loop nor a disjoint loop.
236 static bool containsAddRecFromDifferentLoop(const SCEV
*S
, Loop
*L
) {
237 // This is very common, put it first.
238 if (isa
<SCEVConstant
>(S
))
240 if (const SCEVCommutativeExpr
*AE
= dyn_cast
<SCEVCommutativeExpr
>(S
)) {
241 for (unsigned int i
=0; i
< AE
->getNumOperands(); i
++)
242 if (containsAddRecFromDifferentLoop(AE
->getOperand(i
), L
))
246 if (const SCEVAddRecExpr
*AE
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
247 if (const Loop
*newLoop
= AE
->getLoop()) {
250 // if newLoop is an outer loop of L, this is OK.
251 if (!LoopInfo::isNotAlreadyContainedIn(L
, newLoop
))
256 if (const SCEVUDivExpr
*DE
= dyn_cast
<SCEVUDivExpr
>(S
))
257 return containsAddRecFromDifferentLoop(DE
->getLHS(), L
) ||
258 containsAddRecFromDifferentLoop(DE
->getRHS(), L
);
260 // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
261 // need this when it is.
262 if (const SCEVSDivExpr
*DE
= dyn_cast
<SCEVSDivExpr
>(S
))
263 return containsAddRecFromDifferentLoop(DE
->getLHS(), L
) ||
264 containsAddRecFromDifferentLoop(DE
->getRHS(), L
);
266 if (const SCEVCastExpr
*CE
= dyn_cast
<SCEVCastExpr
>(S
))
267 return containsAddRecFromDifferentLoop(CE
->getOperand(), L
);
271 /// isAddressUse - Returns true if the specified instruction is using the
272 /// specified value as an address.
273 static bool isAddressUse(Instruction
*Inst
, Value
*OperandVal
) {
274 bool isAddress
= isa
<LoadInst
>(Inst
);
275 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
276 if (SI
->getOperand(1) == OperandVal
)
278 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
279 // Addressing modes can also be folded into prefetches and a variety
281 switch (II
->getIntrinsicID()) {
283 case Intrinsic::prefetch
:
284 case Intrinsic::x86_sse2_loadu_dq
:
285 case Intrinsic::x86_sse2_loadu_pd
:
286 case Intrinsic::x86_sse_loadu_ps
:
287 case Intrinsic::x86_sse_storeu_ps
:
288 case Intrinsic::x86_sse2_storeu_pd
:
289 case Intrinsic::x86_sse2_storeu_dq
:
290 case Intrinsic::x86_sse2_storel_dq
:
291 if (II
->getOperand(1) == OperandVal
)
299 /// getAccessType - Return the type of the memory being accessed.
300 static const Type
*getAccessType(const Instruction
*Inst
) {
301 const Type
*AccessTy
= Inst
->getType();
302 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
))
303 AccessTy
= SI
->getOperand(0)->getType();
304 else if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
305 // Addressing modes can also be folded into prefetches and a variety
307 switch (II
->getIntrinsicID()) {
309 case Intrinsic::x86_sse_storeu_ps
:
310 case Intrinsic::x86_sse2_storeu_pd
:
311 case Intrinsic::x86_sse2_storeu_dq
:
312 case Intrinsic::x86_sse2_storel_dq
:
313 AccessTy
= II
->getOperand(1)->getType();
321 /// BasedUser - For a particular base value, keep information about how we've
322 /// partitioned the expression so far.
324 /// SE - The current ScalarEvolution object.
327 /// Base - The Base value for the PHI node that needs to be inserted for
328 /// this use. As the use is processed, information gets moved from this
329 /// field to the Imm field (below). BasedUser values are sorted by this
333 /// Inst - The instruction using the induction variable.
336 /// OperandValToReplace - The operand value of Inst to replace with the
338 Value
*OperandValToReplace
;
340 /// Imm - The immediate value that should be added to the base immediately
341 /// before Inst, because it will be folded into the imm field of the
342 /// instruction. This is also sometimes used for loop-variant values that
343 /// must be added inside the loop.
346 /// Phi - The induction variable that performs the striding that
347 /// should be used for this user.
350 // isUseOfPostIncrementedValue - True if this should use the
351 // post-incremented version of this IV, not the preincremented version.
352 // This can only be set in special cases, such as the terminating setcc
353 // instruction for a loop and uses outside the loop that are dominated by
355 bool isUseOfPostIncrementedValue
;
357 BasedUser(IVStrideUse
&IVSU
, ScalarEvolution
*se
)
358 : SE(se
), Base(IVSU
.getOffset()), Inst(IVSU
.getUser()),
359 OperandValToReplace(IVSU
.getOperandValToReplace()),
360 Imm(SE
->getIntegerSCEV(0, Base
->getType())),
361 isUseOfPostIncrementedValue(IVSU
.isUseOfPostIncrementedValue()) {}
363 // Once we rewrite the code to insert the new IVs we want, update the
364 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
366 void RewriteInstructionToUseNewBase(const SCEV
*const &NewBase
,
367 Instruction
*InsertPt
,
368 SCEVExpander
&Rewriter
, Loop
*L
, Pass
*P
,
370 SmallVectorImpl
<WeakVH
> &DeadInsts
);
372 Value
*InsertCodeForBaseAtPosition(const SCEV
*const &NewBase
,
374 SCEVExpander
&Rewriter
,
375 Instruction
*IP
, Loop
*L
,
381 void BasedUser::dump() const {
382 errs() << " Base=" << *Base
;
383 errs() << " Imm=" << *Imm
;
384 errs() << " Inst: " << *Inst
;
387 Value
*BasedUser::InsertCodeForBaseAtPosition(const SCEV
*const &NewBase
,
389 SCEVExpander
&Rewriter
,
390 Instruction
*IP
, Loop
*L
,
392 // Figure out where we *really* want to insert this code. In particular, if
393 // the user is inside of a loop that is nested inside of L, we really don't
394 // want to insert this expression before the user, we'd rather pull it out as
395 // many loops as possible.
396 Instruction
*BaseInsertPt
= IP
;
398 // Figure out the most-nested loop that IP is in.
399 Loop
*InsertLoop
= LI
.getLoopFor(IP
->getParent());
401 // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
402 // the preheader of the outer-most loop where NewBase is not loop invariant.
403 if (L
->contains(IP
->getParent()))
404 while (InsertLoop
&& NewBase
->isLoopInvariant(InsertLoop
)) {
405 BaseInsertPt
= InsertLoop
->getLoopPreheader()->getTerminator();
406 InsertLoop
= InsertLoop
->getParentLoop();
409 Value
*Base
= Rewriter
.expandCodeFor(NewBase
, 0, BaseInsertPt
);
411 const SCEV
*NewValSCEV
= SE
->getUnknown(Base
);
413 // Always emit the immediate into the same block as the user.
414 NewValSCEV
= SE
->getAddExpr(NewValSCEV
, Imm
);
416 return Rewriter
.expandCodeFor(NewValSCEV
, Ty
, IP
);
420 // Once we rewrite the code to insert the new IVs we want, update the
421 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
422 // to it. NewBasePt is the last instruction which contributes to the
423 // value of NewBase in the case that it's a diffferent instruction from
424 // the PHI that NewBase is computed from, or null otherwise.
426 void BasedUser::RewriteInstructionToUseNewBase(const SCEV
*const &NewBase
,
427 Instruction
*NewBasePt
,
428 SCEVExpander
&Rewriter
, Loop
*L
, Pass
*P
,
430 SmallVectorImpl
<WeakVH
> &DeadInsts
) {
431 if (!isa
<PHINode
>(Inst
)) {
432 // By default, insert code at the user instruction.
433 BasicBlock::iterator InsertPt
= Inst
;
435 // However, if the Operand is itself an instruction, the (potentially
436 // complex) inserted code may be shared by many users. Because of this, we
437 // want to emit code for the computation of the operand right before its old
438 // computation. This is usually safe, because we obviously used to use the
439 // computation when it was computed in its current block. However, in some
440 // cases (e.g. use of a post-incremented induction variable) the NewBase
441 // value will be pinned to live somewhere after the original computation.
442 // In this case, we have to back off.
444 // If this is a use outside the loop (which means after, since it is based
445 // on a loop indvar) we use the post-incremented value, so that we don't
446 // artificially make the preinc value live out the bottom of the loop.
447 if (!isUseOfPostIncrementedValue
&& L
->contains(Inst
->getParent())) {
448 if (NewBasePt
&& isa
<PHINode
>(OperandValToReplace
)) {
449 InsertPt
= NewBasePt
;
451 } else if (Instruction
*OpInst
452 = dyn_cast
<Instruction
>(OperandValToReplace
)) {
454 while (isa
<PHINode
>(InsertPt
)) ++InsertPt
;
457 Value
*NewVal
= InsertCodeForBaseAtPosition(NewBase
,
458 OperandValToReplace
->getType(),
459 Rewriter
, InsertPt
, L
, LI
);
460 // Replace the use of the operand Value with the new Phi we just created.
461 Inst
->replaceUsesOfWith(OperandValToReplace
, NewVal
);
463 DEBUG(errs() << " Replacing with ");
464 DEBUG(WriteAsOperand(errs(), NewVal
, /*PrintType=*/false));
465 DEBUG(errs() << ", which has value " << *NewBase
<< " plus IMM "
470 // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
471 // expression into each operand block that uses it. Note that PHI nodes can
472 // have multiple entries for the same predecessor. We use a map to make sure
473 // that a PHI node only has a single Value* for each predecessor (which also
474 // prevents us from inserting duplicate code in some blocks).
475 DenseMap
<BasicBlock
*, Value
*> InsertedCode
;
476 PHINode
*PN
= cast
<PHINode
>(Inst
);
477 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
478 if (PN
->getIncomingValue(i
) == OperandValToReplace
) {
479 // If the original expression is outside the loop, put the replacement
480 // code in the same place as the original expression,
481 // which need not be an immediate predecessor of this PHI. This way we
482 // need only one copy of it even if it is referenced multiple times in
483 // the PHI. We don't do this when the original expression is inside the
484 // loop because multiple copies sometimes do useful sinking of code in
486 Instruction
*OldLoc
= dyn_cast
<Instruction
>(OperandValToReplace
);
487 BasicBlock
*PHIPred
= PN
->getIncomingBlock(i
);
488 if (L
->contains(OldLoc
->getParent())) {
489 // If this is a critical edge, split the edge so that we do not insert
490 // the code on all predecessor/successor paths. We do this unless this
491 // is the canonical backedge for this loop, as this can make some
492 // inserted code be in an illegal position.
493 if (e
!= 1 && PHIPred
->getTerminator()->getNumSuccessors() > 1 &&
494 (PN
->getParent() != L
->getHeader() || !L
->contains(PHIPred
))) {
496 // First step, split the critical edge.
497 BasicBlock
*NewBB
= SplitCriticalEdge(PHIPred
, PN
->getParent(),
500 // Next step: move the basic block. In particular, if the PHI node
501 // is outside of the loop, and PredTI is in the loop, we want to
502 // move the block to be immediately before the PHI block, not
503 // immediately after PredTI.
504 if (L
->contains(PHIPred
) && !L
->contains(PN
->getParent()))
505 NewBB
->moveBefore(PN
->getParent());
507 // Splitting the edge can reduce the number of PHI entries we have.
508 e
= PN
->getNumIncomingValues();
510 i
= PN
->getBasicBlockIndex(PHIPred
);
513 Value
*&Code
= InsertedCode
[PHIPred
];
515 // Insert the code into the end of the predecessor block.
516 Instruction
*InsertPt
= (L
->contains(OldLoc
->getParent())) ?
517 PHIPred
->getTerminator() :
518 OldLoc
->getParent()->getTerminator();
519 Code
= InsertCodeForBaseAtPosition(NewBase
, PN
->getType(),
520 Rewriter
, InsertPt
, L
, LI
);
522 DEBUG(errs() << " Changing PHI use to ");
523 DEBUG(WriteAsOperand(errs(), Code
, /*PrintType=*/false));
524 DEBUG(errs() << ", which has value " << *NewBase
<< " plus IMM "
528 // Replace the use of the operand Value with the new Phi we just created.
529 PN
->setIncomingValue(i
, Code
);
534 // PHI node might have become a constant value after SplitCriticalEdge.
535 DeadInsts
.push_back(Inst
);
539 /// fitsInAddressMode - Return true if V can be subsumed within an addressing
540 /// mode, and does not need to be put in a register first.
541 static bool fitsInAddressMode(const SCEV
*const &V
, const Type
*AccessTy
,
542 const TargetLowering
*TLI
, bool HasBaseReg
) {
543 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(V
)) {
544 int64_t VC
= SC
->getValue()->getSExtValue();
546 TargetLowering::AddrMode AM
;
548 AM
.HasBaseReg
= HasBaseReg
;
549 return TLI
->isLegalAddressingMode(AM
, AccessTy
);
551 // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
552 return (VC
> -(1 << 16) && VC
< (1 << 16)-1);
556 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
))
557 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(SU
->getValue())) {
559 TargetLowering::AddrMode AM
;
561 AM
.HasBaseReg
= HasBaseReg
;
562 return TLI
->isLegalAddressingMode(AM
, AccessTy
);
564 // Default: assume global addresses are not legal.
571 /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
572 /// loop varying to the Imm operand.
573 static void MoveLoopVariantsToImmediateField(const SCEV
*&Val
, const SCEV
*&Imm
,
574 Loop
*L
, ScalarEvolution
*SE
) {
575 if (Val
->isLoopInvariant(L
)) return; // Nothing to do.
577 if (const SCEVAddExpr
*SAE
= dyn_cast
<SCEVAddExpr
>(Val
)) {
578 SmallVector
<const SCEV
*, 4> NewOps
;
579 NewOps
.reserve(SAE
->getNumOperands());
581 for (unsigned i
= 0; i
!= SAE
->getNumOperands(); ++i
)
582 if (!SAE
->getOperand(i
)->isLoopInvariant(L
)) {
583 // If this is a loop-variant expression, it must stay in the immediate
584 // field of the expression.
585 Imm
= SE
->getAddExpr(Imm
, SAE
->getOperand(i
));
587 NewOps
.push_back(SAE
->getOperand(i
));
591 Val
= SE
->getIntegerSCEV(0, Val
->getType());
593 Val
= SE
->getAddExpr(NewOps
);
594 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Val
)) {
595 // Try to pull immediates out of the start value of nested addrec's.
596 const SCEV
*Start
= SARE
->getStart();
597 MoveLoopVariantsToImmediateField(Start
, Imm
, L
, SE
);
599 SmallVector
<const SCEV
*, 4> Ops(SARE
->op_begin(), SARE
->op_end());
601 Val
= SE
->getAddRecExpr(Ops
, SARE
->getLoop());
603 // Otherwise, all of Val is variant, move the whole thing over.
604 Imm
= SE
->getAddExpr(Imm
, Val
);
605 Val
= SE
->getIntegerSCEV(0, Val
->getType());
610 /// MoveImmediateValues - Look at Val, and pull out any additions of constants
611 /// that can fit into the immediate field of instructions in the target.
612 /// Accumulate these immediate values into the Imm value.
613 static void MoveImmediateValues(const TargetLowering
*TLI
,
614 const Type
*AccessTy
,
615 const SCEV
*&Val
, const SCEV
*&Imm
,
616 bool isAddress
, Loop
*L
,
617 ScalarEvolution
*SE
) {
618 if (const SCEVAddExpr
*SAE
= dyn_cast
<SCEVAddExpr
>(Val
)) {
619 SmallVector
<const SCEV
*, 4> NewOps
;
620 NewOps
.reserve(SAE
->getNumOperands());
622 for (unsigned i
= 0; i
!= SAE
->getNumOperands(); ++i
) {
623 const SCEV
*NewOp
= SAE
->getOperand(i
);
624 MoveImmediateValues(TLI
, AccessTy
, NewOp
, Imm
, isAddress
, L
, SE
);
626 if (!NewOp
->isLoopInvariant(L
)) {
627 // If this is a loop-variant expression, it must stay in the immediate
628 // field of the expression.
629 Imm
= SE
->getAddExpr(Imm
, NewOp
);
631 NewOps
.push_back(NewOp
);
636 Val
= SE
->getIntegerSCEV(0, Val
->getType());
638 Val
= SE
->getAddExpr(NewOps
);
640 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Val
)) {
641 // Try to pull immediates out of the start value of nested addrec's.
642 const SCEV
*Start
= SARE
->getStart();
643 MoveImmediateValues(TLI
, AccessTy
, Start
, Imm
, isAddress
, L
, SE
);
645 if (Start
!= SARE
->getStart()) {
646 SmallVector
<const SCEV
*, 4> Ops(SARE
->op_begin(), SARE
->op_end());
648 Val
= SE
->getAddRecExpr(Ops
, SARE
->getLoop());
651 } else if (const SCEVMulExpr
*SME
= dyn_cast
<SCEVMulExpr
>(Val
)) {
652 // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
654 fitsInAddressMode(SME
->getOperand(0), AccessTy
, TLI
, false) &&
655 SME
->getNumOperands() == 2 && SME
->isLoopInvariant(L
)) {
657 const SCEV
*SubImm
= SE
->getIntegerSCEV(0, Val
->getType());
658 const SCEV
*NewOp
= SME
->getOperand(1);
659 MoveImmediateValues(TLI
, AccessTy
, NewOp
, SubImm
, isAddress
, L
, SE
);
661 // If we extracted something out of the subexpressions, see if we can
663 if (NewOp
!= SME
->getOperand(1)) {
664 // Scale SubImm up by "8". If the result is a target constant, we are
666 SubImm
= SE
->getMulExpr(SubImm
, SME
->getOperand(0));
667 if (fitsInAddressMode(SubImm
, AccessTy
, TLI
, false)) {
668 // Accumulate the immediate.
669 Imm
= SE
->getAddExpr(Imm
, SubImm
);
671 // Update what is left of 'Val'.
672 Val
= SE
->getMulExpr(SME
->getOperand(0), NewOp
);
679 // Loop-variant expressions must stay in the immediate field of the
681 if ((isAddress
&& fitsInAddressMode(Val
, AccessTy
, TLI
, false)) ||
682 !Val
->isLoopInvariant(L
)) {
683 Imm
= SE
->getAddExpr(Imm
, Val
);
684 Val
= SE
->getIntegerSCEV(0, Val
->getType());
688 // Otherwise, no immediates to move.
691 static void MoveImmediateValues(const TargetLowering
*TLI
,
693 const SCEV
*&Val
, const SCEV
*&Imm
,
694 bool isAddress
, Loop
*L
,
695 ScalarEvolution
*SE
) {
696 const Type
*AccessTy
= getAccessType(User
);
697 MoveImmediateValues(TLI
, AccessTy
, Val
, Imm
, isAddress
, L
, SE
);
700 /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
701 /// added together. This is used to reassociate common addition subexprs
702 /// together for maximal sharing when rewriting bases.
703 static void SeparateSubExprs(SmallVector
<const SCEV
*, 16> &SubExprs
,
705 ScalarEvolution
*SE
) {
706 if (const SCEVAddExpr
*AE
= dyn_cast
<SCEVAddExpr
>(Expr
)) {
707 for (unsigned j
= 0, e
= AE
->getNumOperands(); j
!= e
; ++j
)
708 SeparateSubExprs(SubExprs
, AE
->getOperand(j
), SE
);
709 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Expr
)) {
710 const SCEV
*Zero
= SE
->getIntegerSCEV(0, Expr
->getType());
711 if (SARE
->getOperand(0) == Zero
) {
712 SubExprs
.push_back(Expr
);
714 // Compute the addrec with zero as its base.
715 SmallVector
<const SCEV
*, 4> Ops(SARE
->op_begin(), SARE
->op_end());
716 Ops
[0] = Zero
; // Start with zero base.
717 SubExprs
.push_back(SE
->getAddRecExpr(Ops
, SARE
->getLoop()));
720 SeparateSubExprs(SubExprs
, SARE
->getOperand(0), SE
);
722 } else if (!Expr
->isZero()) {
724 SubExprs
.push_back(Expr
);
728 // This is logically local to the following function, but C++ says we have
729 // to make it file scope.
730 struct SubExprUseData
{ unsigned Count
; bool notAllUsesAreFree
; };
732 /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
733 /// the Uses, removing any common subexpressions, except that if all such
734 /// subexpressions can be folded into an addressing mode for all uses inside
735 /// the loop (this case is referred to as "free" in comments herein) we do
736 /// not remove anything. This looks for things like (a+b+c) and
737 /// (a+c+d) and computes the common (a+c) subexpression. The common expression
738 /// is *removed* from the Bases and returned.
740 RemoveCommonExpressionsFromUseBases(std::vector
<BasedUser
> &Uses
,
741 ScalarEvolution
*SE
, Loop
*L
,
742 const TargetLowering
*TLI
) {
743 unsigned NumUses
= Uses
.size();
745 // Only one use? This is a very common case, so we handle it specially and
747 const SCEV
*Zero
= SE
->getIntegerSCEV(0, Uses
[0].Base
->getType());
748 const SCEV
*Result
= Zero
;
749 const SCEV
*FreeResult
= Zero
;
751 // If the use is inside the loop, use its base, regardless of what it is:
752 // it is clearly shared across all the IV's. If the use is outside the loop
753 // (which means after it) we don't want to factor anything *into* the loop,
754 // so just use 0 as the base.
755 if (L
->contains(Uses
[0].Inst
->getParent()))
756 std::swap(Result
, Uses
[0].Base
);
760 // To find common subexpressions, count how many of Uses use each expression.
761 // If any subexpressions are used Uses.size() times, they are common.
762 // Also track whether all uses of each expression can be moved into an
763 // an addressing mode "for free"; such expressions are left within the loop.
764 // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
765 std::map
<const SCEV
*, SubExprUseData
> SubExpressionUseData
;
767 // UniqueSubExprs - Keep track of all of the subexpressions we see in the
768 // order we see them.
769 SmallVector
<const SCEV
*, 16> UniqueSubExprs
;
771 SmallVector
<const SCEV
*, 16> SubExprs
;
772 unsigned NumUsesInsideLoop
= 0;
773 for (unsigned i
= 0; i
!= NumUses
; ++i
) {
774 // If the user is outside the loop, just ignore it for base computation.
775 // Since the user is outside the loop, it must be *after* the loop (if it
776 // were before, it could not be based on the loop IV). We don't want users
777 // after the loop to affect base computation of values *inside* the loop,
778 // because we can always add their offsets to the result IV after the loop
779 // is done, ensuring we get good code inside the loop.
780 if (!L
->contains(Uses
[i
].Inst
->getParent()))
784 // If the base is zero (which is common), return zero now, there are no
786 if (Uses
[i
].Base
== Zero
) return Zero
;
788 // If this use is as an address we may be able to put CSEs in the addressing
789 // mode rather than hoisting them.
790 bool isAddrUse
= isAddressUse(Uses
[i
].Inst
, Uses
[i
].OperandValToReplace
);
791 // We may need the AccessTy below, but only when isAddrUse, so compute it
792 // only in that case.
793 const Type
*AccessTy
= 0;
795 AccessTy
= getAccessType(Uses
[i
].Inst
);
797 // Split the expression into subexprs.
798 SeparateSubExprs(SubExprs
, Uses
[i
].Base
, SE
);
799 // Add one to SubExpressionUseData.Count for each subexpr present, and
800 // if the subexpr is not a valid immediate within an addressing mode use,
801 // set SubExpressionUseData.notAllUsesAreFree. We definitely want to
802 // hoist these out of the loop (if they are common to all uses).
803 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
) {
804 if (++SubExpressionUseData
[SubExprs
[j
]].Count
== 1)
805 UniqueSubExprs
.push_back(SubExprs
[j
]);
806 if (!isAddrUse
|| !fitsInAddressMode(SubExprs
[j
], AccessTy
, TLI
, false))
807 SubExpressionUseData
[SubExprs
[j
]].notAllUsesAreFree
= true;
812 // Now that we know how many times each is used, build Result. Iterate over
813 // UniqueSubexprs so that we have a stable ordering.
814 for (unsigned i
= 0, e
= UniqueSubExprs
.size(); i
!= e
; ++i
) {
815 std::map
<const SCEV
*, SubExprUseData
>::iterator I
=
816 SubExpressionUseData
.find(UniqueSubExprs
[i
]);
817 assert(I
!= SubExpressionUseData
.end() && "Entry not found?");
818 if (I
->second
.Count
== NumUsesInsideLoop
) { // Found CSE!
819 if (I
->second
.notAllUsesAreFree
)
820 Result
= SE
->getAddExpr(Result
, I
->first
);
822 FreeResult
= SE
->getAddExpr(FreeResult
, I
->first
);
824 // Remove non-cse's from SubExpressionUseData.
825 SubExpressionUseData
.erase(I
);
828 if (FreeResult
!= Zero
) {
829 // We have some subexpressions that can be subsumed into addressing
830 // modes in every use inside the loop. However, it's possible that
831 // there are so many of them that the combined FreeResult cannot
832 // be subsumed, or that the target cannot handle both a FreeResult
833 // and a Result in the same instruction (for example because it would
834 // require too many registers). Check this.
835 for (unsigned i
=0; i
<NumUses
; ++i
) {
836 if (!L
->contains(Uses
[i
].Inst
->getParent()))
838 // We know this is an addressing mode use; if there are any uses that
839 // are not, FreeResult would be Zero.
840 const Type
*AccessTy
= getAccessType(Uses
[i
].Inst
);
841 if (!fitsInAddressMode(FreeResult
, AccessTy
, TLI
, Result
!=Zero
)) {
842 // FIXME: could split up FreeResult into pieces here, some hoisted
843 // and some not. There is no obvious advantage to this.
844 Result
= SE
->getAddExpr(Result
, FreeResult
);
851 // If we found no CSE's, return now.
852 if (Result
== Zero
) return Result
;
854 // If we still have a FreeResult, remove its subexpressions from
855 // SubExpressionUseData. This means they will remain in the use Bases.
856 if (FreeResult
!= Zero
) {
857 SeparateSubExprs(SubExprs
, FreeResult
, SE
);
858 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
) {
859 std::map
<const SCEV
*, SubExprUseData
>::iterator I
=
860 SubExpressionUseData
.find(SubExprs
[j
]);
861 SubExpressionUseData
.erase(I
);
866 // Otherwise, remove all of the CSE's we found from each of the base values.
867 for (unsigned i
= 0; i
!= NumUses
; ++i
) {
868 // Uses outside the loop don't necessarily include the common base, but
869 // the final IV value coming into those uses does. Instead of trying to
870 // remove the pieces of the common base, which might not be there,
871 // subtract off the base to compensate for this.
872 if (!L
->contains(Uses
[i
].Inst
->getParent())) {
873 Uses
[i
].Base
= SE
->getMinusSCEV(Uses
[i
].Base
, Result
);
877 // Split the expression into subexprs.
878 SeparateSubExprs(SubExprs
, Uses
[i
].Base
, SE
);
880 // Remove any common subexpressions.
881 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
)
882 if (SubExpressionUseData
.count(SubExprs
[j
])) {
883 SubExprs
.erase(SubExprs
.begin()+j
);
887 // Finally, add the non-shared expressions together.
888 if (SubExprs
.empty())
891 Uses
[i
].Base
= SE
->getAddExpr(SubExprs
);
898 /// ValidScale - Check whether the given Scale is valid for all loads and
899 /// stores in UsersToProcess.
901 bool LoopStrengthReduce::ValidScale(bool HasBaseReg
, int64_t Scale
,
902 const std::vector
<BasedUser
>& UsersToProcess
) {
906 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!=e
; ++i
) {
907 // If this is a load or other access, pass the type of the access in.
908 const Type
*AccessTy
=
909 Type::getVoidTy(UsersToProcess
[i
].Inst
->getContext());
910 if (isAddressUse(UsersToProcess
[i
].Inst
,
911 UsersToProcess
[i
].OperandValToReplace
))
912 AccessTy
= getAccessType(UsersToProcess
[i
].Inst
);
913 else if (isa
<PHINode
>(UsersToProcess
[i
].Inst
))
916 TargetLowering::AddrMode AM
;
917 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(UsersToProcess
[i
].Imm
))
918 AM
.BaseOffs
= SC
->getValue()->getSExtValue();
919 AM
.HasBaseReg
= HasBaseReg
|| !UsersToProcess
[i
].Base
->isZero();
922 // If load[imm+r*scale] is illegal, bail out.
923 if (!TLI
->isLegalAddressingMode(AM
, AccessTy
))
929 /// ValidOffset - Check whether the given Offset is valid for all loads and
930 /// stores in UsersToProcess.
932 bool LoopStrengthReduce::ValidOffset(bool HasBaseReg
,
935 const std::vector
<BasedUser
>& UsersToProcess
) {
939 for (unsigned i
=0, e
= UsersToProcess
.size(); i
!=e
; ++i
) {
940 // If this is a load or other access, pass the type of the access in.
941 const Type
*AccessTy
=
942 Type::getVoidTy(UsersToProcess
[i
].Inst
->getContext());
943 if (isAddressUse(UsersToProcess
[i
].Inst
,
944 UsersToProcess
[i
].OperandValToReplace
))
945 AccessTy
= getAccessType(UsersToProcess
[i
].Inst
);
946 else if (isa
<PHINode
>(UsersToProcess
[i
].Inst
))
949 TargetLowering::AddrMode AM
;
950 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(UsersToProcess
[i
].Imm
))
951 AM
.BaseOffs
= SC
->getValue()->getSExtValue();
952 AM
.BaseOffs
= (uint64_t)AM
.BaseOffs
+ (uint64_t)Offset
;
953 AM
.HasBaseReg
= HasBaseReg
|| !UsersToProcess
[i
].Base
->isZero();
956 // If load[imm+r*scale] is illegal, bail out.
957 if (!TLI
->isLegalAddressingMode(AM
, AccessTy
))
963 /// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
965 bool LoopStrengthReduce::RequiresTypeConversion(const Type
*Ty1
,
969 Ty1
= SE
->getEffectiveSCEVType(Ty1
);
970 Ty2
= SE
->getEffectiveSCEVType(Ty2
);
973 if (Ty1
->canLosslesslyBitCastTo(Ty2
))
975 if (TLI
&& TLI
->isTruncateFree(Ty1
, Ty2
))
980 /// CheckForIVReuse - Returns the multiple if the stride is the multiple
981 /// of a previous stride and it is a legal value for the target addressing
982 /// mode scale component and optional base reg. This allows the users of
983 /// this stride to be rewritten as prev iv * factor. It returns 0 if no
984 /// reuse is possible. Factors can be negative on same targets, e.g. ARM.
986 /// If all uses are outside the loop, we don't require that all multiplies
987 /// be folded into the addressing mode, nor even that the factor be constant;
988 /// a multiply (executed once) outside the loop is better than another IV
989 /// within. Well, usually.
990 const SCEV
*LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg
,
991 bool AllUsesAreAddresses
,
992 bool AllUsesAreOutsideLoop
,
993 const SCEV
*const &Stride
,
994 IVExpr
&IV
, const Type
*Ty
,
995 const std::vector
<BasedUser
>& UsersToProcess
) {
996 if (StrideNoReuse
.count(Stride
))
997 return SE
->getIntegerSCEV(0, Stride
->getType());
999 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Stride
)) {
1000 int64_t SInt
= SC
->getValue()->getSExtValue();
1001 for (unsigned NewStride
= 0, e
= IU
->StrideOrder
.size();
1002 NewStride
!= e
; ++NewStride
) {
1003 std::map
<const SCEV
*, IVsOfOneStride
>::iterator SI
=
1004 IVsByStride
.find(IU
->StrideOrder
[NewStride
]);
1005 if (SI
== IVsByStride
.end() || !isa
<SCEVConstant
>(SI
->first
) ||
1006 StrideNoReuse
.count(SI
->first
))
1008 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
1009 if (SI
->first
!= Stride
&&
1010 (unsigned(abs64(SInt
)) < SSInt
|| (SInt
% SSInt
) != 0))
1012 int64_t Scale
= SInt
/ SSInt
;
1013 // Check that this stride is valid for all the types used for loads and
1014 // stores; if it can be used for some and not others, we might as well use
1015 // the original stride everywhere, since we have to create the IV for it
1016 // anyway. If the scale is 1, then we don't need to worry about folding
1019 (AllUsesAreAddresses
&&
1020 ValidScale(HasBaseReg
, Scale
, UsersToProcess
))) {
1021 // Prefer to reuse an IV with a base of zero.
1022 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1023 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1024 // Only reuse previous IV if it would not require a type conversion
1025 // and if the base difference can be folded.
1026 if (II
->Base
->isZero() &&
1027 !RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1029 return SE
->getIntegerSCEV(Scale
, Stride
->getType());
1031 // Otherwise, settle for an IV with a foldable base.
1032 if (AllUsesAreAddresses
)
1033 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1034 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1035 // Only reuse previous IV if it would not require a type conversion
1036 // and if the base difference can be folded.
1037 if (SE
->getEffectiveSCEVType(II
->Base
->getType()) ==
1038 SE
->getEffectiveSCEVType(Ty
) &&
1039 isa
<SCEVConstant
>(II
->Base
)) {
1041 cast
<SCEVConstant
>(II
->Base
)->getValue()->getSExtValue();
1042 if (Base
> INT32_MIN
&& Base
<= INT32_MAX
&&
1043 ValidOffset(HasBaseReg
, -Base
* Scale
,
1044 Scale
, UsersToProcess
)) {
1046 return SE
->getIntegerSCEV(Scale
, Stride
->getType());
1051 } else if (AllUsesAreOutsideLoop
) {
1052 // Accept nonconstant strides here; it is really really right to substitute
1053 // an existing IV if we can.
1054 for (unsigned NewStride
= 0, e
= IU
->StrideOrder
.size();
1055 NewStride
!= e
; ++NewStride
) {
1056 std::map
<const SCEV
*, IVsOfOneStride
>::iterator SI
=
1057 IVsByStride
.find(IU
->StrideOrder
[NewStride
]);
1058 if (SI
== IVsByStride
.end() || !isa
<SCEVConstant
>(SI
->first
))
1060 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
1061 if (SI
->first
!= Stride
&& SSInt
!= 1)
1063 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1064 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1065 // Accept nonzero base here.
1066 // Only reuse previous IV if it would not require a type conversion.
1067 if (!RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1072 // Special case, old IV is -1*x and this one is x. Can treat this one as
1074 for (unsigned NewStride
= 0, e
= IU
->StrideOrder
.size();
1075 NewStride
!= e
; ++NewStride
) {
1076 std::map
<const SCEV
*, IVsOfOneStride
>::iterator SI
=
1077 IVsByStride
.find(IU
->StrideOrder
[NewStride
]);
1078 if (SI
== IVsByStride
.end())
1080 if (const SCEVMulExpr
*ME
= dyn_cast
<SCEVMulExpr
>(SI
->first
))
1081 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(ME
->getOperand(0)))
1082 if (Stride
== ME
->getOperand(1) &&
1083 SC
->getValue()->getSExtValue() == -1LL)
1084 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1085 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1086 // Accept nonzero base here.
1087 // Only reuse previous IV if it would not require type conversion.
1088 if (!RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1090 return SE
->getIntegerSCEV(-1LL, Stride
->getType());
1094 return SE
->getIntegerSCEV(0, Stride
->getType());
1097 /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1098 /// returns true if Val's isUseOfPostIncrementedValue is true.
1099 static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser
&Val
) {
1100 return Val
.isUseOfPostIncrementedValue
;
1103 /// isNonConstantNegative - Return true if the specified scev is negated, but
1105 static bool isNonConstantNegative(const SCEV
*const &Expr
) {
1106 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Expr
);
1107 if (!Mul
) return false;
1109 // If there is a constant factor, it will be first.
1110 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0));
1111 if (!SC
) return false;
1113 // Return true if the value is negative, this matches things like (-42 * V).
1114 return SC
->getValue()->getValue().isNegative();
1117 /// CollectIVUsers - Transform our list of users and offsets to a bit more
1118 /// complex table. In this new vector, each 'BasedUser' contains 'Base', the base
1119 /// of the strided accesses, as well as the old information from Uses. We
1120 /// progressively move information from the Base field to the Imm field, until
1121 /// we eventually have the full access expression to rewrite the use.
1122 const SCEV
*LoopStrengthReduce::CollectIVUsers(const SCEV
*const &Stride
,
1123 IVUsersOfOneStride
&Uses
,
1125 bool &AllUsesAreAddresses
,
1126 bool &AllUsesAreOutsideLoop
,
1127 std::vector
<BasedUser
> &UsersToProcess
) {
1128 // FIXME: Generalize to non-affine IV's.
1129 if (!Stride
->isLoopInvariant(L
))
1130 return SE
->getIntegerSCEV(0, Stride
->getType());
1132 UsersToProcess
.reserve(Uses
.Users
.size());
1133 for (ilist
<IVStrideUse
>::iterator I
= Uses
.Users
.begin(),
1134 E
= Uses
.Users
.end(); I
!= E
; ++I
) {
1135 UsersToProcess
.push_back(BasedUser(*I
, SE
));
1137 // Move any loop variant operands from the offset field to the immediate
1138 // field of the use, so that we don't try to use something before it is
1140 MoveLoopVariantsToImmediateField(UsersToProcess
.back().Base
,
1141 UsersToProcess
.back().Imm
, L
, SE
);
1142 assert(UsersToProcess
.back().Base
->isLoopInvariant(L
) &&
1143 "Base value is not loop invariant!");
1146 // We now have a whole bunch of uses of like-strided induction variables, but
1147 // they might all have different bases. We want to emit one PHI node for this
1148 // stride which we fold as many common expressions (between the IVs) into as
1149 // possible. Start by identifying the common expressions in the base values
1150 // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1151 // "A+B"), emit it to the preheader, then remove the expression from the
1152 // UsersToProcess base values.
1153 const SCEV
*CommonExprs
=
1154 RemoveCommonExpressionsFromUseBases(UsersToProcess
, SE
, L
, TLI
);
1156 // Next, figure out what we can represent in the immediate fields of
1157 // instructions. If we can represent anything there, move it to the imm
1158 // fields of the BasedUsers. We do this so that it increases the commonality
1159 // of the remaining uses.
1160 unsigned NumPHI
= 0;
1161 bool HasAddress
= false;
1162 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1163 // If the user is not in the current loop, this means it is using the exit
1164 // value of the IV. Do not put anything in the base, make sure it's all in
1165 // the immediate field to allow as much factoring as possible.
1166 if (!L
->contains(UsersToProcess
[i
].Inst
->getParent())) {
1167 UsersToProcess
[i
].Imm
= SE
->getAddExpr(UsersToProcess
[i
].Imm
,
1168 UsersToProcess
[i
].Base
);
1169 UsersToProcess
[i
].Base
=
1170 SE
->getIntegerSCEV(0, UsersToProcess
[i
].Base
->getType());
1172 // Not all uses are outside the loop.
1173 AllUsesAreOutsideLoop
= false;
1175 // Addressing modes can be folded into loads and stores. Be careful that
1176 // the store is through the expression, not of the expression though.
1178 bool isAddress
= isAddressUse(UsersToProcess
[i
].Inst
,
1179 UsersToProcess
[i
].OperandValToReplace
);
1180 if (isa
<PHINode
>(UsersToProcess
[i
].Inst
)) {
1188 // If this use isn't an address, then not all uses are addresses.
1189 if (!isAddress
&& !isPHI
)
1190 AllUsesAreAddresses
= false;
1192 MoveImmediateValues(TLI
, UsersToProcess
[i
].Inst
, UsersToProcess
[i
].Base
,
1193 UsersToProcess
[i
].Imm
, isAddress
, L
, SE
);
1197 // If one of the use is a PHI node and all other uses are addresses, still
1198 // allow iv reuse. Essentially we are trading one constant multiplication
1199 // for one fewer iv.
1201 AllUsesAreAddresses
= false;
1203 // There are no in-loop address uses.
1204 if (AllUsesAreAddresses
&& (!HasAddress
&& !AllUsesAreOutsideLoop
))
1205 AllUsesAreAddresses
= false;
1210 /// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
1211 /// is valid and profitable for the given set of users of a stride. In
1212 /// full strength-reduction mode, all addresses at the current stride are
1213 /// strength-reduced all the way down to pointer arithmetic.
1215 bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
1216 const std::vector
<BasedUser
> &UsersToProcess
,
1218 bool AllUsesAreAddresses
,
1219 const SCEV
*Stride
) {
1220 if (!EnableFullLSRMode
)
1223 // The heuristics below aim to avoid increasing register pressure, but
1224 // fully strength-reducing all the addresses increases the number of
1225 // add instructions, so don't do this when optimizing for size.
1226 // TODO: If the loop is large, the savings due to simpler addresses
1227 // may oughtweight the costs of the extra increment instructions.
1228 if (L
->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize
))
1231 // TODO: For now, don't do full strength reduction if there could
1232 // potentially be greater-stride multiples of the current stride
1233 // which could reuse the current stride IV.
1234 if (IU
->StrideOrder
.back() != Stride
)
1237 // Iterate through the uses to find conditions that automatically rule out
1239 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ) {
1240 const SCEV
*Base
= UsersToProcess
[i
].Base
;
1241 const SCEV
*Imm
= UsersToProcess
[i
].Imm
;
1242 // If any users have a loop-variant component, they can't be fully
1243 // strength-reduced.
1244 if (Imm
&& !Imm
->isLoopInvariant(L
))
1246 // If there are to users with the same base and the difference between
1247 // the two Imm values can't be folded into the address, full
1248 // strength reduction would increase register pressure.
1250 const SCEV
*CurImm
= UsersToProcess
[i
].Imm
;
1251 if ((CurImm
|| Imm
) && CurImm
!= Imm
) {
1252 if (!CurImm
) CurImm
= SE
->getIntegerSCEV(0, Stride
->getType());
1253 if (!Imm
) Imm
= SE
->getIntegerSCEV(0, Stride
->getType());
1254 const Instruction
*Inst
= UsersToProcess
[i
].Inst
;
1255 const Type
*AccessTy
= getAccessType(Inst
);
1256 const SCEV
*Diff
= SE
->getMinusSCEV(UsersToProcess
[i
].Imm
, Imm
);
1257 if (!Diff
->isZero() &&
1258 (!AllUsesAreAddresses
||
1259 !fitsInAddressMode(Diff
, AccessTy
, TLI
, /*HasBaseReg=*/true)))
1262 } while (++i
!= e
&& Base
== UsersToProcess
[i
].Base
);
1265 // If there's exactly one user in this stride, fully strength-reducing it
1266 // won't increase register pressure. If it's starting from a non-zero base,
1267 // it'll be simpler this way.
1268 if (UsersToProcess
.size() == 1 && !UsersToProcess
[0].Base
->isZero())
1271 // Otherwise, if there are any users in this stride that don't require
1272 // a register for their base, full strength-reduction will increase
1273 // register pressure.
1274 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1275 if (UsersToProcess
[i
].Base
->isZero())
1278 // Otherwise, go for it.
1282 /// InsertAffinePhi Create and insert a PHI node for an induction variable
1283 /// with the specified start and step values in the specified loop.
1285 /// If NegateStride is true, the stride should be negated by using a
1286 /// subtract instead of an add.
1288 /// Return the created phi node.
1290 static PHINode
*InsertAffinePhi(const SCEV
*Start
, const SCEV
*Step
,
1291 Instruction
*IVIncInsertPt
,
1293 SCEVExpander
&Rewriter
) {
1294 assert(Start
->isLoopInvariant(L
) && "New PHI start is not loop invariant!");
1295 assert(Step
->isLoopInvariant(L
) && "New PHI stride is not loop invariant!");
1297 BasicBlock
*Header
= L
->getHeader();
1298 BasicBlock
*Preheader
= L
->getLoopPreheader();
1299 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1300 const Type
*Ty
= Start
->getType();
1301 Ty
= Rewriter
.SE
.getEffectiveSCEVType(Ty
);
1303 PHINode
*PN
= PHINode::Create(Ty
, "lsr.iv", Header
->begin());
1304 PN
->addIncoming(Rewriter
.expandCodeFor(Start
, Ty
, Preheader
->getTerminator()),
1307 // If the stride is negative, insert a sub instead of an add for the
1309 bool isNegative
= isNonConstantNegative(Step
);
1310 const SCEV
*IncAmount
= Step
;
1312 IncAmount
= Rewriter
.SE
.getNegativeSCEV(Step
);
1314 // Insert an add instruction right before the terminator corresponding
1315 // to the back-edge or just before the only use. The location is determined
1316 // by the caller and passed in as IVIncInsertPt.
1317 Value
*StepV
= Rewriter
.expandCodeFor(IncAmount
, Ty
,
1318 Preheader
->getTerminator());
1321 IncV
= BinaryOperator::CreateSub(PN
, StepV
, "lsr.iv.next",
1324 IncV
= BinaryOperator::CreateAdd(PN
, StepV
, "lsr.iv.next",
1327 if (!isa
<ConstantInt
>(StepV
)) ++NumVariable
;
1329 PN
->addIncoming(IncV
, LatchBlock
);
1335 static void SortUsersToProcess(std::vector
<BasedUser
> &UsersToProcess
) {
1336 // We want to emit code for users inside the loop first. To do this, we
1337 // rearrange BasedUser so that the entries at the end have
1338 // isUseOfPostIncrementedValue = false, because we pop off the end of the
1339 // vector (so we handle them first).
1340 std::partition(UsersToProcess
.begin(), UsersToProcess
.end(),
1341 PartitionByIsUseOfPostIncrementedValue
);
1343 // Sort this by base, so that things with the same base are handled
1344 // together. By partitioning first and stable-sorting later, we are
1345 // guaranteed that within each base we will pop off users from within the
1346 // loop before users outside of the loop with a particular base.
1348 // We would like to use stable_sort here, but we can't. The problem is that
1349 // const SCEV *'s don't have a deterministic ordering w.r.t to each other, so
1350 // we don't have anything to do a '<' comparison on. Because we think the
1351 // number of uses is small, do a horrible bubble sort which just relies on
1353 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1354 // Get a base value.
1355 const SCEV
*Base
= UsersToProcess
[i
].Base
;
1357 // Compact everything with this base to be consecutive with this one.
1358 for (unsigned j
= i
+1; j
!= e
; ++j
) {
1359 if (UsersToProcess
[j
].Base
== Base
) {
1360 std::swap(UsersToProcess
[i
+1], UsersToProcess
[j
]);
1367 /// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
1368 /// UsersToProcess, meaning lowering addresses all the way down to direct
1369 /// pointer arithmetic.
1372 LoopStrengthReduce::PrepareToStrengthReduceFully(
1373 std::vector
<BasedUser
> &UsersToProcess
,
1375 const SCEV
*CommonExprs
,
1377 SCEVExpander
&PreheaderRewriter
) {
1378 DEBUG(errs() << " Fully reducing all users\n");
1380 // Rewrite the UsersToProcess records, creating a separate PHI for each
1381 // unique Base value.
1382 Instruction
*IVIncInsertPt
= L
->getLoopLatch()->getTerminator();
1383 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ) {
1384 // TODO: The uses are grouped by base, but not sorted. We arbitrarily
1385 // pick the first Imm value here to start with, and adjust it for the
1387 const SCEV
*Imm
= UsersToProcess
[i
].Imm
;
1388 const SCEV
*Base
= UsersToProcess
[i
].Base
;
1389 const SCEV
*Start
= SE
->getAddExpr(CommonExprs
, Base
, Imm
);
1390 PHINode
*Phi
= InsertAffinePhi(Start
, Stride
, IVIncInsertPt
, L
,
1392 // Loop over all the users with the same base.
1394 UsersToProcess
[i
].Base
= SE
->getIntegerSCEV(0, Stride
->getType());
1395 UsersToProcess
[i
].Imm
= SE
->getMinusSCEV(UsersToProcess
[i
].Imm
, Imm
);
1396 UsersToProcess
[i
].Phi
= Phi
;
1397 assert(UsersToProcess
[i
].Imm
->isLoopInvariant(L
) &&
1398 "ShouldUseFullStrengthReductionMode should reject this!");
1399 } while (++i
!= e
&& Base
== UsersToProcess
[i
].Base
);
1403 /// FindIVIncInsertPt - Return the location to insert the increment instruction.
1404 /// If the only use if a use of postinc value, (must be the loop termination
1405 /// condition), then insert it just before the use.
1406 static Instruction
*FindIVIncInsertPt(std::vector
<BasedUser
> &UsersToProcess
,
1408 if (UsersToProcess
.size() == 1 &&
1409 UsersToProcess
[0].isUseOfPostIncrementedValue
&&
1410 L
->contains(UsersToProcess
[0].Inst
->getParent()))
1411 return UsersToProcess
[0].Inst
;
1412 return L
->getLoopLatch()->getTerminator();
1415 /// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
1416 /// given users to share.
1419 LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
1420 std::vector
<BasedUser
> &UsersToProcess
,
1422 const SCEV
*CommonExprs
,
1424 Instruction
*IVIncInsertPt
,
1426 SCEVExpander
&PreheaderRewriter
) {
1427 DEBUG(errs() << " Inserting new PHI:\n");
1429 PHINode
*Phi
= InsertAffinePhi(SE
->getUnknown(CommonBaseV
),
1430 Stride
, IVIncInsertPt
, L
,
1433 // Remember this in case a later stride is multiple of this.
1434 IVsByStride
[Stride
].addIV(Stride
, CommonExprs
, Phi
);
1436 // All the users will share this new IV.
1437 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1438 UsersToProcess
[i
].Phi
= Phi
;
1440 DEBUG(errs() << " IV=");
1441 DEBUG(WriteAsOperand(errs(), Phi
, /*PrintType=*/false));
1442 DEBUG(errs() << "\n");
1445 /// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
1446 /// reuse an induction variable with a stride that is a factor of the current
1447 /// induction variable.
1450 LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
1451 std::vector
<BasedUser
> &UsersToProcess
,
1453 const IVExpr
&ReuseIV
,
1454 Instruction
*PreInsertPt
) {
1455 DEBUG(errs() << " Rewriting in terms of existing IV of STRIDE "
1456 << *ReuseIV
.Stride
<< " and BASE " << *ReuseIV
.Base
<< "\n");
1458 // All the users will share the reused IV.
1459 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1460 UsersToProcess
[i
].Phi
= ReuseIV
.PHI
;
1462 Constant
*C
= dyn_cast
<Constant
>(CommonBaseV
);
1464 (!C
->isNullValue() &&
1465 !fitsInAddressMode(SE
->getUnknown(CommonBaseV
), CommonBaseV
->getType(),
1467 // We want the common base emitted into the preheader! This is just
1468 // using cast as a copy so BitCast (no-op cast) is appropriate
1469 CommonBaseV
= new BitCastInst(CommonBaseV
, CommonBaseV
->getType(),
1470 "commonbase", PreInsertPt
);
1473 static bool IsImmFoldedIntoAddrMode(GlobalValue
*GV
, int64_t Offset
,
1474 const Type
*AccessTy
,
1475 std::vector
<BasedUser
> &UsersToProcess
,
1476 const TargetLowering
*TLI
) {
1477 SmallVector
<Instruction
*, 16> AddrModeInsts
;
1478 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1479 if (UsersToProcess
[i
].isUseOfPostIncrementedValue
)
1481 ExtAddrMode AddrMode
=
1482 AddressingModeMatcher::Match(UsersToProcess
[i
].OperandValToReplace
,
1483 AccessTy
, UsersToProcess
[i
].Inst
,
1484 AddrModeInsts
, *TLI
);
1485 if (GV
&& GV
!= AddrMode
.BaseGV
)
1487 if (Offset
&& !AddrMode
.BaseOffs
)
1488 // FIXME: How to accurate check it's immediate offset is folded.
1490 AddrModeInsts
.clear();
1495 /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
1496 /// stride of IV. All of the users may have different starting values, and this
1497 /// may not be the only stride.
1498 void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV
*const &Stride
,
1499 IVUsersOfOneStride
&Uses
,
1501 // If all the users are moved to another stride, then there is nothing to do.
1502 if (Uses
.Users
.empty())
1505 // Keep track if every use in UsersToProcess is an address. If they all are,
1506 // we may be able to rewrite the entire collection of them in terms of a
1507 // smaller-stride IV.
1508 bool AllUsesAreAddresses
= true;
1510 // Keep track if every use of a single stride is outside the loop. If so,
1511 // we want to be more aggressive about reusing a smaller-stride IV; a
1512 // multiply outside the loop is better than another IV inside. Well, usually.
1513 bool AllUsesAreOutsideLoop
= true;
1515 // Transform our list of users and offsets to a bit more complex table. In
1516 // this new vector, each 'BasedUser' contains 'Base' the base of the
1517 // strided accessas well as the old information from Uses. We progressively
1518 // move information from the Base field to the Imm field, until we eventually
1519 // have the full access expression to rewrite the use.
1520 std::vector
<BasedUser
> UsersToProcess
;
1521 const SCEV
*CommonExprs
= CollectIVUsers(Stride
, Uses
, L
, AllUsesAreAddresses
,
1522 AllUsesAreOutsideLoop
,
1525 // Sort the UsersToProcess array so that users with common bases are
1526 // next to each other.
1527 SortUsersToProcess(UsersToProcess
);
1529 // If we managed to find some expressions in common, we'll need to carry
1530 // their value in a register and add it in for each use. This will take up
1531 // a register operand, which potentially restricts what stride values are
1533 bool HaveCommonExprs
= !CommonExprs
->isZero();
1534 const Type
*ReplacedTy
= CommonExprs
->getType();
1536 // If all uses are addresses, consider sinking the immediate part of the
1537 // common expression back into uses if they can fit in the immediate fields.
1538 if (TLI
&& HaveCommonExprs
&& AllUsesAreAddresses
) {
1539 const SCEV
*NewCommon
= CommonExprs
;
1540 const SCEV
*Imm
= SE
->getIntegerSCEV(0, ReplacedTy
);
1541 MoveImmediateValues(TLI
, Type::getVoidTy(
1542 L
->getLoopPreheader()->getContext()),
1543 NewCommon
, Imm
, true, L
, SE
);
1544 if (!Imm
->isZero()) {
1547 // If the immediate part of the common expression is a GV, check if it's
1548 // possible to fold it into the target addressing mode.
1549 GlobalValue
*GV
= 0;
1550 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(Imm
))
1551 GV
= dyn_cast
<GlobalValue
>(SU
->getValue());
1553 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Imm
))
1554 Offset
= SC
->getValue()->getSExtValue();
1556 // Pass VoidTy as the AccessTy to be conservative, because
1557 // there could be multiple access types among all the uses.
1558 DoSink
= IsImmFoldedIntoAddrMode(GV
, Offset
,
1559 Type::getVoidTy(L
->getLoopPreheader()->getContext()),
1560 UsersToProcess
, TLI
);
1563 DEBUG(errs() << " Sinking " << *Imm
<< " back down into uses\n");
1564 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1565 UsersToProcess
[i
].Imm
= SE
->getAddExpr(UsersToProcess
[i
].Imm
, Imm
);
1566 CommonExprs
= NewCommon
;
1567 HaveCommonExprs
= !CommonExprs
->isZero();
1573 // Now that we know what we need to do, insert the PHI node itself.
1575 DEBUG(errs() << "LSR: Examining IVs of TYPE " << *ReplacedTy
<< " of STRIDE "
1577 << " Common base: " << *CommonExprs
<< "\n");
1579 SCEVExpander
Rewriter(*SE
);
1580 SCEVExpander
PreheaderRewriter(*SE
);
1582 BasicBlock
*Preheader
= L
->getLoopPreheader();
1583 Instruction
*PreInsertPt
= Preheader
->getTerminator();
1584 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1585 Instruction
*IVIncInsertPt
= LatchBlock
->getTerminator();
1587 Value
*CommonBaseV
= Constant::getNullValue(ReplacedTy
);
1589 const SCEV
*RewriteFactor
= SE
->getIntegerSCEV(0, ReplacedTy
);
1590 IVExpr
ReuseIV(SE
->getIntegerSCEV(0,
1591 Type::getInt32Ty(Preheader
->getContext())),
1592 SE
->getIntegerSCEV(0,
1593 Type::getInt32Ty(Preheader
->getContext())),
1596 /// Choose a strength-reduction strategy and prepare for it by creating
1597 /// the necessary PHIs and adjusting the bookkeeping.
1598 if (ShouldUseFullStrengthReductionMode(UsersToProcess
, L
,
1599 AllUsesAreAddresses
, Stride
)) {
1600 PrepareToStrengthReduceFully(UsersToProcess
, Stride
, CommonExprs
, L
,
1603 // Emit the initial base value into the loop preheader.
1604 CommonBaseV
= PreheaderRewriter
.expandCodeFor(CommonExprs
, ReplacedTy
,
1607 // If all uses are addresses, check if it is possible to reuse an IV. The
1608 // new IV must have a stride that is a multiple of the old stride; the
1609 // multiple must be a number that can be encoded in the scale field of the
1610 // target addressing mode; and we must have a valid instruction after this
1611 // substitution, including the immediate field, if any.
1612 RewriteFactor
= CheckForIVReuse(HaveCommonExprs
, AllUsesAreAddresses
,
1613 AllUsesAreOutsideLoop
,
1614 Stride
, ReuseIV
, ReplacedTy
,
1616 if (!RewriteFactor
->isZero())
1617 PrepareToStrengthReduceFromSmallerStride(UsersToProcess
, CommonBaseV
,
1618 ReuseIV
, PreInsertPt
);
1620 IVIncInsertPt
= FindIVIncInsertPt(UsersToProcess
, L
);
1621 PrepareToStrengthReduceWithNewPhi(UsersToProcess
, Stride
, CommonExprs
,
1622 CommonBaseV
, IVIncInsertPt
,
1623 L
, PreheaderRewriter
);
1627 // Process all the users now, replacing their strided uses with
1628 // strength-reduced forms. This outer loop handles all bases, the inner
1629 // loop handles all users of a particular base.
1630 while (!UsersToProcess
.empty()) {
1631 const SCEV
*Base
= UsersToProcess
.back().Base
;
1632 Instruction
*Inst
= UsersToProcess
.back().Inst
;
1634 // Emit the code for Base into the preheader.
1636 if (!Base
->isZero()) {
1637 BaseV
= PreheaderRewriter
.expandCodeFor(Base
, 0, PreInsertPt
);
1639 DEBUG(errs() << " INSERTING code for BASE = " << *Base
<< ":");
1640 if (BaseV
->hasName())
1641 DEBUG(errs() << " Result value name = %" << BaseV
->getName());
1642 DEBUG(errs() << "\n");
1644 // If BaseV is a non-zero constant, make sure that it gets inserted into
1645 // the preheader, instead of being forward substituted into the uses. We
1646 // do this by forcing a BitCast (noop cast) to be inserted into the
1647 // preheader in this case.
1648 if (!fitsInAddressMode(Base
, getAccessType(Inst
), TLI
, false) &&
1649 isa
<Constant
>(BaseV
)) {
1650 // We want this constant emitted into the preheader! This is just
1651 // using cast as a copy so BitCast (no-op cast) is appropriate
1652 BaseV
= new BitCastInst(BaseV
, BaseV
->getType(), "preheaderinsert",
1657 // Emit the code to add the immediate offset to the Phi value, just before
1658 // the instructions that we identified as using this stride and base.
1660 // FIXME: Use emitted users to emit other users.
1661 BasedUser
&User
= UsersToProcess
.back();
1663 DEBUG(errs() << " Examining ");
1664 if (User
.isUseOfPostIncrementedValue
)
1665 DEBUG(errs() << "postinc");
1667 DEBUG(errs() << "preinc");
1668 DEBUG(errs() << " use ");
1669 DEBUG(WriteAsOperand(errs(), UsersToProcess
.back().OperandValToReplace
,
1670 /*PrintType=*/false));
1671 DEBUG(errs() << " in Inst: " << *User
.Inst
);
1673 // If this instruction wants to use the post-incremented value, move it
1674 // after the post-inc and use its value instead of the PHI.
1675 Value
*RewriteOp
= User
.Phi
;
1676 if (User
.isUseOfPostIncrementedValue
) {
1677 RewriteOp
= User
.Phi
->getIncomingValueForBlock(LatchBlock
);
1678 // If this user is in the loop, make sure it is the last thing in the
1679 // loop to ensure it is dominated by the increment. In case it's the
1680 // only use of the iv, the increment instruction is already before the
1682 if (L
->contains(User
.Inst
->getParent()) && User
.Inst
!= IVIncInsertPt
)
1683 User
.Inst
->moveBefore(IVIncInsertPt
);
1686 const SCEV
*RewriteExpr
= SE
->getUnknown(RewriteOp
);
1688 if (SE
->getEffectiveSCEVType(RewriteOp
->getType()) !=
1689 SE
->getEffectiveSCEVType(ReplacedTy
)) {
1690 assert(SE
->getTypeSizeInBits(RewriteOp
->getType()) >
1691 SE
->getTypeSizeInBits(ReplacedTy
) &&
1692 "Unexpected widening cast!");
1693 RewriteExpr
= SE
->getTruncateExpr(RewriteExpr
, ReplacedTy
);
1696 // If we had to insert new instructions for RewriteOp, we have to
1697 // consider that they may not have been able to end up immediately
1698 // next to RewriteOp, because non-PHI instructions may never precede
1699 // PHI instructions in a block. In this case, remember where the last
1700 // instruction was inserted so that if we're replacing a different
1701 // PHI node, we can use the later point to expand the final
1703 Instruction
*NewBasePt
= dyn_cast
<Instruction
>(RewriteOp
);
1704 if (RewriteOp
== User
.Phi
) NewBasePt
= 0;
1706 // Clear the SCEVExpander's expression map so that we are guaranteed
1707 // to have the code emitted where we expect it.
1710 // If we are reusing the iv, then it must be multiplied by a constant
1711 // factor to take advantage of the addressing mode scale component.
1712 if (!RewriteFactor
->isZero()) {
1713 // If we're reusing an IV with a nonzero base (currently this happens
1714 // only when all reuses are outside the loop) subtract that base here.
1715 // The base has been used to initialize the PHI node but we don't want
1717 if (!ReuseIV
.Base
->isZero()) {
1718 const SCEV
*typedBase
= ReuseIV
.Base
;
1719 if (SE
->getEffectiveSCEVType(RewriteExpr
->getType()) !=
1720 SE
->getEffectiveSCEVType(ReuseIV
.Base
->getType())) {
1721 // It's possible the original IV is a larger type than the new IV,
1722 // in which case we have to truncate the Base. We checked in
1723 // RequiresTypeConversion that this is valid.
1724 assert(SE
->getTypeSizeInBits(RewriteExpr
->getType()) <
1725 SE
->getTypeSizeInBits(ReuseIV
.Base
->getType()) &&
1726 "Unexpected lengthening conversion!");
1727 typedBase
= SE
->getTruncateExpr(ReuseIV
.Base
,
1728 RewriteExpr
->getType());
1730 RewriteExpr
= SE
->getMinusSCEV(RewriteExpr
, typedBase
);
1733 // Multiply old variable, with base removed, by new scale factor.
1734 RewriteExpr
= SE
->getMulExpr(RewriteFactor
,
1737 // The common base is emitted in the loop preheader. But since we
1738 // are reusing an IV, it has not been used to initialize the PHI node.
1739 // Add it to the expression used to rewrite the uses.
1740 // When this use is outside the loop, we earlier subtracted the
1741 // common base, and are adding it back here. Use the same expression
1742 // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1743 if (!CommonExprs
->isZero()) {
1744 if (L
->contains(User
.Inst
->getParent()))
1745 RewriteExpr
= SE
->getAddExpr(RewriteExpr
,
1746 SE
->getUnknown(CommonBaseV
));
1748 RewriteExpr
= SE
->getAddExpr(RewriteExpr
, CommonExprs
);
1752 // Now that we know what we need to do, insert code before User for the
1753 // immediate and any loop-variant expressions.
1755 // Add BaseV to the PHI value if needed.
1756 RewriteExpr
= SE
->getAddExpr(RewriteExpr
, SE
->getUnknown(BaseV
));
1758 User
.RewriteInstructionToUseNewBase(RewriteExpr
, NewBasePt
,
1759 Rewriter
, L
, this, *LI
,
1762 // Mark old value we replaced as possibly dead, so that it is eliminated
1763 // if we just replaced the last use of that value.
1764 DeadInsts
.push_back(User
.OperandValToReplace
);
1766 UsersToProcess
.pop_back();
1769 // If there are any more users to process with the same base, process them
1770 // now. We sorted by base above, so we just have to check the last elt.
1771 } while (!UsersToProcess
.empty() && UsersToProcess
.back().Base
== Base
);
1772 // TODO: Next, find out which base index is the most common, pull it out.
1775 // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1776 // different starting values, into different PHIs.
1779 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1780 /// set the IV user and stride information and return true, otherwise return
1782 bool LoopStrengthReduce::FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
,
1783 const SCEV
*const * &CondStride
) {
1784 for (unsigned Stride
= 0, e
= IU
->StrideOrder
.size();
1785 Stride
!= e
&& !CondUse
; ++Stride
) {
1786 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
1787 IU
->IVUsesByStride
.find(IU
->StrideOrder
[Stride
]);
1788 assert(SI
!= IU
->IVUsesByStride
.end() && "Stride doesn't exist!");
1790 for (ilist
<IVStrideUse
>::iterator UI
= SI
->second
->Users
.begin(),
1791 E
= SI
->second
->Users
.end(); UI
!= E
; ++UI
)
1792 if (UI
->getUser() == Cond
) {
1793 // NOTE: we could handle setcc instructions with multiple uses here, but
1794 // InstCombine does it as well for simple uses, it's not clear that it
1795 // occurs enough in real life to handle.
1797 CondStride
= &SI
->first
;
1805 // Constant strides come first which in turns are sorted by their absolute
1806 // values. If absolute values are the same, then positive strides comes first.
1808 // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1809 struct StrideCompare
{
1810 const ScalarEvolution
*SE
;
1811 explicit StrideCompare(const ScalarEvolution
*se
) : SE(se
) {}
1813 bool operator()(const SCEV
*const &LHS
, const SCEV
*const &RHS
) {
1814 const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
);
1815 const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
);
1817 int64_t LV
= LHSC
->getValue()->getSExtValue();
1818 int64_t RV
= RHSC
->getValue()->getSExtValue();
1819 uint64_t ALV
= (LV
< 0) ? -LV
: LV
;
1820 uint64_t ARV
= (RV
< 0) ? -RV
: RV
;
1828 // If it's the same value but different type, sort by bit width so
1829 // that we emit larger induction variables before smaller
1830 // ones, letting the smaller be re-written in terms of larger ones.
1831 return SE
->getTypeSizeInBits(RHS
->getType()) <
1832 SE
->getTypeSizeInBits(LHS
->getType());
1834 return LHSC
&& !RHSC
;
1839 /// ChangeCompareStride - If a loop termination compare instruction is the
1840 /// only use of its stride, and the compaison is against a constant value,
1841 /// try eliminate the stride by moving the compare instruction to another
1842 /// stride and change its constant operand accordingly. e.g.
1848 /// if (v2 < 10) goto loop
1853 /// if (v1 < 30) goto loop
1854 ICmpInst
*LoopStrengthReduce::ChangeCompareStride(Loop
*L
, ICmpInst
*Cond
,
1855 IVStrideUse
* &CondUse
,
1856 const SCEV
*const* &CondStride
) {
1857 // If there's only one stride in the loop, there's nothing to do here.
1858 if (IU
->StrideOrder
.size() < 2)
1860 // If there are other users of the condition's stride, don't bother
1861 // trying to change the condition because the stride will still
1863 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator I
=
1864 IU
->IVUsesByStride
.find(*CondStride
);
1865 if (I
== IU
->IVUsesByStride
.end() ||
1866 I
->second
->Users
.size() != 1)
1868 // Only handle constant strides for now.
1869 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(*CondStride
);
1870 if (!SC
) return Cond
;
1872 ICmpInst::Predicate Predicate
= Cond
->getPredicate();
1873 int64_t CmpSSInt
= SC
->getValue()->getSExtValue();
1874 unsigned BitWidth
= SE
->getTypeSizeInBits((*CondStride
)->getType());
1875 uint64_t SignBit
= 1ULL << (BitWidth
-1);
1876 const Type
*CmpTy
= Cond
->getOperand(0)->getType();
1877 const Type
*NewCmpTy
= NULL
;
1878 unsigned TyBits
= SE
->getTypeSizeInBits(CmpTy
);
1879 unsigned NewTyBits
= 0;
1880 const SCEV
**NewStride
= NULL
;
1881 Value
*NewCmpLHS
= NULL
;
1882 Value
*NewCmpRHS
= NULL
;
1884 const SCEV
*NewOffset
= SE
->getIntegerSCEV(0, CmpTy
);
1886 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Cond
->getOperand(1))) {
1887 int64_t CmpVal
= C
->getValue().getSExtValue();
1889 // Check stride constant and the comparision constant signs to detect
1891 if ((CmpVal
& SignBit
) != (CmpSSInt
& SignBit
))
1894 // Look for a suitable stride / iv as replacement.
1895 for (unsigned i
= 0, e
= IU
->StrideOrder
.size(); i
!= e
; ++i
) {
1896 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
1897 IU
->IVUsesByStride
.find(IU
->StrideOrder
[i
]);
1898 if (!isa
<SCEVConstant
>(SI
->first
))
1900 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
1901 if (SSInt
== CmpSSInt
||
1902 abs64(SSInt
) < abs64(CmpSSInt
) ||
1903 (SSInt
% CmpSSInt
) != 0)
1906 Scale
= SSInt
/ CmpSSInt
;
1907 int64_t NewCmpVal
= CmpVal
* Scale
;
1908 APInt Mul
= APInt(BitWidth
*2, CmpVal
, true);
1909 Mul
= Mul
* APInt(BitWidth
*2, Scale
, true);
1910 // Check for overflow.
1911 if (!Mul
.isSignedIntN(BitWidth
))
1913 // Check for overflow in the stride's type too.
1914 if (!Mul
.isSignedIntN(SE
->getTypeSizeInBits(SI
->first
->getType())))
1917 // Watch out for overflow.
1918 if (ICmpInst::isSignedPredicate(Predicate
) &&
1919 (CmpVal
& SignBit
) != (NewCmpVal
& SignBit
))
1922 if (NewCmpVal
== CmpVal
)
1924 // Pick the best iv to use trying to avoid a cast.
1926 for (ilist
<IVStrideUse
>::iterator UI
= SI
->second
->Users
.begin(),
1927 E
= SI
->second
->Users
.end(); UI
!= E
; ++UI
) {
1928 Value
*Op
= UI
->getOperandValToReplace();
1930 // If the IVStrideUse implies a cast, check for an actual cast which
1931 // can be used to find the original IV expression.
1932 if (SE
->getEffectiveSCEVType(Op
->getType()) !=
1933 SE
->getEffectiveSCEVType(SI
->first
->getType())) {
1934 CastInst
*CI
= dyn_cast
<CastInst
>(Op
);
1935 // If it's not a simple cast, it's complicated.
1938 // If it's a cast from a type other than the stride type,
1939 // it's complicated.
1940 if (CI
->getOperand(0)->getType() != SI
->first
->getType())
1942 // Ok, we found the IV expression in the stride's type.
1943 Op
= CI
->getOperand(0);
1947 if (NewCmpLHS
->getType() == CmpTy
)
1953 NewCmpTy
= NewCmpLHS
->getType();
1954 NewTyBits
= SE
->getTypeSizeInBits(NewCmpTy
);
1955 const Type
*NewCmpIntTy
= IntegerType::get(Cond
->getContext(), NewTyBits
);
1956 if (RequiresTypeConversion(NewCmpTy
, CmpTy
)) {
1957 // Check if it is possible to rewrite it using
1958 // an iv / stride of a smaller integer type.
1959 unsigned Bits
= NewTyBits
;
1960 if (ICmpInst::isSignedPredicate(Predicate
))
1962 uint64_t Mask
= (1ULL << Bits
) - 1;
1963 if (((uint64_t)NewCmpVal
& Mask
) != (uint64_t)NewCmpVal
)
1967 // Don't rewrite if use offset is non-constant and the new type is
1968 // of a different type.
1969 // FIXME: too conservative?
1970 if (NewTyBits
!= TyBits
&& !isa
<SCEVConstant
>(CondUse
->getOffset()))
1973 bool AllUsesAreAddresses
= true;
1974 bool AllUsesAreOutsideLoop
= true;
1975 std::vector
<BasedUser
> UsersToProcess
;
1976 const SCEV
*CommonExprs
= CollectIVUsers(SI
->first
, *SI
->second
, L
,
1977 AllUsesAreAddresses
,
1978 AllUsesAreOutsideLoop
,
1980 // Avoid rewriting the compare instruction with an iv of new stride
1981 // if it's likely the new stride uses will be rewritten using the
1982 // stride of the compare instruction.
1983 if (AllUsesAreAddresses
&&
1984 ValidScale(!CommonExprs
->isZero(), Scale
, UsersToProcess
))
1987 // Avoid rewriting the compare instruction with an iv which has
1988 // implicit extension or truncation built into it.
1989 // TODO: This is over-conservative.
1990 if (SE
->getTypeSizeInBits(CondUse
->getOffset()->getType()) != TyBits
)
1993 // If scale is negative, use swapped predicate unless it's testing
1995 if (Scale
< 0 && !Cond
->isEquality())
1996 Predicate
= ICmpInst::getSwappedPredicate(Predicate
);
1998 NewStride
= &IU
->StrideOrder
[i
];
1999 if (!isa
<PointerType
>(NewCmpTy
))
2000 NewCmpRHS
= ConstantInt::get(NewCmpTy
, NewCmpVal
);
2002 Constant
*CI
= ConstantInt::get(NewCmpIntTy
, NewCmpVal
);
2003 NewCmpRHS
= ConstantExpr::getIntToPtr(CI
, NewCmpTy
);
2005 NewOffset
= TyBits
== NewTyBits
2006 ? SE
->getMulExpr(CondUse
->getOffset(),
2007 SE
->getConstant(CmpTy
, Scale
))
2008 : SE
->getConstant(NewCmpIntTy
,
2009 cast
<SCEVConstant
>(CondUse
->getOffset())->getValue()
2010 ->getSExtValue()*Scale
);
2015 // Forgo this transformation if it the increment happens to be
2016 // unfortunately positioned after the condition, and the condition
2017 // has multiple uses which prevent it from being moved immediately
2018 // before the branch. See
2019 // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
2020 // for an example of this situation.
2021 if (!Cond
->hasOneUse()) {
2022 for (BasicBlock::iterator I
= Cond
, E
= Cond
->getParent()->end();
2029 // Create a new compare instruction using new stride / iv.
2030 ICmpInst
*OldCond
= Cond
;
2031 // Insert new compare instruction.
2032 Cond
= new ICmpInst(OldCond
, Predicate
, NewCmpLHS
, NewCmpRHS
,
2033 L
->getHeader()->getName() + ".termcond");
2035 // Remove the old compare instruction. The old indvar is probably dead too.
2036 DeadInsts
.push_back(CondUse
->getOperandValToReplace());
2037 OldCond
->replaceAllUsesWith(Cond
);
2038 OldCond
->eraseFromParent();
2040 IU
->IVUsesByStride
[*NewStride
]->addUser(NewOffset
, Cond
, NewCmpLHS
);
2041 CondUse
= &IU
->IVUsesByStride
[*NewStride
]->Users
.back();
2042 CondStride
= NewStride
;
2050 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
2051 /// a max computation.
2053 /// This is a narrow solution to a specific, but acute, problem. For loops
2059 /// } while (++i < n);
2061 /// the trip count isn't just 'n', because 'n' might not be positive. And
2062 /// unfortunately this can come up even for loops where the user didn't use
2063 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2064 /// will commonly be lowered like this:
2070 /// } while (++i < n);
2073 /// and then it's possible for subsequent optimization to obscure the if
2074 /// test in such a way that indvars can't find it.
2076 /// When indvars can't find the if test in loops like this, it creates a
2077 /// max expression, which allows it to give the loop a canonical
2078 /// induction variable:
2081 /// max = n < 1 ? 1 : n;
2084 /// } while (++i != max);
2086 /// Canonical induction variables are necessary because the loop passes
2087 /// are designed around them. The most obvious example of this is the
2088 /// LoopInfo analysis, which doesn't remember trip count values. It
2089 /// expects to be able to rediscover the trip count each time it is
2090 /// needed, and it does this using a simple analyis that only succeeds if
2091 /// the loop has a canonical induction variable.
2093 /// However, when it comes time to generate code, the maximum operation
2094 /// can be quite costly, especially if it's inside of an outer loop.
2096 /// This function solves this problem by detecting this type of loop and
2097 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2098 /// the instructions for the maximum computation.
2100 ICmpInst
*LoopStrengthReduce::OptimizeMax(Loop
*L
, ICmpInst
*Cond
,
2101 IVStrideUse
* &CondUse
) {
2102 // Check that the loop matches the pattern we're looking for.
2103 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
&&
2104 Cond
->getPredicate() != CmpInst::ICMP_NE
)
2107 SelectInst
*Sel
= dyn_cast
<SelectInst
>(Cond
->getOperand(1));
2108 if (!Sel
|| !Sel
->hasOneUse()) return Cond
;
2110 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2111 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2113 const SCEV
*One
= SE
->getIntegerSCEV(1, BackedgeTakenCount
->getType());
2115 // Add one to the backedge-taken count to get the trip count.
2116 const SCEV
*IterationCount
= SE
->getAddExpr(BackedgeTakenCount
, One
);
2118 // Check for a max calculation that matches the pattern.
2119 if (!isa
<SCEVSMaxExpr
>(IterationCount
) && !isa
<SCEVUMaxExpr
>(IterationCount
))
2121 const SCEVNAryExpr
*Max
= cast
<SCEVNAryExpr
>(IterationCount
);
2122 if (Max
!= SE
->getSCEV(Sel
)) return Cond
;
2124 // To handle a max with more than two operands, this optimization would
2125 // require additional checking and setup.
2126 if (Max
->getNumOperands() != 2)
2129 const SCEV
*MaxLHS
= Max
->getOperand(0);
2130 const SCEV
*MaxRHS
= Max
->getOperand(1);
2131 if (!MaxLHS
|| MaxLHS
!= One
) return Cond
;
2133 // Check the relevant induction variable for conformance to
2135 const SCEV
*IV
= SE
->getSCEV(Cond
->getOperand(0));
2136 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
2137 if (!AR
|| !AR
->isAffine() ||
2138 AR
->getStart() != One
||
2139 AR
->getStepRecurrence(*SE
) != One
)
2142 assert(AR
->getLoop() == L
&&
2143 "Loop condition operand is an addrec in a different loop!");
2145 // Check the right operand of the select, and remember it, as it will
2146 // be used in the new comparison instruction.
2148 if (SE
->getSCEV(Sel
->getOperand(1)) == MaxRHS
)
2149 NewRHS
= Sel
->getOperand(1);
2150 else if (SE
->getSCEV(Sel
->getOperand(2)) == MaxRHS
)
2151 NewRHS
= Sel
->getOperand(2);
2152 if (!NewRHS
) return Cond
;
2154 // Determine the new comparison opcode. It may be signed or unsigned,
2155 // and the original comparison may be either equality or inequality.
2156 CmpInst::Predicate Pred
=
2157 isa
<SCEVSMaxExpr
>(Max
) ? CmpInst::ICMP_SLT
: CmpInst::ICMP_ULT
;
2158 if (Cond
->getPredicate() == CmpInst::ICMP_EQ
)
2159 Pred
= CmpInst::getInversePredicate(Pred
);
2161 // Ok, everything looks ok to change the condition into an SLT or SGE and
2162 // delete the max calculation.
2164 new ICmpInst(Cond
, Pred
, Cond
->getOperand(0), NewRHS
, "scmp");
2166 // Delete the max calculation instructions.
2167 Cond
->replaceAllUsesWith(NewCond
);
2168 CondUse
->setUser(NewCond
);
2169 Instruction
*Cmp
= cast
<Instruction
>(Sel
->getOperand(0));
2170 Cond
->eraseFromParent();
2171 Sel
->eraseFromParent();
2172 if (Cmp
->use_empty())
2173 Cmp
->eraseFromParent();
2177 /// OptimizeShadowIV - If IV is used in a int-to-float cast
2178 /// inside the loop then try to eliminate the cast opeation.
2179 void LoopStrengthReduce::OptimizeShadowIV(Loop
*L
) {
2181 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2182 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2185 for (unsigned Stride
= 0, e
= IU
->StrideOrder
.size(); Stride
!= e
;
2187 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
2188 IU
->IVUsesByStride
.find(IU
->StrideOrder
[Stride
]);
2189 assert(SI
!= IU
->IVUsesByStride
.end() && "Stride doesn't exist!");
2190 if (!isa
<SCEVConstant
>(SI
->first
))
2193 for (ilist
<IVStrideUse
>::iterator UI
= SI
->second
->Users
.begin(),
2194 E
= SI
->second
->Users
.end(); UI
!= E
; /* empty */) {
2195 ilist
<IVStrideUse
>::iterator CandidateUI
= UI
;
2197 Instruction
*ShadowUse
= CandidateUI
->getUser();
2198 const Type
*DestTy
= NULL
;
2200 /* If shadow use is a int->float cast then insert a second IV
2201 to eliminate this cast.
2203 for (unsigned i = 0; i < n; ++i)
2209 for (unsigned i = 0; i < n; ++i, ++d)
2212 if (UIToFPInst
*UCast
= dyn_cast
<UIToFPInst
>(CandidateUI
->getUser()))
2213 DestTy
= UCast
->getDestTy();
2214 else if (SIToFPInst
*SCast
= dyn_cast
<SIToFPInst
>(CandidateUI
->getUser()))
2215 DestTy
= SCast
->getDestTy();
2216 if (!DestTy
) continue;
2219 // If target does not support DestTy natively then do not apply
2220 // this transformation.
2221 EVT DVT
= TLI
->getValueType(DestTy
);
2222 if (!TLI
->isTypeLegal(DVT
)) continue;
2225 PHINode
*PH
= dyn_cast
<PHINode
>(ShadowUse
->getOperand(0));
2227 if (PH
->getNumIncomingValues() != 2) continue;
2229 const Type
*SrcTy
= PH
->getType();
2230 int Mantissa
= DestTy
->getFPMantissaWidth();
2231 if (Mantissa
== -1) continue;
2232 if ((int)SE
->getTypeSizeInBits(SrcTy
) > Mantissa
)
2235 unsigned Entry
, Latch
;
2236 if (PH
->getIncomingBlock(0) == L
->getLoopPreheader()) {
2244 ConstantInt
*Init
= dyn_cast
<ConstantInt
>(PH
->getIncomingValue(Entry
));
2245 if (!Init
) continue;
2246 Constant
*NewInit
= ConstantFP::get(DestTy
, Init
->getZExtValue());
2248 BinaryOperator
*Incr
=
2249 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(Latch
));
2250 if (!Incr
) continue;
2251 if (Incr
->getOpcode() != Instruction::Add
2252 && Incr
->getOpcode() != Instruction::Sub
)
2255 /* Initialize new IV, double d = 0.0 in above example. */
2256 ConstantInt
*C
= NULL
;
2257 if (Incr
->getOperand(0) == PH
)
2258 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(1));
2259 else if (Incr
->getOperand(1) == PH
)
2260 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(0));
2266 /* Add new PHINode. */
2267 PHINode
*NewPH
= PHINode::Create(DestTy
, "IV.S.", PH
);
2269 /* create new increment. '++d' in above example. */
2270 Constant
*CFP
= ConstantFP::get(DestTy
, C
->getZExtValue());
2271 BinaryOperator
*NewIncr
=
2272 BinaryOperator::Create(Incr
->getOpcode() == Instruction::Add
?
2273 Instruction::FAdd
: Instruction::FSub
,
2274 NewPH
, CFP
, "IV.S.next.", Incr
);
2276 NewPH
->addIncoming(NewInit
, PH
->getIncomingBlock(Entry
));
2277 NewPH
->addIncoming(NewIncr
, PH
->getIncomingBlock(Latch
));
2279 /* Remove cast operation */
2280 ShadowUse
->replaceAllUsesWith(NewPH
);
2281 ShadowUse
->eraseFromParent();
2288 /// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2289 /// uses in the loop, look to see if we can eliminate some, in favor of using
2290 /// common indvars for the different uses.
2291 void LoopStrengthReduce::OptimizeIndvars(Loop
*L
) {
2292 // TODO: implement optzns here.
2294 OptimizeShadowIV(L
);
2297 /// OptimizeLoopTermCond - Change loop terminating condition to use the
2298 /// postinc iv when possible.
2299 void LoopStrengthReduce::OptimizeLoopTermCond(Loop
*L
) {
2300 // Finally, get the terminating condition for the loop if possible. If we
2301 // can, we want to change it to use a post-incremented version of its
2302 // induction variable, to allow coalescing the live ranges for the IV into
2303 // one register value.
2304 BasicBlock
*LatchBlock
= L
->getLoopLatch();
2305 BasicBlock
*ExitingBlock
= L
->getExitingBlock();
2306 LLVMContext
&Context
= LatchBlock
->getContext();
2309 // Multiple exits, just look at the exit in the latch block if there is one.
2310 ExitingBlock
= LatchBlock
;
2311 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
2314 if (TermBr
->isUnconditional() || !isa
<ICmpInst
>(TermBr
->getCondition()))
2317 // Search IVUsesByStride to find Cond's IVUse if there is one.
2318 IVStrideUse
*CondUse
= 0;
2319 const SCEV
*const *CondStride
= 0;
2320 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
2321 if (!FindIVUserForCond(Cond
, CondUse
, CondStride
))
2322 return; // setcc doesn't use the IV.
2324 if (ExitingBlock
!= LatchBlock
) {
2325 if (!Cond
->hasOneUse())
2326 // See below, we don't want the condition to be cloned.
2329 // If exiting block is the latch block, we know it's safe and profitable to
2330 // transform the icmp to use post-inc iv. Otherwise do so only if it would
2331 // not reuse another iv and its iv would be reused by other uses. We are
2332 // optimizing for the case where the icmp is the only use of the iv.
2333 IVUsersOfOneStride
&StrideUses
= *IU
->IVUsesByStride
[*CondStride
];
2334 for (ilist
<IVStrideUse
>::iterator I
= StrideUses
.Users
.begin(),
2335 E
= StrideUses
.Users
.end(); I
!= E
; ++I
) {
2336 if (I
->getUser() == Cond
)
2338 if (!I
->isUseOfPostIncrementedValue())
2342 // FIXME: This is expensive, and worse still ChangeCompareStride does a
2343 // similar check. Can we perform all the icmp related transformations after
2344 // StrengthReduceStridedIVUsers?
2345 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(*CondStride
)) {
2346 int64_t SInt
= SC
->getValue()->getSExtValue();
2347 for (unsigned NewStride
= 0, ee
= IU
->StrideOrder
.size(); NewStride
!= ee
;
2349 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
2350 IU
->IVUsesByStride
.find(IU
->StrideOrder
[NewStride
]);
2351 if (!isa
<SCEVConstant
>(SI
->first
) || SI
->first
== *CondStride
)
2354 cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
2356 return; // This can definitely be reused.
2357 if (unsigned(abs64(SSInt
)) < SInt
|| (SSInt
% SInt
) != 0)
2359 int64_t Scale
= SSInt
/ SInt
;
2360 bool AllUsesAreAddresses
= true;
2361 bool AllUsesAreOutsideLoop
= true;
2362 std::vector
<BasedUser
> UsersToProcess
;
2363 const SCEV
*CommonExprs
= CollectIVUsers(SI
->first
, *SI
->second
, L
,
2364 AllUsesAreAddresses
,
2365 AllUsesAreOutsideLoop
,
2367 // Avoid rewriting the compare instruction with an iv of new stride
2368 // if it's likely the new stride uses will be rewritten using the
2369 // stride of the compare instruction.
2370 if (AllUsesAreAddresses
&&
2371 ValidScale(!CommonExprs
->isZero(), Scale
, UsersToProcess
))
2376 StrideNoReuse
.insert(*CondStride
);
2379 // If the trip count is computed in terms of a max (due to ScalarEvolution
2380 // being unable to find a sufficient guard, for example), change the loop
2381 // comparison to use SLT or ULT instead of NE.
2382 Cond
= OptimizeMax(L
, Cond
, CondUse
);
2384 // If possible, change stride and operands of the compare instruction to
2385 // eliminate one stride.
2386 if (ExitingBlock
== LatchBlock
)
2387 Cond
= ChangeCompareStride(L
, Cond
, CondUse
, CondStride
);
2389 // It's possible for the setcc instruction to be anywhere in the loop, and
2390 // possible for it to have multiple users. If it is not immediately before
2391 // the latch block branch, move it.
2392 if (&*++BasicBlock::iterator(Cond
) != (Instruction
*)TermBr
) {
2393 if (Cond
->hasOneUse()) { // Condition has a single use, just move it.
2394 Cond
->moveBefore(TermBr
);
2396 // Otherwise, clone the terminating condition and insert into the loopend.
2397 Cond
= cast
<ICmpInst
>(Cond
->clone(Context
));
2398 Cond
->setName(L
->getHeader()->getName() + ".termcond");
2399 LatchBlock
->getInstList().insert(TermBr
, Cond
);
2401 // Clone the IVUse, as the old use still exists!
2402 IU
->IVUsesByStride
[*CondStride
]->addUser(CondUse
->getOffset(), Cond
,
2403 CondUse
->getOperandValToReplace());
2404 CondUse
= &IU
->IVUsesByStride
[*CondStride
]->Users
.back();
2408 // If we get to here, we know that we can transform the setcc instruction to
2409 // use the post-incremented version of the IV, allowing us to coalesce the
2410 // live ranges for the IV correctly.
2411 CondUse
->setOffset(SE
->getMinusSCEV(CondUse
->getOffset(), *CondStride
));
2412 CondUse
->setIsUseOfPostIncrementedValue(true);
2418 /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
2419 /// when to exit the loop is used only for that purpose, try to rearrange things
2420 /// so it counts down to a test against zero.
2421 void LoopStrengthReduce::OptimizeLoopCountIV(Loop
*L
) {
2423 // If the number of times the loop is executed isn't computable, give up.
2424 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2425 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2428 // Get the terminating condition for the loop if possible (this isn't
2429 // necessarily in the latch, or a block that's a predecessor of the header).
2430 if (!L
->getExitBlock())
2431 return; // More than one loop exit blocks.
2433 // Okay, there is one exit block. Try to find the condition that causes the
2434 // loop to be exited.
2435 BasicBlock
*ExitingBlock
= L
->getExitingBlock();
2437 return; // More than one block exiting!
2439 // Okay, we've computed the exiting block. See what condition causes us to
2442 // FIXME: we should be able to handle switch instructions (with a single exit)
2443 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
2444 if (TermBr
== 0) return;
2445 assert(TermBr
->isConditional() && "If unconditional, it can't be in loop!");
2446 if (!isa
<ICmpInst
>(TermBr
->getCondition()))
2448 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
2450 // Handle only tests for equality for the moment, and only stride 1.
2451 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
)
2453 const SCEV
*IV
= SE
->getSCEV(Cond
->getOperand(0));
2454 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
2455 const SCEV
*One
= SE
->getIntegerSCEV(1, BackedgeTakenCount
->getType());
2456 if (!AR
|| !AR
->isAffine() || AR
->getStepRecurrence(*SE
) != One
)
2458 // If the RHS of the comparison is defined inside the loop, the rewrite
2460 if (Instruction
*CR
= dyn_cast
<Instruction
>(Cond
->getOperand(1)))
2461 if (L
->contains(CR
->getParent()))
2464 // Make sure the IV is only used for counting. Value may be preinc or
2465 // postinc; 2 uses in either case.
2466 if (!Cond
->getOperand(0)->hasNUses(2))
2468 PHINode
*phi
= dyn_cast
<PHINode
>(Cond
->getOperand(0));
2470 if (phi
&& phi
->getParent()==L
->getHeader()) {
2471 // value tested is preinc. Find the increment.
2472 // A CmpInst is not a BinaryOperator; we depend on this.
2473 Instruction::use_iterator UI
= phi
->use_begin();
2474 incr
= dyn_cast
<BinaryOperator
>(UI
);
2476 incr
= dyn_cast
<BinaryOperator
>(++UI
);
2477 // 1 use for postinc value, the phi. Unnecessarily conservative?
2478 if (!incr
|| !incr
->hasOneUse() || incr
->getOpcode()!=Instruction::Add
)
2481 // Value tested is postinc. Find the phi node.
2482 incr
= dyn_cast
<BinaryOperator
>(Cond
->getOperand(0));
2483 if (!incr
|| incr
->getOpcode()!=Instruction::Add
)
2486 Instruction::use_iterator UI
= Cond
->getOperand(0)->use_begin();
2487 phi
= dyn_cast
<PHINode
>(UI
);
2489 phi
= dyn_cast
<PHINode
>(++UI
);
2490 // 1 use for preinc value, the increment.
2491 if (!phi
|| phi
->getParent()!=L
->getHeader() || !phi
->hasOneUse())
2495 // Replace the increment with a decrement.
2496 BinaryOperator
*decr
=
2497 BinaryOperator::Create(Instruction::Sub
, incr
->getOperand(0),
2498 incr
->getOperand(1), "tmp", incr
);
2499 incr
->replaceAllUsesWith(decr
);
2500 incr
->eraseFromParent();
2502 // Substitute endval-startval for the original startval, and 0 for the
2503 // original endval. Since we're only testing for equality this is OK even
2504 // if the computation wraps around.
2505 BasicBlock
*Preheader
= L
->getLoopPreheader();
2506 Instruction
*PreInsertPt
= Preheader
->getTerminator();
2507 int inBlock
= L
->contains(phi
->getIncomingBlock(0)) ? 1 : 0;
2508 Value
*startVal
= phi
->getIncomingValue(inBlock
);
2509 Value
*endVal
= Cond
->getOperand(1);
2510 // FIXME check for case where both are constant
2511 Constant
* Zero
= ConstantInt::get(Cond
->getOperand(1)->getType(), 0);
2512 BinaryOperator
*NewStartVal
=
2513 BinaryOperator::Create(Instruction::Sub
, endVal
, startVal
,
2514 "tmp", PreInsertPt
);
2515 phi
->setIncomingValue(inBlock
, NewStartVal
);
2516 Cond
->setOperand(1, Zero
);
2521 bool LoopStrengthReduce::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
2523 IU
= &getAnalysis
<IVUsers
>();
2524 LI
= &getAnalysis
<LoopInfo
>();
2525 DT
= &getAnalysis
<DominatorTree
>();
2526 SE
= &getAnalysis
<ScalarEvolution
>();
2529 if (!IU
->IVUsesByStride
.empty()) {
2530 DEBUG(errs() << "\nLSR on \"" << L
->getHeader()->getParent()->getName()
2534 // Sort the StrideOrder so we process larger strides first.
2535 std::stable_sort(IU
->StrideOrder
.begin(), IU
->StrideOrder
.end(),
2538 // Optimize induction variables. Some indvar uses can be transformed to use
2539 // strides that will be needed for other purposes. A common example of this
2540 // is the exit test for the loop, which can often be rewritten to use the
2541 // computation of some other indvar to decide when to terminate the loop.
2544 // Change loop terminating condition to use the postinc iv when possible
2545 // and optimize loop terminating compare. FIXME: Move this after
2546 // StrengthReduceStridedIVUsers?
2547 OptimizeLoopTermCond(L
);
2549 // FIXME: We can shrink overlarge IV's here. e.g. if the code has
2550 // computation in i64 values and the target doesn't support i64, demote
2551 // the computation to 32-bit if safe.
2553 // FIXME: Attempt to reuse values across multiple IV's. In particular, we
2554 // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2555 // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2556 // Need to be careful that IV's are all the same type. Only works for
2557 // intptr_t indvars.
2559 // IVsByStride keeps IVs for one particular loop.
2560 assert(IVsByStride
.empty() && "Stale entries in IVsByStride?");
2562 // Note: this processes each stride/type pair individually. All users
2563 // passed into StrengthReduceStridedIVUsers have the same type AND stride.
2564 // Also, note that we iterate over IVUsesByStride indirectly by using
2565 // StrideOrder. This extra layer of indirection makes the ordering of
2566 // strides deterministic - not dependent on map order.
2567 for (unsigned Stride
= 0, e
= IU
->StrideOrder
.size();
2568 Stride
!= e
; ++Stride
) {
2569 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
2570 IU
->IVUsesByStride
.find(IU
->StrideOrder
[Stride
]);
2571 assert(SI
!= IU
->IVUsesByStride
.end() && "Stride doesn't exist!");
2572 // FIXME: Generalize to non-affine IV's.
2573 if (!SI
->first
->isLoopInvariant(L
))
2575 StrengthReduceStridedIVUsers(SI
->first
, *SI
->second
, L
);
2579 // After all sharing is done, see if we can adjust the loop to test against
2580 // zero instead of counting up to a maximum. This is usually faster.
2581 OptimizeLoopCountIV(L
);
2583 // We're done analyzing this loop; release all the state we built up for it.
2584 IVsByStride
.clear();
2585 StrideNoReuse
.clear();
2587 // Clean up after ourselves
2588 if (!DeadInsts
.empty())
2589 DeleteTriviallyDeadInstructions();
2591 // At this point, it is worth checking to see if any recurrence PHIs are also
2592 // dead, so that we can remove them as well.
2593 DeleteDeadPHIs(L
->getHeader());