1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
27 //===----------------------------------------------------------------------===//
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/DerivedTypes.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/Analysis/ConstantFolding.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/STLExtras.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
53 STATISTIC(NumBranches
, "Number of branches unswitched");
54 STATISTIC(NumSwitches
, "Number of switches unswitched");
55 STATISTIC(NumSelects
, "Number of selects unswitched");
56 STATISTIC(NumTrivial
, "Number of unswitches that are trivial");
57 STATISTIC(NumSimplify
, "Number of simplifications of unswitched code");
59 static cl::opt
<unsigned>
60 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
61 cl::init(10), cl::Hidden
);
64 class LoopUnswitch
: public LoopPass
{
65 LoopInfo
*LI
; // Loop information
68 // LoopProcessWorklist - Used to check if second loop needs processing
69 // after RewriteLoopBodyWithConditionConstant rewrites first loop.
70 std::vector
<Loop
*> LoopProcessWorklist
;
71 SmallPtrSet
<Value
*,8> UnswitchedVals
;
77 DominanceFrontier
*DF
;
79 BasicBlock
*loopHeader
;
80 BasicBlock
*loopPreheader
;
82 // LoopBlocks contains all of the basic blocks of the loop, including the
83 // preheader of the loop, the body of the loop, and the exit blocks of the
84 // loop, in that order.
85 std::vector
<BasicBlock
*> LoopBlocks
;
86 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
87 std::vector
<BasicBlock
*> NewBlocks
;
90 static char ID
; // Pass ID, replacement for typeid
91 explicit LoopUnswitch(bool Os
= false) :
92 LoopPass(&ID
), OptimizeForSize(Os
), redoLoop(false),
93 currentLoop(NULL
), DF(NULL
), DT(NULL
), loopHeader(NULL
),
94 loopPreheader(NULL
) {}
96 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
97 bool processCurrentLoop();
99 /// This transformation requires natural loop information & requires that
100 /// loop preheaders be inserted into the CFG...
102 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
103 AU
.addRequiredID(LoopSimplifyID
);
104 AU
.addPreservedID(LoopSimplifyID
);
105 AU
.addRequired
<LoopInfo
>();
106 AU
.addPreserved
<LoopInfo
>();
107 AU
.addRequiredID(LCSSAID
);
108 AU
.addPreservedID(LCSSAID
);
109 AU
.addPreserved
<DominatorTree
>();
110 AU
.addPreserved
<DominanceFrontier
>();
115 virtual void releaseMemory() {
116 UnswitchedVals
.clear();
119 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
121 void RemoveLoopFromWorklist(Loop
*L
) {
122 std::vector
<Loop
*>::iterator I
= std::find(LoopProcessWorklist
.begin(),
123 LoopProcessWorklist
.end(), L
);
124 if (I
!= LoopProcessWorklist
.end())
125 LoopProcessWorklist
.erase(I
);
128 void initLoopData() {
129 loopHeader
= currentLoop
->getHeader();
130 loopPreheader
= currentLoop
->getLoopPreheader();
133 /// Split all of the edges from inside the loop to their exit blocks.
134 /// Update the appropriate Phi nodes as we do so.
135 void SplitExitEdges(Loop
*L
, const SmallVector
<BasicBlock
*, 8> &ExitBlocks
);
137 bool UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
);
138 unsigned getLoopUnswitchCost(Value
*LIC
);
139 void UnswitchTrivialCondition(Loop
*L
, Value
*Cond
, Constant
*Val
,
140 BasicBlock
*ExitBlock
);
141 void UnswitchNontrivialCondition(Value
*LIC
, Constant
*OnVal
, Loop
*L
);
143 void RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
144 Constant
*Val
, bool isEqual
);
146 void EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
147 BasicBlock
*TrueDest
,
148 BasicBlock
*FalseDest
,
149 Instruction
*InsertPt
);
151 void SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
);
152 void RemoveBlockIfDead(BasicBlock
*BB
,
153 std::vector
<Instruction
*> &Worklist
, Loop
*l
);
154 void RemoveLoopFromHierarchy(Loop
*L
);
155 bool IsTrivialUnswitchCondition(Value
*Cond
, Constant
**Val
= 0,
156 BasicBlock
**LoopExit
= 0);
160 char LoopUnswitch::ID
= 0;
161 static RegisterPass
<LoopUnswitch
> X("loop-unswitch", "Unswitch loops");
163 Pass
*llvm::createLoopUnswitchPass(bool Os
) {
164 return new LoopUnswitch(Os
);
167 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
168 /// invariant in the loop, or has an invariant piece, return the invariant.
169 /// Otherwise, return null.
170 static Value
*FindLIVLoopCondition(Value
*Cond
, Loop
*L
, bool &Changed
) {
171 // Constants should be folded, not unswitched on!
172 if (isa
<Constant
>(Cond
)) return 0;
174 // TODO: Handle: br (VARIANT|INVARIANT).
176 // Hoist simple values out.
177 if (L
->makeLoopInvariant(Cond
, Changed
))
180 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Cond
))
181 if (BO
->getOpcode() == Instruction::And
||
182 BO
->getOpcode() == Instruction::Or
) {
183 // If either the left or right side is invariant, we can unswitch on this,
184 // which will cause the branch to go away in one loop and the condition to
185 // simplify in the other one.
186 if (Value
*LHS
= FindLIVLoopCondition(BO
->getOperand(0), L
, Changed
))
188 if (Value
*RHS
= FindLIVLoopCondition(BO
->getOperand(1), L
, Changed
))
195 bool LoopUnswitch::runOnLoop(Loop
*L
, LPPassManager
&LPM_Ref
) {
196 LI
= &getAnalysis
<LoopInfo
>();
198 DF
= getAnalysisIfAvailable
<DominanceFrontier
>();
199 DT
= getAnalysisIfAvailable
<DominatorTree
>();
201 Function
*F
= currentLoop
->getHeader()->getParent();
202 bool Changed
= false;
204 assert(currentLoop
->isLCSSAForm());
206 Changed
|= processCurrentLoop();
210 // FIXME: Reconstruct dom info, because it is not preserved properly.
212 DT
->runOnFunction(*F
);
214 DF
->runOnFunction(*F
);
219 /// processCurrentLoop - Do actual work and unswitch loop if possible
221 bool LoopUnswitch::processCurrentLoop() {
222 bool Changed
= false;
223 LLVMContext
&Context
= currentLoop
->getHeader()->getContext();
225 // Loop over all of the basic blocks in the loop. If we find an interior
226 // block that is branching on a loop-invariant condition, we can unswitch this
228 for (Loop::block_iterator I
= currentLoop
->block_begin(),
229 E
= currentLoop
->block_end();
231 TerminatorInst
*TI
= (*I
)->getTerminator();
232 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
233 // If this isn't branching on an invariant condition, we can't unswitch
235 if (BI
->isConditional()) {
236 // See if this, or some part of it, is loop invariant. If so, we can
237 // unswitch on it if we desire.
238 Value
*LoopCond
= FindLIVLoopCondition(BI
->getCondition(),
239 currentLoop
, Changed
);
240 if (LoopCond
&& UnswitchIfProfitable(LoopCond
,
241 ConstantInt::getTrue(Context
))) {
246 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
247 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
248 currentLoop
, Changed
);
249 if (LoopCond
&& SI
->getNumCases() > 1) {
250 // Find a value to unswitch on:
251 // FIXME: this should chose the most expensive case!
252 Constant
*UnswitchVal
= SI
->getCaseValue(1);
253 // Do not process same value again and again.
254 if (!UnswitchedVals
.insert(UnswitchVal
))
257 if (UnswitchIfProfitable(LoopCond
, UnswitchVal
)) {
264 // Scan the instructions to check for unswitchable values.
265 for (BasicBlock::iterator BBI
= (*I
)->begin(), E
= (*I
)->end();
267 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(BBI
)) {
268 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
269 currentLoop
, Changed
);
270 if (LoopCond
&& UnswitchIfProfitable(LoopCond
,
271 ConstantInt::getTrue(Context
))) {
280 /// isTrivialLoopExitBlock - Check to see if all paths from BB either:
281 /// 1. Exit the loop with no side effects.
282 /// 2. Branch to the latch block with no side-effects.
284 /// If these conditions are true, we return true and set ExitBB to the block we
287 static bool isTrivialLoopExitBlockHelper(Loop
*L
, BasicBlock
*BB
,
289 std::set
<BasicBlock
*> &Visited
) {
290 if (!Visited
.insert(BB
).second
) {
291 // Already visited and Ok, end of recursion.
293 } else if (!L
->contains(BB
)) {
294 // Otherwise, this is a loop exit, this is fine so long as this is the
296 if (ExitBB
!= 0) return false;
301 // Otherwise, this is an unvisited intra-loop node. Check all successors.
302 for (succ_iterator SI
= succ_begin(BB
), E
= succ_end(BB
); SI
!= E
; ++SI
) {
303 // Check to see if the successor is a trivial loop exit.
304 if (!isTrivialLoopExitBlockHelper(L
, *SI
, ExitBB
, Visited
))
308 // Okay, everything after this looks good, check to make sure that this block
309 // doesn't include any side effects.
310 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
311 if (I
->mayHaveSideEffects())
317 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
318 /// leads to an exit from the specified loop, and has no side-effects in the
319 /// process. If so, return the block that is exited to, otherwise return null.
320 static BasicBlock
*isTrivialLoopExitBlock(Loop
*L
, BasicBlock
*BB
) {
321 std::set
<BasicBlock
*> Visited
;
322 Visited
.insert(L
->getHeader()); // Branches to header are ok.
323 BasicBlock
*ExitBB
= 0;
324 if (isTrivialLoopExitBlockHelper(L
, BB
, ExitBB
, Visited
))
329 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
330 /// trivial: that is, that the condition controls whether or not the loop does
331 /// anything at all. If this is a trivial condition, unswitching produces no
332 /// code duplications (equivalently, it produces a simpler loop and a new empty
333 /// loop, which gets deleted).
335 /// If this is a trivial condition, return true, otherwise return false. When
336 /// returning true, this sets Cond and Val to the condition that controls the
337 /// trivial condition: when Cond dynamically equals Val, the loop is known to
338 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
341 bool LoopUnswitch::IsTrivialUnswitchCondition(Value
*Cond
, Constant
**Val
,
342 BasicBlock
**LoopExit
) {
343 BasicBlock
*Header
= currentLoop
->getHeader();
344 TerminatorInst
*HeaderTerm
= Header
->getTerminator();
345 LLVMContext
&Context
= Header
->getContext();
347 BasicBlock
*LoopExitBB
= 0;
348 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(HeaderTerm
)) {
349 // If the header block doesn't end with a conditional branch on Cond, we
351 if (!BI
->isConditional() || BI
->getCondition() != Cond
)
354 // Check to see if a successor of the branch is guaranteed to go to the
355 // latch block or exit through a one exit block without having any
356 // side-effects. If so, determine the value of Cond that causes it to do
358 if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
359 BI
->getSuccessor(0)))) {
360 if (Val
) *Val
= ConstantInt::getTrue(Context
);
361 } else if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
362 BI
->getSuccessor(1)))) {
363 if (Val
) *Val
= ConstantInt::getFalse(Context
);
365 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(HeaderTerm
)) {
366 // If this isn't a switch on Cond, we can't handle it.
367 if (SI
->getCondition() != Cond
) return false;
369 // Check to see if a successor of the switch is guaranteed to go to the
370 // latch block or exit through a one exit block without having any
371 // side-effects. If so, determine the value of Cond that causes it to do
372 // this. Note that we can't trivially unswitch on the default case.
373 for (unsigned i
= 1, e
= SI
->getNumSuccessors(); i
!= e
; ++i
)
374 if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
375 SI
->getSuccessor(i
)))) {
376 // Okay, we found a trivial case, remember the value that is trivial.
377 if (Val
) *Val
= SI
->getCaseValue(i
);
382 // If we didn't find a single unique LoopExit block, or if the loop exit block
383 // contains phi nodes, this isn't trivial.
384 if (!LoopExitBB
|| isa
<PHINode
>(LoopExitBB
->begin()))
385 return false; // Can't handle this.
387 if (LoopExit
) *LoopExit
= LoopExitBB
;
389 // We already know that nothing uses any scalar values defined inside of this
390 // loop. As such, we just have to check to see if this loop will execute any
391 // side-effecting instructions (e.g. stores, calls, volatile loads) in the
392 // part of the loop that the code *would* execute. We already checked the
393 // tail, check the header now.
394 for (BasicBlock::iterator I
= Header
->begin(), E
= Header
->end(); I
!= E
; ++I
)
395 if (I
->mayHaveSideEffects())
400 /// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
401 /// we choose to unswitch current loop on the specified value.
403 unsigned LoopUnswitch::getLoopUnswitchCost(Value
*LIC
) {
404 // If the condition is trivial, always unswitch. There is no code growth for
406 if (IsTrivialUnswitchCondition(LIC
))
409 // FIXME: This is really overly conservative. However, more liberal
410 // estimations have thus far resulted in excessive unswitching, which is bad
411 // both in compile time and in code size. This should be replaced once
412 // someone figures out how a good estimation.
413 return currentLoop
->getBlocks().size();
416 // FIXME: this is brain dead. It should take into consideration code
418 for (Loop::block_iterator I
= currentLoop
->block_begin(),
419 E
= currentLoop
->block_end();
422 // Do not include empty blocks in the cost calculation. This happen due to
423 // loop canonicalization and will be removed.
424 if (BB
->begin() == BasicBlock::iterator(BB
->getTerminator()))
427 // Count basic blocks.
434 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
435 /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
436 /// unswitch the loop, reprocess the pieces, then return true.
437 bool LoopUnswitch::UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
){
440 Function
*F
= loopHeader
->getParent();
443 // Check to see if it would be profitable to unswitch current loop.
444 unsigned Cost
= getLoopUnswitchCost(LoopCond
);
446 // Do not do non-trivial unswitch while optimizing for size.
447 if (Cost
&& OptimizeForSize
)
449 if (Cost
&& !F
->isDeclaration() && F
->hasFnAttr(Attribute::OptimizeForSize
))
452 if (Cost
> Threshold
) {
453 // FIXME: this should estimate growth by the amount of code shared by the
454 // resultant unswitched loops.
456 DEBUG(errs() << "NOT unswitching loop %"
457 << currentLoop
->getHeader()->getName() << ", cost too high: "
458 << currentLoop
->getBlocks().size() << "\n");
463 BasicBlock
*ExitBlock
;
464 if (IsTrivialUnswitchCondition(LoopCond
, &CondVal
, &ExitBlock
)) {
465 UnswitchTrivialCondition(currentLoop
, LoopCond
, CondVal
, ExitBlock
);
467 UnswitchNontrivialCondition(LoopCond
, Val
, currentLoop
);
473 // RemapInstruction - Convert the instruction operands from referencing the
474 // current values into those specified by ValueMap.
476 static inline void RemapInstruction(Instruction
*I
,
477 DenseMap
<const Value
*, Value
*> &ValueMap
) {
478 for (unsigned op
= 0, E
= I
->getNumOperands(); op
!= E
; ++op
) {
479 Value
*Op
= I
->getOperand(op
);
480 DenseMap
<const Value
*, Value
*>::iterator It
= ValueMap
.find(Op
);
481 if (It
!= ValueMap
.end()) Op
= It
->second
;
482 I
->setOperand(op
, Op
);
486 /// CloneLoop - Recursively clone the specified loop and all of its children,
487 /// mapping the blocks with the specified map.
488 static Loop
*CloneLoop(Loop
*L
, Loop
*PL
, DenseMap
<const Value
*, Value
*> &VM
,
489 LoopInfo
*LI
, LPPassManager
*LPM
) {
490 Loop
*New
= new Loop();
492 LPM
->insertLoop(New
, PL
);
494 // Add all of the blocks in L to the new loop.
495 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
497 if (LI
->getLoopFor(*I
) == L
)
498 New
->addBasicBlockToLoop(cast
<BasicBlock
>(VM
[*I
]), LI
->getBase());
500 // Add all of the subloops to the new loop.
501 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
502 CloneLoop(*I
, New
, VM
, LI
, LPM
);
507 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
508 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
509 /// code immediately before InsertPt.
510 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
511 BasicBlock
*TrueDest
,
512 BasicBlock
*FalseDest
,
513 Instruction
*InsertPt
) {
514 // Insert a conditional branch on LIC to the two preheaders. The original
515 // code is the true version and the new code is the false version.
516 Value
*BranchVal
= LIC
;
517 if (!isa
<ConstantInt
>(Val
) ||
518 Val
->getType() != Type::getInt1Ty(LIC
->getContext()))
519 BranchVal
= new ICmpInst(InsertPt
, ICmpInst::ICMP_EQ
, LIC
, Val
, "tmp");
520 else if (Val
!= ConstantInt::getTrue(Val
->getContext()))
521 // We want to enter the new loop when the condition is true.
522 std::swap(TrueDest
, FalseDest
);
524 // Insert the new branch.
525 BranchInst
*BI
= BranchInst::Create(TrueDest
, FalseDest
, BranchVal
, InsertPt
);
527 // If either edge is critical, split it. This helps preserve LoopSimplify
528 // form for enclosing loops.
529 SplitCriticalEdge(BI
, 0, this);
530 SplitCriticalEdge(BI
, 1, this);
533 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
534 /// condition in it (a cond branch from its header block to its latch block,
535 /// where the path through the loop that doesn't execute its body has no
536 /// side-effects), unswitch it. This doesn't involve any code duplication, just
537 /// moving the conditional branch outside of the loop and updating loop info.
538 void LoopUnswitch::UnswitchTrivialCondition(Loop
*L
, Value
*Cond
,
540 BasicBlock
*ExitBlock
) {
541 DEBUG(errs() << "loop-unswitch: Trivial-Unswitch loop %"
542 << loopHeader
->getName() << " [" << L
->getBlocks().size()
543 << " blocks] in Function " << L
->getHeader()->getParent()->getName()
544 << " on cond: " << *Val
<< " == " << *Cond
<< "\n");
546 // First step, split the preheader, so that we know that there is a safe place
547 // to insert the conditional branch. We will change loopPreheader to have a
548 // conditional branch on Cond.
549 BasicBlock
*NewPH
= SplitEdge(loopPreheader
, loopHeader
, this);
551 // Now that we have a place to insert the conditional branch, create a place
552 // to branch to: this is the exit block out of the loop that we should
555 // Split this block now, so that the loop maintains its exit block, and so
556 // that the jump from the preheader can execute the contents of the exit block
557 // without actually branching to it (the exit block should be dominated by the
558 // loop header, not the preheader).
559 assert(!L
->contains(ExitBlock
) && "Exit block is in the loop?");
560 BasicBlock
*NewExit
= SplitBlock(ExitBlock
, ExitBlock
->begin(), this);
562 // Okay, now we have a position to branch from and a position to branch to,
563 // insert the new conditional branch.
564 EmitPreheaderBranchOnCondition(Cond
, Val
, NewExit
, NewPH
,
565 loopPreheader
->getTerminator());
566 LPM
->deleteSimpleAnalysisValue(loopPreheader
->getTerminator(), L
);
567 loopPreheader
->getTerminator()->eraseFromParent();
569 // We need to reprocess this loop, it could be unswitched again.
572 // Now that we know that the loop is never entered when this condition is a
573 // particular value, rewrite the loop with this info. We know that this will
574 // at least eliminate the old branch.
575 RewriteLoopBodyWithConditionConstant(L
, Cond
, Val
, false);
579 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
580 /// blocks. Update the appropriate Phi nodes as we do so.
581 void LoopUnswitch::SplitExitEdges(Loop
*L
,
582 const SmallVector
<BasicBlock
*, 8> &ExitBlocks
)
585 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
586 BasicBlock
*ExitBlock
= ExitBlocks
[i
];
587 SmallVector
<BasicBlock
*, 4> Preds(pred_begin(ExitBlock
),
588 pred_end(ExitBlock
));
589 SplitBlockPredecessors(ExitBlock
, Preds
.data(), Preds
.size(),
594 /// UnswitchNontrivialCondition - We determined that the loop is profitable
595 /// to unswitch when LIC equal Val. Split it into loop versions and test the
596 /// condition outside of either loop. Return the loops created as Out1/Out2.
597 void LoopUnswitch::UnswitchNontrivialCondition(Value
*LIC
, Constant
*Val
,
599 Function
*F
= loopHeader
->getParent();
600 DEBUG(errs() << "loop-unswitch: Unswitching loop %"
601 << loopHeader
->getName() << " [" << L
->getBlocks().size()
602 << " blocks] in Function " << F
->getName()
603 << " when '" << *Val
<< "' == " << *LIC
<< "\n");
608 // First step, split the preheader and exit blocks, and add these blocks to
609 // the LoopBlocks list.
610 BasicBlock
*NewPreheader
= SplitEdge(loopPreheader
, loopHeader
, this);
611 LoopBlocks
.push_back(NewPreheader
);
613 // We want the loop to come after the preheader, but before the exit blocks.
614 LoopBlocks
.insert(LoopBlocks
.end(), L
->block_begin(), L
->block_end());
616 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
617 L
->getUniqueExitBlocks(ExitBlocks
);
619 // Split all of the edges from inside the loop to their exit blocks. Update
620 // the appropriate Phi nodes as we do so.
621 SplitExitEdges(L
, ExitBlocks
);
623 // The exit blocks may have been changed due to edge splitting, recompute.
625 L
->getUniqueExitBlocks(ExitBlocks
);
627 // Add exit blocks to the loop blocks.
628 LoopBlocks
.insert(LoopBlocks
.end(), ExitBlocks
.begin(), ExitBlocks
.end());
630 // Next step, clone all of the basic blocks that make up the loop (including
631 // the loop preheader and exit blocks), keeping track of the mapping between
632 // the instructions and blocks.
633 NewBlocks
.reserve(LoopBlocks
.size());
634 DenseMap
<const Value
*, Value
*> ValueMap
;
635 for (unsigned i
= 0, e
= LoopBlocks
.size(); i
!= e
; ++i
) {
636 BasicBlock
*New
= CloneBasicBlock(LoopBlocks
[i
], ValueMap
, ".us", F
);
637 NewBlocks
.push_back(New
);
638 ValueMap
[LoopBlocks
[i
]] = New
; // Keep the BB mapping.
639 LPM
->cloneBasicBlockSimpleAnalysis(LoopBlocks
[i
], New
, L
);
642 // Splice the newly inserted blocks into the function right before the
643 // original preheader.
644 F
->getBasicBlockList().splice(LoopBlocks
[0], F
->getBasicBlockList(),
645 NewBlocks
[0], F
->end());
647 // Now we create the new Loop object for the versioned loop.
648 Loop
*NewLoop
= CloneLoop(L
, L
->getParentLoop(), ValueMap
, LI
, LPM
);
649 Loop
*ParentLoop
= L
->getParentLoop();
651 // Make sure to add the cloned preheader and exit blocks to the parent loop
653 ParentLoop
->addBasicBlockToLoop(NewBlocks
[0], LI
->getBase());
656 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
657 BasicBlock
*NewExit
= cast
<BasicBlock
>(ValueMap
[ExitBlocks
[i
]]);
658 // The new exit block should be in the same loop as the old one.
659 if (Loop
*ExitBBLoop
= LI
->getLoopFor(ExitBlocks
[i
]))
660 ExitBBLoop
->addBasicBlockToLoop(NewExit
, LI
->getBase());
662 assert(NewExit
->getTerminator()->getNumSuccessors() == 1 &&
663 "Exit block should have been split to have one successor!");
664 BasicBlock
*ExitSucc
= NewExit
->getTerminator()->getSuccessor(0);
666 // If the successor of the exit block had PHI nodes, add an entry for
669 for (BasicBlock::iterator I
= ExitSucc
->begin();
670 (PN
= dyn_cast
<PHINode
>(I
)); ++I
) {
671 Value
*V
= PN
->getIncomingValueForBlock(ExitBlocks
[i
]);
672 DenseMap
<const Value
*, Value
*>::iterator It
= ValueMap
.find(V
);
673 if (It
!= ValueMap
.end()) V
= It
->second
;
674 PN
->addIncoming(V
, NewExit
);
678 // Rewrite the code to refer to itself.
679 for (unsigned i
= 0, e
= NewBlocks
.size(); i
!= e
; ++i
)
680 for (BasicBlock::iterator I
= NewBlocks
[i
]->begin(),
681 E
= NewBlocks
[i
]->end(); I
!= E
; ++I
)
682 RemapInstruction(I
, ValueMap
);
684 // Rewrite the original preheader to select between versions of the loop.
685 BranchInst
*OldBR
= cast
<BranchInst
>(loopPreheader
->getTerminator());
686 assert(OldBR
->isUnconditional() && OldBR
->getSuccessor(0) == LoopBlocks
[0] &&
687 "Preheader splitting did not work correctly!");
689 // Emit the new branch that selects between the two versions of this loop.
690 EmitPreheaderBranchOnCondition(LIC
, Val
, NewBlocks
[0], LoopBlocks
[0], OldBR
);
691 LPM
->deleteSimpleAnalysisValue(OldBR
, L
);
692 OldBR
->eraseFromParent();
694 LoopProcessWorklist
.push_back(NewLoop
);
697 // Now we rewrite the original code to know that the condition is true and the
698 // new code to know that the condition is false.
699 RewriteLoopBodyWithConditionConstant(L
, LIC
, Val
, false);
701 // It's possible that simplifying one loop could cause the other to be
702 // deleted. If so, don't simplify it.
703 if (!LoopProcessWorklist
.empty() && LoopProcessWorklist
.back() == NewLoop
)
704 RewriteLoopBodyWithConditionConstant(NewLoop
, LIC
, Val
, true);
708 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
710 static void RemoveFromWorklist(Instruction
*I
,
711 std::vector
<Instruction
*> &Worklist
) {
712 std::vector
<Instruction
*>::iterator WI
= std::find(Worklist
.begin(),
714 while (WI
!= Worklist
.end()) {
715 unsigned Offset
= WI
-Worklist
.begin();
717 WI
= std::find(Worklist
.begin()+Offset
, Worklist
.end(), I
);
721 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
722 /// program, replacing all uses with V and update the worklist.
723 static void ReplaceUsesOfWith(Instruction
*I
, Value
*V
,
724 std::vector
<Instruction
*> &Worklist
,
725 Loop
*L
, LPPassManager
*LPM
) {
726 DEBUG(errs() << "Replace with '" << *V
<< "': " << *I
);
728 // Add uses to the worklist, which may be dead now.
729 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
730 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
731 Worklist
.push_back(Use
);
733 // Add users to the worklist which may be simplified now.
734 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
736 Worklist
.push_back(cast
<Instruction
>(*UI
));
737 LPM
->deleteSimpleAnalysisValue(I
, L
);
738 RemoveFromWorklist(I
, Worklist
);
739 I
->replaceAllUsesWith(V
);
740 I
->eraseFromParent();
744 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
745 /// information, and remove any dead successors it has.
747 void LoopUnswitch::RemoveBlockIfDead(BasicBlock
*BB
,
748 std::vector
<Instruction
*> &Worklist
,
750 if (pred_begin(BB
) != pred_end(BB
)) {
751 // This block isn't dead, since an edge to BB was just removed, see if there
752 // are any easy simplifications we can do now.
753 if (BasicBlock
*Pred
= BB
->getSinglePredecessor()) {
754 // If it has one pred, fold phi nodes in BB.
755 while (isa
<PHINode
>(BB
->begin()))
756 ReplaceUsesOfWith(BB
->begin(),
757 cast
<PHINode
>(BB
->begin())->getIncomingValue(0),
760 // If this is the header of a loop and the only pred is the latch, we now
761 // have an unreachable loop.
762 if (Loop
*L
= LI
->getLoopFor(BB
))
763 if (loopHeader
== BB
&& L
->contains(Pred
)) {
764 // Remove the branch from the latch to the header block, this makes
765 // the header dead, which will make the latch dead (because the header
766 // dominates the latch).
767 LPM
->deleteSimpleAnalysisValue(Pred
->getTerminator(), L
);
768 Pred
->getTerminator()->eraseFromParent();
769 new UnreachableInst(BB
->getContext(), Pred
);
771 // The loop is now broken, remove it from LI.
772 RemoveLoopFromHierarchy(L
);
774 // Reprocess the header, which now IS dead.
775 RemoveBlockIfDead(BB
, Worklist
, L
);
779 // If pred ends in a uncond branch, add uncond branch to worklist so that
780 // the two blocks will get merged.
781 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator()))
782 if (BI
->isUnconditional())
783 Worklist
.push_back(BI
);
788 DEBUG(errs() << "Nuking dead block: " << *BB
);
790 // Remove the instructions in the basic block from the worklist.
791 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
792 RemoveFromWorklist(I
, Worklist
);
794 // Anything that uses the instructions in this basic block should have their
795 // uses replaced with undefs.
797 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
800 // If this is the edge to the header block for a loop, remove the loop and
801 // promote all subloops.
802 if (Loop
*BBLoop
= LI
->getLoopFor(BB
)) {
803 if (BBLoop
->getLoopLatch() == BB
)
804 RemoveLoopFromHierarchy(BBLoop
);
807 // Remove the block from the loop info, which removes it from any loops it
812 // Remove phi node entries in successors for this block.
813 TerminatorInst
*TI
= BB
->getTerminator();
814 SmallVector
<BasicBlock
*, 4> Succs
;
815 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
816 Succs
.push_back(TI
->getSuccessor(i
));
817 TI
->getSuccessor(i
)->removePredecessor(BB
);
820 // Unique the successors, remove anything with multiple uses.
821 array_pod_sort(Succs
.begin(), Succs
.end());
822 Succs
.erase(std::unique(Succs
.begin(), Succs
.end()), Succs
.end());
824 // Remove the basic block, including all of the instructions contained in it.
825 LPM
->deleteSimpleAnalysisValue(BB
, L
);
826 BB
->eraseFromParent();
827 // Remove successor blocks here that are not dead, so that we know we only
828 // have dead blocks in this list. Nondead blocks have a way of becoming dead,
829 // then getting removed before we revisit them, which is badness.
831 for (unsigned i
= 0; i
!= Succs
.size(); ++i
)
832 if (pred_begin(Succs
[i
]) != pred_end(Succs
[i
])) {
833 // One exception is loop headers. If this block was the preheader for a
834 // loop, then we DO want to visit the loop so the loop gets deleted.
835 // We know that if the successor is a loop header, that this loop had to
836 // be the preheader: the case where this was the latch block was handled
837 // above and headers can only have two predecessors.
838 if (!LI
->isLoopHeader(Succs
[i
])) {
839 Succs
.erase(Succs
.begin()+i
);
844 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
)
845 RemoveBlockIfDead(Succs
[i
], Worklist
, L
);
848 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
849 /// become unwrapped, either because the backedge was deleted, or because the
850 /// edge into the header was removed. If the edge into the header from the
851 /// latch block was removed, the loop is unwrapped but subloops are still alive,
852 /// so they just reparent loops. If the loops are actually dead, they will be
854 void LoopUnswitch::RemoveLoopFromHierarchy(Loop
*L
) {
855 LPM
->deleteLoopFromQueue(L
);
856 RemoveLoopFromWorklist(L
);
859 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
860 // the value specified by Val in the specified loop, or we know it does NOT have
861 // that value. Rewrite any uses of LIC or of properties correlated to it.
862 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
865 assert(!isa
<Constant
>(LIC
) && "Why are we unswitching on a constant?");
867 // FIXME: Support correlated properties, like:
874 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
875 // selects, switches.
876 std::vector
<User
*> Users(LIC
->use_begin(), LIC
->use_end());
877 std::vector
<Instruction
*> Worklist
;
878 LLVMContext
&Context
= Val
->getContext();
881 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
882 // in the loop with the appropriate one directly.
883 if (IsEqual
|| (isa
<ConstantInt
>(Val
) &&
884 Val
->getType() == Type::getInt1Ty(Val
->getContext()))) {
889 Replacement
= ConstantInt::get(Type::getInt1Ty(Val
->getContext()),
890 !cast
<ConstantInt
>(Val
)->getZExtValue());
892 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
)
893 if (Instruction
*U
= cast
<Instruction
>(Users
[i
])) {
894 if (!L
->contains(U
->getParent()))
896 U
->replaceUsesOfWith(LIC
, Replacement
);
897 Worklist
.push_back(U
);
900 // Otherwise, we don't know the precise value of LIC, but we do know that it
901 // is certainly NOT "Val". As such, simplify any uses in the loop that we
902 // can. This case occurs when we unswitch switch statements.
903 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
)
904 if (Instruction
*U
= cast
<Instruction
>(Users
[i
])) {
905 if (!L
->contains(U
->getParent()))
908 Worklist
.push_back(U
);
910 // If we know that LIC is not Val, use this info to simplify code.
911 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(U
)) {
912 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
) {
913 if (SI
->getCaseValue(i
) == Val
) {
914 // Found a dead case value. Don't remove PHI nodes in the
915 // successor if they become single-entry, those PHI nodes may
916 // be in the Users list.
918 // FIXME: This is a hack. We need to keep the successor around
919 // and hooked up so as to preserve the loop structure, because
920 // trying to update it is complicated. So instead we preserve the
921 // loop structure and put the block on a dead code path.
922 BasicBlock
*Switch
= SI
->getParent();
923 SplitEdge(Switch
, SI
->getSuccessor(i
), this);
924 // Compute the successors instead of relying on the return value
925 // of SplitEdge, since it may have split the switch successor
927 BasicBlock
*NewSISucc
= SI
->getSuccessor(i
);
928 BasicBlock
*OldSISucc
= *succ_begin(NewSISucc
);
929 // Create an "unreachable" destination.
930 BasicBlock
*Abort
= BasicBlock::Create(Context
, "us-unreachable",
933 new UnreachableInst(Context
, Abort
);
934 // Force the new case destination to branch to the "unreachable"
935 // block while maintaining a (dead) CFG edge to the old block.
936 NewSISucc
->getTerminator()->eraseFromParent();
937 BranchInst::Create(Abort
, OldSISucc
,
938 ConstantInt::getTrue(Context
), NewSISucc
);
939 // Release the PHI operands for this edge.
940 for (BasicBlock::iterator II
= NewSISucc
->begin();
941 PHINode
*PN
= dyn_cast
<PHINode
>(II
); ++II
)
942 PN
->setIncomingValue(PN
->getBasicBlockIndex(Switch
),
943 UndefValue::get(PN
->getType()));
944 // Tell the domtree about the new block. We don't fully update the
945 // domtree here -- instead we force it to do a full recomputation
946 // after the pass is complete -- but we do need to inform it of
949 DT
->addNewBlock(Abort
, NewSISucc
);
955 // TODO: We could do other simplifications, for example, turning
956 // LIC == Val -> false.
960 SimplifyCode(Worklist
, L
);
963 /// SimplifyCode - Okay, now that we have simplified some instructions in the
964 /// loop, walk over it and constant prop, dce, and fold control flow where
965 /// possible. Note that this is effectively a very simple loop-structure-aware
966 /// optimizer. During processing of this loop, L could very well be deleted, so
967 /// it must not be used.
969 /// FIXME: When the loop optimizer is more mature, separate this out to a new
972 void LoopUnswitch::SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
) {
973 while (!Worklist
.empty()) {
974 Instruction
*I
= Worklist
.back();
977 // Simple constant folding.
978 if (Constant
*C
= ConstantFoldInstruction(I
, I
->getContext())) {
979 ReplaceUsesOfWith(I
, C
, Worklist
, L
, LPM
);
984 if (isInstructionTriviallyDead(I
)) {
985 DEBUG(errs() << "Remove dead instruction '" << *I
);
987 // Add uses to the worklist, which may be dead now.
988 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
989 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
990 Worklist
.push_back(Use
);
991 LPM
->deleteSimpleAnalysisValue(I
, L
);
992 RemoveFromWorklist(I
, Worklist
);
993 I
->eraseFromParent();
998 // Special case hacks that appear commonly in unswitched code.
999 switch (I
->getOpcode()) {
1000 case Instruction::Select
:
1001 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(I
->getOperand(0))) {
1002 ReplaceUsesOfWith(I
, I
->getOperand(!CB
->getZExtValue()+1), Worklist
, L
,
1007 case Instruction::And
:
1008 if (isa
<ConstantInt
>(I
->getOperand(0)) &&
1010 I
->getOperand(0)->getType() == Type::getInt1Ty(I
->getContext()))
1011 cast
<BinaryOperator
>(I
)->swapOperands();
1012 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(I
->getOperand(1)))
1013 if (CB
->getType() == Type::getInt1Ty(I
->getContext())) {
1014 if (CB
->isOne()) // X & 1 -> X
1015 ReplaceUsesOfWith(I
, I
->getOperand(0), Worklist
, L
, LPM
);
1017 ReplaceUsesOfWith(I
, I
->getOperand(1), Worklist
, L
, LPM
);
1021 case Instruction::Or
:
1022 if (isa
<ConstantInt
>(I
->getOperand(0)) &&
1024 I
->getOperand(0)->getType() == Type::getInt1Ty(I
->getContext()))
1025 cast
<BinaryOperator
>(I
)->swapOperands();
1026 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(I
->getOperand(1)))
1027 if (CB
->getType() == Type::getInt1Ty(I
->getContext())) {
1028 if (CB
->isOne()) // X | 1 -> 1
1029 ReplaceUsesOfWith(I
, I
->getOperand(1), Worklist
, L
, LPM
);
1031 ReplaceUsesOfWith(I
, I
->getOperand(0), Worklist
, L
, LPM
);
1035 case Instruction::Br
: {
1036 BranchInst
*BI
= cast
<BranchInst
>(I
);
1037 if (BI
->isUnconditional()) {
1038 // If BI's parent is the only pred of the successor, fold the two blocks
1040 BasicBlock
*Pred
= BI
->getParent();
1041 BasicBlock
*Succ
= BI
->getSuccessor(0);
1042 BasicBlock
*SinglePred
= Succ
->getSinglePredecessor();
1043 if (!SinglePred
) continue; // Nothing to do.
1044 assert(SinglePred
== Pred
&& "CFG broken");
1046 DEBUG(errs() << "Merging blocks: " << Pred
->getName() << " <- "
1047 << Succ
->getName() << "\n");
1049 // Resolve any single entry PHI nodes in Succ.
1050 while (PHINode
*PN
= dyn_cast
<PHINode
>(Succ
->begin()))
1051 ReplaceUsesOfWith(PN
, PN
->getIncomingValue(0), Worklist
, L
, LPM
);
1053 // Move all of the successor contents from Succ to Pred.
1054 Pred
->getInstList().splice(BI
, Succ
->getInstList(), Succ
->begin(),
1056 LPM
->deleteSimpleAnalysisValue(BI
, L
);
1057 BI
->eraseFromParent();
1058 RemoveFromWorklist(BI
, Worklist
);
1060 // If Succ has any successors with PHI nodes, update them to have
1061 // entries coming from Pred instead of Succ.
1062 Succ
->replaceAllUsesWith(Pred
);
1064 // Remove Succ from the loop tree.
1065 LI
->removeBlock(Succ
);
1066 LPM
->deleteSimpleAnalysisValue(Succ
, L
);
1067 Succ
->eraseFromParent();
1069 } else if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(BI
->getCondition())){
1070 // Conditional branch. Turn it into an unconditional branch, then
1071 // remove dead blocks.
1072 break; // FIXME: Enable.
1074 DEBUG(errs() << "Folded branch: " << *BI
);
1075 BasicBlock
*DeadSucc
= BI
->getSuccessor(CB
->getZExtValue());
1076 BasicBlock
*LiveSucc
= BI
->getSuccessor(!CB
->getZExtValue());
1077 DeadSucc
->removePredecessor(BI
->getParent(), true);
1078 Worklist
.push_back(BranchInst::Create(LiveSucc
, BI
));
1079 LPM
->deleteSimpleAnalysisValue(BI
, L
);
1080 BI
->eraseFromParent();
1081 RemoveFromWorklist(BI
, Worklist
);
1084 RemoveBlockIfDead(DeadSucc
, Worklist
, L
);