pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Transforms / Scalar / LoopUnswitch.cpp
blobb1f421467ec3bfdeb6f62b50c85297afa89ae3f8
1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
13 // for (...) if (lic)
14 // A for (...)
15 // if (lic) A; B; C
16 // B else
17 // C for (...)
18 // A; C
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
27 //===----------------------------------------------------------------------===//
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/DerivedTypes.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/Analysis/ConstantFolding.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/STLExtras.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <set>
51 using namespace llvm;
53 STATISTIC(NumBranches, "Number of branches unswitched");
54 STATISTIC(NumSwitches, "Number of switches unswitched");
55 STATISTIC(NumSelects , "Number of selects unswitched");
56 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
57 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
59 static cl::opt<unsigned>
60 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
61 cl::init(10), cl::Hidden);
63 namespace {
64 class LoopUnswitch : public LoopPass {
65 LoopInfo *LI; // Loop information
66 LPPassManager *LPM;
68 // LoopProcessWorklist - Used to check if second loop needs processing
69 // after RewriteLoopBodyWithConditionConstant rewrites first loop.
70 std::vector<Loop*> LoopProcessWorklist;
71 SmallPtrSet<Value *,8> UnswitchedVals;
73 bool OptimizeForSize;
74 bool redoLoop;
76 Loop *currentLoop;
77 DominanceFrontier *DF;
78 DominatorTree *DT;
79 BasicBlock *loopHeader;
80 BasicBlock *loopPreheader;
82 // LoopBlocks contains all of the basic blocks of the loop, including the
83 // preheader of the loop, the body of the loop, and the exit blocks of the
84 // loop, in that order.
85 std::vector<BasicBlock*> LoopBlocks;
86 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
87 std::vector<BasicBlock*> NewBlocks;
89 public:
90 static char ID; // Pass ID, replacement for typeid
91 explicit LoopUnswitch(bool Os = false) :
92 LoopPass(&ID), OptimizeForSize(Os), redoLoop(false),
93 currentLoop(NULL), DF(NULL), DT(NULL), loopHeader(NULL),
94 loopPreheader(NULL) {}
96 bool runOnLoop(Loop *L, LPPassManager &LPM);
97 bool processCurrentLoop();
99 /// This transformation requires natural loop information & requires that
100 /// loop preheaders be inserted into the CFG...
102 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
103 AU.addRequiredID(LoopSimplifyID);
104 AU.addPreservedID(LoopSimplifyID);
105 AU.addRequired<LoopInfo>();
106 AU.addPreserved<LoopInfo>();
107 AU.addRequiredID(LCSSAID);
108 AU.addPreservedID(LCSSAID);
109 AU.addPreserved<DominatorTree>();
110 AU.addPreserved<DominanceFrontier>();
113 private:
115 virtual void releaseMemory() {
116 UnswitchedVals.clear();
119 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
120 /// remove it.
121 void RemoveLoopFromWorklist(Loop *L) {
122 std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
123 LoopProcessWorklist.end(), L);
124 if (I != LoopProcessWorklist.end())
125 LoopProcessWorklist.erase(I);
128 void initLoopData() {
129 loopHeader = currentLoop->getHeader();
130 loopPreheader = currentLoop->getLoopPreheader();
133 /// Split all of the edges from inside the loop to their exit blocks.
134 /// Update the appropriate Phi nodes as we do so.
135 void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
137 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
138 unsigned getLoopUnswitchCost(Value *LIC);
139 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
140 BasicBlock *ExitBlock);
141 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
143 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
144 Constant *Val, bool isEqual);
146 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
147 BasicBlock *TrueDest,
148 BasicBlock *FalseDest,
149 Instruction *InsertPt);
151 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
152 void RemoveBlockIfDead(BasicBlock *BB,
153 std::vector<Instruction*> &Worklist, Loop *l);
154 void RemoveLoopFromHierarchy(Loop *L);
155 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
156 BasicBlock **LoopExit = 0);
160 char LoopUnswitch::ID = 0;
161 static RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
163 Pass *llvm::createLoopUnswitchPass(bool Os) {
164 return new LoopUnswitch(Os);
167 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
168 /// invariant in the loop, or has an invariant piece, return the invariant.
169 /// Otherwise, return null.
170 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
171 // Constants should be folded, not unswitched on!
172 if (isa<Constant>(Cond)) return 0;
174 // TODO: Handle: br (VARIANT|INVARIANT).
176 // Hoist simple values out.
177 if (L->makeLoopInvariant(Cond, Changed))
178 return Cond;
180 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
181 if (BO->getOpcode() == Instruction::And ||
182 BO->getOpcode() == Instruction::Or) {
183 // If either the left or right side is invariant, we can unswitch on this,
184 // which will cause the branch to go away in one loop and the condition to
185 // simplify in the other one.
186 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
187 return LHS;
188 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
189 return RHS;
192 return 0;
195 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
196 LI = &getAnalysis<LoopInfo>();
197 LPM = &LPM_Ref;
198 DF = getAnalysisIfAvailable<DominanceFrontier>();
199 DT = getAnalysisIfAvailable<DominatorTree>();
200 currentLoop = L;
201 Function *F = currentLoop->getHeader()->getParent();
202 bool Changed = false;
203 do {
204 assert(currentLoop->isLCSSAForm());
205 redoLoop = false;
206 Changed |= processCurrentLoop();
207 } while(redoLoop);
209 if (Changed) {
210 // FIXME: Reconstruct dom info, because it is not preserved properly.
211 if (DT)
212 DT->runOnFunction(*F);
213 if (DF)
214 DF->runOnFunction(*F);
216 return Changed;
219 /// processCurrentLoop - Do actual work and unswitch loop if possible
220 /// and profitable.
221 bool LoopUnswitch::processCurrentLoop() {
222 bool Changed = false;
223 LLVMContext &Context = currentLoop->getHeader()->getContext();
225 // Loop over all of the basic blocks in the loop. If we find an interior
226 // block that is branching on a loop-invariant condition, we can unswitch this
227 // loop.
228 for (Loop::block_iterator I = currentLoop->block_begin(),
229 E = currentLoop->block_end();
230 I != E; ++I) {
231 TerminatorInst *TI = (*I)->getTerminator();
232 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
233 // If this isn't branching on an invariant condition, we can't unswitch
234 // it.
235 if (BI->isConditional()) {
236 // See if this, or some part of it, is loop invariant. If so, we can
237 // unswitch on it if we desire.
238 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
239 currentLoop, Changed);
240 if (LoopCond && UnswitchIfProfitable(LoopCond,
241 ConstantInt::getTrue(Context))) {
242 ++NumBranches;
243 return true;
246 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
247 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
248 currentLoop, Changed);
249 if (LoopCond && SI->getNumCases() > 1) {
250 // Find a value to unswitch on:
251 // FIXME: this should chose the most expensive case!
252 Constant *UnswitchVal = SI->getCaseValue(1);
253 // Do not process same value again and again.
254 if (!UnswitchedVals.insert(UnswitchVal))
255 continue;
257 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
258 ++NumSwitches;
259 return true;
264 // Scan the instructions to check for unswitchable values.
265 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
266 BBI != E; ++BBI)
267 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
268 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
269 currentLoop, Changed);
270 if (LoopCond && UnswitchIfProfitable(LoopCond,
271 ConstantInt::getTrue(Context))) {
272 ++NumSelects;
273 return true;
277 return Changed;
280 /// isTrivialLoopExitBlock - Check to see if all paths from BB either:
281 /// 1. Exit the loop with no side effects.
282 /// 2. Branch to the latch block with no side-effects.
284 /// If these conditions are true, we return true and set ExitBB to the block we
285 /// exit through.
287 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
288 BasicBlock *&ExitBB,
289 std::set<BasicBlock*> &Visited) {
290 if (!Visited.insert(BB).second) {
291 // Already visited and Ok, end of recursion.
292 return true;
293 } else if (!L->contains(BB)) {
294 // Otherwise, this is a loop exit, this is fine so long as this is the
295 // first exit.
296 if (ExitBB != 0) return false;
297 ExitBB = BB;
298 return true;
301 // Otherwise, this is an unvisited intra-loop node. Check all successors.
302 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
303 // Check to see if the successor is a trivial loop exit.
304 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
305 return false;
308 // Okay, everything after this looks good, check to make sure that this block
309 // doesn't include any side effects.
310 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
311 if (I->mayHaveSideEffects())
312 return false;
314 return true;
317 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
318 /// leads to an exit from the specified loop, and has no side-effects in the
319 /// process. If so, return the block that is exited to, otherwise return null.
320 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
321 std::set<BasicBlock*> Visited;
322 Visited.insert(L->getHeader()); // Branches to header are ok.
323 BasicBlock *ExitBB = 0;
324 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
325 return ExitBB;
326 return 0;
329 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
330 /// trivial: that is, that the condition controls whether or not the loop does
331 /// anything at all. If this is a trivial condition, unswitching produces no
332 /// code duplications (equivalently, it produces a simpler loop and a new empty
333 /// loop, which gets deleted).
335 /// If this is a trivial condition, return true, otherwise return false. When
336 /// returning true, this sets Cond and Val to the condition that controls the
337 /// trivial condition: when Cond dynamically equals Val, the loop is known to
338 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
339 /// Cond == Val.
341 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
342 BasicBlock **LoopExit) {
343 BasicBlock *Header = currentLoop->getHeader();
344 TerminatorInst *HeaderTerm = Header->getTerminator();
345 LLVMContext &Context = Header->getContext();
347 BasicBlock *LoopExitBB = 0;
348 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
349 // If the header block doesn't end with a conditional branch on Cond, we
350 // can't handle it.
351 if (!BI->isConditional() || BI->getCondition() != Cond)
352 return false;
354 // Check to see if a successor of the branch is guaranteed to go to the
355 // latch block or exit through a one exit block without having any
356 // side-effects. If so, determine the value of Cond that causes it to do
357 // this.
358 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
359 BI->getSuccessor(0)))) {
360 if (Val) *Val = ConstantInt::getTrue(Context);
361 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
362 BI->getSuccessor(1)))) {
363 if (Val) *Val = ConstantInt::getFalse(Context);
365 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
366 // If this isn't a switch on Cond, we can't handle it.
367 if (SI->getCondition() != Cond) return false;
369 // Check to see if a successor of the switch is guaranteed to go to the
370 // latch block or exit through a one exit block without having any
371 // side-effects. If so, determine the value of Cond that causes it to do
372 // this. Note that we can't trivially unswitch on the default case.
373 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
374 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
375 SI->getSuccessor(i)))) {
376 // Okay, we found a trivial case, remember the value that is trivial.
377 if (Val) *Val = SI->getCaseValue(i);
378 break;
382 // If we didn't find a single unique LoopExit block, or if the loop exit block
383 // contains phi nodes, this isn't trivial.
384 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
385 return false; // Can't handle this.
387 if (LoopExit) *LoopExit = LoopExitBB;
389 // We already know that nothing uses any scalar values defined inside of this
390 // loop. As such, we just have to check to see if this loop will execute any
391 // side-effecting instructions (e.g. stores, calls, volatile loads) in the
392 // part of the loop that the code *would* execute. We already checked the
393 // tail, check the header now.
394 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
395 if (I->mayHaveSideEffects())
396 return false;
397 return true;
400 /// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
401 /// we choose to unswitch current loop on the specified value.
403 unsigned LoopUnswitch::getLoopUnswitchCost(Value *LIC) {
404 // If the condition is trivial, always unswitch. There is no code growth for
405 // this case.
406 if (IsTrivialUnswitchCondition(LIC))
407 return 0;
409 // FIXME: This is really overly conservative. However, more liberal
410 // estimations have thus far resulted in excessive unswitching, which is bad
411 // both in compile time and in code size. This should be replaced once
412 // someone figures out how a good estimation.
413 return currentLoop->getBlocks().size();
415 unsigned Cost = 0;
416 // FIXME: this is brain dead. It should take into consideration code
417 // shrinkage.
418 for (Loop::block_iterator I = currentLoop->block_begin(),
419 E = currentLoop->block_end();
420 I != E; ++I) {
421 BasicBlock *BB = *I;
422 // Do not include empty blocks in the cost calculation. This happen due to
423 // loop canonicalization and will be removed.
424 if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
425 continue;
427 // Count basic blocks.
428 ++Cost;
431 return Cost;
434 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
435 /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
436 /// unswitch the loop, reprocess the pieces, then return true.
437 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val){
439 initLoopData();
440 Function *F = loopHeader->getParent();
443 // Check to see if it would be profitable to unswitch current loop.
444 unsigned Cost = getLoopUnswitchCost(LoopCond);
446 // Do not do non-trivial unswitch while optimizing for size.
447 if (Cost && OptimizeForSize)
448 return false;
449 if (Cost && !F->isDeclaration() && F->hasFnAttr(Attribute::OptimizeForSize))
450 return false;
452 if (Cost > Threshold) {
453 // FIXME: this should estimate growth by the amount of code shared by the
454 // resultant unswitched loops.
456 DEBUG(errs() << "NOT unswitching loop %"
457 << currentLoop->getHeader()->getName() << ", cost too high: "
458 << currentLoop->getBlocks().size() << "\n");
459 return false;
462 Constant *CondVal;
463 BasicBlock *ExitBlock;
464 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
465 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
466 } else {
467 UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
470 return true;
473 // RemapInstruction - Convert the instruction operands from referencing the
474 // current values into those specified by ValueMap.
476 static inline void RemapInstruction(Instruction *I,
477 DenseMap<const Value *, Value*> &ValueMap) {
478 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
479 Value *Op = I->getOperand(op);
480 DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
481 if (It != ValueMap.end()) Op = It->second;
482 I->setOperand(op, Op);
486 /// CloneLoop - Recursively clone the specified loop and all of its children,
487 /// mapping the blocks with the specified map.
488 static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
489 LoopInfo *LI, LPPassManager *LPM) {
490 Loop *New = new Loop();
492 LPM->insertLoop(New, PL);
494 // Add all of the blocks in L to the new loop.
495 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
496 I != E; ++I)
497 if (LI->getLoopFor(*I) == L)
498 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
500 // Add all of the subloops to the new loop.
501 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
502 CloneLoop(*I, New, VM, LI, LPM);
504 return New;
507 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
508 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
509 /// code immediately before InsertPt.
510 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
511 BasicBlock *TrueDest,
512 BasicBlock *FalseDest,
513 Instruction *InsertPt) {
514 // Insert a conditional branch on LIC to the two preheaders. The original
515 // code is the true version and the new code is the false version.
516 Value *BranchVal = LIC;
517 if (!isa<ConstantInt>(Val) ||
518 Val->getType() != Type::getInt1Ty(LIC->getContext()))
519 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp");
520 else if (Val != ConstantInt::getTrue(Val->getContext()))
521 // We want to enter the new loop when the condition is true.
522 std::swap(TrueDest, FalseDest);
524 // Insert the new branch.
525 BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
527 // If either edge is critical, split it. This helps preserve LoopSimplify
528 // form for enclosing loops.
529 SplitCriticalEdge(BI, 0, this);
530 SplitCriticalEdge(BI, 1, this);
533 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
534 /// condition in it (a cond branch from its header block to its latch block,
535 /// where the path through the loop that doesn't execute its body has no
536 /// side-effects), unswitch it. This doesn't involve any code duplication, just
537 /// moving the conditional branch outside of the loop and updating loop info.
538 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
539 Constant *Val,
540 BasicBlock *ExitBlock) {
541 DEBUG(errs() << "loop-unswitch: Trivial-Unswitch loop %"
542 << loopHeader->getName() << " [" << L->getBlocks().size()
543 << " blocks] in Function " << L->getHeader()->getParent()->getName()
544 << " on cond: " << *Val << " == " << *Cond << "\n");
546 // First step, split the preheader, so that we know that there is a safe place
547 // to insert the conditional branch. We will change loopPreheader to have a
548 // conditional branch on Cond.
549 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
551 // Now that we have a place to insert the conditional branch, create a place
552 // to branch to: this is the exit block out of the loop that we should
553 // short-circuit to.
555 // Split this block now, so that the loop maintains its exit block, and so
556 // that the jump from the preheader can execute the contents of the exit block
557 // without actually branching to it (the exit block should be dominated by the
558 // loop header, not the preheader).
559 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
560 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
562 // Okay, now we have a position to branch from and a position to branch to,
563 // insert the new conditional branch.
564 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
565 loopPreheader->getTerminator());
566 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
567 loopPreheader->getTerminator()->eraseFromParent();
569 // We need to reprocess this loop, it could be unswitched again.
570 redoLoop = true;
572 // Now that we know that the loop is never entered when this condition is a
573 // particular value, rewrite the loop with this info. We know that this will
574 // at least eliminate the old branch.
575 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
576 ++NumTrivial;
579 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
580 /// blocks. Update the appropriate Phi nodes as we do so.
581 void LoopUnswitch::SplitExitEdges(Loop *L,
582 const SmallVector<BasicBlock *, 8> &ExitBlocks)
585 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
586 BasicBlock *ExitBlock = ExitBlocks[i];
587 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
588 pred_end(ExitBlock));
589 SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(),
590 ".us-lcssa", this);
594 /// UnswitchNontrivialCondition - We determined that the loop is profitable
595 /// to unswitch when LIC equal Val. Split it into loop versions and test the
596 /// condition outside of either loop. Return the loops created as Out1/Out2.
597 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
598 Loop *L) {
599 Function *F = loopHeader->getParent();
600 DEBUG(errs() << "loop-unswitch: Unswitching loop %"
601 << loopHeader->getName() << " [" << L->getBlocks().size()
602 << " blocks] in Function " << F->getName()
603 << " when '" << *Val << "' == " << *LIC << "\n");
605 LoopBlocks.clear();
606 NewBlocks.clear();
608 // First step, split the preheader and exit blocks, and add these blocks to
609 // the LoopBlocks list.
610 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
611 LoopBlocks.push_back(NewPreheader);
613 // We want the loop to come after the preheader, but before the exit blocks.
614 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
616 SmallVector<BasicBlock*, 8> ExitBlocks;
617 L->getUniqueExitBlocks(ExitBlocks);
619 // Split all of the edges from inside the loop to their exit blocks. Update
620 // the appropriate Phi nodes as we do so.
621 SplitExitEdges(L, ExitBlocks);
623 // The exit blocks may have been changed due to edge splitting, recompute.
624 ExitBlocks.clear();
625 L->getUniqueExitBlocks(ExitBlocks);
627 // Add exit blocks to the loop blocks.
628 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
630 // Next step, clone all of the basic blocks that make up the loop (including
631 // the loop preheader and exit blocks), keeping track of the mapping between
632 // the instructions and blocks.
633 NewBlocks.reserve(LoopBlocks.size());
634 DenseMap<const Value*, Value*> ValueMap;
635 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
636 BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
637 NewBlocks.push_back(New);
638 ValueMap[LoopBlocks[i]] = New; // Keep the BB mapping.
639 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], New, L);
642 // Splice the newly inserted blocks into the function right before the
643 // original preheader.
644 F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
645 NewBlocks[0], F->end());
647 // Now we create the new Loop object for the versioned loop.
648 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
649 Loop *ParentLoop = L->getParentLoop();
650 if (ParentLoop) {
651 // Make sure to add the cloned preheader and exit blocks to the parent loop
652 // as well.
653 ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
656 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
657 BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
658 // The new exit block should be in the same loop as the old one.
659 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
660 ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
662 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
663 "Exit block should have been split to have one successor!");
664 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
666 // If the successor of the exit block had PHI nodes, add an entry for
667 // NewExit.
668 PHINode *PN;
669 for (BasicBlock::iterator I = ExitSucc->begin();
670 (PN = dyn_cast<PHINode>(I)); ++I) {
671 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
672 DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
673 if (It != ValueMap.end()) V = It->second;
674 PN->addIncoming(V, NewExit);
678 // Rewrite the code to refer to itself.
679 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
680 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
681 E = NewBlocks[i]->end(); I != E; ++I)
682 RemapInstruction(I, ValueMap);
684 // Rewrite the original preheader to select between versions of the loop.
685 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
686 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
687 "Preheader splitting did not work correctly!");
689 // Emit the new branch that selects between the two versions of this loop.
690 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
691 LPM->deleteSimpleAnalysisValue(OldBR, L);
692 OldBR->eraseFromParent();
694 LoopProcessWorklist.push_back(NewLoop);
695 redoLoop = true;
697 // Now we rewrite the original code to know that the condition is true and the
698 // new code to know that the condition is false.
699 RewriteLoopBodyWithConditionConstant(L , LIC, Val, false);
701 // It's possible that simplifying one loop could cause the other to be
702 // deleted. If so, don't simplify it.
703 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
704 RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
708 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
709 /// specified.
710 static void RemoveFromWorklist(Instruction *I,
711 std::vector<Instruction*> &Worklist) {
712 std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
713 Worklist.end(), I);
714 while (WI != Worklist.end()) {
715 unsigned Offset = WI-Worklist.begin();
716 Worklist.erase(WI);
717 WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
721 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
722 /// program, replacing all uses with V and update the worklist.
723 static void ReplaceUsesOfWith(Instruction *I, Value *V,
724 std::vector<Instruction*> &Worklist,
725 Loop *L, LPPassManager *LPM) {
726 DEBUG(errs() << "Replace with '" << *V << "': " << *I);
728 // Add uses to the worklist, which may be dead now.
729 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
730 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
731 Worklist.push_back(Use);
733 // Add users to the worklist which may be simplified now.
734 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
735 UI != E; ++UI)
736 Worklist.push_back(cast<Instruction>(*UI));
737 LPM->deleteSimpleAnalysisValue(I, L);
738 RemoveFromWorklist(I, Worklist);
739 I->replaceAllUsesWith(V);
740 I->eraseFromParent();
741 ++NumSimplify;
744 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
745 /// information, and remove any dead successors it has.
747 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
748 std::vector<Instruction*> &Worklist,
749 Loop *L) {
750 if (pred_begin(BB) != pred_end(BB)) {
751 // This block isn't dead, since an edge to BB was just removed, see if there
752 // are any easy simplifications we can do now.
753 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
754 // If it has one pred, fold phi nodes in BB.
755 while (isa<PHINode>(BB->begin()))
756 ReplaceUsesOfWith(BB->begin(),
757 cast<PHINode>(BB->begin())->getIncomingValue(0),
758 Worklist, L, LPM);
760 // If this is the header of a loop and the only pred is the latch, we now
761 // have an unreachable loop.
762 if (Loop *L = LI->getLoopFor(BB))
763 if (loopHeader == BB && L->contains(Pred)) {
764 // Remove the branch from the latch to the header block, this makes
765 // the header dead, which will make the latch dead (because the header
766 // dominates the latch).
767 LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
768 Pred->getTerminator()->eraseFromParent();
769 new UnreachableInst(BB->getContext(), Pred);
771 // The loop is now broken, remove it from LI.
772 RemoveLoopFromHierarchy(L);
774 // Reprocess the header, which now IS dead.
775 RemoveBlockIfDead(BB, Worklist, L);
776 return;
779 // If pred ends in a uncond branch, add uncond branch to worklist so that
780 // the two blocks will get merged.
781 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
782 if (BI->isUnconditional())
783 Worklist.push_back(BI);
785 return;
788 DEBUG(errs() << "Nuking dead block: " << *BB);
790 // Remove the instructions in the basic block from the worklist.
791 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
792 RemoveFromWorklist(I, Worklist);
794 // Anything that uses the instructions in this basic block should have their
795 // uses replaced with undefs.
796 if (!I->use_empty())
797 I->replaceAllUsesWith(UndefValue::get(I->getType()));
800 // If this is the edge to the header block for a loop, remove the loop and
801 // promote all subloops.
802 if (Loop *BBLoop = LI->getLoopFor(BB)) {
803 if (BBLoop->getLoopLatch() == BB)
804 RemoveLoopFromHierarchy(BBLoop);
807 // Remove the block from the loop info, which removes it from any loops it
808 // was in.
809 LI->removeBlock(BB);
812 // Remove phi node entries in successors for this block.
813 TerminatorInst *TI = BB->getTerminator();
814 SmallVector<BasicBlock*, 4> Succs;
815 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
816 Succs.push_back(TI->getSuccessor(i));
817 TI->getSuccessor(i)->removePredecessor(BB);
820 // Unique the successors, remove anything with multiple uses.
821 array_pod_sort(Succs.begin(), Succs.end());
822 Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
824 // Remove the basic block, including all of the instructions contained in it.
825 LPM->deleteSimpleAnalysisValue(BB, L);
826 BB->eraseFromParent();
827 // Remove successor blocks here that are not dead, so that we know we only
828 // have dead blocks in this list. Nondead blocks have a way of becoming dead,
829 // then getting removed before we revisit them, which is badness.
831 for (unsigned i = 0; i != Succs.size(); ++i)
832 if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
833 // One exception is loop headers. If this block was the preheader for a
834 // loop, then we DO want to visit the loop so the loop gets deleted.
835 // We know that if the successor is a loop header, that this loop had to
836 // be the preheader: the case where this was the latch block was handled
837 // above and headers can only have two predecessors.
838 if (!LI->isLoopHeader(Succs[i])) {
839 Succs.erase(Succs.begin()+i);
840 --i;
844 for (unsigned i = 0, e = Succs.size(); i != e; ++i)
845 RemoveBlockIfDead(Succs[i], Worklist, L);
848 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
849 /// become unwrapped, either because the backedge was deleted, or because the
850 /// edge into the header was removed. If the edge into the header from the
851 /// latch block was removed, the loop is unwrapped but subloops are still alive,
852 /// so they just reparent loops. If the loops are actually dead, they will be
853 /// removed later.
854 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
855 LPM->deleteLoopFromQueue(L);
856 RemoveLoopFromWorklist(L);
859 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
860 // the value specified by Val in the specified loop, or we know it does NOT have
861 // that value. Rewrite any uses of LIC or of properties correlated to it.
862 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
863 Constant *Val,
864 bool IsEqual) {
865 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
867 // FIXME: Support correlated properties, like:
868 // for (...)
869 // if (li1 < li2)
870 // ...
871 // if (li1 > li2)
872 // ...
874 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
875 // selects, switches.
876 std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
877 std::vector<Instruction*> Worklist;
878 LLVMContext &Context = Val->getContext();
881 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
882 // in the loop with the appropriate one directly.
883 if (IsEqual || (isa<ConstantInt>(Val) &&
884 Val->getType() == Type::getInt1Ty(Val->getContext()))) {
885 Value *Replacement;
886 if (IsEqual)
887 Replacement = Val;
888 else
889 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
890 !cast<ConstantInt>(Val)->getZExtValue());
892 for (unsigned i = 0, e = Users.size(); i != e; ++i)
893 if (Instruction *U = cast<Instruction>(Users[i])) {
894 if (!L->contains(U->getParent()))
895 continue;
896 U->replaceUsesOfWith(LIC, Replacement);
897 Worklist.push_back(U);
899 } else {
900 // Otherwise, we don't know the precise value of LIC, but we do know that it
901 // is certainly NOT "Val". As such, simplify any uses in the loop that we
902 // can. This case occurs when we unswitch switch statements.
903 for (unsigned i = 0, e = Users.size(); i != e; ++i)
904 if (Instruction *U = cast<Instruction>(Users[i])) {
905 if (!L->contains(U->getParent()))
906 continue;
908 Worklist.push_back(U);
910 // If we know that LIC is not Val, use this info to simplify code.
911 if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
912 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
913 if (SI->getCaseValue(i) == Val) {
914 // Found a dead case value. Don't remove PHI nodes in the
915 // successor if they become single-entry, those PHI nodes may
916 // be in the Users list.
918 // FIXME: This is a hack. We need to keep the successor around
919 // and hooked up so as to preserve the loop structure, because
920 // trying to update it is complicated. So instead we preserve the
921 // loop structure and put the block on a dead code path.
922 BasicBlock *Switch = SI->getParent();
923 SplitEdge(Switch, SI->getSuccessor(i), this);
924 // Compute the successors instead of relying on the return value
925 // of SplitEdge, since it may have split the switch successor
926 // after PHI nodes.
927 BasicBlock *NewSISucc = SI->getSuccessor(i);
928 BasicBlock *OldSISucc = *succ_begin(NewSISucc);
929 // Create an "unreachable" destination.
930 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
931 Switch->getParent(),
932 OldSISucc);
933 new UnreachableInst(Context, Abort);
934 // Force the new case destination to branch to the "unreachable"
935 // block while maintaining a (dead) CFG edge to the old block.
936 NewSISucc->getTerminator()->eraseFromParent();
937 BranchInst::Create(Abort, OldSISucc,
938 ConstantInt::getTrue(Context), NewSISucc);
939 // Release the PHI operands for this edge.
940 for (BasicBlock::iterator II = NewSISucc->begin();
941 PHINode *PN = dyn_cast<PHINode>(II); ++II)
942 PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
943 UndefValue::get(PN->getType()));
944 // Tell the domtree about the new block. We don't fully update the
945 // domtree here -- instead we force it to do a full recomputation
946 // after the pass is complete -- but we do need to inform it of
947 // new blocks.
948 if (DT)
949 DT->addNewBlock(Abort, NewSISucc);
950 break;
955 // TODO: We could do other simplifications, for example, turning
956 // LIC == Val -> false.
960 SimplifyCode(Worklist, L);
963 /// SimplifyCode - Okay, now that we have simplified some instructions in the
964 /// loop, walk over it and constant prop, dce, and fold control flow where
965 /// possible. Note that this is effectively a very simple loop-structure-aware
966 /// optimizer. During processing of this loop, L could very well be deleted, so
967 /// it must not be used.
969 /// FIXME: When the loop optimizer is more mature, separate this out to a new
970 /// pass.
972 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
973 while (!Worklist.empty()) {
974 Instruction *I = Worklist.back();
975 Worklist.pop_back();
977 // Simple constant folding.
978 if (Constant *C = ConstantFoldInstruction(I, I->getContext())) {
979 ReplaceUsesOfWith(I, C, Worklist, L, LPM);
980 continue;
983 // Simple DCE.
984 if (isInstructionTriviallyDead(I)) {
985 DEBUG(errs() << "Remove dead instruction '" << *I);
987 // Add uses to the worklist, which may be dead now.
988 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
989 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
990 Worklist.push_back(Use);
991 LPM->deleteSimpleAnalysisValue(I, L);
992 RemoveFromWorklist(I, Worklist);
993 I->eraseFromParent();
994 ++NumSimplify;
995 continue;
998 // Special case hacks that appear commonly in unswitched code.
999 switch (I->getOpcode()) {
1000 case Instruction::Select:
1001 if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
1002 ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist, L,
1003 LPM);
1004 continue;
1006 break;
1007 case Instruction::And:
1008 if (isa<ConstantInt>(I->getOperand(0)) &&
1009 // constant -> RHS
1010 I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext()))
1011 cast<BinaryOperator>(I)->swapOperands();
1012 if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1013 if (CB->getType() == Type::getInt1Ty(I->getContext())) {
1014 if (CB->isOne()) // X & 1 -> X
1015 ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1016 else // X & 0 -> 0
1017 ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1018 continue;
1020 break;
1021 case Instruction::Or:
1022 if (isa<ConstantInt>(I->getOperand(0)) &&
1023 // constant -> RHS
1024 I->getOperand(0)->getType() == Type::getInt1Ty(I->getContext()))
1025 cast<BinaryOperator>(I)->swapOperands();
1026 if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1027 if (CB->getType() == Type::getInt1Ty(I->getContext())) {
1028 if (CB->isOne()) // X | 1 -> 1
1029 ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1030 else // X | 0 -> X
1031 ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1032 continue;
1034 break;
1035 case Instruction::Br: {
1036 BranchInst *BI = cast<BranchInst>(I);
1037 if (BI->isUnconditional()) {
1038 // If BI's parent is the only pred of the successor, fold the two blocks
1039 // together.
1040 BasicBlock *Pred = BI->getParent();
1041 BasicBlock *Succ = BI->getSuccessor(0);
1042 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1043 if (!SinglePred) continue; // Nothing to do.
1044 assert(SinglePred == Pred && "CFG broken");
1046 DEBUG(errs() << "Merging blocks: " << Pred->getName() << " <- "
1047 << Succ->getName() << "\n");
1049 // Resolve any single entry PHI nodes in Succ.
1050 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1051 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1053 // Move all of the successor contents from Succ to Pred.
1054 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1055 Succ->end());
1056 LPM->deleteSimpleAnalysisValue(BI, L);
1057 BI->eraseFromParent();
1058 RemoveFromWorklist(BI, Worklist);
1060 // If Succ has any successors with PHI nodes, update them to have
1061 // entries coming from Pred instead of Succ.
1062 Succ->replaceAllUsesWith(Pred);
1064 // Remove Succ from the loop tree.
1065 LI->removeBlock(Succ);
1066 LPM->deleteSimpleAnalysisValue(Succ, L);
1067 Succ->eraseFromParent();
1068 ++NumSimplify;
1069 } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1070 // Conditional branch. Turn it into an unconditional branch, then
1071 // remove dead blocks.
1072 break; // FIXME: Enable.
1074 DEBUG(errs() << "Folded branch: " << *BI);
1075 BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1076 BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1077 DeadSucc->removePredecessor(BI->getParent(), true);
1078 Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1079 LPM->deleteSimpleAnalysisValue(BI, L);
1080 BI->eraseFromParent();
1081 RemoveFromWorklist(BI, Worklist);
1082 ++NumSimplify;
1084 RemoveBlockIfDead(DeadSucc, Worklist, L);
1086 break;