pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Transforms / Scalar / TailDuplication.cpp
blob4bad708116651c6e43ed24da57c7537c718cdf85
1 //===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a limited form of tail duplication, intended to simplify
11 // CFGs by removing some unconditional branches. This pass is necessary to
12 // straighten out loops created by the C front-end, but also is capable of
13 // making other code nicer. After this pass is run, the CFG simplify pass
14 // should be run to clean up the mess.
16 // This pass could be enhanced in the future to use profile information to be
17 // more aggressive.
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "tailduplicate"
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/Constant.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Type.h"
29 #include "llvm/Support/CFG.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include <map>
38 using namespace llvm;
40 STATISTIC(NumEliminated, "Number of unconditional branches eliminated");
42 static cl::opt<unsigned>
43 TailDupThreshold("taildup-threshold",
44 cl::desc("Max block size to tail duplicate"),
45 cl::init(1), cl::Hidden);
47 namespace {
48 class TailDup : public FunctionPass {
49 bool runOnFunction(Function &F);
50 public:
51 static char ID; // Pass identification, replacement for typeid
52 TailDup() : FunctionPass(&ID) {}
54 private:
55 inline bool shouldEliminateUnconditionalBranch(TerminatorInst *, unsigned);
56 inline void eliminateUnconditionalBranch(BranchInst *BI);
57 SmallPtrSet<BasicBlock*, 4> CycleDetector;
61 char TailDup::ID = 0;
62 static RegisterPass<TailDup> X("tailduplicate", "Tail Duplication");
64 // Public interface to the Tail Duplication pass
65 FunctionPass *llvm::createTailDuplicationPass() { return new TailDup(); }
67 /// runOnFunction - Top level algorithm - Loop over each unconditional branch in
68 /// the function, eliminating it if it looks attractive enough. CycleDetector
69 /// prevents infinite loops by checking that we aren't redirecting a branch to
70 /// a place it already pointed to earlier; see PR 2323.
71 bool TailDup::runOnFunction(Function &F) {
72 bool Changed = false;
73 CycleDetector.clear();
74 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
75 if (shouldEliminateUnconditionalBranch(I->getTerminator(),
76 TailDupThreshold)) {
77 eliminateUnconditionalBranch(cast<BranchInst>(I->getTerminator()));
78 Changed = true;
79 } else {
80 ++I;
81 CycleDetector.clear();
84 return Changed;
87 /// shouldEliminateUnconditionalBranch - Return true if this branch looks
88 /// attractive to eliminate. We eliminate the branch if the destination basic
89 /// block has <= 5 instructions in it, not counting PHI nodes. In practice,
90 /// since one of these is a terminator instruction, this means that we will add
91 /// up to 4 instructions to the new block.
92 ///
93 /// We don't count PHI nodes in the count since they will be removed when the
94 /// contents of the block are copied over.
95 ///
96 bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI,
97 unsigned Threshold) {
98 BranchInst *BI = dyn_cast<BranchInst>(TI);
99 if (!BI || !BI->isUnconditional()) return false; // Not an uncond branch!
101 BasicBlock *Dest = BI->getSuccessor(0);
102 if (Dest == BI->getParent()) return false; // Do not loop infinitely!
104 // Do not inline a block if we will just get another branch to the same block!
105 TerminatorInst *DTI = Dest->getTerminator();
106 if (BranchInst *DBI = dyn_cast<BranchInst>(DTI))
107 if (DBI->isUnconditional() && DBI->getSuccessor(0) == Dest)
108 return false; // Do not loop infinitely!
110 // FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack,
111 // because doing so would require breaking critical edges. This should be
112 // fixed eventually.
113 if (!DTI->use_empty())
114 return false;
116 // Do not bother with blocks with only a single predecessor: simplify
117 // CFG will fold these two blocks together!
118 pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest);
119 ++PI;
120 if (PI == PE) return false; // Exactly one predecessor!
122 BasicBlock::iterator I = Dest->getFirstNonPHI();
124 for (unsigned Size = 0; I != Dest->end(); ++I) {
125 if (Size == Threshold) return false; // The block is too large.
127 // Don't tail duplicate call instructions. They are very large compared to
128 // other instructions.
129 if (isa<CallInst>(I) || isa<InvokeInst>(I)) return false;
131 // Allso alloca and malloc.
132 if (isa<AllocationInst>(I)) return false;
134 // Some vector instructions can expand into a number of instructions.
135 if (isa<ShuffleVectorInst>(I) || isa<ExtractElementInst>(I) ||
136 isa<InsertElementInst>(I)) return false;
138 // Only count instructions that are not debugger intrinsics.
139 if (!isa<DbgInfoIntrinsic>(I)) ++Size;
142 // Do not tail duplicate a block that has thousands of successors into a block
143 // with a single successor if the block has many other predecessors. This can
144 // cause an N^2 explosion in CFG edges (and PHI node entries), as seen in
145 // cases that have a large number of indirect gotos.
146 unsigned NumSuccs = DTI->getNumSuccessors();
147 if (NumSuccs > 8) {
148 unsigned TooMany = 128;
149 if (NumSuccs >= TooMany) return false;
150 TooMany = TooMany/NumSuccs;
151 for (; PI != PE; ++PI)
152 if (TooMany-- == 0) return false;
155 // If this unconditional branch is a fall-through, be careful about
156 // tail duplicating it. In particular, we don't want to taildup it if the
157 // original block will still be there after taildup is completed: doing so
158 // would eliminate the fall-through, requiring unconditional branches.
159 Function::iterator DestI = Dest;
160 if (&*--DestI == BI->getParent()) {
161 // The uncond branch is a fall-through. Tail duplication of the block is
162 // will eliminate the fall-through-ness and end up cloning the terminator
163 // at the end of the Dest block. Since the original Dest block will
164 // continue to exist, this means that one or the other will not be able to
165 // fall through. One typical example that this helps with is code like:
166 // if (a)
167 // foo();
168 // if (b)
169 // foo();
170 // Cloning the 'if b' block into the end of the first foo block is messy.
172 // The messy case is when the fall-through block falls through to other
173 // blocks. This is what we would be preventing if we cloned the block.
174 DestI = Dest;
175 if (++DestI != Dest->getParent()->end()) {
176 BasicBlock *DestSucc = DestI;
177 // If any of Dest's successors are fall-throughs, don't do this xform.
178 for (succ_iterator SI = succ_begin(Dest), SE = succ_end(Dest);
179 SI != SE; ++SI)
180 if (*SI == DestSucc)
181 return false;
185 // Finally, check that we haven't redirected to this target block earlier;
186 // there are cases where we loop forever if we don't check this (PR 2323).
187 if (!CycleDetector.insert(Dest))
188 return false;
190 return true;
193 /// FindObviousSharedDomOf - We know there is a branch from SrcBlock to
194 /// DestBlock, and that SrcBlock is not the only predecessor of DstBlock. If we
195 /// can find a predecessor of SrcBlock that is a dominator of both SrcBlock and
196 /// DstBlock, return it.
197 static BasicBlock *FindObviousSharedDomOf(BasicBlock *SrcBlock,
198 BasicBlock *DstBlock) {
199 // SrcBlock must have a single predecessor.
200 pred_iterator PI = pred_begin(SrcBlock), PE = pred_end(SrcBlock);
201 if (PI == PE || ++PI != PE) return 0;
203 BasicBlock *SrcPred = *pred_begin(SrcBlock);
205 // Look at the predecessors of DstBlock. One of them will be SrcBlock. If
206 // there is only one other pred, get it, otherwise we can't handle it.
207 PI = pred_begin(DstBlock); PE = pred_end(DstBlock);
208 BasicBlock *DstOtherPred = 0;
209 if (*PI == SrcBlock) {
210 if (++PI == PE) return 0;
211 DstOtherPred = *PI;
212 if (++PI != PE) return 0;
213 } else {
214 DstOtherPred = *PI;
215 if (++PI == PE || *PI != SrcBlock || ++PI != PE) return 0;
218 // We can handle two situations here: "if then" and "if then else" blocks. An
219 // 'if then' situation is just where DstOtherPred == SrcPred.
220 if (DstOtherPred == SrcPred)
221 return SrcPred;
223 // Check to see if we have an "if then else" situation, which means that
224 // DstOtherPred will have a single predecessor and it will be SrcPred.
225 PI = pred_begin(DstOtherPred); PE = pred_end(DstOtherPred);
226 if (PI != PE && *PI == SrcPred) {
227 if (++PI != PE) return 0; // Not a single pred.
228 return SrcPred; // Otherwise, it's an "if then" situation. Return the if.
231 // Otherwise, this is something we can't handle.
232 return 0;
236 /// eliminateUnconditionalBranch - Clone the instructions from the destination
237 /// block into the source block, eliminating the specified unconditional branch.
238 /// If the destination block defines values used by successors of the dest
239 /// block, we may need to insert PHI nodes.
241 void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
242 BasicBlock *SourceBlock = Branch->getParent();
243 BasicBlock *DestBlock = Branch->getSuccessor(0);
244 assert(SourceBlock != DestBlock && "Our predicate is broken!");
246 DEBUG(errs() << "TailDuplication[" << SourceBlock->getParent()->getName()
247 << "]: Eliminating branch: " << *Branch);
249 // See if we can avoid duplicating code by moving it up to a dominator of both
250 // blocks.
251 if (BasicBlock *DomBlock = FindObviousSharedDomOf(SourceBlock, DestBlock)) {
252 DEBUG(errs() << "Found shared dominator: " << DomBlock->getName() << "\n");
254 // If there are non-phi instructions in DestBlock that have no operands
255 // defined in DestBlock, and if the instruction has no side effects, we can
256 // move the instruction to DomBlock instead of duplicating it.
257 BasicBlock::iterator BBI = DestBlock->getFirstNonPHI();
258 while (!isa<TerminatorInst>(BBI)) {
259 Instruction *I = BBI++;
261 bool CanHoist = I->isSafeToSpeculativelyExecute() &&
262 !I->mayReadFromMemory();
263 if (CanHoist) {
264 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
265 if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(op)))
266 if (OpI->getParent() == DestBlock ||
267 (isa<InvokeInst>(OpI) && OpI->getParent() == DomBlock)) {
268 CanHoist = false;
269 break;
271 if (CanHoist) {
272 // Remove from DestBlock, move right before the term in DomBlock.
273 DestBlock->getInstList().remove(I);
274 DomBlock->getInstList().insert(DomBlock->getTerminator(), I);
275 DEBUG(errs() << "Hoisted: " << *I);
281 // Tail duplication can not update SSA properties correctly if the values
282 // defined in the duplicated tail are used outside of the tail itself. For
283 // this reason, we spill all values that are used outside of the tail to the
284 // stack.
285 for (BasicBlock::iterator I = DestBlock->begin(); I != DestBlock->end(); ++I)
286 if (I->isUsedOutsideOfBlock(DestBlock)) {
287 // We found a use outside of the tail. Create a new stack slot to
288 // break this inter-block usage pattern.
289 DemoteRegToStack(*I);
292 // We are going to have to map operands from the original block B to the new
293 // copy of the block B'. If there are PHI nodes in the DestBlock, these PHI
294 // nodes also define part of this mapping. Loop over these PHI nodes, adding
295 // them to our mapping.
297 std::map<Value*, Value*> ValueMapping;
299 BasicBlock::iterator BI = DestBlock->begin();
300 bool HadPHINodes = isa<PHINode>(BI);
301 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
302 ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock);
304 // Clone the non-phi instructions of the dest block into the source block,
305 // keeping track of the mapping...
307 for (; BI != DestBlock->end(); ++BI) {
308 Instruction *New = BI->clone(BI->getContext());
309 New->setName(BI->getName());
310 SourceBlock->getInstList().push_back(New);
311 ValueMapping[BI] = New;
314 // Now that we have built the mapping information and cloned all of the
315 // instructions (giving us a new terminator, among other things), walk the new
316 // instructions, rewriting references of old instructions to use new
317 // instructions.
319 BI = Branch; ++BI; // Get an iterator to the first new instruction
320 for (; BI != SourceBlock->end(); ++BI)
321 for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) {
322 std::map<Value*, Value*>::const_iterator I =
323 ValueMapping.find(BI->getOperand(i));
324 if (I != ValueMapping.end())
325 BI->setOperand(i, I->second);
328 // Next we check to see if any of the successors of DestBlock had PHI nodes.
329 // If so, we need to add entries to the PHI nodes for SourceBlock now.
330 for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock);
331 SI != SE; ++SI) {
332 BasicBlock *Succ = *SI;
333 for (BasicBlock::iterator PNI = Succ->begin(); isa<PHINode>(PNI); ++PNI) {
334 PHINode *PN = cast<PHINode>(PNI);
335 // Ok, we have a PHI node. Figure out what the incoming value was for the
336 // DestBlock.
337 Value *IV = PN->getIncomingValueForBlock(DestBlock);
339 // Remap the value if necessary...
340 std::map<Value*, Value*>::const_iterator I = ValueMapping.find(IV);
341 if (I != ValueMapping.end())
342 IV = I->second;
343 PN->addIncoming(IV, SourceBlock);
347 // Next, remove the old branch instruction, and any PHI node entries that we
348 // had.
349 BI = Branch; ++BI; // Get an iterator to the first new instruction
350 DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes...
351 SourceBlock->getInstList().erase(Branch); // Destroy the uncond branch...
353 // Final step: now that we have finished everything up, walk the cloned
354 // instructions one last time, constant propagating and DCE'ing them, because
355 // they may not be needed anymore.
357 if (HadPHINodes) {
358 while (BI != SourceBlock->end()) {
359 Instruction *Inst = BI++;
360 if (isInstructionTriviallyDead(Inst))
361 Inst->eraseFromParent();
362 else if (Constant *C = ConstantFoldInstruction(Inst,
363 Inst->getContext())) {
364 Inst->replaceAllUsesWith(C);
365 Inst->eraseFromParent();
370 ++NumEliminated; // We just killed a branch!