1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Function.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/Constant.h"
21 #include "llvm/Type.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/Dominators.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/ValueHandle.h"
33 /// DeleteDeadBlock - Delete the specified block, which must have no
35 void llvm::DeleteDeadBlock(BasicBlock
*BB
) {
36 assert((pred_begin(BB
) == pred_end(BB
) ||
37 // Can delete self loop.
38 BB
->getSinglePredecessor() == BB
) && "Block is not dead!");
39 TerminatorInst
*BBTerm
= BB
->getTerminator();
41 // Loop through all of our successors and make sure they know that one
42 // of their predecessors is going away.
43 for (unsigned i
= 0, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
)
44 BBTerm
->getSuccessor(i
)->removePredecessor(BB
);
46 // Zap all the instructions in the block.
47 while (!BB
->empty()) {
48 Instruction
&I
= BB
->back();
49 // If this instruction is used, replace uses with an arbitrary value.
50 // Because control flow can't get here, we don't care what we replace the
51 // value with. Note that since this block is unreachable, and all values
52 // contained within it must dominate their uses, that all uses will
53 // eventually be removed (they are themselves dead).
55 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
56 BB
->getInstList().pop_back();
60 BB
->eraseFromParent();
63 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
64 /// any single-entry PHI nodes in it, fold them away. This handles the case
65 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
66 /// when the block has exactly one predecessor.
67 void llvm::FoldSingleEntryPHINodes(BasicBlock
*BB
) {
68 if (!isa
<PHINode
>(BB
->begin()))
71 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
72 if (PN
->getIncomingValue(0) != PN
)
73 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
75 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
76 PN
->eraseFromParent();
81 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
82 /// is dead. Also recursively delete any operands that become dead as
83 /// a result. This includes tracing the def-use list from the PHI to see if
84 /// it is ultimately unused or if it reaches an unused cycle.
85 void llvm::DeleteDeadPHIs(BasicBlock
*BB
) {
86 // Recursively deleting a PHI may cause multiple PHIs to be deleted
87 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
88 SmallVector
<WeakVH
, 8> PHIs
;
89 for (BasicBlock::iterator I
= BB
->begin();
90 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
93 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
)
94 if (PHINode
*PN
= dyn_cast_or_null
<PHINode
>(PHIs
[i
].operator Value
*()))
95 RecursivelyDeleteDeadPHINode(PN
);
98 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
99 /// if possible. The return value indicates success or failure.
100 bool llvm::MergeBlockIntoPredecessor(BasicBlock
* BB
, Pass
* P
) {
101 pred_iterator
PI(pred_begin(BB
)), PE(pred_end(BB
));
102 // Can't merge the entry block.
103 if (pred_begin(BB
) == pred_end(BB
)) return false;
105 BasicBlock
*PredBB
= *PI
++;
106 for (; PI
!= PE
; ++PI
) // Search all predecessors, see if they are all same
108 PredBB
= 0; // There are multiple different predecessors...
112 // Can't merge if there are multiple predecessors.
113 if (!PredBB
) return false;
114 // Don't break self-loops.
115 if (PredBB
== BB
) return false;
116 // Don't break invokes.
117 if (isa
<InvokeInst
>(PredBB
->getTerminator())) return false;
119 succ_iterator
SI(succ_begin(PredBB
)), SE(succ_end(PredBB
));
120 BasicBlock
* OnlySucc
= BB
;
121 for (; SI
!= SE
; ++SI
)
122 if (*SI
!= OnlySucc
) {
123 OnlySucc
= 0; // There are multiple distinct successors!
127 // Can't merge if there are multiple successors.
128 if (!OnlySucc
) return false;
130 // Can't merge if there is PHI loop.
131 for (BasicBlock::iterator BI
= BB
->begin(), BE
= BB
->end(); BI
!= BE
; ++BI
) {
132 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
)) {
133 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
134 if (PN
->getIncomingValue(i
) == PN
)
140 // Begin by getting rid of unneeded PHIs.
141 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
142 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
143 BB
->getInstList().pop_front(); // Delete the phi node...
146 // Delete the unconditional branch from the predecessor...
147 PredBB
->getInstList().pop_back();
149 // Move all definitions in the successor to the predecessor...
150 PredBB
->getInstList().splice(PredBB
->end(), BB
->getInstList());
152 // Make all PHI nodes that referred to BB now refer to Pred as their
154 BB
->replaceAllUsesWith(PredBB
);
156 // Inherit predecessors name if it exists.
157 if (!PredBB
->hasName())
158 PredBB
->takeName(BB
);
160 // Finally, erase the old block and update dominator info.
162 if (DominatorTree
* DT
= P
->getAnalysisIfAvailable
<DominatorTree
>()) {
163 DomTreeNode
* DTN
= DT
->getNode(BB
);
164 DomTreeNode
* PredDTN
= DT
->getNode(PredBB
);
167 SmallPtrSet
<DomTreeNode
*, 8> Children(DTN
->begin(), DTN
->end());
168 for (SmallPtrSet
<DomTreeNode
*, 8>::iterator DI
= Children
.begin(),
169 DE
= Children
.end(); DI
!= DE
; ++DI
)
170 DT
->changeImmediateDominator(*DI
, PredDTN
);
177 BB
->eraseFromParent();
183 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
184 /// with a value, then remove and delete the original instruction.
186 void llvm::ReplaceInstWithValue(BasicBlock::InstListType
&BIL
,
187 BasicBlock::iterator
&BI
, Value
*V
) {
188 Instruction
&I
= *BI
;
189 // Replaces all of the uses of the instruction with uses of the value
190 I
.replaceAllUsesWith(V
);
192 // Make sure to propagate a name if there is one already.
193 if (I
.hasName() && !V
->hasName())
196 // Delete the unnecessary instruction now...
201 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
202 /// instruction specified by I. The original instruction is deleted and BI is
203 /// updated to point to the new instruction.
205 void llvm::ReplaceInstWithInst(BasicBlock::InstListType
&BIL
,
206 BasicBlock::iterator
&BI
, Instruction
*I
) {
207 assert(I
->getParent() == 0 &&
208 "ReplaceInstWithInst: Instruction already inserted into basic block!");
210 // Insert the new instruction into the basic block...
211 BasicBlock::iterator New
= BIL
.insert(BI
, I
);
213 // Replace all uses of the old instruction, and delete it.
214 ReplaceInstWithValue(BIL
, BI
, I
);
216 // Move BI back to point to the newly inserted instruction
220 /// ReplaceInstWithInst - Replace the instruction specified by From with the
221 /// instruction specified by To.
223 void llvm::ReplaceInstWithInst(Instruction
*From
, Instruction
*To
) {
224 BasicBlock::iterator
BI(From
);
225 ReplaceInstWithInst(From
->getParent()->getInstList(), BI
, To
);
228 /// RemoveSuccessor - Change the specified terminator instruction such that its
229 /// successor SuccNum no longer exists. Because this reduces the outgoing
230 /// degree of the current basic block, the actual terminator instruction itself
231 /// may have to be changed. In the case where the last successor of the block
232 /// is deleted, a return instruction is inserted in its place which can cause a
233 /// surprising change in program behavior if it is not expected.
235 void llvm::RemoveSuccessor(TerminatorInst
*TI
, unsigned SuccNum
) {
236 assert(SuccNum
< TI
->getNumSuccessors() &&
237 "Trying to remove a nonexistant successor!");
239 // If our old successor block contains any PHI nodes, remove the entry in the
240 // PHI nodes that comes from this branch...
242 BasicBlock
*BB
= TI
->getParent();
243 TI
->getSuccessor(SuccNum
)->removePredecessor(BB
);
245 TerminatorInst
*NewTI
= 0;
246 switch (TI
->getOpcode()) {
247 case Instruction::Br
:
248 // If this is a conditional branch... convert to unconditional branch.
249 if (TI
->getNumSuccessors() == 2) {
250 cast
<BranchInst
>(TI
)->setUnconditionalDest(TI
->getSuccessor(1-SuccNum
));
251 } else { // Otherwise convert to a return instruction...
254 // Create a value to return... if the function doesn't return null...
255 if (BB
->getParent()->getReturnType() != Type::getVoidTy(TI
->getContext()))
256 RetVal
= Constant::getNullValue(BB
->getParent()->getReturnType());
258 // Create the return...
259 NewTI
= ReturnInst::Create(TI
->getContext(), RetVal
);
263 case Instruction::Invoke
: // Should convert to call
264 case Instruction::Switch
: // Should remove entry
266 case Instruction::Ret
: // Cannot happen, has no successors!
267 llvm_unreachable("Unhandled terminator instruction type in RemoveSuccessor!");
270 if (NewTI
) // If it's a different instruction, replace.
271 ReplaceInstWithInst(TI
, NewTI
);
274 /// SplitEdge - Split the edge connecting specified block. Pass P must
276 BasicBlock
*llvm::SplitEdge(BasicBlock
*BB
, BasicBlock
*Succ
, Pass
*P
) {
277 TerminatorInst
*LatchTerm
= BB
->getTerminator();
278 unsigned SuccNum
= 0;
280 unsigned e
= LatchTerm
->getNumSuccessors();
282 for (unsigned i
= 0; ; ++i
) {
283 assert(i
!= e
&& "Didn't find edge?");
284 if (LatchTerm
->getSuccessor(i
) == Succ
) {
290 // If this is a critical edge, let SplitCriticalEdge do it.
291 if (SplitCriticalEdge(BB
->getTerminator(), SuccNum
, P
))
292 return LatchTerm
->getSuccessor(SuccNum
);
294 // If the edge isn't critical, then BB has a single successor or Succ has a
295 // single pred. Split the block.
296 BasicBlock::iterator SplitPoint
;
297 if (BasicBlock
*SP
= Succ
->getSinglePredecessor()) {
298 // If the successor only has a single pred, split the top of the successor
300 assert(SP
== BB
&& "CFG broken");
302 return SplitBlock(Succ
, Succ
->begin(), P
);
304 // Otherwise, if BB has a single successor, split it at the bottom of the
306 assert(BB
->getTerminator()->getNumSuccessors() == 1 &&
307 "Should have a single succ!");
308 return SplitBlock(BB
, BB
->getTerminator(), P
);
312 /// SplitBlock - Split the specified block at the specified instruction - every
313 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
314 /// to a new block. The two blocks are joined by an unconditional branch and
315 /// the loop info is updated.
317 BasicBlock
*llvm::SplitBlock(BasicBlock
*Old
, Instruction
*SplitPt
, Pass
*P
) {
318 BasicBlock::iterator SplitIt
= SplitPt
;
319 while (isa
<PHINode
>(SplitIt
))
321 BasicBlock
*New
= Old
->splitBasicBlock(SplitIt
, Old
->getName()+".split");
323 // The new block lives in whichever loop the old one did. This preserves
324 // LCSSA as well, because we force the split point to be after any PHI nodes.
325 if (LoopInfo
* LI
= P
->getAnalysisIfAvailable
<LoopInfo
>())
326 if (Loop
*L
= LI
->getLoopFor(Old
))
327 L
->addBasicBlockToLoop(New
, LI
->getBase());
329 if (DominatorTree
*DT
= P
->getAnalysisIfAvailable
<DominatorTree
>())
331 // Old dominates New. New node domiantes all other nodes dominated by Old.
332 DomTreeNode
*OldNode
= DT
->getNode(Old
);
333 std::vector
<DomTreeNode
*> Children
;
334 for (DomTreeNode::iterator I
= OldNode
->begin(), E
= OldNode
->end();
336 Children
.push_back(*I
);
338 DomTreeNode
*NewNode
= DT
->addNewBlock(New
,Old
);
340 for (std::vector
<DomTreeNode
*>::iterator I
= Children
.begin(),
341 E
= Children
.end(); I
!= E
; ++I
)
342 DT
->changeImmediateDominator(*I
, NewNode
);
345 if (DominanceFrontier
*DF
= P
->getAnalysisIfAvailable
<DominanceFrontier
>())
352 /// SplitBlockPredecessors - This method transforms BB by introducing a new
353 /// basic block into the function, and moving some of the predecessors of BB to
354 /// be predecessors of the new block. The new predecessors are indicated by the
355 /// Preds array, which has NumPreds elements in it. The new block is given a
356 /// suffix of 'Suffix'.
358 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
359 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
360 /// In particular, it does not preserve LoopSimplify (because it's
361 /// complicated to handle the case where one of the edges being split
362 /// is an exit of a loop with other exits).
364 BasicBlock
*llvm::SplitBlockPredecessors(BasicBlock
*BB
,
365 BasicBlock
*const *Preds
,
366 unsigned NumPreds
, const char *Suffix
,
368 // Create new basic block, insert right before the original block.
369 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(), BB
->getName()+Suffix
,
370 BB
->getParent(), BB
);
372 // The new block unconditionally branches to the old block.
373 BranchInst
*BI
= BranchInst::Create(BB
, NewBB
);
375 LoopInfo
*LI
= P
? P
->getAnalysisIfAvailable
<LoopInfo
>() : 0;
376 Loop
*L
= LI
? LI
->getLoopFor(BB
) : 0;
377 bool PreserveLCSSA
= P
->mustPreserveAnalysisID(LCSSAID
);
379 // Move the edges from Preds to point to NewBB instead of BB.
380 // While here, if we need to preserve loop analyses, collect
381 // some information about how this split will affect loops.
382 bool HasLoopExit
= false;
383 bool IsLoopEntry
= !!L
;
384 bool SplitMakesNewLoopHeader
= false;
385 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
386 Preds
[i
]->getTerminator()->replaceUsesOfWith(BB
, NewBB
);
389 // If we need to preserve LCSSA, determine if any of
390 // the preds is a loop exit.
392 if (Loop
*PL
= LI
->getLoopFor(Preds
[i
]))
393 if (!PL
->contains(BB
))
395 // If we need to preserve LoopInfo, note whether any of the
396 // preds crosses an interesting loop boundary.
398 if (L
->contains(Preds
[i
]))
401 SplitMakesNewLoopHeader
= true;
406 // Update dominator tree and dominator frontier if available.
407 DominatorTree
*DT
= P
? P
->getAnalysisIfAvailable
<DominatorTree
>() : 0;
409 DT
->splitBlock(NewBB
);
410 if (DominanceFrontier
*DF
= P
? P
->getAnalysisIfAvailable
<DominanceFrontier
>():0)
411 DF
->splitBlock(NewBB
);
413 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
414 // node becomes an incoming value for BB's phi node. However, if the Preds
415 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
416 // account for the newly created predecessor.
418 // Insert dummy values as the incoming value.
419 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++I
)
420 cast
<PHINode
>(I
)->addIncoming(UndefValue::get(I
->getType()), NewBB
);
424 AliasAnalysis
*AA
= P
? P
->getAnalysisIfAvailable
<AliasAnalysis
>() : 0;
428 if (Loop
*PredLoop
= LI
->getLoopFor(Preds
[0])) {
429 // Add the new block to the nearest enclosing loop (and not an
431 while (PredLoop
&& !PredLoop
->contains(BB
))
432 PredLoop
= PredLoop
->getParentLoop();
434 PredLoop
->addBasicBlockToLoop(NewBB
, LI
->getBase());
437 L
->addBasicBlockToLoop(NewBB
, LI
->getBase());
438 if (SplitMakesNewLoopHeader
)
439 L
->moveToHeader(NewBB
);
443 // Otherwise, create a new PHI node in NewBB for each PHI node in BB.
444 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ) {
445 PHINode
*PN
= cast
<PHINode
>(I
++);
447 // Check to see if all of the values coming in are the same. If so, we
448 // don't need to create a new PHI node, unless it's needed for LCSSA.
451 InVal
= PN
->getIncomingValueForBlock(Preds
[0]);
452 for (unsigned i
= 1; i
!= NumPreds
; ++i
)
453 if (InVal
!= PN
->getIncomingValueForBlock(Preds
[i
])) {
460 // If all incoming values for the new PHI would be the same, just don't
461 // make a new PHI. Instead, just remove the incoming values from the old
463 for (unsigned i
= 0; i
!= NumPreds
; ++i
)
464 PN
->removeIncomingValue(Preds
[i
], false);
466 // If the values coming into the block are not the same, we need a PHI.
467 // Create the new PHI node, insert it into NewBB at the end of the block
469 PHINode::Create(PN
->getType(), PN
->getName()+".ph", BI
);
470 if (AA
) AA
->copyValue(PN
, NewPHI
);
472 // Move all of the PHI values for 'Preds' to the new PHI.
473 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
474 Value
*V
= PN
->removeIncomingValue(Preds
[i
], false);
475 NewPHI
->addIncoming(V
, Preds
[i
]);
480 // Add an incoming value to the PHI node in the loop for the preheader
482 PN
->addIncoming(InVal
, NewBB
);
488 /// FindFunctionBackedges - Analyze the specified function to find all of the
489 /// loop backedges in the function and return them. This is a relatively cheap
490 /// (compared to computing dominators and loop info) analysis.
492 /// The output is added to Result, as pairs of <from,to> edge info.
493 void llvm::FindFunctionBackedges(const Function
&F
,
494 SmallVectorImpl
<std::pair
<const BasicBlock
*,const BasicBlock
*> > &Result
) {
495 const BasicBlock
*BB
= &F
.getEntryBlock();
496 if (succ_begin(BB
) == succ_end(BB
))
499 SmallPtrSet
<const BasicBlock
*, 8> Visited
;
500 SmallVector
<std::pair
<const BasicBlock
*, succ_const_iterator
>, 8> VisitStack
;
501 SmallPtrSet
<const BasicBlock
*, 8> InStack
;
504 VisitStack
.push_back(std::make_pair(BB
, succ_begin(BB
)));
507 std::pair
<const BasicBlock
*, succ_const_iterator
> &Top
= VisitStack
.back();
508 const BasicBlock
*ParentBB
= Top
.first
;
509 succ_const_iterator
&I
= Top
.second
;
511 bool FoundNew
= false;
512 while (I
!= succ_end(ParentBB
)) {
514 if (Visited
.insert(BB
)) {
518 // Successor is in VisitStack, it's a back edge.
519 if (InStack
.count(BB
))
520 Result
.push_back(std::make_pair(ParentBB
, BB
));
524 // Go down one level if there is a unvisited successor.
526 VisitStack
.push_back(std::make_pair(BB
, succ_begin(BB
)));
529 InStack
.erase(VisitStack
.pop_back_val().first
);
531 } while (!VisitStack
.empty());
538 /// AreEquivalentAddressValues - Test if A and B will obviously have the same
539 /// value. This includes recognizing that %t0 and %t1 will have the same
540 /// value in code like this:
541 /// %t0 = getelementptr \@a, 0, 3
542 /// store i32 0, i32* %t0
543 /// %t1 = getelementptr \@a, 0, 3
544 /// %t2 = load i32* %t1
546 static bool AreEquivalentAddressValues(const Value
*A
, const Value
*B
) {
547 // Test if the values are trivially equivalent.
548 if (A
== B
) return true;
550 // Test if the values come from identical arithmetic instructions.
551 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
552 // this function is only used when one address use dominates the
553 // other, which means that they'll always either have the same
554 // value or one of them will have an undefined value.
555 if (isa
<BinaryOperator
>(A
) || isa
<CastInst
>(A
) ||
556 isa
<PHINode
>(A
) || isa
<GetElementPtrInst
>(A
))
557 if (const Instruction
*BI
= dyn_cast
<Instruction
>(B
))
558 if (cast
<Instruction
>(A
)->isIdenticalToWhenDefined(BI
))
561 // Otherwise they may not be equivalent.
565 /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
566 /// instruction before ScanFrom) checking to see if we have the value at the
567 /// memory address *Ptr locally available within a small number of instructions.
568 /// If the value is available, return it.
570 /// If not, return the iterator for the last validated instruction that the
571 /// value would be live through. If we scanned the entire block and didn't find
572 /// something that invalidates *Ptr or provides it, ScanFrom would be left at
573 /// begin() and this returns null. ScanFrom could also be left
575 /// MaxInstsToScan specifies the maximum instructions to scan in the block. If
576 /// it is set to 0, it will scan the whole block. You can also optionally
577 /// specify an alias analysis implementation, which makes this more precise.
578 Value
*llvm::FindAvailableLoadedValue(Value
*Ptr
, BasicBlock
*ScanBB
,
579 BasicBlock::iterator
&ScanFrom
,
580 unsigned MaxInstsToScan
,
582 if (MaxInstsToScan
== 0) MaxInstsToScan
= ~0U;
584 // If we're using alias analysis to disambiguate get the size of *Ptr.
585 unsigned AccessSize
= 0;
587 const Type
*AccessTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
588 AccessSize
= AA
->getTypeStoreSize(AccessTy
);
591 while (ScanFrom
!= ScanBB
->begin()) {
592 // We must ignore debug info directives when counting (otherwise they
593 // would affect codegen).
594 Instruction
*Inst
= --ScanFrom
;
595 if (isa
<DbgInfoIntrinsic
>(Inst
))
597 // We skip pointer-to-pointer bitcasts, which are NOPs.
598 // It is necessary for correctness to skip those that feed into a
599 // llvm.dbg.declare, as these are not present when debugging is off.
600 if (isa
<BitCastInst
>(Inst
) && isa
<PointerType
>(Inst
->getType()))
603 // Restore ScanFrom to expected value in case next test succeeds
606 // Don't scan huge blocks.
607 if (MaxInstsToScan
-- == 0) return 0;
610 // If this is a load of Ptr, the loaded value is available.
611 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
))
612 if (AreEquivalentAddressValues(LI
->getOperand(0), Ptr
))
615 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
616 // If this is a store through Ptr, the value is available!
617 if (AreEquivalentAddressValues(SI
->getOperand(1), Ptr
))
618 return SI
->getOperand(0);
620 // If Ptr is an alloca and this is a store to a different alloca, ignore
621 // the store. This is a trivial form of alias analysis that is important
622 // for reg2mem'd code.
623 if ((isa
<AllocaInst
>(Ptr
) || isa
<GlobalVariable
>(Ptr
)) &&
624 (isa
<AllocaInst
>(SI
->getOperand(1)) ||
625 isa
<GlobalVariable
>(SI
->getOperand(1))))
628 // If we have alias analysis and it says the store won't modify the loaded
629 // value, ignore the store.
631 (AA
->getModRefInfo(SI
, Ptr
, AccessSize
) & AliasAnalysis::Mod
) == 0)
634 // Otherwise the store that may or may not alias the pointer, bail out.
639 // If this is some other instruction that may clobber Ptr, bail out.
640 if (Inst
->mayWriteToMemory()) {
641 // If alias analysis claims that it really won't modify the load,
644 (AA
->getModRefInfo(Inst
, Ptr
, AccessSize
) & AliasAnalysis::Mod
) == 0)
647 // May modify the pointer, bail out.
653 // Got to the start of the block, we didn't find it, but are done for this
658 /// CopyPrecedingStopPoint - If I is immediately preceded by a StopPoint,
659 /// make a copy of the stoppoint before InsertPos (presumably before copying
661 void llvm::CopyPrecedingStopPoint(Instruction
*I
,
662 BasicBlock::iterator InsertPos
) {
663 if (I
!= I
->getParent()->begin()) {
664 BasicBlock::iterator BBI
= I
; --BBI
;
665 if (DbgStopPointInst
*DSPI
= dyn_cast
<DbgStopPointInst
>(BBI
)) {
666 CallInst
*newDSPI
= DSPI
->clone(I
->getContext());
667 newDSPI
->insertBefore(InsertPos
);