pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Transforms / Utils / BreakCriticalEdges.cpp
blob849b2b5d5cd625c39c3ec3b711265ee4c4d81ade
1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block. This pass may be "required" by passes that
12 // cannot deal with critical edges. For this usage, the structure type is
13 // forward declared. This pass obviously invalidates the CFG, but can update
14 // forward dominator (set, immediate dominators, tree, and frontier)
15 // information.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "break-crit-edges"
20 #include "llvm/Transforms/Scalar.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/ProfileInfo.h"
25 #include "llvm/Function.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Type.h"
28 #include "llvm/Support/CFG.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 using namespace llvm;
35 STATISTIC(NumBroken, "Number of blocks inserted");
37 namespace {
38 struct VISIBILITY_HIDDEN BreakCriticalEdges : public FunctionPass {
39 static char ID; // Pass identification, replacement for typeid
40 BreakCriticalEdges() : FunctionPass(&ID) {}
42 virtual bool runOnFunction(Function &F);
44 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45 AU.addPreserved<DominatorTree>();
46 AU.addPreserved<DominanceFrontier>();
47 AU.addPreserved<LoopInfo>();
48 AU.addPreserved<ProfileInfo>();
50 // No loop canonicalization guarantees are broken by this pass.
51 AU.addPreservedID(LoopSimplifyID);
56 char BreakCriticalEdges::ID = 0;
57 static RegisterPass<BreakCriticalEdges>
58 X("break-crit-edges", "Break critical edges in CFG");
60 // Publically exposed interface to pass...
61 const PassInfo *const llvm::BreakCriticalEdgesID = &X;
62 FunctionPass *llvm::createBreakCriticalEdgesPass() {
63 return new BreakCriticalEdges();
66 // runOnFunction - Loop over all of the edges in the CFG, breaking critical
67 // edges as they are found.
69 bool BreakCriticalEdges::runOnFunction(Function &F) {
70 bool Changed = false;
71 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
72 TerminatorInst *TI = I->getTerminator();
73 if (TI->getNumSuccessors() > 1)
74 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
75 if (SplitCriticalEdge(TI, i, this)) {
76 ++NumBroken;
77 Changed = true;
81 return Changed;
84 //===----------------------------------------------------------------------===//
85 // Implementation of the external critical edge manipulation functions
86 //===----------------------------------------------------------------------===//
88 // isCriticalEdge - Return true if the specified edge is a critical edge.
89 // Critical edges are edges from a block with multiple successors to a block
90 // with multiple predecessors.
92 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
93 bool AllowIdenticalEdges) {
94 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
95 if (TI->getNumSuccessors() == 1) return false;
97 const BasicBlock *Dest = TI->getSuccessor(SuccNum);
98 pred_const_iterator I = pred_begin(Dest), E = pred_end(Dest);
100 // If there is more than one predecessor, this is a critical edge...
101 assert(I != E && "No preds, but we have an edge to the block?");
102 const BasicBlock *FirstPred = *I;
103 ++I; // Skip one edge due to the incoming arc from TI.
104 if (!AllowIdenticalEdges)
105 return I != E;
107 // If AllowIdenticalEdges is true, then we allow this edge to be considered
108 // non-critical iff all preds come from TI's block.
109 while (I != E) {
110 if (*I != FirstPred)
111 return true;
112 // Note: leave this as is until no one ever compiles with either gcc 4.0.1
113 // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
114 E = pred_end(*I);
115 ++I;
117 return false;
120 /// CreatePHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
121 /// may require new PHIs in the new exit block. This function inserts the
122 /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
123 /// is the new loop exit block, and DestBB is the old loop exit, now the
124 /// successor of SplitBB.
125 static void CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock *> &Preds,
126 BasicBlock *SplitBB,
127 BasicBlock *DestBB) {
128 // SplitBB shouldn't have anything non-trivial in it yet.
129 assert(SplitBB->getFirstNonPHI() == SplitBB->getTerminator() &&
130 "SplitBB has non-PHI nodes!");
132 // For each PHI in the destination block...
133 for (BasicBlock::iterator I = DestBB->begin();
134 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
135 unsigned Idx = PN->getBasicBlockIndex(SplitBB);
136 Value *V = PN->getIncomingValue(Idx);
137 // If the input is a PHI which already satisfies LCSSA, don't create
138 // a new one.
139 if (const PHINode *VP = dyn_cast<PHINode>(V))
140 if (VP->getParent() == SplitBB)
141 continue;
142 // Otherwise a new PHI is needed. Create one and populate it.
143 PHINode *NewPN = PHINode::Create(PN->getType(), "split",
144 SplitBB->getTerminator());
145 for (unsigned i = 0, e = Preds.size(); i != e; ++i)
146 NewPN->addIncoming(V, Preds[i]);
147 // Update the original PHI.
148 PN->setIncomingValue(Idx, NewPN);
152 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
153 /// split the critical edge. This will update DominatorTree and
154 /// DominatorFrontier information if it is available, thus calling this pass
155 /// will not invalidate any of them. This returns true if the edge was split,
156 /// false otherwise. This ensures that all edges to that dest go to one block
157 /// instead of each going to a different block.
159 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
160 Pass *P, bool MergeIdenticalEdges) {
161 if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
162 BasicBlock *TIBB = TI->getParent();
163 BasicBlock *DestBB = TI->getSuccessor(SuccNum);
165 // Create a new basic block, linking it into the CFG.
166 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
167 TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
168 // Create our unconditional branch...
169 BranchInst::Create(DestBB, NewBB);
171 // Branch to the new block, breaking the edge.
172 TI->setSuccessor(SuccNum, NewBB);
174 // Insert the block into the function... right after the block TI lives in.
175 Function &F = *TIBB->getParent();
176 Function::iterator FBBI = TIBB;
177 F.getBasicBlockList().insert(++FBBI, NewBB);
179 // If there are any PHI nodes in DestBB, we need to update them so that they
180 // merge incoming values from NewBB instead of from TIBB.
182 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
183 PHINode *PN = cast<PHINode>(I);
184 // We no longer enter through TIBB, now we come in through NewBB. Revector
185 // exactly one entry in the PHI node that used to come from TIBB to come
186 // from NewBB.
187 int BBIdx = PN->getBasicBlockIndex(TIBB);
188 PN->setIncomingBlock(BBIdx, NewBB);
191 // If there are any other edges from TIBB to DestBB, update those to go
192 // through the split block, making those edges non-critical as well (and
193 // reducing the number of phi entries in the DestBB if relevant).
194 if (MergeIdenticalEdges) {
195 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
196 if (TI->getSuccessor(i) != DestBB) continue;
198 // Remove an entry for TIBB from DestBB phi nodes.
199 DestBB->removePredecessor(TIBB);
201 // We found another edge to DestBB, go to NewBB instead.
202 TI->setSuccessor(i, NewBB);
208 // If we don't have a pass object, we can't update anything...
209 if (P == 0) return NewBB;
211 // Now update analysis information. Since the only predecessor of NewBB is
212 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
213 // anything, as there are other successors of DestBB. However, if all other
214 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
215 // loop header) then NewBB dominates DestBB.
216 SmallVector<BasicBlock*, 8> OtherPreds;
218 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; ++I)
219 if (*I != NewBB)
220 OtherPreds.push_back(*I);
222 bool NewBBDominatesDestBB = true;
224 // Should we update DominatorTree information?
225 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
226 DomTreeNode *TINode = DT->getNode(TIBB);
228 // The new block is not the immediate dominator for any other nodes, but
229 // TINode is the immediate dominator for the new node.
231 if (TINode) { // Don't break unreachable code!
232 DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
233 DomTreeNode *DestBBNode = 0;
235 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
236 if (!OtherPreds.empty()) {
237 DestBBNode = DT->getNode(DestBB);
238 while (!OtherPreds.empty() && NewBBDominatesDestBB) {
239 if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
240 NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
241 OtherPreds.pop_back();
243 OtherPreds.clear();
246 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
247 // doesn't dominate anything.
248 if (NewBBDominatesDestBB) {
249 if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
250 DT->changeImmediateDominator(DestBBNode, NewBBNode);
255 // Should we update DominanceFrontier information?
256 if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>()) {
257 // If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
258 if (!OtherPreds.empty()) {
259 // FIXME: IMPLEMENT THIS!
260 llvm_unreachable("Requiring domfrontiers but not idom/domtree/domset."
261 " not implemented yet!");
264 // Since the new block is dominated by its only predecessor TIBB,
265 // it cannot be in any block's dominance frontier. If NewBB dominates
266 // DestBB, its dominance frontier is the same as DestBB's, otherwise it is
267 // just {DestBB}.
268 DominanceFrontier::DomSetType NewDFSet;
269 if (NewBBDominatesDestBB) {
270 DominanceFrontier::iterator I = DF->find(DestBB);
271 if (I != DF->end()) {
272 DF->addBasicBlock(NewBB, I->second);
274 if (I->second.count(DestBB)) {
275 // However NewBB's frontier does not include DestBB.
276 DominanceFrontier::iterator NF = DF->find(NewBB);
277 DF->removeFromFrontier(NF, DestBB);
280 else
281 DF->addBasicBlock(NewBB, DominanceFrontier::DomSetType());
282 } else {
283 DominanceFrontier::DomSetType NewDFSet;
284 NewDFSet.insert(DestBB);
285 DF->addBasicBlock(NewBB, NewDFSet);
289 // Update LoopInfo if it is around.
290 if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) {
291 if (Loop *TIL = LI->getLoopFor(TIBB)) {
292 // If one or the other blocks were not in a loop, the new block is not
293 // either, and thus LI doesn't need to be updated.
294 if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
295 if (TIL == DestLoop) {
296 // Both in the same loop, the NewBB joins loop.
297 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
298 } else if (TIL->contains(DestLoop->getHeader())) {
299 // Edge from an outer loop to an inner loop. Add to the outer loop.
300 TIL->addBasicBlockToLoop(NewBB, LI->getBase());
301 } else if (DestLoop->contains(TIL->getHeader())) {
302 // Edge from an inner loop to an outer loop. Add to the outer loop.
303 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
304 } else {
305 // Edge from two loops with no containment relation. Because these
306 // are natural loops, we know that the destination block must be the
307 // header of its loop (adding a branch into a loop elsewhere would
308 // create an irreducible loop).
309 assert(DestLoop->getHeader() == DestBB &&
310 "Should not create irreducible loops!");
311 if (Loop *P = DestLoop->getParentLoop())
312 P->addBasicBlockToLoop(NewBB, LI->getBase());
315 // If TIBB is in a loop and DestBB is outside of that loop, split the
316 // other exit blocks of the loop that also have predecessors outside
317 // the loop, to maintain a LoopSimplify guarantee.
318 if (!TIL->contains(DestBB) &&
319 P->mustPreserveAnalysisID(LoopSimplifyID)) {
320 assert(!TIL->contains(NewBB) &&
321 "Split point for loop exit is contained in loop!");
323 // Update LCSSA form in the newly created exit block.
324 if (P->mustPreserveAnalysisID(LCSSAID)) {
325 SmallVector<BasicBlock *, 1> OrigPred;
326 OrigPred.push_back(TIBB);
327 CreatePHIsForSplitLoopExit(OrigPred, NewBB, DestBB);
330 // For each unique exit block...
331 SmallVector<BasicBlock *, 4> ExitBlocks;
332 TIL->getExitBlocks(ExitBlocks);
333 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
334 // Collect all the preds that are inside the loop, and note
335 // whether there are any preds outside the loop.
336 SmallVector<BasicBlock *, 4> Preds;
337 bool HasPredOutsideOfLoop = false;
338 BasicBlock *Exit = ExitBlocks[i];
339 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
340 I != E; ++I)
341 if (TIL->contains(*I))
342 Preds.push_back(*I);
343 else
344 HasPredOutsideOfLoop = true;
345 // If there are any preds not in the loop, we'll need to split
346 // the edges. The Preds.empty() check is needed because a block
347 // may appear multiple times in the list. We can't use
348 // getUniqueExitBlocks above because that depends on LoopSimplify
349 // form, which we're in the process of restoring!
350 if (!Preds.empty() && HasPredOutsideOfLoop) {
351 BasicBlock *NewExitBB =
352 SplitBlockPredecessors(Exit, Preds.data(), Preds.size(),
353 "split", P);
354 if (P->mustPreserveAnalysisID(LCSSAID))
355 CreatePHIsForSplitLoopExit(Preds, NewExitBB, Exit);
359 // LCSSA form was updated above for the case where LoopSimplify is
360 // available, which means that all predecessors of loop exit blocks
361 // are within the loop. Without LoopSimplify form, it would be
362 // necessary to insert a new phi.
363 assert((!P->mustPreserveAnalysisID(LCSSAID) ||
364 P->mustPreserveAnalysisID(LoopSimplifyID)) &&
365 "SplitCriticalEdge doesn't know how to update LCCSA form "
366 "without LoopSimplify!");
370 // Update ProfileInfo if it is around.
371 if (ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>()) {
372 PI->splitEdge(TIBB,DestBB,NewBB,MergeIdenticalEdges);
375 return NewBB;