1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block. This pass may be "required" by passes that
12 // cannot deal with critical edges. For this usage, the structure type is
13 // forward declared. This pass obviously invalidates the CFG, but can update
14 // forward dominator (set, immediate dominators, tree, and frontier)
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "break-crit-edges"
20 #include "llvm/Transforms/Scalar.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/ProfileInfo.h"
25 #include "llvm/Function.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Type.h"
28 #include "llvm/Support/CFG.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
35 STATISTIC(NumBroken
, "Number of blocks inserted");
38 struct VISIBILITY_HIDDEN BreakCriticalEdges
: public FunctionPass
{
39 static char ID
; // Pass identification, replacement for typeid
40 BreakCriticalEdges() : FunctionPass(&ID
) {}
42 virtual bool runOnFunction(Function
&F
);
44 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
45 AU
.addPreserved
<DominatorTree
>();
46 AU
.addPreserved
<DominanceFrontier
>();
47 AU
.addPreserved
<LoopInfo
>();
48 AU
.addPreserved
<ProfileInfo
>();
50 // No loop canonicalization guarantees are broken by this pass.
51 AU
.addPreservedID(LoopSimplifyID
);
56 char BreakCriticalEdges::ID
= 0;
57 static RegisterPass
<BreakCriticalEdges
>
58 X("break-crit-edges", "Break critical edges in CFG");
60 // Publically exposed interface to pass...
61 const PassInfo
*const llvm::BreakCriticalEdgesID
= &X
;
62 FunctionPass
*llvm::createBreakCriticalEdgesPass() {
63 return new BreakCriticalEdges();
66 // runOnFunction - Loop over all of the edges in the CFG, breaking critical
67 // edges as they are found.
69 bool BreakCriticalEdges::runOnFunction(Function
&F
) {
71 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
72 TerminatorInst
*TI
= I
->getTerminator();
73 if (TI
->getNumSuccessors() > 1)
74 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
75 if (SplitCriticalEdge(TI
, i
, this)) {
84 //===----------------------------------------------------------------------===//
85 // Implementation of the external critical edge manipulation functions
86 //===----------------------------------------------------------------------===//
88 // isCriticalEdge - Return true if the specified edge is a critical edge.
89 // Critical edges are edges from a block with multiple successors to a block
90 // with multiple predecessors.
92 bool llvm::isCriticalEdge(const TerminatorInst
*TI
, unsigned SuccNum
,
93 bool AllowIdenticalEdges
) {
94 assert(SuccNum
< TI
->getNumSuccessors() && "Illegal edge specification!");
95 if (TI
->getNumSuccessors() == 1) return false;
97 const BasicBlock
*Dest
= TI
->getSuccessor(SuccNum
);
98 pred_const_iterator I
= pred_begin(Dest
), E
= pred_end(Dest
);
100 // If there is more than one predecessor, this is a critical edge...
101 assert(I
!= E
&& "No preds, but we have an edge to the block?");
102 const BasicBlock
*FirstPred
= *I
;
103 ++I
; // Skip one edge due to the incoming arc from TI.
104 if (!AllowIdenticalEdges
)
107 // If AllowIdenticalEdges is true, then we allow this edge to be considered
108 // non-critical iff all preds come from TI's block.
112 // Note: leave this as is until no one ever compiles with either gcc 4.0.1
113 // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
120 /// CreatePHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
121 /// may require new PHIs in the new exit block. This function inserts the
122 /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
123 /// is the new loop exit block, and DestBB is the old loop exit, now the
124 /// successor of SplitBB.
125 static void CreatePHIsForSplitLoopExit(SmallVectorImpl
<BasicBlock
*> &Preds
,
127 BasicBlock
*DestBB
) {
128 // SplitBB shouldn't have anything non-trivial in it yet.
129 assert(SplitBB
->getFirstNonPHI() == SplitBB
->getTerminator() &&
130 "SplitBB has non-PHI nodes!");
132 // For each PHI in the destination block...
133 for (BasicBlock::iterator I
= DestBB
->begin();
134 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
) {
135 unsigned Idx
= PN
->getBasicBlockIndex(SplitBB
);
136 Value
*V
= PN
->getIncomingValue(Idx
);
137 // If the input is a PHI which already satisfies LCSSA, don't create
139 if (const PHINode
*VP
= dyn_cast
<PHINode
>(V
))
140 if (VP
->getParent() == SplitBB
)
142 // Otherwise a new PHI is needed. Create one and populate it.
143 PHINode
*NewPN
= PHINode::Create(PN
->getType(), "split",
144 SplitBB
->getTerminator());
145 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
)
146 NewPN
->addIncoming(V
, Preds
[i
]);
147 // Update the original PHI.
148 PN
->setIncomingValue(Idx
, NewPN
);
152 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
153 /// split the critical edge. This will update DominatorTree and
154 /// DominatorFrontier information if it is available, thus calling this pass
155 /// will not invalidate any of them. This returns true if the edge was split,
156 /// false otherwise. This ensures that all edges to that dest go to one block
157 /// instead of each going to a different block.
159 BasicBlock
*llvm::SplitCriticalEdge(TerminatorInst
*TI
, unsigned SuccNum
,
160 Pass
*P
, bool MergeIdenticalEdges
) {
161 if (!isCriticalEdge(TI
, SuccNum
, MergeIdenticalEdges
)) return 0;
162 BasicBlock
*TIBB
= TI
->getParent();
163 BasicBlock
*DestBB
= TI
->getSuccessor(SuccNum
);
165 // Create a new basic block, linking it into the CFG.
166 BasicBlock
*NewBB
= BasicBlock::Create(TI
->getContext(),
167 TIBB
->getName() + "." + DestBB
->getName() + "_crit_edge");
168 // Create our unconditional branch...
169 BranchInst::Create(DestBB
, NewBB
);
171 // Branch to the new block, breaking the edge.
172 TI
->setSuccessor(SuccNum
, NewBB
);
174 // Insert the block into the function... right after the block TI lives in.
175 Function
&F
= *TIBB
->getParent();
176 Function::iterator FBBI
= TIBB
;
177 F
.getBasicBlockList().insert(++FBBI
, NewBB
);
179 // If there are any PHI nodes in DestBB, we need to update them so that they
180 // merge incoming values from NewBB instead of from TIBB.
182 for (BasicBlock::iterator I
= DestBB
->begin(); isa
<PHINode
>(I
); ++I
) {
183 PHINode
*PN
= cast
<PHINode
>(I
);
184 // We no longer enter through TIBB, now we come in through NewBB. Revector
185 // exactly one entry in the PHI node that used to come from TIBB to come
187 int BBIdx
= PN
->getBasicBlockIndex(TIBB
);
188 PN
->setIncomingBlock(BBIdx
, NewBB
);
191 // If there are any other edges from TIBB to DestBB, update those to go
192 // through the split block, making those edges non-critical as well (and
193 // reducing the number of phi entries in the DestBB if relevant).
194 if (MergeIdenticalEdges
) {
195 for (unsigned i
= SuccNum
+1, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
196 if (TI
->getSuccessor(i
) != DestBB
) continue;
198 // Remove an entry for TIBB from DestBB phi nodes.
199 DestBB
->removePredecessor(TIBB
);
201 // We found another edge to DestBB, go to NewBB instead.
202 TI
->setSuccessor(i
, NewBB
);
208 // If we don't have a pass object, we can't update anything...
209 if (P
== 0) return NewBB
;
211 // Now update analysis information. Since the only predecessor of NewBB is
212 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
213 // anything, as there are other successors of DestBB. However, if all other
214 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
215 // loop header) then NewBB dominates DestBB.
216 SmallVector
<BasicBlock
*, 8> OtherPreds
;
218 for (pred_iterator I
= pred_begin(DestBB
), E
= pred_end(DestBB
); I
!= E
; ++I
)
220 OtherPreds
.push_back(*I
);
222 bool NewBBDominatesDestBB
= true;
224 // Should we update DominatorTree information?
225 if (DominatorTree
*DT
= P
->getAnalysisIfAvailable
<DominatorTree
>()) {
226 DomTreeNode
*TINode
= DT
->getNode(TIBB
);
228 // The new block is not the immediate dominator for any other nodes, but
229 // TINode is the immediate dominator for the new node.
231 if (TINode
) { // Don't break unreachable code!
232 DomTreeNode
*NewBBNode
= DT
->addNewBlock(NewBB
, TIBB
);
233 DomTreeNode
*DestBBNode
= 0;
235 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
236 if (!OtherPreds
.empty()) {
237 DestBBNode
= DT
->getNode(DestBB
);
238 while (!OtherPreds
.empty() && NewBBDominatesDestBB
) {
239 if (DomTreeNode
*OPNode
= DT
->getNode(OtherPreds
.back()))
240 NewBBDominatesDestBB
= DT
->dominates(DestBBNode
, OPNode
);
241 OtherPreds
.pop_back();
246 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
247 // doesn't dominate anything.
248 if (NewBBDominatesDestBB
) {
249 if (!DestBBNode
) DestBBNode
= DT
->getNode(DestBB
);
250 DT
->changeImmediateDominator(DestBBNode
, NewBBNode
);
255 // Should we update DominanceFrontier information?
256 if (DominanceFrontier
*DF
= P
->getAnalysisIfAvailable
<DominanceFrontier
>()) {
257 // If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
258 if (!OtherPreds
.empty()) {
259 // FIXME: IMPLEMENT THIS!
260 llvm_unreachable("Requiring domfrontiers but not idom/domtree/domset."
261 " not implemented yet!");
264 // Since the new block is dominated by its only predecessor TIBB,
265 // it cannot be in any block's dominance frontier. If NewBB dominates
266 // DestBB, its dominance frontier is the same as DestBB's, otherwise it is
268 DominanceFrontier::DomSetType NewDFSet
;
269 if (NewBBDominatesDestBB
) {
270 DominanceFrontier::iterator I
= DF
->find(DestBB
);
271 if (I
!= DF
->end()) {
272 DF
->addBasicBlock(NewBB
, I
->second
);
274 if (I
->second
.count(DestBB
)) {
275 // However NewBB's frontier does not include DestBB.
276 DominanceFrontier::iterator NF
= DF
->find(NewBB
);
277 DF
->removeFromFrontier(NF
, DestBB
);
281 DF
->addBasicBlock(NewBB
, DominanceFrontier::DomSetType());
283 DominanceFrontier::DomSetType NewDFSet
;
284 NewDFSet
.insert(DestBB
);
285 DF
->addBasicBlock(NewBB
, NewDFSet
);
289 // Update LoopInfo if it is around.
290 if (LoopInfo
*LI
= P
->getAnalysisIfAvailable
<LoopInfo
>()) {
291 if (Loop
*TIL
= LI
->getLoopFor(TIBB
)) {
292 // If one or the other blocks were not in a loop, the new block is not
293 // either, and thus LI doesn't need to be updated.
294 if (Loop
*DestLoop
= LI
->getLoopFor(DestBB
)) {
295 if (TIL
== DestLoop
) {
296 // Both in the same loop, the NewBB joins loop.
297 DestLoop
->addBasicBlockToLoop(NewBB
, LI
->getBase());
298 } else if (TIL
->contains(DestLoop
->getHeader())) {
299 // Edge from an outer loop to an inner loop. Add to the outer loop.
300 TIL
->addBasicBlockToLoop(NewBB
, LI
->getBase());
301 } else if (DestLoop
->contains(TIL
->getHeader())) {
302 // Edge from an inner loop to an outer loop. Add to the outer loop.
303 DestLoop
->addBasicBlockToLoop(NewBB
, LI
->getBase());
305 // Edge from two loops with no containment relation. Because these
306 // are natural loops, we know that the destination block must be the
307 // header of its loop (adding a branch into a loop elsewhere would
308 // create an irreducible loop).
309 assert(DestLoop
->getHeader() == DestBB
&&
310 "Should not create irreducible loops!");
311 if (Loop
*P
= DestLoop
->getParentLoop())
312 P
->addBasicBlockToLoop(NewBB
, LI
->getBase());
315 // If TIBB is in a loop and DestBB is outside of that loop, split the
316 // other exit blocks of the loop that also have predecessors outside
317 // the loop, to maintain a LoopSimplify guarantee.
318 if (!TIL
->contains(DestBB
) &&
319 P
->mustPreserveAnalysisID(LoopSimplifyID
)) {
320 assert(!TIL
->contains(NewBB
) &&
321 "Split point for loop exit is contained in loop!");
323 // Update LCSSA form in the newly created exit block.
324 if (P
->mustPreserveAnalysisID(LCSSAID
)) {
325 SmallVector
<BasicBlock
*, 1> OrigPred
;
326 OrigPred
.push_back(TIBB
);
327 CreatePHIsForSplitLoopExit(OrigPred
, NewBB
, DestBB
);
330 // For each unique exit block...
331 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
332 TIL
->getExitBlocks(ExitBlocks
);
333 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
334 // Collect all the preds that are inside the loop, and note
335 // whether there are any preds outside the loop.
336 SmallVector
<BasicBlock
*, 4> Preds
;
337 bool HasPredOutsideOfLoop
= false;
338 BasicBlock
*Exit
= ExitBlocks
[i
];
339 for (pred_iterator I
= pred_begin(Exit
), E
= pred_end(Exit
);
341 if (TIL
->contains(*I
))
344 HasPredOutsideOfLoop
= true;
345 // If there are any preds not in the loop, we'll need to split
346 // the edges. The Preds.empty() check is needed because a block
347 // may appear multiple times in the list. We can't use
348 // getUniqueExitBlocks above because that depends on LoopSimplify
349 // form, which we're in the process of restoring!
350 if (!Preds
.empty() && HasPredOutsideOfLoop
) {
351 BasicBlock
*NewExitBB
=
352 SplitBlockPredecessors(Exit
, Preds
.data(), Preds
.size(),
354 if (P
->mustPreserveAnalysisID(LCSSAID
))
355 CreatePHIsForSplitLoopExit(Preds
, NewExitBB
, Exit
);
359 // LCSSA form was updated above for the case where LoopSimplify is
360 // available, which means that all predecessors of loop exit blocks
361 // are within the loop. Without LoopSimplify form, it would be
362 // necessary to insert a new phi.
363 assert((!P
->mustPreserveAnalysisID(LCSSAID
) ||
364 P
->mustPreserveAnalysisID(LoopSimplifyID
)) &&
365 "SplitCriticalEdge doesn't know how to update LCCSA form "
366 "without LoopSimplify!");
370 // Update ProfileInfo if it is around.
371 if (ProfileInfo
*PI
= P
->getAnalysisIfAvailable
<ProfileInfo
>()) {
372 PI
->splitEdge(TIBB
,DestBB
,NewBB
,MergeIdenticalEdges
);