pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Transforms / Utils / UnifyFunctionExitNodes.cpp
blob30cb94d9038570f13e35b82ca0687249dfa5b3b9
1 //===- UnifyFunctionExitNodes.cpp - Make all functions have a single exit -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass is used to ensure that functions have at most one return
11 // instruction in them. Additionally, it keeps track of which node is the new
12 // exit node of the CFG. If there are no exit nodes in the CFG, the getExitNode
13 // method will return a null pointer.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/BasicBlock.h"
20 #include "llvm/Function.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Type.h"
23 #include "llvm/ADT/StringExtras.h"
24 using namespace llvm;
26 char UnifyFunctionExitNodes::ID = 0;
27 static RegisterPass<UnifyFunctionExitNodes>
28 X("mergereturn", "Unify function exit nodes");
30 Pass *llvm::createUnifyFunctionExitNodesPass() {
31 return new UnifyFunctionExitNodes();
34 void UnifyFunctionExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
35 // We preserve the non-critical-edgeness property
36 AU.addPreservedID(BreakCriticalEdgesID);
37 // This is a cluster of orthogonal Transforms
38 AU.addPreservedID(PromoteMemoryToRegisterID);
39 AU.addPreservedID(LowerSwitchID);
42 // UnifyAllExitNodes - Unify all exit nodes of the CFG by creating a new
43 // BasicBlock, and converting all returns to unconditional branches to this
44 // new basic block. The singular exit node is returned.
46 // If there are no return stmts in the Function, a null pointer is returned.
48 bool UnifyFunctionExitNodes::runOnFunction(Function &F) {
49 // Loop over all of the blocks in a function, tracking all of the blocks that
50 // return.
52 std::vector<BasicBlock*> ReturningBlocks;
53 std::vector<BasicBlock*> UnwindingBlocks;
54 std::vector<BasicBlock*> UnreachableBlocks;
55 for(Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
56 if (isa<ReturnInst>(I->getTerminator()))
57 ReturningBlocks.push_back(I);
58 else if (isa<UnwindInst>(I->getTerminator()))
59 UnwindingBlocks.push_back(I);
60 else if (isa<UnreachableInst>(I->getTerminator()))
61 UnreachableBlocks.push_back(I);
63 // Handle unwinding blocks first.
64 if (UnwindingBlocks.empty()) {
65 UnwindBlock = 0;
66 } else if (UnwindingBlocks.size() == 1) {
67 UnwindBlock = UnwindingBlocks.front();
68 } else {
69 UnwindBlock = BasicBlock::Create(F.getContext(), "UnifiedUnwindBlock", &F);
70 new UnwindInst(F.getContext(), UnwindBlock);
72 for (std::vector<BasicBlock*>::iterator I = UnwindingBlocks.begin(),
73 E = UnwindingBlocks.end(); I != E; ++I) {
74 BasicBlock *BB = *I;
75 BB->getInstList().pop_back(); // Remove the unwind insn
76 BranchInst::Create(UnwindBlock, BB);
80 // Then unreachable blocks.
81 if (UnreachableBlocks.empty()) {
82 UnreachableBlock = 0;
83 } else if (UnreachableBlocks.size() == 1) {
84 UnreachableBlock = UnreachableBlocks.front();
85 } else {
86 UnreachableBlock = BasicBlock::Create(F.getContext(),
87 "UnifiedUnreachableBlock", &F);
88 new UnreachableInst(F.getContext(), UnreachableBlock);
90 for (std::vector<BasicBlock*>::iterator I = UnreachableBlocks.begin(),
91 E = UnreachableBlocks.end(); I != E; ++I) {
92 BasicBlock *BB = *I;
93 BB->getInstList().pop_back(); // Remove the unreachable inst.
94 BranchInst::Create(UnreachableBlock, BB);
98 // Now handle return blocks.
99 if (ReturningBlocks.empty()) {
100 ReturnBlock = 0;
101 return false; // No blocks return
102 } else if (ReturningBlocks.size() == 1) {
103 ReturnBlock = ReturningBlocks.front(); // Already has a single return block
104 return false;
107 // Otherwise, we need to insert a new basic block into the function, add a PHI
108 // nodes (if the function returns values), and convert all of the return
109 // instructions into unconditional branches.
111 BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(),
112 "UnifiedReturnBlock", &F);
114 PHINode *PN = 0;
115 if (F.getReturnType() == Type::getVoidTy(F.getContext())) {
116 ReturnInst::Create(F.getContext(), NULL, NewRetBlock);
117 } else {
118 // If the function doesn't return void... add a PHI node to the block...
119 PN = PHINode::Create(F.getReturnType(), "UnifiedRetVal");
120 NewRetBlock->getInstList().push_back(PN);
121 ReturnInst::Create(F.getContext(), PN, NewRetBlock);
124 // Loop over all of the blocks, replacing the return instruction with an
125 // unconditional branch.
127 for (std::vector<BasicBlock*>::iterator I = ReturningBlocks.begin(),
128 E = ReturningBlocks.end(); I != E; ++I) {
129 BasicBlock *BB = *I;
131 // Add an incoming element to the PHI node for every return instruction that
132 // is merging into this new block...
133 if (PN)
134 PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
136 BB->getInstList().pop_back(); // Remove the return insn
137 BranchInst::Create(NewRetBlock, BB);
139 ReturnBlock = NewRetBlock;
140 return true;