pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / VMCore / AutoUpgrade.cpp
blob3f23b8d9934cda44755f7bc0681c2aba8c8b3dc2
1 //===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the auto-upgrade helper functions
12 //===----------------------------------------------------------------------===//
14 #include "llvm/AutoUpgrade.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Module.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <cstring>
23 using namespace llvm;
26 static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) {
27 assert(F && "Illegal to upgrade a non-existent Function.");
29 // Get the Function's name.
30 const std::string& Name = F->getName();
32 // Convenience
33 const FunctionType *FTy = F->getFunctionType();
35 // Quickly eliminate it, if it's not a candidate.
36 if (Name.length() <= 8 || Name[0] != 'l' || Name[1] != 'l' ||
37 Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.')
38 return false;
40 Module *M = F->getParent();
41 switch (Name[5]) {
42 default: break;
43 case 'a':
44 // This upgrades the llvm.atomic.lcs, llvm.atomic.las, llvm.atomic.lss,
45 // and atomics with default address spaces to their new names to their new
46 // function name (e.g. llvm.atomic.add.i32 => llvm.atomic.add.i32.p0i32)
47 if (Name.compare(5,7,"atomic.",7) == 0) {
48 if (Name.compare(12,3,"lcs",3) == 0) {
49 std::string::size_type delim = Name.find('.',12);
50 F->setName("llvm.atomic.cmp.swap" + Name.substr(delim) +
51 ".p0" + Name.substr(delim+1));
52 NewFn = F;
53 return true;
55 else if (Name.compare(12,3,"las",3) == 0) {
56 std::string::size_type delim = Name.find('.',12);
57 F->setName("llvm.atomic.load.add"+Name.substr(delim)
58 + ".p0" + Name.substr(delim+1));
59 NewFn = F;
60 return true;
62 else if (Name.compare(12,3,"lss",3) == 0) {
63 std::string::size_type delim = Name.find('.',12);
64 F->setName("llvm.atomic.load.sub"+Name.substr(delim)
65 + ".p0" + Name.substr(delim+1));
66 NewFn = F;
67 return true;
69 else if (Name.rfind(".p") == std::string::npos) {
70 // We don't have an address space qualifier so this has be upgraded
71 // to the new name. Copy the type name at the end of the intrinsic
72 // and add to it
73 std::string::size_type delim = Name.find_last_of('.');
74 assert(delim != std::string::npos && "can not find type");
75 F->setName(Name + ".p0" + Name.substr(delim+1));
76 NewFn = F;
77 return true;
80 break;
81 case 'b':
82 // This upgrades the name of the llvm.bswap intrinsic function to only use
83 // a single type name for overloading. We only care about the old format
84 // 'llvm.bswap.i*.i*', so check for 'bswap.' and then for there being
85 // a '.' after 'bswap.'
86 if (Name.compare(5,6,"bswap.",6) == 0) {
87 std::string::size_type delim = Name.find('.',11);
89 if (delim != std::string::npos) {
90 // Construct the new name as 'llvm.bswap' + '.i*'
91 F->setName(Name.substr(0,10)+Name.substr(delim));
92 NewFn = F;
93 return true;
96 break;
98 case 'c':
99 // We only want to fix the 'llvm.ct*' intrinsics which do not have the
100 // correct return type, so we check for the name, and then check if the
101 // return type does not match the parameter type.
102 if ( (Name.compare(5,5,"ctpop",5) == 0 ||
103 Name.compare(5,4,"ctlz",4) == 0 ||
104 Name.compare(5,4,"cttz",4) == 0) &&
105 FTy->getReturnType() != FTy->getParamType(0)) {
106 // We first need to change the name of the old (bad) intrinsic, because
107 // its type is incorrect, but we cannot overload that name. We
108 // arbitrarily unique it here allowing us to construct a correctly named
109 // and typed function below.
110 F->setName("");
112 // Now construct the new intrinsic with the correct name and type. We
113 // leave the old function around in order to query its type, whatever it
114 // may be, and correctly convert up to the new type.
115 NewFn = cast<Function>(M->getOrInsertFunction(Name,
116 FTy->getParamType(0),
117 FTy->getParamType(0),
118 (Type *)0));
119 return true;
121 break;
123 case 'p':
124 // This upgrades the llvm.part.select overloaded intrinsic names to only
125 // use one type specifier in the name. We only care about the old format
126 // 'llvm.part.select.i*.i*', and solve as above with bswap.
127 if (Name.compare(5,12,"part.select.",12) == 0) {
128 std::string::size_type delim = Name.find('.',17);
130 if (delim != std::string::npos) {
131 // Construct a new name as 'llvm.part.select' + '.i*'
132 F->setName(Name.substr(0,16)+Name.substr(delim));
133 NewFn = F;
134 return true;
136 break;
139 // This upgrades the llvm.part.set intrinsics similarly as above, however
140 // we care about 'llvm.part.set.i*.i*.i*', but only the first two types
141 // must match. There is an additional type specifier after these two
142 // matching types that we must retain when upgrading. Thus, we require
143 // finding 2 periods, not just one, after the intrinsic name.
144 if (Name.compare(5,9,"part.set.",9) == 0) {
145 std::string::size_type delim = Name.find('.',14);
147 if (delim != std::string::npos &&
148 Name.find('.',delim+1) != std::string::npos) {
149 // Construct a new name as 'llvm.part.select' + '.i*.i*'
150 F->setName(Name.substr(0,13)+Name.substr(delim));
151 NewFn = F;
152 return true;
154 break;
157 break;
158 case 'x':
159 // This fixes all MMX shift intrinsic instructions to take a
160 // v1i64 instead of a v2i32 as the second parameter.
161 if (Name.compare(5,10,"x86.mmx.ps",10) == 0 &&
162 (Name.compare(13,4,"psll", 4) == 0 ||
163 Name.compare(13,4,"psra", 4) == 0 ||
164 Name.compare(13,4,"psrl", 4) == 0) && Name[17] != 'i') {
166 const llvm::Type *VT =
167 VectorType::get(IntegerType::get(FTy->getContext(), 64), 1);
169 // We don't have to do anything if the parameter already has
170 // the correct type.
171 if (FTy->getParamType(1) == VT)
172 break;
174 // We first need to change the name of the old (bad) intrinsic, because
175 // its type is incorrect, but we cannot overload that name. We
176 // arbitrarily unique it here allowing us to construct a correctly named
177 // and typed function below.
178 F->setName("");
180 assert(FTy->getNumParams() == 2 && "MMX shift intrinsics take 2 args!");
182 // Now construct the new intrinsic with the correct name and type. We
183 // leave the old function around in order to query its type, whatever it
184 // may be, and correctly convert up to the new type.
185 NewFn = cast<Function>(M->getOrInsertFunction(Name,
186 FTy->getReturnType(),
187 FTy->getParamType(0),
189 (Type *)0));
190 return true;
191 } else if (Name.compare(5,17,"x86.sse2.loadh.pd",17) == 0 ||
192 Name.compare(5,17,"x86.sse2.loadl.pd",17) == 0 ||
193 Name.compare(5,16,"x86.sse2.movl.dq",16) == 0 ||
194 Name.compare(5,15,"x86.sse2.movs.d",15) == 0 ||
195 Name.compare(5,16,"x86.sse2.shuf.pd",16) == 0 ||
196 Name.compare(5,18,"x86.sse2.unpckh.pd",18) == 0 ||
197 Name.compare(5,18,"x86.sse2.unpckl.pd",18) == 0 ||
198 Name.compare(5,20,"x86.sse2.punpckh.qdq",20) == 0 ||
199 Name.compare(5,20,"x86.sse2.punpckl.qdq",20) == 0) {
200 // Calls to these intrinsics are transformed into ShuffleVector's.
201 NewFn = 0;
202 return true;
205 break;
208 // This may not belong here. This function is effectively being overloaded
209 // to both detect an intrinsic which needs upgrading, and to provide the
210 // upgraded form of the intrinsic. We should perhaps have two separate
211 // functions for this.
212 return false;
215 bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) {
216 NewFn = 0;
217 bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn);
219 // Upgrade intrinsic attributes. This does not change the function.
220 if (NewFn)
221 F = NewFn;
222 if (unsigned id = F->getIntrinsicID())
223 F->setAttributes(Intrinsic::getAttributes((Intrinsic::ID)id));
224 return Upgraded;
227 // UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the
228 // upgraded intrinsic. All argument and return casting must be provided in
229 // order to seamlessly integrate with existing context.
230 void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) {
231 Function *F = CI->getCalledFunction();
232 LLVMContext &C = CI->getContext();
234 assert(F && "CallInst has no function associated with it.");
236 if (!NewFn) {
237 bool isLoadH = false, isLoadL = false, isMovL = false;
238 bool isMovSD = false, isShufPD = false;
239 bool isUnpckhPD = false, isUnpcklPD = false;
240 bool isPunpckhQPD = false, isPunpcklQPD = false;
241 if (F->getName() == "llvm.x86.sse2.loadh.pd")
242 isLoadH = true;
243 else if (F->getName() == "llvm.x86.sse2.loadl.pd")
244 isLoadL = true;
245 else if (F->getName() == "llvm.x86.sse2.movl.dq")
246 isMovL = true;
247 else if (F->getName() == "llvm.x86.sse2.movs.d")
248 isMovSD = true;
249 else if (F->getName() == "llvm.x86.sse2.shuf.pd")
250 isShufPD = true;
251 else if (F->getName() == "llvm.x86.sse2.unpckh.pd")
252 isUnpckhPD = true;
253 else if (F->getName() == "llvm.x86.sse2.unpckl.pd")
254 isUnpcklPD = true;
255 else if (F->getName() == "llvm.x86.sse2.punpckh.qdq")
256 isPunpckhQPD = true;
257 else if (F->getName() == "llvm.x86.sse2.punpckl.qdq")
258 isPunpcklQPD = true;
260 if (isLoadH || isLoadL || isMovL || isMovSD || isShufPD ||
261 isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) {
262 std::vector<Constant*> Idxs;
263 Value *Op0 = CI->getOperand(1);
264 ShuffleVectorInst *SI = NULL;
265 if (isLoadH || isLoadL) {
266 Value *Op1 = UndefValue::get(Op0->getType());
267 Value *Addr = new BitCastInst(CI->getOperand(2),
268 PointerType::getUnqual(Type::getDoubleTy(C)),
269 "upgraded.", CI);
270 Value *Load = new LoadInst(Addr, "upgraded.", false, 8, CI);
271 Value *Idx = ConstantInt::get(Type::getInt32Ty(C), 0);
272 Op1 = InsertElementInst::Create(Op1, Load, Idx, "upgraded.", CI);
274 if (isLoadH) {
275 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
276 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
277 } else {
278 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
279 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
281 Value *Mask = ConstantVector::get(Idxs);
282 SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
283 } else if (isMovL) {
284 Constant *Zero = ConstantInt::get(Type::getInt32Ty(C), 0);
285 Idxs.push_back(Zero);
286 Idxs.push_back(Zero);
287 Idxs.push_back(Zero);
288 Idxs.push_back(Zero);
289 Value *ZeroV = ConstantVector::get(Idxs);
291 Idxs.clear();
292 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 4));
293 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 5));
294 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
295 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3));
296 Value *Mask = ConstantVector::get(Idxs);
297 SI = new ShuffleVectorInst(ZeroV, Op0, Mask, "upgraded.", CI);
298 } else if (isMovSD ||
299 isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) {
300 Value *Op1 = CI->getOperand(2);
301 if (isMovSD) {
302 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
303 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
304 } else if (isUnpckhPD || isPunpckhQPD) {
305 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1));
306 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3));
307 } else {
308 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
309 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2));
311 Value *Mask = ConstantVector::get(Idxs);
312 SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
313 } else if (isShufPD) {
314 Value *Op1 = CI->getOperand(2);
315 unsigned MaskVal = cast<ConstantInt>(CI->getOperand(3))->getZExtValue();
316 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), MaskVal & 1));
317 Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C),
318 ((MaskVal >> 1) & 1)+2));
319 Value *Mask = ConstantVector::get(Idxs);
320 SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI);
323 assert(SI && "Unexpected!");
325 // Handle any uses of the old CallInst.
326 if (!CI->use_empty())
327 // Replace all uses of the old call with the new cast which has the
328 // correct type.
329 CI->replaceAllUsesWith(SI);
331 // Clean up the old call now that it has been completely upgraded.
332 CI->eraseFromParent();
333 } else {
334 llvm_unreachable("Unknown function for CallInst upgrade.");
336 return;
339 switch (NewFn->getIntrinsicID()) {
340 default: llvm_unreachable("Unknown function for CallInst upgrade.");
341 case Intrinsic::x86_mmx_psll_d:
342 case Intrinsic::x86_mmx_psll_q:
343 case Intrinsic::x86_mmx_psll_w:
344 case Intrinsic::x86_mmx_psra_d:
345 case Intrinsic::x86_mmx_psra_w:
346 case Intrinsic::x86_mmx_psrl_d:
347 case Intrinsic::x86_mmx_psrl_q:
348 case Intrinsic::x86_mmx_psrl_w: {
349 Value *Operands[2];
351 Operands[0] = CI->getOperand(1);
353 // Cast the second parameter to the correct type.
354 BitCastInst *BC = new BitCastInst(CI->getOperand(2),
355 NewFn->getFunctionType()->getParamType(1),
356 "upgraded.", CI);
357 Operands[1] = BC;
359 // Construct a new CallInst
360 CallInst *NewCI = CallInst::Create(NewFn, Operands, Operands+2,
361 "upgraded."+CI->getName(), CI);
362 NewCI->setTailCall(CI->isTailCall());
363 NewCI->setCallingConv(CI->getCallingConv());
365 // Handle any uses of the old CallInst.
366 if (!CI->use_empty())
367 // Replace all uses of the old call with the new cast which has the
368 // correct type.
369 CI->replaceAllUsesWith(NewCI);
371 // Clean up the old call now that it has been completely upgraded.
372 CI->eraseFromParent();
373 break;
375 case Intrinsic::ctlz:
376 case Intrinsic::ctpop:
377 case Intrinsic::cttz: {
378 // Build a small vector of the 1..(N-1) operands, which are the
379 // parameters.
380 SmallVector<Value*, 8> Operands(CI->op_begin()+1, CI->op_end());
382 // Construct a new CallInst
383 CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(),
384 "upgraded."+CI->getName(), CI);
385 NewCI->setTailCall(CI->isTailCall());
386 NewCI->setCallingConv(CI->getCallingConv());
388 // Handle any uses of the old CallInst.
389 if (!CI->use_empty()) {
390 // Check for sign extend parameter attributes on the return values.
391 bool SrcSExt = NewFn->getAttributes().paramHasAttr(0, Attribute::SExt);
392 bool DestSExt = F->getAttributes().paramHasAttr(0, Attribute::SExt);
394 // Construct an appropriate cast from the new return type to the old.
395 CastInst *RetCast = CastInst::Create(
396 CastInst::getCastOpcode(NewCI, SrcSExt,
397 F->getReturnType(),
398 DestSExt),
399 NewCI, F->getReturnType(),
400 NewCI->getName(), CI);
401 NewCI->moveBefore(RetCast);
403 // Replace all uses of the old call with the new cast which has the
404 // correct type.
405 CI->replaceAllUsesWith(RetCast);
408 // Clean up the old call now that it has been completely upgraded.
409 CI->eraseFromParent();
411 break;
415 // This tests each Function to determine if it needs upgrading. When we find
416 // one we are interested in, we then upgrade all calls to reflect the new
417 // function.
418 void llvm::UpgradeCallsToIntrinsic(Function* F) {
419 assert(F && "Illegal attempt to upgrade a non-existent intrinsic.");
421 // Upgrade the function and check if it is a totaly new function.
422 Function* NewFn;
423 if (UpgradeIntrinsicFunction(F, NewFn)) {
424 if (NewFn != F) {
425 // Replace all uses to the old function with the new one if necessary.
426 for (Value::use_iterator UI = F->use_begin(), UE = F->use_end();
427 UI != UE; ) {
428 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
429 UpgradeIntrinsicCall(CI, NewFn);
431 // Remove old function, no longer used, from the module.
432 F->eraseFromParent();
437 /// This function checks debug info intrinsics. If an intrinsic is invalid
438 /// then this function simply removes the intrinsic.
439 void llvm::CheckDebugInfoIntrinsics(Module *M) {
442 if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
443 if (!FuncStart->use_empty()) {
444 DbgFuncStartInst *DFSI = cast<DbgFuncStartInst>(FuncStart->use_back());
445 if (!isa<MDNode>(DFSI->getOperand(1))) {
446 while (!FuncStart->use_empty()) {
447 CallInst *CI = cast<CallInst>(FuncStart->use_back());
448 CI->eraseFromParent();
450 FuncStart->eraseFromParent();
455 if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
456 if (!StopPoint->use_empty()) {
457 DbgStopPointInst *DSPI = cast<DbgStopPointInst>(StopPoint->use_back());
458 if (!isa<MDNode>(DSPI->getOperand(3))) {
459 while (!StopPoint->use_empty()) {
460 CallInst *CI = cast<CallInst>(StopPoint->use_back());
461 CI->eraseFromParent();
463 StopPoint->eraseFromParent();
468 if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
469 if (!RegionStart->use_empty()) {
470 DbgRegionStartInst *DRSI = cast<DbgRegionStartInst>(RegionStart->use_back());
471 if (!isa<MDNode>(DRSI->getOperand(1))) {
472 while (!RegionStart->use_empty()) {
473 CallInst *CI = cast<CallInst>(RegionStart->use_back());
474 CI->eraseFromParent();
476 RegionStart->eraseFromParent();
481 if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
482 if (!RegionEnd->use_empty()) {
483 DbgRegionEndInst *DREI = cast<DbgRegionEndInst>(RegionEnd->use_back());
484 if (!isa<MDNode>(DREI->getOperand(1))) {
485 while (!RegionEnd->use_empty()) {
486 CallInst *CI = cast<CallInst>(RegionEnd->use_back());
487 CI->eraseFromParent();
489 RegionEnd->eraseFromParent();
494 if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
495 if (!Declare->use_empty()) {
496 DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back());
497 if (!isa<MDNode>(DDI->getOperand(2))) {
498 while (!Declare->use_empty()) {
499 CallInst *CI = cast<CallInst>(Declare->use_back());
500 CI->eraseFromParent();
502 Declare->eraseFromParent();