pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / VMCore / Dominators.cpp
blobbb73aaf705d57dd5416eb61c6f28a5abda271891
1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators. Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed. Forward dominators are
13 // needed to support the Verifier pass.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/Dominators.h"
18 #include "llvm/Support/CFG.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/DominatorInternals.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 using namespace llvm;
30 //===----------------------------------------------------------------------===//
31 // DominatorTree Implementation
32 //===----------------------------------------------------------------------===//
34 // Provide public access to DominatorTree information. Implementation details
35 // can be found in DominatorCalculation.h.
37 //===----------------------------------------------------------------------===//
39 TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
40 TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
42 char DominatorTree::ID = 0;
43 static RegisterPass<DominatorTree>
44 E("domtree", "Dominator Tree Construction", true, true);
46 bool DominatorTree::runOnFunction(Function &F) {
47 DT->recalculate(F);
48 return false;
51 void DominatorTree::print(raw_ostream &OS, const Module *) const {
52 DT->print(OS);
57 //===----------------------------------------------------------------------===//
58 // DominanceFrontier Implementation
59 //===----------------------------------------------------------------------===//
61 char DominanceFrontier::ID = 0;
62 static RegisterPass<DominanceFrontier>
63 G("domfrontier", "Dominance Frontier Construction", true, true);
65 // NewBB is split and now it has one successor. Update dominace frontier to
66 // reflect this change.
67 void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
68 assert(NewBB->getTerminator()->getNumSuccessors() == 1
69 && "NewBB should have a single successor!");
70 BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
72 SmallVector<BasicBlock*, 8> PredBlocks;
73 for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
74 PI != PE; ++PI)
75 PredBlocks.push_back(*PI);
77 if (PredBlocks.empty())
78 // If NewBB does not have any predecessors then it is a entry block.
79 // In this case, NewBB and its successor NewBBSucc dominates all
80 // other blocks.
81 return;
83 // NewBBSucc inherits original NewBB frontier.
84 DominanceFrontier::iterator NewBBI = find(NewBB);
85 if (NewBBI != end()) {
86 DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
87 DominanceFrontier::DomSetType NewBBSuccSet;
88 NewBBSuccSet.insert(NewBBSet.begin(), NewBBSet.end());
89 addBasicBlock(NewBBSucc, NewBBSuccSet);
92 // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
93 // DF(PredBlocks[0]) without the stuff that the new block does not dominate
94 // a predecessor of.
95 DominatorTree &DT = getAnalysis<DominatorTree>();
96 if (DT.dominates(NewBB, NewBBSucc)) {
97 DominanceFrontier::iterator DFI = find(PredBlocks[0]);
98 if (DFI != end()) {
99 DominanceFrontier::DomSetType Set = DFI->second;
100 // Filter out stuff in Set that we do not dominate a predecessor of.
101 for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
102 E = Set.end(); SetI != E;) {
103 bool DominatesPred = false;
104 for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
105 PI != E; ++PI)
106 if (DT.dominates(NewBB, *PI))
107 DominatesPred = true;
108 if (!DominatesPred)
109 Set.erase(SetI++);
110 else
111 ++SetI;
114 if (NewBBI != end()) {
115 for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
116 E = Set.end(); SetI != E; ++SetI) {
117 BasicBlock *SB = *SetI;
118 addToFrontier(NewBBI, SB);
120 } else
121 addBasicBlock(NewBB, Set);
124 } else {
125 // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
126 // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
127 // NewBBSucc)). NewBBSucc is the single successor of NewBB.
128 DominanceFrontier::DomSetType NewDFSet;
129 NewDFSet.insert(NewBBSucc);
130 addBasicBlock(NewBB, NewDFSet);
133 // Now we must loop over all of the dominance frontiers in the function,
134 // replacing occurrences of NewBBSucc with NewBB in some cases. All
135 // blocks that dominate a block in PredBlocks and contained NewBBSucc in
136 // their dominance frontier must be updated to contain NewBB instead.
138 for (Function::iterator FI = NewBB->getParent()->begin(),
139 FE = NewBB->getParent()->end(); FI != FE; ++FI) {
140 DominanceFrontier::iterator DFI = find(FI);
141 if (DFI == end()) continue; // unreachable block.
143 // Only consider nodes that have NewBBSucc in their dominator frontier.
144 if (!DFI->second.count(NewBBSucc)) continue;
146 // Verify whether this block dominates a block in predblocks. If not, do
147 // not update it.
148 bool BlockDominatesAny = false;
149 for (SmallVectorImpl<BasicBlock*>::const_iterator BI = PredBlocks.begin(),
150 BE = PredBlocks.end(); BI != BE; ++BI) {
151 if (DT.dominates(FI, *BI)) {
152 BlockDominatesAny = true;
153 break;
157 // If NewBBSucc should not stay in our dominator frontier, remove it.
158 // We remove it unless there is a predecessor of NewBBSucc that we
159 // dominate, but we don't strictly dominate NewBBSucc.
160 bool ShouldRemove = true;
161 if ((BasicBlock*)FI == NewBBSucc || !DT.dominates(FI, NewBBSucc)) {
162 // Okay, we know that PredDom does not strictly dominate NewBBSucc.
163 // Check to see if it dominates any predecessors of NewBBSucc.
164 for (pred_iterator PI = pred_begin(NewBBSucc),
165 E = pred_end(NewBBSucc); PI != E; ++PI)
166 if (DT.dominates(FI, *PI)) {
167 ShouldRemove = false;
168 break;
172 if (ShouldRemove)
173 removeFromFrontier(DFI, NewBBSucc);
174 if (BlockDominatesAny && (&*FI == NewBB || !DT.dominates(FI, NewBB)))
175 addToFrontier(DFI, NewBB);
179 namespace {
180 class DFCalculateWorkObject {
181 public:
182 DFCalculateWorkObject(BasicBlock *B, BasicBlock *P,
183 const DomTreeNode *N,
184 const DomTreeNode *PN)
185 : currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
186 BasicBlock *currentBB;
187 BasicBlock *parentBB;
188 const DomTreeNode *Node;
189 const DomTreeNode *parentNode;
193 const DominanceFrontier::DomSetType &
194 DominanceFrontier::calculate(const DominatorTree &DT,
195 const DomTreeNode *Node) {
196 BasicBlock *BB = Node->getBlock();
197 DomSetType *Result = NULL;
199 std::vector<DFCalculateWorkObject> workList;
200 SmallPtrSet<BasicBlock *, 32> visited;
202 workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
203 do {
204 DFCalculateWorkObject *currentW = &workList.back();
205 assert (currentW && "Missing work object.");
207 BasicBlock *currentBB = currentW->currentBB;
208 BasicBlock *parentBB = currentW->parentBB;
209 const DomTreeNode *currentNode = currentW->Node;
210 const DomTreeNode *parentNode = currentW->parentNode;
211 assert (currentBB && "Invalid work object. Missing current Basic Block");
212 assert (currentNode && "Invalid work object. Missing current Node");
213 DomSetType &S = Frontiers[currentBB];
215 // Visit each block only once.
216 if (visited.count(currentBB) == 0) {
217 visited.insert(currentBB);
219 // Loop over CFG successors to calculate DFlocal[currentNode]
220 for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
221 SI != SE; ++SI) {
222 // Does Node immediately dominate this successor?
223 if (DT[*SI]->getIDom() != currentNode)
224 S.insert(*SI);
228 // At this point, S is DFlocal. Now we union in DFup's of our children...
229 // Loop through and visit the nodes that Node immediately dominates (Node's
230 // children in the IDomTree)
231 bool visitChild = false;
232 for (DomTreeNode::const_iterator NI = currentNode->begin(),
233 NE = currentNode->end(); NI != NE; ++NI) {
234 DomTreeNode *IDominee = *NI;
235 BasicBlock *childBB = IDominee->getBlock();
236 if (visited.count(childBB) == 0) {
237 workList.push_back(DFCalculateWorkObject(childBB, currentBB,
238 IDominee, currentNode));
239 visitChild = true;
243 // If all children are visited or there is any child then pop this block
244 // from the workList.
245 if (!visitChild) {
247 if (!parentBB) {
248 Result = &S;
249 break;
252 DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
253 DomSetType &parentSet = Frontiers[parentBB];
254 for (; CDFI != CDFE; ++CDFI) {
255 if (!DT.properlyDominates(parentNode, DT[*CDFI]))
256 parentSet.insert(*CDFI);
258 workList.pop_back();
261 } while (!workList.empty());
263 return *Result;
266 void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
267 for (const_iterator I = begin(), E = end(); I != E; ++I) {
268 OS << " DomFrontier for BB";
269 if (I->first)
270 WriteAsOperand(OS, I->first, false);
271 else
272 OS << " <<exit node>>";
273 OS << " is:\t";
275 const std::set<BasicBlock*> &BBs = I->second;
277 for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
278 I != E; ++I)
279 if (*I)
280 WriteAsOperand(OS, *I, false);
281 else
282 OS << " <<exit node>>";
283 OS << "\n";