1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements all of the non-inline methods for the LLVM instruction
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Constants.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Function.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Module.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Analysis/Dominators.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ConstantRange.h"
25 #include "llvm/Support/MathExtras.h"
28 //===----------------------------------------------------------------------===//
30 //===----------------------------------------------------------------------===//
32 #define CALLSITE_DELEGATE_GETTER(METHOD) \
33 Instruction *II(getInstruction()); \
35 ? cast<CallInst>(II)->METHOD \
36 : cast<InvokeInst>(II)->METHOD
38 #define CALLSITE_DELEGATE_SETTER(METHOD) \
39 Instruction *II(getInstruction()); \
41 cast<CallInst>(II)->METHOD; \
43 cast<InvokeInst>(II)->METHOD
45 CallSite::CallSite(Instruction
*C
) {
46 assert((isa
<CallInst
>(C
) || isa
<InvokeInst
>(C
)) && "Not a call!");
48 I
.setInt(isa
<CallInst
>(C
));
50 CallingConv::ID
CallSite::getCallingConv() const {
51 CALLSITE_DELEGATE_GETTER(getCallingConv());
53 void CallSite::setCallingConv(CallingConv::ID CC
) {
54 CALLSITE_DELEGATE_SETTER(setCallingConv(CC
));
56 const AttrListPtr
&CallSite::getAttributes() const {
57 CALLSITE_DELEGATE_GETTER(getAttributes());
59 void CallSite::setAttributes(const AttrListPtr
&PAL
) {
60 CALLSITE_DELEGATE_SETTER(setAttributes(PAL
));
62 bool CallSite::paramHasAttr(uint16_t i
, Attributes attr
) const {
63 CALLSITE_DELEGATE_GETTER(paramHasAttr(i
, attr
));
65 uint16_t CallSite::getParamAlignment(uint16_t i
) const {
66 CALLSITE_DELEGATE_GETTER(getParamAlignment(i
));
68 bool CallSite::doesNotAccessMemory() const {
69 CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
71 void CallSite::setDoesNotAccessMemory(bool doesNotAccessMemory
) {
72 CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory(doesNotAccessMemory
));
74 bool CallSite::onlyReadsMemory() const {
75 CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
77 void CallSite::setOnlyReadsMemory(bool onlyReadsMemory
) {
78 CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory(onlyReadsMemory
));
80 bool CallSite::doesNotReturn() const {
81 CALLSITE_DELEGATE_GETTER(doesNotReturn());
83 void CallSite::setDoesNotReturn(bool doesNotReturn
) {
84 CALLSITE_DELEGATE_SETTER(setDoesNotReturn(doesNotReturn
));
86 bool CallSite::doesNotThrow() const {
87 CALLSITE_DELEGATE_GETTER(doesNotThrow());
89 void CallSite::setDoesNotThrow(bool doesNotThrow
) {
90 CALLSITE_DELEGATE_SETTER(setDoesNotThrow(doesNotThrow
));
93 bool CallSite::hasArgument(const Value
*Arg
) const {
94 for (arg_iterator AI
= this->arg_begin(), E
= this->arg_end(); AI
!= E
; ++AI
)
100 #undef CALLSITE_DELEGATE_GETTER
101 #undef CALLSITE_DELEGATE_SETTER
103 //===----------------------------------------------------------------------===//
104 // TerminatorInst Class
105 //===----------------------------------------------------------------------===//
107 // Out of line virtual method, so the vtable, etc has a home.
108 TerminatorInst::~TerminatorInst() {
111 //===----------------------------------------------------------------------===//
112 // UnaryInstruction Class
113 //===----------------------------------------------------------------------===//
115 // Out of line virtual method, so the vtable, etc has a home.
116 UnaryInstruction::~UnaryInstruction() {
119 //===----------------------------------------------------------------------===//
121 //===----------------------------------------------------------------------===//
123 /// areInvalidOperands - Return a string if the specified operands are invalid
124 /// for a select operation, otherwise return null.
125 const char *SelectInst::areInvalidOperands(Value
*Op0
, Value
*Op1
, Value
*Op2
) {
126 if (Op1
->getType() != Op2
->getType())
127 return "both values to select must have same type";
129 if (const VectorType
*VT
= dyn_cast
<VectorType
>(Op0
->getType())) {
131 if (VT
->getElementType() != Type::getInt1Ty(Op0
->getContext()))
132 return "vector select condition element type must be i1";
133 const VectorType
*ET
= dyn_cast
<VectorType
>(Op1
->getType());
135 return "selected values for vector select must be vectors";
136 if (ET
->getNumElements() != VT
->getNumElements())
137 return "vector select requires selected vectors to have "
138 "the same vector length as select condition";
139 } else if (Op0
->getType() != Type::getInt1Ty(Op0
->getContext())) {
140 return "select condition must be i1 or <n x i1>";
146 //===----------------------------------------------------------------------===//
148 //===----------------------------------------------------------------------===//
150 PHINode::PHINode(const PHINode
&PN
)
151 : Instruction(PN
.getType(), Instruction::PHI
,
152 allocHungoffUses(PN
.getNumOperands()), PN
.getNumOperands()),
153 ReservedSpace(PN
.getNumOperands()) {
154 Use
*OL
= OperandList
;
155 for (unsigned i
= 0, e
= PN
.getNumOperands(); i
!= e
; i
+=2) {
156 OL
[i
] = PN
.getOperand(i
);
157 OL
[i
+1] = PN
.getOperand(i
+1);
159 SubclassOptionalData
= PN
.SubclassOptionalData
;
162 PHINode::~PHINode() {
164 dropHungoffUses(OperandList
);
167 // removeIncomingValue - Remove an incoming value. This is useful if a
168 // predecessor basic block is deleted.
169 Value
*PHINode::removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
) {
170 unsigned NumOps
= getNumOperands();
171 Use
*OL
= OperandList
;
172 assert(Idx
*2 < NumOps
&& "BB not in PHI node!");
173 Value
*Removed
= OL
[Idx
*2];
175 // Move everything after this operand down.
177 // FIXME: we could just swap with the end of the list, then erase. However,
178 // client might not expect this to happen. The code as it is thrashes the
179 // use/def lists, which is kinda lame.
180 for (unsigned i
= (Idx
+1)*2; i
!= NumOps
; i
+= 2) {
185 // Nuke the last value.
187 OL
[NumOps
-2+1].set(0);
188 NumOperands
= NumOps
-2;
190 // If the PHI node is dead, because it has zero entries, nuke it now.
191 if (NumOps
== 2 && DeletePHIIfEmpty
) {
192 // If anyone is using this PHI, make them use a dummy value instead...
193 replaceAllUsesWith(UndefValue::get(getType()));
199 /// resizeOperands - resize operands - This adjusts the length of the operands
200 /// list according to the following behavior:
201 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
202 /// of operation. This grows the number of ops by 1.5 times.
203 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
204 /// 3. If NumOps == NumOperands, trim the reserved space.
206 void PHINode::resizeOperands(unsigned NumOps
) {
207 unsigned e
= getNumOperands();
210 if (NumOps
< 4) NumOps
= 4; // 4 op PHI nodes are VERY common.
211 } else if (NumOps
*2 > NumOperands
) {
213 if (ReservedSpace
>= NumOps
) return;
214 } else if (NumOps
== NumOperands
) {
215 if (ReservedSpace
== NumOps
) return;
220 ReservedSpace
= NumOps
;
221 Use
*OldOps
= OperandList
;
222 Use
*NewOps
= allocHungoffUses(NumOps
);
223 std::copy(OldOps
, OldOps
+ e
, NewOps
);
224 OperandList
= NewOps
;
225 if (OldOps
) Use::zap(OldOps
, OldOps
+ e
, true);
228 /// hasConstantValue - If the specified PHI node always merges together the same
229 /// value, return the value, otherwise return null.
231 /// If the PHI has undef operands, but all the rest of the operands are
232 /// some unique value, return that value if it can be proved that the
233 /// value dominates the PHI. If DT is null, use a conservative check,
234 /// otherwise use DT to test for dominance.
236 Value
*PHINode::hasConstantValue(DominatorTree
*DT
) const {
237 // If the PHI node only has one incoming value, eliminate the PHI node...
238 if (getNumIncomingValues() == 1) {
239 if (getIncomingValue(0) != this) // not X = phi X
240 return getIncomingValue(0);
242 return UndefValue::get(getType()); // Self cycle is dead.
245 // Otherwise if all of the incoming values are the same for the PHI, replace
246 // the PHI node with the incoming value.
249 bool HasUndefInput
= false;
250 for (unsigned i
= 0, e
= getNumIncomingValues(); i
!= e
; ++i
)
251 if (isa
<UndefValue
>(getIncomingValue(i
))) {
252 HasUndefInput
= true;
253 } else if (getIncomingValue(i
) != this) { // Not the PHI node itself...
254 if (InVal
&& getIncomingValue(i
) != InVal
)
255 return 0; // Not the same, bail out.
257 InVal
= getIncomingValue(i
);
260 // The only case that could cause InVal to be null is if we have a PHI node
261 // that only has entries for itself. In this case, there is no entry into the
262 // loop, so kill the PHI.
264 if (InVal
== 0) InVal
= UndefValue::get(getType());
266 // If we have a PHI node like phi(X, undef, X), where X is defined by some
267 // instruction, we cannot always return X as the result of the PHI node. Only
268 // do this if X is not an instruction (thus it must dominate the PHI block),
269 // or if the client is prepared to deal with this possibility.
271 if (Instruction
*IV
= dyn_cast
<Instruction
>(InVal
)) {
273 // We have a DominatorTree. Do a precise test.
274 if (!DT
->dominates(IV
, this))
277 // If it's in the entry block, it dominates everything.
278 if (IV
->getParent() != &IV
->getParent()->getParent()->getEntryBlock() ||
280 return 0; // Cannot guarantee that InVal dominates this PHINode.
284 // All of the incoming values are the same, return the value now.
289 //===----------------------------------------------------------------------===//
290 // CallInst Implementation
291 //===----------------------------------------------------------------------===//
293 CallInst::~CallInst() {
296 void CallInst::init(Value
*Func
, Value
* const *Params
, unsigned NumParams
) {
297 assert(NumOperands
== NumParams
+1 && "NumOperands not set up?");
298 Use
*OL
= OperandList
;
301 const FunctionType
*FTy
=
302 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
303 FTy
= FTy
; // silence warning.
305 assert((NumParams
== FTy
->getNumParams() ||
306 (FTy
->isVarArg() && NumParams
> FTy
->getNumParams())) &&
307 "Calling a function with bad signature!");
308 for (unsigned i
= 0; i
!= NumParams
; ++i
) {
309 assert((i
>= FTy
->getNumParams() ||
310 FTy
->getParamType(i
) == Params
[i
]->getType()) &&
311 "Calling a function with a bad signature!");
316 void CallInst::init(Value
*Func
, Value
*Actual1
, Value
*Actual2
) {
317 assert(NumOperands
== 3 && "NumOperands not set up?");
318 Use
*OL
= OperandList
;
323 const FunctionType
*FTy
=
324 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
325 FTy
= FTy
; // silence warning.
327 assert((FTy
->getNumParams() == 2 ||
328 (FTy
->isVarArg() && FTy
->getNumParams() < 2)) &&
329 "Calling a function with bad signature");
330 assert((0 >= FTy
->getNumParams() ||
331 FTy
->getParamType(0) == Actual1
->getType()) &&
332 "Calling a function with a bad signature!");
333 assert((1 >= FTy
->getNumParams() ||
334 FTy
->getParamType(1) == Actual2
->getType()) &&
335 "Calling a function with a bad signature!");
338 void CallInst::init(Value
*Func
, Value
*Actual
) {
339 assert(NumOperands
== 2 && "NumOperands not set up?");
340 Use
*OL
= OperandList
;
344 const FunctionType
*FTy
=
345 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
346 FTy
= FTy
; // silence warning.
348 assert((FTy
->getNumParams() == 1 ||
349 (FTy
->isVarArg() && FTy
->getNumParams() == 0)) &&
350 "Calling a function with bad signature");
351 assert((0 == FTy
->getNumParams() ||
352 FTy
->getParamType(0) == Actual
->getType()) &&
353 "Calling a function with a bad signature!");
356 void CallInst::init(Value
*Func
) {
357 assert(NumOperands
== 1 && "NumOperands not set up?");
358 Use
*OL
= OperandList
;
361 const FunctionType
*FTy
=
362 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
363 FTy
= FTy
; // silence warning.
365 assert(FTy
->getNumParams() == 0 && "Calling a function with bad signature");
368 CallInst::CallInst(Value
*Func
, Value
* Actual
, const Twine
&Name
,
369 Instruction
*InsertBefore
)
370 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
371 ->getElementType())->getReturnType(),
373 OperandTraits
<CallInst
>::op_end(this) - 2,
379 CallInst::CallInst(Value
*Func
, Value
* Actual
, const Twine
&Name
,
380 BasicBlock
*InsertAtEnd
)
381 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
382 ->getElementType())->getReturnType(),
384 OperandTraits
<CallInst
>::op_end(this) - 2,
389 CallInst::CallInst(Value
*Func
, const Twine
&Name
,
390 Instruction
*InsertBefore
)
391 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
392 ->getElementType())->getReturnType(),
394 OperandTraits
<CallInst
>::op_end(this) - 1,
400 CallInst::CallInst(Value
*Func
, const Twine
&Name
,
401 BasicBlock
*InsertAtEnd
)
402 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
403 ->getElementType())->getReturnType(),
405 OperandTraits
<CallInst
>::op_end(this) - 1,
411 CallInst::CallInst(const CallInst
&CI
)
412 : Instruction(CI
.getType(), Instruction::Call
,
413 OperandTraits
<CallInst
>::op_end(this) - CI
.getNumOperands(),
414 CI
.getNumOperands()) {
415 setAttributes(CI
.getAttributes());
416 SubclassData
= CI
.SubclassData
;
417 Use
*OL
= OperandList
;
418 Use
*InOL
= CI
.OperandList
;
419 for (unsigned i
= 0, e
= CI
.getNumOperands(); i
!= e
; ++i
)
421 SubclassOptionalData
= CI
.SubclassOptionalData
;
424 void CallInst::addAttribute(unsigned i
, Attributes attr
) {
425 AttrListPtr PAL
= getAttributes();
426 PAL
= PAL
.addAttr(i
, attr
);
430 void CallInst::removeAttribute(unsigned i
, Attributes attr
) {
431 AttrListPtr PAL
= getAttributes();
432 PAL
= PAL
.removeAttr(i
, attr
);
436 bool CallInst::paramHasAttr(unsigned i
, Attributes attr
) const {
437 if (AttributeList
.paramHasAttr(i
, attr
))
439 if (const Function
*F
= getCalledFunction())
440 return F
->paramHasAttr(i
, attr
);
444 /// IsConstantOne - Return true only if val is constant int 1
445 static bool IsConstantOne(Value
*val
) {
446 assert(val
&& "IsConstantOne does not work with NULL val");
447 return isa
<ConstantInt
>(val
) && cast
<ConstantInt
>(val
)->isOne();
450 static Value
*checkArraySize(Value
*Amt
, const Type
*IntPtrTy
) {
452 Amt
= ConstantInt::get(IntPtrTy
, 1);
454 assert(!isa
<BasicBlock
>(Amt
) &&
455 "Passed basic block into malloc size parameter! Use other ctor");
456 assert(Amt
->getType() == IntPtrTy
&&
457 "Malloc array size is not an intptr!");
462 static Value
*createMalloc(Instruction
*InsertBefore
, BasicBlock
*InsertAtEnd
,
463 const Type
*AllocTy
, const Type
*IntPtrTy
,
464 Value
*ArraySize
, const Twine
&NameStr
) {
465 assert(((!InsertBefore
&& InsertAtEnd
) || (InsertBefore
&& !InsertAtEnd
)) &&
466 "createMalloc needs only InsertBefore or InsertAtEnd");
467 const PointerType
*AllocPtrType
= dyn_cast
<PointerType
>(AllocTy
);
468 assert(AllocPtrType
&& "CreateMalloc passed a non-pointer allocation type");
470 ArraySize
= checkArraySize(ArraySize
, IntPtrTy
);
472 // malloc(type) becomes i8 *malloc(size)
473 Value
*AllocSize
= ConstantExpr::getSizeOf(AllocPtrType
->getElementType());
474 AllocSize
= ConstantExpr::getTruncOrBitCast(cast
<Constant
>(AllocSize
),
476 if (!IsConstantOne(ArraySize
)) {
477 if (IsConstantOne(AllocSize
)) {
478 AllocSize
= ArraySize
; // Operand * 1 = Operand
479 } else if (Constant
*CO
= dyn_cast
<Constant
>(ArraySize
)) {
480 Constant
*Scale
= ConstantExpr::getIntegerCast(CO
, IntPtrTy
,
482 // Malloc arg is constant product of type size and array size
483 AllocSize
= ConstantExpr::getMul(Scale
, cast
<Constant
>(AllocSize
));
485 Value
*Scale
= ArraySize
;
486 if (Scale
->getType() != IntPtrTy
) {
488 Scale
= CastInst::CreateIntegerCast(Scale
, IntPtrTy
, false /*ZExt*/,
491 Scale
= CastInst::CreateIntegerCast(Scale
, IntPtrTy
, false /*ZExt*/,
494 // Multiply type size by the array size...
496 AllocSize
= BinaryOperator::CreateMul(Scale
, AllocSize
,
499 AllocSize
= BinaryOperator::CreateMul(Scale
, AllocSize
,
504 // Create the call to Malloc.
505 BasicBlock
* BB
= InsertBefore
? InsertBefore
->getParent() : InsertAtEnd
;
506 Module
* M
= BB
->getParent()->getParent();
507 const Type
*BPTy
= PointerType::getUnqual(Type::getInt8Ty(BB
->getContext()));
508 // prototype malloc as "void *malloc(size_t)"
509 Constant
*MallocFunc
= M
->getOrInsertFunction("malloc", BPTy
,
511 CallInst
*MCall
= NULL
;
513 MCall
= CallInst::Create(MallocFunc
, AllocSize
, NameStr
, InsertBefore
);
515 MCall
= CallInst::Create(MallocFunc
, AllocSize
, NameStr
, InsertAtEnd
);
516 MCall
->setTailCall();
518 // Create a cast instruction to convert to the right type...
519 assert(MCall
->getType() != Type::getVoidTy(BB
->getContext()) &&
520 "Malloc has void return type");
523 MCast
= new BitCastInst(MCall
, AllocPtrType
, NameStr
, InsertBefore
);
525 MCast
= new BitCastInst(MCall
, AllocPtrType
, NameStr
);
529 /// CreateMalloc - Generate the IR for a call to malloc:
530 /// 1. Compute the malloc call's argument as the specified type's size,
531 /// possibly multiplied by the array size if the array size is not
533 /// 2. Call malloc with that argument.
534 /// 3. Bitcast the result of the malloc call to the specified type.
535 Value
*CallInst::CreateMalloc(Instruction
*InsertBefore
,
536 const Type
*AllocTy
, const Type
*IntPtrTy
,
537 Value
*ArraySize
, const Twine
&NameStr
) {
538 return createMalloc(InsertBefore
, NULL
, AllocTy
,
539 IntPtrTy
, ArraySize
, NameStr
);
542 /// CreateMalloc - Generate the IR for a call to malloc:
543 /// 1. Compute the malloc call's argument as the specified type's size,
544 /// possibly multiplied by the array size if the array size is not
546 /// 2. Call malloc with that argument.
547 /// 3. Bitcast the result of the malloc call to the specified type.
548 /// Note: This function does not add the bitcast to the basic block, that is the
549 /// responsibility of the caller.
550 Value
*CallInst::CreateMalloc(BasicBlock
*InsertAtEnd
,
551 const Type
*AllocTy
, const Type
*IntPtrTy
,
552 Value
*ArraySize
, const Twine
&NameStr
) {
553 return createMalloc(NULL
, InsertAtEnd
, AllocTy
,
554 IntPtrTy
, ArraySize
, NameStr
);
557 //===----------------------------------------------------------------------===//
558 // InvokeInst Implementation
559 //===----------------------------------------------------------------------===//
561 void InvokeInst::init(Value
*Fn
, BasicBlock
*IfNormal
, BasicBlock
*IfException
,
562 Value
* const *Args
, unsigned NumArgs
) {
563 assert(NumOperands
== 3+NumArgs
&& "NumOperands not set up?");
564 Use
*OL
= OperandList
;
568 const FunctionType
*FTy
=
569 cast
<FunctionType
>(cast
<PointerType
>(Fn
->getType())->getElementType());
570 FTy
= FTy
; // silence warning.
572 assert(((NumArgs
== FTy
->getNumParams()) ||
573 (FTy
->isVarArg() && NumArgs
> FTy
->getNumParams())) &&
574 "Calling a function with bad signature");
576 for (unsigned i
= 0, e
= NumArgs
; i
!= e
; i
++) {
577 assert((i
>= FTy
->getNumParams() ||
578 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
579 "Invoking a function with a bad signature!");
585 InvokeInst::InvokeInst(const InvokeInst
&II
)
586 : TerminatorInst(II
.getType(), Instruction::Invoke
,
587 OperandTraits
<InvokeInst
>::op_end(this)
588 - II
.getNumOperands(),
589 II
.getNumOperands()) {
590 setAttributes(II
.getAttributes());
591 SubclassData
= II
.SubclassData
;
592 Use
*OL
= OperandList
, *InOL
= II
.OperandList
;
593 for (unsigned i
= 0, e
= II
.getNumOperands(); i
!= e
; ++i
)
595 SubclassOptionalData
= II
.SubclassOptionalData
;
598 BasicBlock
*InvokeInst::getSuccessorV(unsigned idx
) const {
599 return getSuccessor(idx
);
601 unsigned InvokeInst::getNumSuccessorsV() const {
602 return getNumSuccessors();
604 void InvokeInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
605 return setSuccessor(idx
, B
);
608 bool InvokeInst::paramHasAttr(unsigned i
, Attributes attr
) const {
609 if (AttributeList
.paramHasAttr(i
, attr
))
611 if (const Function
*F
= getCalledFunction())
612 return F
->paramHasAttr(i
, attr
);
616 void InvokeInst::addAttribute(unsigned i
, Attributes attr
) {
617 AttrListPtr PAL
= getAttributes();
618 PAL
= PAL
.addAttr(i
, attr
);
622 void InvokeInst::removeAttribute(unsigned i
, Attributes attr
) {
623 AttrListPtr PAL
= getAttributes();
624 PAL
= PAL
.removeAttr(i
, attr
);
629 //===----------------------------------------------------------------------===//
630 // ReturnInst Implementation
631 //===----------------------------------------------------------------------===//
633 ReturnInst::ReturnInst(const ReturnInst
&RI
)
634 : TerminatorInst(Type::getVoidTy(RI
.getContext()), Instruction::Ret
,
635 OperandTraits
<ReturnInst
>::op_end(this) -
637 RI
.getNumOperands()) {
638 if (RI
.getNumOperands())
639 Op
<0>() = RI
.Op
<0>();
640 SubclassOptionalData
= RI
.SubclassOptionalData
;
643 ReturnInst::ReturnInst(LLVMContext
&C
, Value
*retVal
, Instruction
*InsertBefore
)
644 : TerminatorInst(Type::getVoidTy(C
), Instruction::Ret
,
645 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
650 ReturnInst::ReturnInst(LLVMContext
&C
, Value
*retVal
, BasicBlock
*InsertAtEnd
)
651 : TerminatorInst(Type::getVoidTy(C
), Instruction::Ret
,
652 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
657 ReturnInst::ReturnInst(LLVMContext
&Context
, BasicBlock
*InsertAtEnd
)
658 : TerminatorInst(Type::getVoidTy(Context
), Instruction::Ret
,
659 OperandTraits
<ReturnInst
>::op_end(this), 0, InsertAtEnd
) {
662 unsigned ReturnInst::getNumSuccessorsV() const {
663 return getNumSuccessors();
666 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
667 /// emit the vtable for the class in this translation unit.
668 void ReturnInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
669 llvm_unreachable("ReturnInst has no successors!");
672 BasicBlock
*ReturnInst::getSuccessorV(unsigned idx
) const {
673 llvm_unreachable("ReturnInst has no successors!");
677 ReturnInst::~ReturnInst() {
680 //===----------------------------------------------------------------------===//
681 // UnwindInst Implementation
682 //===----------------------------------------------------------------------===//
684 UnwindInst::UnwindInst(LLVMContext
&Context
, Instruction
*InsertBefore
)
685 : TerminatorInst(Type::getVoidTy(Context
), Instruction::Unwind
,
686 0, 0, InsertBefore
) {
688 UnwindInst::UnwindInst(LLVMContext
&Context
, BasicBlock
*InsertAtEnd
)
689 : TerminatorInst(Type::getVoidTy(Context
), Instruction::Unwind
,
694 unsigned UnwindInst::getNumSuccessorsV() const {
695 return getNumSuccessors();
698 void UnwindInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
699 llvm_unreachable("UnwindInst has no successors!");
702 BasicBlock
*UnwindInst::getSuccessorV(unsigned idx
) const {
703 llvm_unreachable("UnwindInst has no successors!");
707 //===----------------------------------------------------------------------===//
708 // UnreachableInst Implementation
709 //===----------------------------------------------------------------------===//
711 UnreachableInst::UnreachableInst(LLVMContext
&Context
,
712 Instruction
*InsertBefore
)
713 : TerminatorInst(Type::getVoidTy(Context
), Instruction::Unreachable
,
714 0, 0, InsertBefore
) {
716 UnreachableInst::UnreachableInst(LLVMContext
&Context
, BasicBlock
*InsertAtEnd
)
717 : TerminatorInst(Type::getVoidTy(Context
), Instruction::Unreachable
,
721 unsigned UnreachableInst::getNumSuccessorsV() const {
722 return getNumSuccessors();
725 void UnreachableInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
726 llvm_unreachable("UnwindInst has no successors!");
729 BasicBlock
*UnreachableInst::getSuccessorV(unsigned idx
) const {
730 llvm_unreachable("UnwindInst has no successors!");
734 //===----------------------------------------------------------------------===//
735 // BranchInst Implementation
736 //===----------------------------------------------------------------------===//
738 void BranchInst::AssertOK() {
740 assert(getCondition()->getType() == Type::getInt1Ty(getContext()) &&
741 "May only branch on boolean predicates!");
744 BranchInst::BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
)
745 : TerminatorInst(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
746 OperandTraits
<BranchInst
>::op_end(this) - 1,
748 assert(IfTrue
!= 0 && "Branch destination may not be null!");
751 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
752 Instruction
*InsertBefore
)
753 : TerminatorInst(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
754 OperandTraits
<BranchInst
>::op_end(this) - 3,
764 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
)
765 : TerminatorInst(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
766 OperandTraits
<BranchInst
>::op_end(this) - 1,
768 assert(IfTrue
!= 0 && "Branch destination may not be null!");
772 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
773 BasicBlock
*InsertAtEnd
)
774 : TerminatorInst(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
775 OperandTraits
<BranchInst
>::op_end(this) - 3,
786 BranchInst::BranchInst(const BranchInst
&BI
) :
787 TerminatorInst(Type::getVoidTy(BI
.getContext()), Instruction::Br
,
788 OperandTraits
<BranchInst
>::op_end(this) - BI
.getNumOperands(),
789 BI
.getNumOperands()) {
790 Op
<-1>() = BI
.Op
<-1>();
791 if (BI
.getNumOperands() != 1) {
792 assert(BI
.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
793 Op
<-3>() = BI
.Op
<-3>();
794 Op
<-2>() = BI
.Op
<-2>();
796 SubclassOptionalData
= BI
.SubclassOptionalData
;
800 Use
* Use::getPrefix() {
801 PointerIntPair
<Use
**, 2, PrevPtrTag
> &PotentialPrefix(this[-1].Prev
);
802 if (PotentialPrefix
.getOpaqueValue())
805 return reinterpret_cast<Use
*>((char*)&PotentialPrefix
+ 1);
808 BranchInst::~BranchInst() {
809 if (NumOperands
== 1) {
810 if (Use
*Prefix
= OperandList
->getPrefix()) {
813 // mark OperandList to have a special value for scrutiny
814 // by baseclass destructors and operator delete
815 OperandList
= Prefix
;
818 OperandList
= op_begin();
824 BasicBlock
*BranchInst::getSuccessorV(unsigned idx
) const {
825 return getSuccessor(idx
);
827 unsigned BranchInst::getNumSuccessorsV() const {
828 return getNumSuccessors();
830 void BranchInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
831 setSuccessor(idx
, B
);
835 //===----------------------------------------------------------------------===//
836 // AllocationInst Implementation
837 //===----------------------------------------------------------------------===//
839 static Value
*getAISize(LLVMContext
&Context
, Value
*Amt
) {
841 Amt
= ConstantInt::get(Type::getInt32Ty(Context
), 1);
843 assert(!isa
<BasicBlock
>(Amt
) &&
844 "Passed basic block into allocation size parameter! Use other ctor");
845 assert(Amt
->getType() == Type::getInt32Ty(Context
) &&
846 "Malloc/Allocation array size is not a 32-bit integer!");
851 AllocationInst::AllocationInst(const Type
*Ty
, Value
*ArraySize
, unsigned iTy
,
852 unsigned Align
, const Twine
&Name
,
853 Instruction
*InsertBefore
)
854 : UnaryInstruction(PointerType::getUnqual(Ty
), iTy
,
855 getAISize(Ty
->getContext(), ArraySize
), InsertBefore
) {
857 assert(Ty
!= Type::getVoidTy(Ty
->getContext()) && "Cannot allocate void!");
861 AllocationInst::AllocationInst(const Type
*Ty
, Value
*ArraySize
, unsigned iTy
,
862 unsigned Align
, const Twine
&Name
,
863 BasicBlock
*InsertAtEnd
)
864 : UnaryInstruction(PointerType::getUnqual(Ty
), iTy
,
865 getAISize(Ty
->getContext(), ArraySize
), InsertAtEnd
) {
867 assert(Ty
!= Type::getVoidTy(Ty
->getContext()) && "Cannot allocate void!");
871 // Out of line virtual method, so the vtable, etc has a home.
872 AllocationInst::~AllocationInst() {
875 void AllocationInst::setAlignment(unsigned Align
) {
876 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
877 SubclassData
= Log2_32(Align
) + 1;
878 assert(getAlignment() == Align
&& "Alignment representation error!");
881 bool AllocationInst::isArrayAllocation() const {
882 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(0)))
883 return CI
->getZExtValue() != 1;
887 const Type
*AllocationInst::getAllocatedType() const {
888 return getType()->getElementType();
891 /// isStaticAlloca - Return true if this alloca is in the entry block of the
892 /// function and is a constant size. If so, the code generator will fold it
893 /// into the prolog/epilog code, so it is basically free.
894 bool AllocaInst::isStaticAlloca() const {
895 // Must be constant size.
896 if (!isa
<ConstantInt
>(getArraySize())) return false;
898 // Must be in the entry block.
899 const BasicBlock
*Parent
= getParent();
900 return Parent
== &Parent
->getParent()->front();
903 //===----------------------------------------------------------------------===//
904 // FreeInst Implementation
905 //===----------------------------------------------------------------------===//
907 void FreeInst::AssertOK() {
908 assert(isa
<PointerType
>(getOperand(0)->getType()) &&
909 "Can not free something of nonpointer type!");
912 FreeInst::FreeInst(Value
*Ptr
, Instruction
*InsertBefore
)
913 : UnaryInstruction(Type::getVoidTy(Ptr
->getContext()),
914 Free
, Ptr
, InsertBefore
) {
918 FreeInst::FreeInst(Value
*Ptr
, BasicBlock
*InsertAtEnd
)
919 : UnaryInstruction(Type::getVoidTy(Ptr
->getContext()),
920 Free
, Ptr
, InsertAtEnd
) {
925 //===----------------------------------------------------------------------===//
926 // LoadInst Implementation
927 //===----------------------------------------------------------------------===//
929 void LoadInst::AssertOK() {
930 assert(isa
<PointerType
>(getOperand(0)->getType()) &&
931 "Ptr must have pointer type.");
934 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, Instruction
*InsertBef
)
935 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
936 Load
, Ptr
, InsertBef
) {
943 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, BasicBlock
*InsertAE
)
944 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
945 Load
, Ptr
, InsertAE
) {
952 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
953 Instruction
*InsertBef
)
954 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
955 Load
, Ptr
, InsertBef
) {
956 setVolatile(isVolatile
);
962 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
963 unsigned Align
, Instruction
*InsertBef
)
964 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
965 Load
, Ptr
, InsertBef
) {
966 setVolatile(isVolatile
);
972 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
973 unsigned Align
, BasicBlock
*InsertAE
)
974 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
975 Load
, Ptr
, InsertAE
) {
976 setVolatile(isVolatile
);
982 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
983 BasicBlock
*InsertAE
)
984 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
985 Load
, Ptr
, InsertAE
) {
986 setVolatile(isVolatile
);
994 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, Instruction
*InsertBef
)
995 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
996 Load
, Ptr
, InsertBef
) {
1000 if (Name
&& Name
[0]) setName(Name
);
1003 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, BasicBlock
*InsertAE
)
1004 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
1005 Load
, Ptr
, InsertAE
) {
1009 if (Name
&& Name
[0]) setName(Name
);
1012 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, bool isVolatile
,
1013 Instruction
*InsertBef
)
1014 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
1015 Load
, Ptr
, InsertBef
) {
1016 setVolatile(isVolatile
);
1019 if (Name
&& Name
[0]) setName(Name
);
1022 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, bool isVolatile
,
1023 BasicBlock
*InsertAE
)
1024 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
1025 Load
, Ptr
, InsertAE
) {
1026 setVolatile(isVolatile
);
1029 if (Name
&& Name
[0]) setName(Name
);
1032 void LoadInst::setAlignment(unsigned Align
) {
1033 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
1034 SubclassData
= (SubclassData
& 1) | ((Log2_32(Align
)+1)<<1);
1037 //===----------------------------------------------------------------------===//
1038 // StoreInst Implementation
1039 //===----------------------------------------------------------------------===//
1041 void StoreInst::AssertOK() {
1042 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1043 assert(isa
<PointerType
>(getOperand(1)->getType()) &&
1044 "Ptr must have pointer type!");
1045 assert(getOperand(0)->getType() ==
1046 cast
<PointerType
>(getOperand(1)->getType())->getElementType()
1047 && "Ptr must be a pointer to Val type!");
1051 StoreInst::StoreInst(Value
*val
, Value
*addr
, Instruction
*InsertBefore
)
1052 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1053 OperandTraits
<StoreInst
>::op_begin(this),
1054 OperandTraits
<StoreInst
>::operands(this),
1063 StoreInst::StoreInst(Value
*val
, Value
*addr
, BasicBlock
*InsertAtEnd
)
1064 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1065 OperandTraits
<StoreInst
>::op_begin(this),
1066 OperandTraits
<StoreInst
>::operands(this),
1075 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1076 Instruction
*InsertBefore
)
1077 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1078 OperandTraits
<StoreInst
>::op_begin(this),
1079 OperandTraits
<StoreInst
>::operands(this),
1083 setVolatile(isVolatile
);
1088 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1089 unsigned Align
, Instruction
*InsertBefore
)
1090 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1091 OperandTraits
<StoreInst
>::op_begin(this),
1092 OperandTraits
<StoreInst
>::operands(this),
1096 setVolatile(isVolatile
);
1097 setAlignment(Align
);
1101 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1102 unsigned Align
, BasicBlock
*InsertAtEnd
)
1103 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1104 OperandTraits
<StoreInst
>::op_begin(this),
1105 OperandTraits
<StoreInst
>::operands(this),
1109 setVolatile(isVolatile
);
1110 setAlignment(Align
);
1114 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1115 BasicBlock
*InsertAtEnd
)
1116 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1117 OperandTraits
<StoreInst
>::op_begin(this),
1118 OperandTraits
<StoreInst
>::operands(this),
1122 setVolatile(isVolatile
);
1127 void StoreInst::setAlignment(unsigned Align
) {
1128 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
1129 SubclassData
= (SubclassData
& 1) | ((Log2_32(Align
)+1)<<1);
1132 //===----------------------------------------------------------------------===//
1133 // GetElementPtrInst Implementation
1134 //===----------------------------------------------------------------------===//
1136 static unsigned retrieveAddrSpace(const Value
*Val
) {
1137 return cast
<PointerType
>(Val
->getType())->getAddressSpace();
1140 void GetElementPtrInst::init(Value
*Ptr
, Value
* const *Idx
, unsigned NumIdx
,
1141 const Twine
&Name
) {
1142 assert(NumOperands
== 1+NumIdx
&& "NumOperands not initialized?");
1143 Use
*OL
= OperandList
;
1146 for (unsigned i
= 0; i
!= NumIdx
; ++i
)
1152 void GetElementPtrInst::init(Value
*Ptr
, Value
*Idx
, const Twine
&Name
) {
1153 assert(NumOperands
== 2 && "NumOperands not initialized?");
1154 Use
*OL
= OperandList
;
1161 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst
&GEPI
)
1162 : Instruction(GEPI
.getType(), GetElementPtr
,
1163 OperandTraits
<GetElementPtrInst
>::op_end(this)
1164 - GEPI
.getNumOperands(),
1165 GEPI
.getNumOperands()) {
1166 Use
*OL
= OperandList
;
1167 Use
*GEPIOL
= GEPI
.OperandList
;
1168 for (unsigned i
= 0, E
= NumOperands
; i
!= E
; ++i
)
1170 SubclassOptionalData
= GEPI
.SubclassOptionalData
;
1173 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx
,
1174 const Twine
&Name
, Instruction
*InBe
)
1175 : Instruction(PointerType::get(
1176 checkType(getIndexedType(Ptr
->getType(),Idx
)), retrieveAddrSpace(Ptr
)),
1178 OperandTraits
<GetElementPtrInst
>::op_end(this) - 2,
1180 init(Ptr
, Idx
, Name
);
1183 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx
,
1184 const Twine
&Name
, BasicBlock
*IAE
)
1185 : Instruction(PointerType::get(
1186 checkType(getIndexedType(Ptr
->getType(),Idx
)),
1187 retrieveAddrSpace(Ptr
)),
1189 OperandTraits
<GetElementPtrInst
>::op_end(this) - 2,
1191 init(Ptr
, Idx
, Name
);
1194 /// getIndexedType - Returns the type of the element that would be accessed with
1195 /// a gep instruction with the specified parameters.
1197 /// The Idxs pointer should point to a continuous piece of memory containing the
1198 /// indices, either as Value* or uint64_t.
1200 /// A null type is returned if the indices are invalid for the specified
1203 template <typename IndexTy
>
1204 static const Type
* getIndexedTypeInternal(const Type
*Ptr
, IndexTy
const *Idxs
,
1206 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ptr
);
1207 if (!PTy
) return 0; // Type isn't a pointer type!
1208 const Type
*Agg
= PTy
->getElementType();
1210 // Handle the special case of the empty set index set, which is always valid.
1214 // If there is at least one index, the top level type must be sized, otherwise
1215 // it cannot be 'stepped over'. We explicitly allow abstract types (those
1216 // that contain opaque types) under the assumption that it will be resolved to
1217 // a sane type later.
1218 if (!Agg
->isSized() && !Agg
->isAbstract())
1221 unsigned CurIdx
= 1;
1222 for (; CurIdx
!= NumIdx
; ++CurIdx
) {
1223 const CompositeType
*CT
= dyn_cast
<CompositeType
>(Agg
);
1224 if (!CT
|| isa
<PointerType
>(CT
)) return 0;
1225 IndexTy Index
= Idxs
[CurIdx
];
1226 if (!CT
->indexValid(Index
)) return 0;
1227 Agg
= CT
->getTypeAtIndex(Index
);
1229 // If the new type forwards to another type, then it is in the middle
1230 // of being refined to another type (and hence, may have dropped all
1231 // references to what it was using before). So, use the new forwarded
1233 if (const Type
*Ty
= Agg
->getForwardedType())
1236 return CurIdx
== NumIdx
? Agg
: 0;
1239 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
,
1242 return getIndexedTypeInternal(Ptr
, Idxs
, NumIdx
);
1245 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
,
1246 uint64_t const *Idxs
,
1248 return getIndexedTypeInternal(Ptr
, Idxs
, NumIdx
);
1251 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
, Value
*Idx
) {
1252 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ptr
);
1253 if (!PTy
) return 0; // Type isn't a pointer type!
1255 // Check the pointer index.
1256 if (!PTy
->indexValid(Idx
)) return 0;
1258 return PTy
->getElementType();
1262 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1263 /// zeros. If so, the result pointer and the first operand have the same
1264 /// value, just potentially different types.
1265 bool GetElementPtrInst::hasAllZeroIndices() const {
1266 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1267 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(i
))) {
1268 if (!CI
->isZero()) return false;
1276 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1277 /// constant integers. If so, the result pointer and the first operand have
1278 /// a constant offset between them.
1279 bool GetElementPtrInst::hasAllConstantIndices() const {
1280 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1281 if (!isa
<ConstantInt
>(getOperand(i
)))
1287 void GetElementPtrInst::setIsInBounds(bool B
) {
1288 cast
<GEPOperator
>(this)->setIsInBounds(B
);
1291 //===----------------------------------------------------------------------===//
1292 // ExtractElementInst Implementation
1293 //===----------------------------------------------------------------------===//
1295 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1297 Instruction
*InsertBef
)
1298 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1300 OperandTraits
<ExtractElementInst
>::op_begin(this),
1302 assert(isValidOperands(Val
, Index
) &&
1303 "Invalid extractelement instruction operands!");
1309 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1311 BasicBlock
*InsertAE
)
1312 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1314 OperandTraits
<ExtractElementInst
>::op_begin(this),
1316 assert(isValidOperands(Val
, Index
) &&
1317 "Invalid extractelement instruction operands!");
1325 bool ExtractElementInst::isValidOperands(const Value
*Val
, const Value
*Index
) {
1326 if (!isa
<VectorType
>(Val
->getType()) ||
1327 Index
->getType() != Type::getInt32Ty(Val
->getContext()))
1333 //===----------------------------------------------------------------------===//
1334 // InsertElementInst Implementation
1335 //===----------------------------------------------------------------------===//
1337 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1339 Instruction
*InsertBef
)
1340 : Instruction(Vec
->getType(), InsertElement
,
1341 OperandTraits
<InsertElementInst
>::op_begin(this),
1343 assert(isValidOperands(Vec
, Elt
, Index
) &&
1344 "Invalid insertelement instruction operands!");
1351 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1353 BasicBlock
*InsertAE
)
1354 : Instruction(Vec
->getType(), InsertElement
,
1355 OperandTraits
<InsertElementInst
>::op_begin(this),
1357 assert(isValidOperands(Vec
, Elt
, Index
) &&
1358 "Invalid insertelement instruction operands!");
1366 bool InsertElementInst::isValidOperands(const Value
*Vec
, const Value
*Elt
,
1367 const Value
*Index
) {
1368 if (!isa
<VectorType
>(Vec
->getType()))
1369 return false; // First operand of insertelement must be vector type.
1371 if (Elt
->getType() != cast
<VectorType
>(Vec
->getType())->getElementType())
1372 return false;// Second operand of insertelement must be vector element type.
1374 if (Index
->getType() != Type::getInt32Ty(Vec
->getContext()))
1375 return false; // Third operand of insertelement must be i32.
1380 //===----------------------------------------------------------------------===//
1381 // ShuffleVectorInst Implementation
1382 //===----------------------------------------------------------------------===//
1384 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1386 Instruction
*InsertBefore
)
1387 : Instruction(VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1388 cast
<VectorType
>(Mask
->getType())->getNumElements()),
1390 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1391 OperandTraits
<ShuffleVectorInst
>::operands(this),
1393 assert(isValidOperands(V1
, V2
, Mask
) &&
1394 "Invalid shuffle vector instruction operands!");
1401 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1403 BasicBlock
*InsertAtEnd
)
1404 : Instruction(VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1405 cast
<VectorType
>(Mask
->getType())->getNumElements()),
1407 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1408 OperandTraits
<ShuffleVectorInst
>::operands(this),
1410 assert(isValidOperands(V1
, V2
, Mask
) &&
1411 "Invalid shuffle vector instruction operands!");
1419 bool ShuffleVectorInst::isValidOperands(const Value
*V1
, const Value
*V2
,
1420 const Value
*Mask
) {
1421 if (!isa
<VectorType
>(V1
->getType()) || V1
->getType() != V2
->getType())
1424 const VectorType
*MaskTy
= dyn_cast
<VectorType
>(Mask
->getType());
1425 if (!isa
<Constant
>(Mask
) || MaskTy
== 0 ||
1426 MaskTy
->getElementType() != Type::getInt32Ty(V1
->getContext()))
1431 /// getMaskValue - Return the index from the shuffle mask for the specified
1432 /// output result. This is either -1 if the element is undef or a number less
1433 /// than 2*numelements.
1434 int ShuffleVectorInst::getMaskValue(unsigned i
) const {
1435 const Constant
*Mask
= cast
<Constant
>(getOperand(2));
1436 if (isa
<UndefValue
>(Mask
)) return -1;
1437 if (isa
<ConstantAggregateZero
>(Mask
)) return 0;
1438 const ConstantVector
*MaskCV
= cast
<ConstantVector
>(Mask
);
1439 assert(i
< MaskCV
->getNumOperands() && "Index out of range");
1441 if (isa
<UndefValue
>(MaskCV
->getOperand(i
)))
1443 return cast
<ConstantInt
>(MaskCV
->getOperand(i
))->getZExtValue();
1446 //===----------------------------------------------------------------------===//
1447 // InsertValueInst Class
1448 //===----------------------------------------------------------------------===//
1450 void InsertValueInst::init(Value
*Agg
, Value
*Val
, const unsigned *Idx
,
1451 unsigned NumIdx
, const Twine
&Name
) {
1452 assert(NumOperands
== 2 && "NumOperands not initialized?");
1456 Indices
.insert(Indices
.end(), Idx
, Idx
+ NumIdx
);
1460 void InsertValueInst::init(Value
*Agg
, Value
*Val
, unsigned Idx
,
1461 const Twine
&Name
) {
1462 assert(NumOperands
== 2 && "NumOperands not initialized?");
1466 Indices
.push_back(Idx
);
1470 InsertValueInst::InsertValueInst(const InsertValueInst
&IVI
)
1471 : Instruction(IVI
.getType(), InsertValue
,
1472 OperandTraits
<InsertValueInst
>::op_begin(this), 2),
1473 Indices(IVI
.Indices
) {
1474 Op
<0>() = IVI
.getOperand(0);
1475 Op
<1>() = IVI
.getOperand(1);
1476 SubclassOptionalData
= IVI
.SubclassOptionalData
;
1479 InsertValueInst::InsertValueInst(Value
*Agg
,
1483 Instruction
*InsertBefore
)
1484 : Instruction(Agg
->getType(), InsertValue
,
1485 OperandTraits
<InsertValueInst
>::op_begin(this),
1487 init(Agg
, Val
, Idx
, Name
);
1490 InsertValueInst::InsertValueInst(Value
*Agg
,
1494 BasicBlock
*InsertAtEnd
)
1495 : Instruction(Agg
->getType(), InsertValue
,
1496 OperandTraits
<InsertValueInst
>::op_begin(this),
1498 init(Agg
, Val
, Idx
, Name
);
1501 //===----------------------------------------------------------------------===//
1502 // ExtractValueInst Class
1503 //===----------------------------------------------------------------------===//
1505 void ExtractValueInst::init(const unsigned *Idx
, unsigned NumIdx
,
1506 const Twine
&Name
) {
1507 assert(NumOperands
== 1 && "NumOperands not initialized?");
1509 Indices
.insert(Indices
.end(), Idx
, Idx
+ NumIdx
);
1513 void ExtractValueInst::init(unsigned Idx
, const Twine
&Name
) {
1514 assert(NumOperands
== 1 && "NumOperands not initialized?");
1516 Indices
.push_back(Idx
);
1520 ExtractValueInst::ExtractValueInst(const ExtractValueInst
&EVI
)
1521 : UnaryInstruction(EVI
.getType(), ExtractValue
, EVI
.getOperand(0)),
1522 Indices(EVI
.Indices
) {
1523 SubclassOptionalData
= EVI
.SubclassOptionalData
;
1526 // getIndexedType - Returns the type of the element that would be extracted
1527 // with an extractvalue instruction with the specified parameters.
1529 // A null type is returned if the indices are invalid for the specified
1532 const Type
* ExtractValueInst::getIndexedType(const Type
*Agg
,
1533 const unsigned *Idxs
,
1535 unsigned CurIdx
= 0;
1536 for (; CurIdx
!= NumIdx
; ++CurIdx
) {
1537 const CompositeType
*CT
= dyn_cast
<CompositeType
>(Agg
);
1538 if (!CT
|| isa
<PointerType
>(CT
) || isa
<VectorType
>(CT
)) return 0;
1539 unsigned Index
= Idxs
[CurIdx
];
1540 if (!CT
->indexValid(Index
)) return 0;
1541 Agg
= CT
->getTypeAtIndex(Index
);
1543 // If the new type forwards to another type, then it is in the middle
1544 // of being refined to another type (and hence, may have dropped all
1545 // references to what it was using before). So, use the new forwarded
1547 if (const Type
*Ty
= Agg
->getForwardedType())
1550 return CurIdx
== NumIdx
? Agg
: 0;
1553 const Type
* ExtractValueInst::getIndexedType(const Type
*Agg
,
1555 return getIndexedType(Agg
, &Idx
, 1);
1558 //===----------------------------------------------------------------------===//
1559 // BinaryOperator Class
1560 //===----------------------------------------------------------------------===//
1562 /// AdjustIType - Map Add, Sub, and Mul to FAdd, FSub, and FMul when the
1563 /// type is floating-point, to help provide compatibility with an older API.
1565 static BinaryOperator::BinaryOps
AdjustIType(BinaryOperator::BinaryOps iType
,
1567 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1568 if (Ty
->isFPOrFPVector()) {
1569 if (iType
== BinaryOperator::Add
) iType
= BinaryOperator::FAdd
;
1570 else if (iType
== BinaryOperator::Sub
) iType
= BinaryOperator::FSub
;
1571 else if (iType
== BinaryOperator::Mul
) iType
= BinaryOperator::FMul
;
1576 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
1577 const Type
*Ty
, const Twine
&Name
,
1578 Instruction
*InsertBefore
)
1579 : Instruction(Ty
, AdjustIType(iType
, Ty
),
1580 OperandTraits
<BinaryOperator
>::op_begin(this),
1581 OperandTraits
<BinaryOperator
>::operands(this),
1585 init(AdjustIType(iType
, Ty
));
1589 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
1590 const Type
*Ty
, const Twine
&Name
,
1591 BasicBlock
*InsertAtEnd
)
1592 : Instruction(Ty
, AdjustIType(iType
, Ty
),
1593 OperandTraits
<BinaryOperator
>::op_begin(this),
1594 OperandTraits
<BinaryOperator
>::operands(this),
1598 init(AdjustIType(iType
, Ty
));
1603 void BinaryOperator::init(BinaryOps iType
) {
1604 Value
*LHS
= getOperand(0), *RHS
= getOperand(1);
1605 LHS
= LHS
; RHS
= RHS
; // Silence warnings.
1606 assert(LHS
->getType() == RHS
->getType() &&
1607 "Binary operator operand types must match!");
1612 assert(getType() == LHS
->getType() &&
1613 "Arithmetic operation should return same type as operands!");
1614 assert(getType()->isIntOrIntVector() &&
1615 "Tried to create an integer operation on a non-integer type!");
1617 case FAdd
: case FSub
:
1619 assert(getType() == LHS
->getType() &&
1620 "Arithmetic operation should return same type as operands!");
1621 assert(getType()->isFPOrFPVector() &&
1622 "Tried to create a floating-point operation on a "
1623 "non-floating-point type!");
1627 assert(getType() == LHS
->getType() &&
1628 "Arithmetic operation should return same type as operands!");
1629 assert((getType()->isInteger() || (isa
<VectorType
>(getType()) &&
1630 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1631 "Incorrect operand type (not integer) for S/UDIV");
1634 assert(getType() == LHS
->getType() &&
1635 "Arithmetic operation should return same type as operands!");
1636 assert(getType()->isFPOrFPVector() &&
1637 "Incorrect operand type (not floating point) for FDIV");
1641 assert(getType() == LHS
->getType() &&
1642 "Arithmetic operation should return same type as operands!");
1643 assert((getType()->isInteger() || (isa
<VectorType
>(getType()) &&
1644 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1645 "Incorrect operand type (not integer) for S/UREM");
1648 assert(getType() == LHS
->getType() &&
1649 "Arithmetic operation should return same type as operands!");
1650 assert(getType()->isFPOrFPVector() &&
1651 "Incorrect operand type (not floating point) for FREM");
1656 assert(getType() == LHS
->getType() &&
1657 "Shift operation should return same type as operands!");
1658 assert((getType()->isInteger() ||
1659 (isa
<VectorType
>(getType()) &&
1660 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1661 "Tried to create a shift operation on a non-integral type!");
1665 assert(getType() == LHS
->getType() &&
1666 "Logical operation should return same type as operands!");
1667 assert((getType()->isInteger() ||
1668 (isa
<VectorType
>(getType()) &&
1669 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1670 "Tried to create a logical operation on a non-integral type!");
1678 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
1680 Instruction
*InsertBefore
) {
1681 assert(S1
->getType() == S2
->getType() &&
1682 "Cannot create binary operator with two operands of differing type!");
1683 return new BinaryOperator(Op
, S1
, S2
, S1
->getType(), Name
, InsertBefore
);
1686 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
1688 BasicBlock
*InsertAtEnd
) {
1689 BinaryOperator
*Res
= Create(Op
, S1
, S2
, Name
);
1690 InsertAtEnd
->getInstList().push_back(Res
);
1694 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const Twine
&Name
,
1695 Instruction
*InsertBefore
) {
1696 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
1697 return new BinaryOperator(Instruction::Sub
,
1699 Op
->getType(), Name
, InsertBefore
);
1702 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const Twine
&Name
,
1703 BasicBlock
*InsertAtEnd
) {
1704 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
1705 return new BinaryOperator(Instruction::Sub
,
1707 Op
->getType(), Name
, InsertAtEnd
);
1710 BinaryOperator
*BinaryOperator::CreateFNeg(Value
*Op
, const Twine
&Name
,
1711 Instruction
*InsertBefore
) {
1712 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
1713 return new BinaryOperator(Instruction::FSub
,
1715 Op
->getType(), Name
, InsertBefore
);
1718 BinaryOperator
*BinaryOperator::CreateFNeg(Value
*Op
, const Twine
&Name
,
1719 BasicBlock
*InsertAtEnd
) {
1720 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
1721 return new BinaryOperator(Instruction::FSub
,
1723 Op
->getType(), Name
, InsertAtEnd
);
1726 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const Twine
&Name
,
1727 Instruction
*InsertBefore
) {
1729 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(Op
->getType())) {
1730 C
= Constant::getAllOnesValue(PTy
->getElementType());
1731 C
= ConstantVector::get(
1732 std::vector
<Constant
*>(PTy
->getNumElements(), C
));
1734 C
= Constant::getAllOnesValue(Op
->getType());
1737 return new BinaryOperator(Instruction::Xor
, Op
, C
,
1738 Op
->getType(), Name
, InsertBefore
);
1741 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const Twine
&Name
,
1742 BasicBlock
*InsertAtEnd
) {
1744 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(Op
->getType())) {
1745 // Create a vector of all ones values.
1746 Constant
*Elt
= Constant::getAllOnesValue(PTy
->getElementType());
1747 AllOnes
= ConstantVector::get(
1748 std::vector
<Constant
*>(PTy
->getNumElements(), Elt
));
1750 AllOnes
= Constant::getAllOnesValue(Op
->getType());
1753 return new BinaryOperator(Instruction::Xor
, Op
, AllOnes
,
1754 Op
->getType(), Name
, InsertAtEnd
);
1758 // isConstantAllOnes - Helper function for several functions below
1759 static inline bool isConstantAllOnes(const Value
*V
) {
1760 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
1761 return CI
->isAllOnesValue();
1762 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
))
1763 return CV
->isAllOnesValue();
1767 bool BinaryOperator::isNeg(const Value
*V
) {
1768 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1769 if (Bop
->getOpcode() == Instruction::Sub
)
1770 if (Constant
* C
= dyn_cast
<Constant
>(Bop
->getOperand(0)))
1771 return C
->isNegativeZeroValue();
1775 bool BinaryOperator::isFNeg(const Value
*V
) {
1776 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1777 if (Bop
->getOpcode() == Instruction::FSub
)
1778 if (Constant
* C
= dyn_cast
<Constant
>(Bop
->getOperand(0)))
1779 return C
->isNegativeZeroValue();
1783 bool BinaryOperator::isNot(const Value
*V
) {
1784 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1785 return (Bop
->getOpcode() == Instruction::Xor
&&
1786 (isConstantAllOnes(Bop
->getOperand(1)) ||
1787 isConstantAllOnes(Bop
->getOperand(0))));
1791 Value
*BinaryOperator::getNegArgument(Value
*BinOp
) {
1792 return cast
<BinaryOperator
>(BinOp
)->getOperand(1);
1795 const Value
*BinaryOperator::getNegArgument(const Value
*BinOp
) {
1796 return getNegArgument(const_cast<Value
*>(BinOp
));
1799 Value
*BinaryOperator::getFNegArgument(Value
*BinOp
) {
1800 return cast
<BinaryOperator
>(BinOp
)->getOperand(1);
1803 const Value
*BinaryOperator::getFNegArgument(const Value
*BinOp
) {
1804 return getFNegArgument(const_cast<Value
*>(BinOp
));
1807 Value
*BinaryOperator::getNotArgument(Value
*BinOp
) {
1808 assert(isNot(BinOp
) && "getNotArgument on non-'not' instruction!");
1809 BinaryOperator
*BO
= cast
<BinaryOperator
>(BinOp
);
1810 Value
*Op0
= BO
->getOperand(0);
1811 Value
*Op1
= BO
->getOperand(1);
1812 if (isConstantAllOnes(Op0
)) return Op1
;
1814 assert(isConstantAllOnes(Op1
));
1818 const Value
*BinaryOperator::getNotArgument(const Value
*BinOp
) {
1819 return getNotArgument(const_cast<Value
*>(BinOp
));
1823 // swapOperands - Exchange the two operands to this instruction. This
1824 // instruction is safe to use on any binary instruction and does not
1825 // modify the semantics of the instruction. If the instruction is
1826 // order dependent (SetLT f.e.) the opcode is changed.
1828 bool BinaryOperator::swapOperands() {
1829 if (!isCommutative())
1830 return true; // Can't commute operands
1831 Op
<0>().swap(Op
<1>());
1835 void BinaryOperator::setHasNoUnsignedWrap(bool b
) {
1836 cast
<OverflowingBinaryOperator
>(this)->setHasNoUnsignedWrap(b
);
1839 void BinaryOperator::setHasNoSignedWrap(bool b
) {
1840 cast
<OverflowingBinaryOperator
>(this)->setHasNoSignedWrap(b
);
1843 void BinaryOperator::setIsExact(bool b
) {
1844 cast
<SDivOperator
>(this)->setIsExact(b
);
1847 //===----------------------------------------------------------------------===//
1849 //===----------------------------------------------------------------------===//
1851 // Just determine if this cast only deals with integral->integral conversion.
1852 bool CastInst::isIntegerCast() const {
1853 switch (getOpcode()) {
1854 default: return false;
1855 case Instruction::ZExt
:
1856 case Instruction::SExt
:
1857 case Instruction::Trunc
:
1859 case Instruction::BitCast
:
1860 return getOperand(0)->getType()->isInteger() && getType()->isInteger();
1864 bool CastInst::isLosslessCast() const {
1865 // Only BitCast can be lossless, exit fast if we're not BitCast
1866 if (getOpcode() != Instruction::BitCast
)
1869 // Identity cast is always lossless
1870 const Type
* SrcTy
= getOperand(0)->getType();
1871 const Type
* DstTy
= getType();
1875 // Pointer to pointer is always lossless.
1876 if (isa
<PointerType
>(SrcTy
))
1877 return isa
<PointerType
>(DstTy
);
1878 return false; // Other types have no identity values
1881 /// This function determines if the CastInst does not require any bits to be
1882 /// changed in order to effect the cast. Essentially, it identifies cases where
1883 /// no code gen is necessary for the cast, hence the name no-op cast. For
1884 /// example, the following are all no-op casts:
1885 /// # bitcast i32* %x to i8*
1886 /// # bitcast <2 x i32> %x to <4 x i16>
1887 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
1888 /// @brief Determine if a cast is a no-op.
1889 bool CastInst::isNoopCast(const Type
*IntPtrTy
) const {
1890 switch (getOpcode()) {
1892 assert(!"Invalid CastOp");
1893 case Instruction::Trunc
:
1894 case Instruction::ZExt
:
1895 case Instruction::SExt
:
1896 case Instruction::FPTrunc
:
1897 case Instruction::FPExt
:
1898 case Instruction::UIToFP
:
1899 case Instruction::SIToFP
:
1900 case Instruction::FPToUI
:
1901 case Instruction::FPToSI
:
1902 return false; // These always modify bits
1903 case Instruction::BitCast
:
1904 return true; // BitCast never modifies bits.
1905 case Instruction::PtrToInt
:
1906 return IntPtrTy
->getScalarSizeInBits() ==
1907 getType()->getScalarSizeInBits();
1908 case Instruction::IntToPtr
:
1909 return IntPtrTy
->getScalarSizeInBits() ==
1910 getOperand(0)->getType()->getScalarSizeInBits();
1914 /// This function determines if a pair of casts can be eliminated and what
1915 /// opcode should be used in the elimination. This assumes that there are two
1916 /// instructions like this:
1917 /// * %F = firstOpcode SrcTy %x to MidTy
1918 /// * %S = secondOpcode MidTy %F to DstTy
1919 /// The function returns a resultOpcode so these two casts can be replaced with:
1920 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
1921 /// If no such cast is permited, the function returns 0.
1922 unsigned CastInst::isEliminableCastPair(
1923 Instruction::CastOps firstOp
, Instruction::CastOps secondOp
,
1924 const Type
*SrcTy
, const Type
*MidTy
, const Type
*DstTy
, const Type
*IntPtrTy
)
1926 // Define the 144 possibilities for these two cast instructions. The values
1927 // in this matrix determine what to do in a given situation and select the
1928 // case in the switch below. The rows correspond to firstOp, the columns
1929 // correspond to secondOp. In looking at the table below, keep in mind
1930 // the following cast properties:
1932 // Size Compare Source Destination
1933 // Operator Src ? Size Type Sign Type Sign
1934 // -------- ------------ ------------------- ---------------------
1935 // TRUNC > Integer Any Integral Any
1936 // ZEXT < Integral Unsigned Integer Any
1937 // SEXT < Integral Signed Integer Any
1938 // FPTOUI n/a FloatPt n/a Integral Unsigned
1939 // FPTOSI n/a FloatPt n/a Integral Signed
1940 // UITOFP n/a Integral Unsigned FloatPt n/a
1941 // SITOFP n/a Integral Signed FloatPt n/a
1942 // FPTRUNC > FloatPt n/a FloatPt n/a
1943 // FPEXT < FloatPt n/a FloatPt n/a
1944 // PTRTOINT n/a Pointer n/a Integral Unsigned
1945 // INTTOPTR n/a Integral Unsigned Pointer n/a
1946 // BITCONVERT = FirstClass n/a FirstClass n/a
1948 // NOTE: some transforms are safe, but we consider them to be non-profitable.
1949 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
1950 // into "fptoui double to i64", but this loses information about the range
1951 // of the produced value (we no longer know the top-part is all zeros).
1952 // Further this conversion is often much more expensive for typical hardware,
1953 // and causes issues when building libgcc. We disallow fptosi+sext for the
1955 const unsigned numCastOps
=
1956 Instruction::CastOpsEnd
- Instruction::CastOpsBegin
;
1957 static const uint8_t CastResults
[numCastOps
][numCastOps
] = {
1958 // T F F U S F F P I B -+
1959 // R Z S P P I I T P 2 N T |
1960 // U E E 2 2 2 2 R E I T C +- secondOp
1961 // N X X U S F F N X N 2 V |
1962 // C T T I I P P C T T P T -+
1963 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
1964 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
1965 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
1966 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
1967 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
1968 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
1969 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
1970 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
1971 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
1972 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
1973 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
1974 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
1977 int ElimCase
= CastResults
[firstOp
-Instruction::CastOpsBegin
]
1978 [secondOp
-Instruction::CastOpsBegin
];
1981 // categorically disallowed
1984 // allowed, use first cast's opcode
1987 // allowed, use second cast's opcode
1990 // no-op cast in second op implies firstOp as long as the DestTy
1992 if (DstTy
->isInteger())
1996 // no-op cast in second op implies firstOp as long as the DestTy
1997 // is floating point
1998 if (DstTy
->isFloatingPoint())
2002 // no-op cast in first op implies secondOp as long as the SrcTy
2004 if (SrcTy
->isInteger())
2008 // no-op cast in first op implies secondOp as long as the SrcTy
2009 // is a floating point
2010 if (SrcTy
->isFloatingPoint())
2014 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2017 unsigned PtrSize
= IntPtrTy
->getScalarSizeInBits();
2018 unsigned MidSize
= MidTy
->getScalarSizeInBits();
2019 if (MidSize
>= PtrSize
)
2020 return Instruction::BitCast
;
2024 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2025 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2026 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2027 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
2028 unsigned DstSize
= DstTy
->getScalarSizeInBits();
2029 if (SrcSize
== DstSize
)
2030 return Instruction::BitCast
;
2031 else if (SrcSize
< DstSize
)
2035 case 9: // zext, sext -> zext, because sext can't sign extend after zext
2036 return Instruction::ZExt
;
2038 // fpext followed by ftrunc is allowed if the bit size returned to is
2039 // the same as the original, in which case its just a bitcast
2041 return Instruction::BitCast
;
2042 return 0; // If the types are not the same we can't eliminate it.
2044 // bitcast followed by ptrtoint is allowed as long as the bitcast
2045 // is a pointer to pointer cast.
2046 if (isa
<PointerType
>(SrcTy
) && isa
<PointerType
>(MidTy
))
2050 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
2051 if (isa
<PointerType
>(MidTy
) && isa
<PointerType
>(DstTy
))
2055 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2058 unsigned PtrSize
= IntPtrTy
->getScalarSizeInBits();
2059 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
2060 unsigned DstSize
= DstTy
->getScalarSizeInBits();
2061 if (SrcSize
<= PtrSize
&& SrcSize
== DstSize
)
2062 return Instruction::BitCast
;
2066 // cast combination can't happen (error in input). This is for all cases
2067 // where the MidTy is not the same for the two cast instructions.
2068 assert(!"Invalid Cast Combination");
2071 assert(!"Error in CastResults table!!!");
2077 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, const Type
*Ty
,
2078 const Twine
&Name
, Instruction
*InsertBefore
) {
2079 // Construct and return the appropriate CastInst subclass
2081 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertBefore
);
2082 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertBefore
);
2083 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertBefore
);
2084 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertBefore
);
2085 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertBefore
);
2086 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertBefore
);
2087 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertBefore
);
2088 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertBefore
);
2089 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertBefore
);
2090 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertBefore
);
2091 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertBefore
);
2092 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertBefore
);
2094 assert(!"Invalid opcode provided");
2099 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, const Type
*Ty
,
2100 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
2101 // Construct and return the appropriate CastInst subclass
2103 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertAtEnd
);
2104 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertAtEnd
);
2105 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertAtEnd
);
2106 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertAtEnd
);
2107 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertAtEnd
);
2108 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
2109 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
2110 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertAtEnd
);
2111 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertAtEnd
);
2112 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertAtEnd
);
2113 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertAtEnd
);
2114 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertAtEnd
);
2116 assert(!"Invalid opcode provided");
2121 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, const Type
*Ty
,
2123 Instruction
*InsertBefore
) {
2124 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2125 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2126 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertBefore
);
2129 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, const Type
*Ty
,
2131 BasicBlock
*InsertAtEnd
) {
2132 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2133 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2134 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertAtEnd
);
2137 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, const Type
*Ty
,
2139 Instruction
*InsertBefore
) {
2140 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2141 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2142 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertBefore
);
2145 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, const Type
*Ty
,
2147 BasicBlock
*InsertAtEnd
) {
2148 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2149 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2150 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertAtEnd
);
2153 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, const Type
*Ty
,
2155 Instruction
*InsertBefore
) {
2156 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2157 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2158 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertBefore
);
2161 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, const Type
*Ty
,
2163 BasicBlock
*InsertAtEnd
) {
2164 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2165 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2166 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertAtEnd
);
2169 CastInst
*CastInst::CreatePointerCast(Value
*S
, const Type
*Ty
,
2171 BasicBlock
*InsertAtEnd
) {
2172 assert(isa
<PointerType
>(S
->getType()) && "Invalid cast");
2173 assert((Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2176 if (Ty
->isInteger())
2177 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertAtEnd
);
2178 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2181 /// @brief Create a BitCast or a PtrToInt cast instruction
2182 CastInst
*CastInst::CreatePointerCast(Value
*S
, const Type
*Ty
,
2184 Instruction
*InsertBefore
) {
2185 assert(isa
<PointerType
>(S
->getType()) && "Invalid cast");
2186 assert((Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2189 if (Ty
->isInteger())
2190 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
2191 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2194 CastInst
*CastInst::CreateIntegerCast(Value
*C
, const Type
*Ty
,
2195 bool isSigned
, const Twine
&Name
,
2196 Instruction
*InsertBefore
) {
2197 assert(C
->getType()->isInteger() && Ty
->isInteger() && "Invalid cast");
2198 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2199 unsigned DstBits
= Ty
->getScalarSizeInBits();
2200 Instruction::CastOps opcode
=
2201 (SrcBits
== DstBits
? Instruction::BitCast
:
2202 (SrcBits
> DstBits
? Instruction::Trunc
:
2203 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2204 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2207 CastInst
*CastInst::CreateIntegerCast(Value
*C
, const Type
*Ty
,
2208 bool isSigned
, const Twine
&Name
,
2209 BasicBlock
*InsertAtEnd
) {
2210 assert(C
->getType()->isIntOrIntVector() && Ty
->isIntOrIntVector() &&
2212 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2213 unsigned DstBits
= Ty
->getScalarSizeInBits();
2214 Instruction::CastOps opcode
=
2215 (SrcBits
== DstBits
? Instruction::BitCast
:
2216 (SrcBits
> DstBits
? Instruction::Trunc
:
2217 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2218 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2221 CastInst
*CastInst::CreateFPCast(Value
*C
, const Type
*Ty
,
2223 Instruction
*InsertBefore
) {
2224 assert(C
->getType()->isFPOrFPVector() && Ty
->isFPOrFPVector() &&
2226 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2227 unsigned DstBits
= Ty
->getScalarSizeInBits();
2228 Instruction::CastOps opcode
=
2229 (SrcBits
== DstBits
? Instruction::BitCast
:
2230 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2231 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2234 CastInst
*CastInst::CreateFPCast(Value
*C
, const Type
*Ty
,
2236 BasicBlock
*InsertAtEnd
) {
2237 assert(C
->getType()->isFPOrFPVector() && Ty
->isFPOrFPVector() &&
2239 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2240 unsigned DstBits
= Ty
->getScalarSizeInBits();
2241 Instruction::CastOps opcode
=
2242 (SrcBits
== DstBits
? Instruction::BitCast
:
2243 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2244 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2247 // Check whether it is valid to call getCastOpcode for these types.
2248 // This routine must be kept in sync with getCastOpcode.
2249 bool CastInst::isCastable(const Type
*SrcTy
, const Type
*DestTy
) {
2250 if (!SrcTy
->isFirstClassType() || !DestTy
->isFirstClassType())
2253 if (SrcTy
== DestTy
)
2256 // Get the bit sizes, we'll need these
2257 unsigned SrcBits
= SrcTy
->getScalarSizeInBits(); // 0 for ptr
2258 unsigned DestBits
= DestTy
->getScalarSizeInBits(); // 0 for ptr
2260 // Run through the possibilities ...
2261 if (DestTy
->isInteger()) { // Casting to integral
2262 if (SrcTy
->isInteger()) { // Casting from integral
2264 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2266 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2267 // Casting from vector
2268 return DestBits
== PTy
->getBitWidth();
2269 } else { // Casting from something else
2270 return isa
<PointerType
>(SrcTy
);
2272 } else if (DestTy
->isFloatingPoint()) { // Casting to floating pt
2273 if (SrcTy
->isInteger()) { // Casting from integral
2275 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2277 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2278 // Casting from vector
2279 return DestBits
== PTy
->getBitWidth();
2280 } else { // Casting from something else
2283 } else if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
2284 // Casting to vector
2285 if (const VectorType
*SrcPTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2286 // Casting from vector
2287 return DestPTy
->getBitWidth() == SrcPTy
->getBitWidth();
2288 } else { // Casting from something else
2289 return DestPTy
->getBitWidth() == SrcBits
;
2291 } else if (isa
<PointerType
>(DestTy
)) { // Casting to pointer
2292 if (isa
<PointerType
>(SrcTy
)) { // Casting from pointer
2294 } else if (SrcTy
->isInteger()) { // Casting from integral
2296 } else { // Casting from something else
2299 } else { // Casting to something else
2304 // Provide a way to get a "cast" where the cast opcode is inferred from the
2305 // types and size of the operand. This, basically, is a parallel of the
2306 // logic in the castIsValid function below. This axiom should hold:
2307 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2308 // should not assert in castIsValid. In other words, this produces a "correct"
2309 // casting opcode for the arguments passed to it.
2310 // This routine must be kept in sync with isCastable.
2311 Instruction::CastOps
2312 CastInst::getCastOpcode(
2313 const Value
*Src
, bool SrcIsSigned
, const Type
*DestTy
, bool DestIsSigned
) {
2314 // Get the bit sizes, we'll need these
2315 const Type
*SrcTy
= Src
->getType();
2316 unsigned SrcBits
= SrcTy
->getScalarSizeInBits(); // 0 for ptr
2317 unsigned DestBits
= DestTy
->getScalarSizeInBits(); // 0 for ptr
2319 assert(SrcTy
->isFirstClassType() && DestTy
->isFirstClassType() &&
2320 "Only first class types are castable!");
2322 // Run through the possibilities ...
2323 if (DestTy
->isInteger()) { // Casting to integral
2324 if (SrcTy
->isInteger()) { // Casting from integral
2325 if (DestBits
< SrcBits
)
2326 return Trunc
; // int -> smaller int
2327 else if (DestBits
> SrcBits
) { // its an extension
2329 return SExt
; // signed -> SEXT
2331 return ZExt
; // unsigned -> ZEXT
2333 return BitCast
; // Same size, No-op cast
2335 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2337 return FPToSI
; // FP -> sint
2339 return FPToUI
; // FP -> uint
2340 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2341 assert(DestBits
== PTy
->getBitWidth() &&
2342 "Casting vector to integer of different width");
2344 return BitCast
; // Same size, no-op cast
2346 assert(isa
<PointerType
>(SrcTy
) &&
2347 "Casting from a value that is not first-class type");
2348 return PtrToInt
; // ptr -> int
2350 } else if (DestTy
->isFloatingPoint()) { // Casting to floating pt
2351 if (SrcTy
->isInteger()) { // Casting from integral
2353 return SIToFP
; // sint -> FP
2355 return UIToFP
; // uint -> FP
2356 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2357 if (DestBits
< SrcBits
) {
2358 return FPTrunc
; // FP -> smaller FP
2359 } else if (DestBits
> SrcBits
) {
2360 return FPExt
; // FP -> larger FP
2362 return BitCast
; // same size, no-op cast
2364 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2365 assert(DestBits
== PTy
->getBitWidth() &&
2366 "Casting vector to floating point of different width");
2368 return BitCast
; // same size, no-op cast
2370 llvm_unreachable("Casting pointer or non-first class to float");
2372 } else if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
2373 if (const VectorType
*SrcPTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2374 assert(DestPTy
->getBitWidth() == SrcPTy
->getBitWidth() &&
2375 "Casting vector to vector of different widths");
2377 return BitCast
; // vector -> vector
2378 } else if (DestPTy
->getBitWidth() == SrcBits
) {
2379 return BitCast
; // float/int -> vector
2381 assert(!"Illegal cast to vector (wrong type or size)");
2383 } else if (isa
<PointerType
>(DestTy
)) {
2384 if (isa
<PointerType
>(SrcTy
)) {
2385 return BitCast
; // ptr -> ptr
2386 } else if (SrcTy
->isInteger()) {
2387 return IntToPtr
; // int -> ptr
2389 assert(!"Casting pointer to other than pointer or int");
2392 assert(!"Casting to type that is not first-class");
2395 // If we fall through to here we probably hit an assertion cast above
2396 // and assertions are not turned on. Anything we return is an error, so
2397 // BitCast is as good a choice as any.
2401 //===----------------------------------------------------------------------===//
2402 // CastInst SubClass Constructors
2403 //===----------------------------------------------------------------------===//
2405 /// Check that the construction parameters for a CastInst are correct. This
2406 /// could be broken out into the separate constructors but it is useful to have
2407 /// it in one place and to eliminate the redundant code for getting the sizes
2408 /// of the types involved.
2410 CastInst::castIsValid(Instruction::CastOps op
, Value
*S
, const Type
*DstTy
) {
2412 // Check for type sanity on the arguments
2413 const Type
*SrcTy
= S
->getType();
2414 if (!SrcTy
->isFirstClassType() || !DstTy
->isFirstClassType())
2417 // Get the size of the types in bits, we'll need this later
2418 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2419 unsigned DstBitSize
= DstTy
->getScalarSizeInBits();
2421 // Switch on the opcode provided
2423 default: return false; // This is an input error
2424 case Instruction::Trunc
:
2425 return SrcTy
->isIntOrIntVector() &&
2426 DstTy
->isIntOrIntVector()&& SrcBitSize
> DstBitSize
;
2427 case Instruction::ZExt
:
2428 return SrcTy
->isIntOrIntVector() &&
2429 DstTy
->isIntOrIntVector()&& SrcBitSize
< DstBitSize
;
2430 case Instruction::SExt
:
2431 return SrcTy
->isIntOrIntVector() &&
2432 DstTy
->isIntOrIntVector()&& SrcBitSize
< DstBitSize
;
2433 case Instruction::FPTrunc
:
2434 return SrcTy
->isFPOrFPVector() &&
2435 DstTy
->isFPOrFPVector() &&
2436 SrcBitSize
> DstBitSize
;
2437 case Instruction::FPExt
:
2438 return SrcTy
->isFPOrFPVector() &&
2439 DstTy
->isFPOrFPVector() &&
2440 SrcBitSize
< DstBitSize
;
2441 case Instruction::UIToFP
:
2442 case Instruction::SIToFP
:
2443 if (const VectorType
*SVTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2444 if (const VectorType
*DVTy
= dyn_cast
<VectorType
>(DstTy
)) {
2445 return SVTy
->getElementType()->isIntOrIntVector() &&
2446 DVTy
->getElementType()->isFPOrFPVector() &&
2447 SVTy
->getNumElements() == DVTy
->getNumElements();
2450 return SrcTy
->isIntOrIntVector() && DstTy
->isFPOrFPVector();
2451 case Instruction::FPToUI
:
2452 case Instruction::FPToSI
:
2453 if (const VectorType
*SVTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2454 if (const VectorType
*DVTy
= dyn_cast
<VectorType
>(DstTy
)) {
2455 return SVTy
->getElementType()->isFPOrFPVector() &&
2456 DVTy
->getElementType()->isIntOrIntVector() &&
2457 SVTy
->getNumElements() == DVTy
->getNumElements();
2460 return SrcTy
->isFPOrFPVector() && DstTy
->isIntOrIntVector();
2461 case Instruction::PtrToInt
:
2462 return isa
<PointerType
>(SrcTy
) && DstTy
->isInteger();
2463 case Instruction::IntToPtr
:
2464 return SrcTy
->isInteger() && isa
<PointerType
>(DstTy
);
2465 case Instruction::BitCast
:
2466 // BitCast implies a no-op cast of type only. No bits change.
2467 // However, you can't cast pointers to anything but pointers.
2468 if (isa
<PointerType
>(SrcTy
) != isa
<PointerType
>(DstTy
))
2471 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2472 // these cases, the cast is okay if the source and destination bit widths
2474 return SrcTy
->getPrimitiveSizeInBits() == DstTy
->getPrimitiveSizeInBits();
2478 TruncInst::TruncInst(
2479 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2480 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertBefore
) {
2481 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
2484 TruncInst::TruncInst(
2485 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2486 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertAtEnd
) {
2487 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
2491 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2492 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertBefore
) {
2493 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
2497 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2498 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertAtEnd
) {
2499 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
2502 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2503 ) : CastInst(Ty
, SExt
, S
, Name
, InsertBefore
) {
2504 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
2508 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2509 ) : CastInst(Ty
, SExt
, S
, Name
, InsertAtEnd
) {
2510 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
2513 FPTruncInst::FPTruncInst(
2514 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2515 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertBefore
) {
2516 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
2519 FPTruncInst::FPTruncInst(
2520 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2521 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertAtEnd
) {
2522 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
2525 FPExtInst::FPExtInst(
2526 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2527 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertBefore
) {
2528 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
2531 FPExtInst::FPExtInst(
2532 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2533 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertAtEnd
) {
2534 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
2537 UIToFPInst::UIToFPInst(
2538 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2539 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertBefore
) {
2540 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
2543 UIToFPInst::UIToFPInst(
2544 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2545 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertAtEnd
) {
2546 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
2549 SIToFPInst::SIToFPInst(
2550 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2551 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertBefore
) {
2552 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
2555 SIToFPInst::SIToFPInst(
2556 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2557 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertAtEnd
) {
2558 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
2561 FPToUIInst::FPToUIInst(
2562 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2563 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertBefore
) {
2564 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
2567 FPToUIInst::FPToUIInst(
2568 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2569 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertAtEnd
) {
2570 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
2573 FPToSIInst::FPToSIInst(
2574 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2575 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertBefore
) {
2576 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
2579 FPToSIInst::FPToSIInst(
2580 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2581 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertAtEnd
) {
2582 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
2585 PtrToIntInst::PtrToIntInst(
2586 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2587 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertBefore
) {
2588 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
2591 PtrToIntInst::PtrToIntInst(
2592 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2593 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertAtEnd
) {
2594 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
2597 IntToPtrInst::IntToPtrInst(
2598 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2599 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertBefore
) {
2600 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
2603 IntToPtrInst::IntToPtrInst(
2604 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2605 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertAtEnd
) {
2606 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
2609 BitCastInst::BitCastInst(
2610 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2611 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertBefore
) {
2612 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
2615 BitCastInst::BitCastInst(
2616 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2617 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertAtEnd
) {
2618 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
2621 //===----------------------------------------------------------------------===//
2623 //===----------------------------------------------------------------------===//
2625 CmpInst::CmpInst(const Type
*ty
, OtherOps op
, unsigned short predicate
,
2626 Value
*LHS
, Value
*RHS
, const Twine
&Name
,
2627 Instruction
*InsertBefore
)
2628 : Instruction(ty
, op
,
2629 OperandTraits
<CmpInst
>::op_begin(this),
2630 OperandTraits
<CmpInst
>::operands(this),
2634 SubclassData
= predicate
;
2638 CmpInst::CmpInst(const Type
*ty
, OtherOps op
, unsigned short predicate
,
2639 Value
*LHS
, Value
*RHS
, const Twine
&Name
,
2640 BasicBlock
*InsertAtEnd
)
2641 : Instruction(ty
, op
,
2642 OperandTraits
<CmpInst
>::op_begin(this),
2643 OperandTraits
<CmpInst
>::operands(this),
2647 SubclassData
= predicate
;
2652 CmpInst::Create(OtherOps Op
, unsigned short predicate
,
2653 Value
*S1
, Value
*S2
,
2654 const Twine
&Name
, Instruction
*InsertBefore
) {
2655 if (Op
== Instruction::ICmp
) {
2657 return new ICmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
2660 return new ICmpInst(CmpInst::Predicate(predicate
),
2665 return new FCmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
2668 return new FCmpInst(CmpInst::Predicate(predicate
),
2673 CmpInst::Create(OtherOps Op
, unsigned short predicate
, Value
*S1
, Value
*S2
,
2674 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
2675 if (Op
== Instruction::ICmp
) {
2676 return new ICmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
2679 return new FCmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
2683 void CmpInst::swapOperands() {
2684 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2687 cast
<FCmpInst
>(this)->swapOperands();
2690 bool CmpInst::isCommutative() {
2691 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2692 return IC
->isCommutative();
2693 return cast
<FCmpInst
>(this)->isCommutative();
2696 bool CmpInst::isEquality() {
2697 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2698 return IC
->isEquality();
2699 return cast
<FCmpInst
>(this)->isEquality();
2703 CmpInst::Predicate
CmpInst::getInversePredicate(Predicate pred
) {
2705 default: assert(!"Unknown cmp predicate!");
2706 case ICMP_EQ
: return ICMP_NE
;
2707 case ICMP_NE
: return ICMP_EQ
;
2708 case ICMP_UGT
: return ICMP_ULE
;
2709 case ICMP_ULT
: return ICMP_UGE
;
2710 case ICMP_UGE
: return ICMP_ULT
;
2711 case ICMP_ULE
: return ICMP_UGT
;
2712 case ICMP_SGT
: return ICMP_SLE
;
2713 case ICMP_SLT
: return ICMP_SGE
;
2714 case ICMP_SGE
: return ICMP_SLT
;
2715 case ICMP_SLE
: return ICMP_SGT
;
2717 case FCMP_OEQ
: return FCMP_UNE
;
2718 case FCMP_ONE
: return FCMP_UEQ
;
2719 case FCMP_OGT
: return FCMP_ULE
;
2720 case FCMP_OLT
: return FCMP_UGE
;
2721 case FCMP_OGE
: return FCMP_ULT
;
2722 case FCMP_OLE
: return FCMP_UGT
;
2723 case FCMP_UEQ
: return FCMP_ONE
;
2724 case FCMP_UNE
: return FCMP_OEQ
;
2725 case FCMP_UGT
: return FCMP_OLE
;
2726 case FCMP_ULT
: return FCMP_OGE
;
2727 case FCMP_UGE
: return FCMP_OLT
;
2728 case FCMP_ULE
: return FCMP_OGT
;
2729 case FCMP_ORD
: return FCMP_UNO
;
2730 case FCMP_UNO
: return FCMP_ORD
;
2731 case FCMP_TRUE
: return FCMP_FALSE
;
2732 case FCMP_FALSE
: return FCMP_TRUE
;
2736 ICmpInst::Predicate
ICmpInst::getSignedPredicate(Predicate pred
) {
2738 default: assert(! "Unknown icmp predicate!");
2739 case ICMP_EQ
: case ICMP_NE
:
2740 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
2742 case ICMP_UGT
: return ICMP_SGT
;
2743 case ICMP_ULT
: return ICMP_SLT
;
2744 case ICMP_UGE
: return ICMP_SGE
;
2745 case ICMP_ULE
: return ICMP_SLE
;
2749 ICmpInst::Predicate
ICmpInst::getUnsignedPredicate(Predicate pred
) {
2751 default: assert(! "Unknown icmp predicate!");
2752 case ICMP_EQ
: case ICMP_NE
:
2753 case ICMP_UGT
: case ICMP_ULT
: case ICMP_UGE
: case ICMP_ULE
:
2755 case ICMP_SGT
: return ICMP_UGT
;
2756 case ICMP_SLT
: return ICMP_ULT
;
2757 case ICMP_SGE
: return ICMP_UGE
;
2758 case ICMP_SLE
: return ICMP_ULE
;
2762 bool ICmpInst::isSignedPredicate(Predicate pred
) {
2764 default: assert(! "Unknown icmp predicate!");
2765 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
2767 case ICMP_EQ
: case ICMP_NE
: case ICMP_UGT
: case ICMP_ULT
:
2768 case ICMP_UGE
: case ICMP_ULE
:
2773 /// Initialize a set of values that all satisfy the condition with C.
2776 ICmpInst::makeConstantRange(Predicate pred
, const APInt
&C
) {
2779 uint32_t BitWidth
= C
.getBitWidth();
2781 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2782 case ICmpInst::ICMP_EQ
: Upper
++; break;
2783 case ICmpInst::ICMP_NE
: Lower
++; break;
2784 case ICmpInst::ICMP_ULT
: Lower
= APInt::getMinValue(BitWidth
); break;
2785 case ICmpInst::ICMP_SLT
: Lower
= APInt::getSignedMinValue(BitWidth
); break;
2786 case ICmpInst::ICMP_UGT
:
2787 Lower
++; Upper
= APInt::getMinValue(BitWidth
); // Min = Next(Max)
2789 case ICmpInst::ICMP_SGT
:
2790 Lower
++; Upper
= APInt::getSignedMinValue(BitWidth
); // Min = Next(Max)
2792 case ICmpInst::ICMP_ULE
:
2793 Lower
= APInt::getMinValue(BitWidth
); Upper
++;
2795 case ICmpInst::ICMP_SLE
:
2796 Lower
= APInt::getSignedMinValue(BitWidth
); Upper
++;
2798 case ICmpInst::ICMP_UGE
:
2799 Upper
= APInt::getMinValue(BitWidth
); // Min = Next(Max)
2801 case ICmpInst::ICMP_SGE
:
2802 Upper
= APInt::getSignedMinValue(BitWidth
); // Min = Next(Max)
2805 return ConstantRange(Lower
, Upper
);
2808 CmpInst::Predicate
CmpInst::getSwappedPredicate(Predicate pred
) {
2810 default: assert(!"Unknown cmp predicate!");
2811 case ICMP_EQ
: case ICMP_NE
:
2813 case ICMP_SGT
: return ICMP_SLT
;
2814 case ICMP_SLT
: return ICMP_SGT
;
2815 case ICMP_SGE
: return ICMP_SLE
;
2816 case ICMP_SLE
: return ICMP_SGE
;
2817 case ICMP_UGT
: return ICMP_ULT
;
2818 case ICMP_ULT
: return ICMP_UGT
;
2819 case ICMP_UGE
: return ICMP_ULE
;
2820 case ICMP_ULE
: return ICMP_UGE
;
2822 case FCMP_FALSE
: case FCMP_TRUE
:
2823 case FCMP_OEQ
: case FCMP_ONE
:
2824 case FCMP_UEQ
: case FCMP_UNE
:
2825 case FCMP_ORD
: case FCMP_UNO
:
2827 case FCMP_OGT
: return FCMP_OLT
;
2828 case FCMP_OLT
: return FCMP_OGT
;
2829 case FCMP_OGE
: return FCMP_OLE
;
2830 case FCMP_OLE
: return FCMP_OGE
;
2831 case FCMP_UGT
: return FCMP_ULT
;
2832 case FCMP_ULT
: return FCMP_UGT
;
2833 case FCMP_UGE
: return FCMP_ULE
;
2834 case FCMP_ULE
: return FCMP_UGE
;
2838 bool CmpInst::isUnsigned(unsigned short predicate
) {
2839 switch (predicate
) {
2840 default: return false;
2841 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_ULE
: case ICmpInst::ICMP_UGT
:
2842 case ICmpInst::ICMP_UGE
: return true;
2846 bool CmpInst::isSigned(unsigned short predicate
){
2847 switch (predicate
) {
2848 default: return false;
2849 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_SLE
: case ICmpInst::ICMP_SGT
:
2850 case ICmpInst::ICMP_SGE
: return true;
2854 bool CmpInst::isOrdered(unsigned short predicate
) {
2855 switch (predicate
) {
2856 default: return false;
2857 case FCmpInst::FCMP_OEQ
: case FCmpInst::FCMP_ONE
: case FCmpInst::FCMP_OGT
:
2858 case FCmpInst::FCMP_OLT
: case FCmpInst::FCMP_OGE
: case FCmpInst::FCMP_OLE
:
2859 case FCmpInst::FCMP_ORD
: return true;
2863 bool CmpInst::isUnordered(unsigned short predicate
) {
2864 switch (predicate
) {
2865 default: return false;
2866 case FCmpInst::FCMP_UEQ
: case FCmpInst::FCMP_UNE
: case FCmpInst::FCMP_UGT
:
2867 case FCmpInst::FCMP_ULT
: case FCmpInst::FCMP_UGE
: case FCmpInst::FCMP_ULE
:
2868 case FCmpInst::FCMP_UNO
: return true;
2872 //===----------------------------------------------------------------------===//
2873 // SwitchInst Implementation
2874 //===----------------------------------------------------------------------===//
2876 void SwitchInst::init(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
) {
2877 assert(Value
&& Default
);
2878 ReservedSpace
= 2+NumCases
*2;
2880 OperandList
= allocHungoffUses(ReservedSpace
);
2882 OperandList
[0] = Value
;
2883 OperandList
[1] = Default
;
2886 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2887 /// switch on and a default destination. The number of additional cases can
2888 /// be specified here to make memory allocation more efficient. This
2889 /// constructor can also autoinsert before another instruction.
2890 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
2891 Instruction
*InsertBefore
)
2892 : TerminatorInst(Type::getVoidTy(Value
->getContext()), Instruction::Switch
,
2893 0, 0, InsertBefore
) {
2894 init(Value
, Default
, NumCases
);
2897 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2898 /// switch on and a default destination. The number of additional cases can
2899 /// be specified here to make memory allocation more efficient. This
2900 /// constructor also autoinserts at the end of the specified BasicBlock.
2901 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
2902 BasicBlock
*InsertAtEnd
)
2903 : TerminatorInst(Type::getVoidTy(Value
->getContext()), Instruction::Switch
,
2904 0, 0, InsertAtEnd
) {
2905 init(Value
, Default
, NumCases
);
2908 SwitchInst::SwitchInst(const SwitchInst
&SI
)
2909 : TerminatorInst(Type::getVoidTy(SI
.getContext()), Instruction::Switch
,
2910 allocHungoffUses(SI
.getNumOperands()), SI
.getNumOperands()) {
2911 Use
*OL
= OperandList
, *InOL
= SI
.OperandList
;
2912 for (unsigned i
= 0, E
= SI
.getNumOperands(); i
!= E
; i
+=2) {
2914 OL
[i
+1] = InOL
[i
+1];
2916 SubclassOptionalData
= SI
.SubclassOptionalData
;
2919 SwitchInst::~SwitchInst() {
2920 dropHungoffUses(OperandList
);
2924 /// addCase - Add an entry to the switch instruction...
2926 void SwitchInst::addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
) {
2927 unsigned OpNo
= NumOperands
;
2928 if (OpNo
+2 > ReservedSpace
)
2929 resizeOperands(0); // Get more space!
2930 // Initialize some new operands.
2931 assert(OpNo
+1 < ReservedSpace
&& "Growing didn't work!");
2932 NumOperands
= OpNo
+2;
2933 OperandList
[OpNo
] = OnVal
;
2934 OperandList
[OpNo
+1] = Dest
;
2937 /// removeCase - This method removes the specified successor from the switch
2938 /// instruction. Note that this cannot be used to remove the default
2939 /// destination (successor #0).
2941 void SwitchInst::removeCase(unsigned idx
) {
2942 assert(idx
!= 0 && "Cannot remove the default case!");
2943 assert(idx
*2 < getNumOperands() && "Successor index out of range!!!");
2945 unsigned NumOps
= getNumOperands();
2946 Use
*OL
= OperandList
;
2948 // Move everything after this operand down.
2950 // FIXME: we could just swap with the end of the list, then erase. However,
2951 // client might not expect this to happen. The code as it is thrashes the
2952 // use/def lists, which is kinda lame.
2953 for (unsigned i
= (idx
+1)*2; i
!= NumOps
; i
+= 2) {
2955 OL
[i
-2+1] = OL
[i
+1];
2958 // Nuke the last value.
2959 OL
[NumOps
-2].set(0);
2960 OL
[NumOps
-2+1].set(0);
2961 NumOperands
= NumOps
-2;
2964 /// resizeOperands - resize operands - This adjusts the length of the operands
2965 /// list according to the following behavior:
2966 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
2967 /// of operation. This grows the number of ops by 3 times.
2968 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
2969 /// 3. If NumOps == NumOperands, trim the reserved space.
2971 void SwitchInst::resizeOperands(unsigned NumOps
) {
2972 unsigned e
= getNumOperands();
2975 } else if (NumOps
*2 > NumOperands
) {
2976 // No resize needed.
2977 if (ReservedSpace
>= NumOps
) return;
2978 } else if (NumOps
== NumOperands
) {
2979 if (ReservedSpace
== NumOps
) return;
2984 ReservedSpace
= NumOps
;
2985 Use
*NewOps
= allocHungoffUses(NumOps
);
2986 Use
*OldOps
= OperandList
;
2987 for (unsigned i
= 0; i
!= e
; ++i
) {
2988 NewOps
[i
] = OldOps
[i
];
2990 OperandList
= NewOps
;
2991 if (OldOps
) Use::zap(OldOps
, OldOps
+ e
, true);
2995 BasicBlock
*SwitchInst::getSuccessorV(unsigned idx
) const {
2996 return getSuccessor(idx
);
2998 unsigned SwitchInst::getNumSuccessorsV() const {
2999 return getNumSuccessors();
3001 void SwitchInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
3002 setSuccessor(idx
, B
);
3005 // Define these methods here so vtables don't get emitted into every translation
3006 // unit that uses these classes.
3008 GetElementPtrInst
*GetElementPtrInst::clone(LLVMContext
&) const {
3009 GetElementPtrInst
*New
= new(getNumOperands()) GetElementPtrInst(*this);
3010 New
->SubclassOptionalData
= SubclassOptionalData
;
3014 BinaryOperator
*BinaryOperator::clone(LLVMContext
&) const {
3015 BinaryOperator
*New
= Create(getOpcode(), Op
<0>(), Op
<1>());
3016 New
->SubclassOptionalData
= SubclassOptionalData
;
3020 FCmpInst
* FCmpInst::clone(LLVMContext
&Context
) const {
3021 FCmpInst
*New
= new FCmpInst(getPredicate(), Op
<0>(), Op
<1>());
3022 New
->SubclassOptionalData
= SubclassOptionalData
;
3025 ICmpInst
* ICmpInst::clone(LLVMContext
&Context
) const {
3026 ICmpInst
*New
= new ICmpInst(getPredicate(), Op
<0>(), Op
<1>());
3027 New
->SubclassOptionalData
= SubclassOptionalData
;
3031 ExtractValueInst
*ExtractValueInst::clone(LLVMContext
&) const {
3032 ExtractValueInst
*New
= new ExtractValueInst(*this);
3033 New
->SubclassOptionalData
= SubclassOptionalData
;
3036 InsertValueInst
*InsertValueInst::clone(LLVMContext
&) const {
3037 InsertValueInst
*New
= new InsertValueInst(*this);
3038 New
->SubclassOptionalData
= SubclassOptionalData
;
3042 MallocInst
*MallocInst::clone(LLVMContext
&) const {
3043 MallocInst
*New
= new MallocInst(getAllocatedType(),
3044 (Value
*)getOperand(0),
3046 New
->SubclassOptionalData
= SubclassOptionalData
;
3050 AllocaInst
*AllocaInst::clone(LLVMContext
&) const {
3051 AllocaInst
*New
= new AllocaInst(getAllocatedType(),
3052 (Value
*)getOperand(0),
3054 New
->SubclassOptionalData
= SubclassOptionalData
;
3058 FreeInst
*FreeInst::clone(LLVMContext
&) const {
3059 FreeInst
*New
= new FreeInst(getOperand(0));
3060 New
->SubclassOptionalData
= SubclassOptionalData
;
3064 LoadInst
*LoadInst::clone(LLVMContext
&) const {
3065 LoadInst
*New
= new LoadInst(getOperand(0),
3066 Twine(), isVolatile(),
3068 New
->SubclassOptionalData
= SubclassOptionalData
;
3072 StoreInst
*StoreInst::clone(LLVMContext
&) const {
3073 StoreInst
*New
= new StoreInst(getOperand(0), getOperand(1),
3074 isVolatile(), getAlignment());
3075 New
->SubclassOptionalData
= SubclassOptionalData
;
3079 TruncInst
*TruncInst::clone(LLVMContext
&) const {
3080 TruncInst
*New
= new TruncInst(getOperand(0), getType());
3081 New
->SubclassOptionalData
= SubclassOptionalData
;
3085 ZExtInst
*ZExtInst::clone(LLVMContext
&) const {
3086 ZExtInst
*New
= new ZExtInst(getOperand(0), getType());
3087 New
->SubclassOptionalData
= SubclassOptionalData
;
3091 SExtInst
*SExtInst::clone(LLVMContext
&) const {
3092 SExtInst
*New
= new SExtInst(getOperand(0), getType());
3093 New
->SubclassOptionalData
= SubclassOptionalData
;
3097 FPTruncInst
*FPTruncInst::clone(LLVMContext
&) const {
3098 FPTruncInst
*New
= new FPTruncInst(getOperand(0), getType());
3099 New
->SubclassOptionalData
= SubclassOptionalData
;
3103 FPExtInst
*FPExtInst::clone(LLVMContext
&) const {
3104 FPExtInst
*New
= new FPExtInst(getOperand(0), getType());
3105 New
->SubclassOptionalData
= SubclassOptionalData
;
3109 UIToFPInst
*UIToFPInst::clone(LLVMContext
&) const {
3110 UIToFPInst
*New
= new UIToFPInst(getOperand(0), getType());
3111 New
->SubclassOptionalData
= SubclassOptionalData
;
3115 SIToFPInst
*SIToFPInst::clone(LLVMContext
&) const {
3116 SIToFPInst
*New
= new SIToFPInst(getOperand(0), getType());
3117 New
->SubclassOptionalData
= SubclassOptionalData
;
3121 FPToUIInst
*FPToUIInst::clone(LLVMContext
&) const {
3122 FPToUIInst
*New
= new FPToUIInst(getOperand(0), getType());
3123 New
->SubclassOptionalData
= SubclassOptionalData
;
3127 FPToSIInst
*FPToSIInst::clone(LLVMContext
&) const {
3128 FPToSIInst
*New
= new FPToSIInst(getOperand(0), getType());
3129 New
->SubclassOptionalData
= SubclassOptionalData
;
3133 PtrToIntInst
*PtrToIntInst::clone(LLVMContext
&) const {
3134 PtrToIntInst
*New
= new PtrToIntInst(getOperand(0), getType());
3135 New
->SubclassOptionalData
= SubclassOptionalData
;
3139 IntToPtrInst
*IntToPtrInst::clone(LLVMContext
&) const {
3140 IntToPtrInst
*New
= new IntToPtrInst(getOperand(0), getType());
3141 New
->SubclassOptionalData
= SubclassOptionalData
;
3145 BitCastInst
*BitCastInst::clone(LLVMContext
&) const {
3146 BitCastInst
*New
= new BitCastInst(getOperand(0), getType());
3147 New
->SubclassOptionalData
= SubclassOptionalData
;
3151 CallInst
*CallInst::clone(LLVMContext
&) const {
3152 CallInst
*New
= new(getNumOperands()) CallInst(*this);
3153 New
->SubclassOptionalData
= SubclassOptionalData
;
3157 SelectInst
*SelectInst::clone(LLVMContext
&) const {
3158 SelectInst
*New
= SelectInst::Create(getOperand(0),
3161 New
->SubclassOptionalData
= SubclassOptionalData
;
3165 VAArgInst
*VAArgInst::clone(LLVMContext
&) const {
3166 VAArgInst
*New
= new VAArgInst(getOperand(0), getType());
3167 New
->SubclassOptionalData
= SubclassOptionalData
;
3171 ExtractElementInst
*ExtractElementInst::clone(LLVMContext
&) const {
3172 ExtractElementInst
*New
= ExtractElementInst::Create(getOperand(0),
3174 New
->SubclassOptionalData
= SubclassOptionalData
;
3178 InsertElementInst
*InsertElementInst::clone(LLVMContext
&) const {
3179 InsertElementInst
*New
= InsertElementInst::Create(getOperand(0),
3182 New
->SubclassOptionalData
= SubclassOptionalData
;
3186 ShuffleVectorInst
*ShuffleVectorInst::clone(LLVMContext
&) const {
3187 ShuffleVectorInst
*New
= new ShuffleVectorInst(getOperand(0),
3190 New
->SubclassOptionalData
= SubclassOptionalData
;
3194 PHINode
*PHINode::clone(LLVMContext
&) const {
3195 PHINode
*New
= new PHINode(*this);
3196 New
->SubclassOptionalData
= SubclassOptionalData
;
3200 ReturnInst
*ReturnInst::clone(LLVMContext
&) const {
3201 ReturnInst
*New
= new(getNumOperands()) ReturnInst(*this);
3202 New
->SubclassOptionalData
= SubclassOptionalData
;
3206 BranchInst
*BranchInst::clone(LLVMContext
&) const {
3207 unsigned Ops(getNumOperands());
3208 BranchInst
*New
= new(Ops
, Ops
== 1) BranchInst(*this);
3209 New
->SubclassOptionalData
= SubclassOptionalData
;
3213 SwitchInst
*SwitchInst::clone(LLVMContext
&) const {
3214 SwitchInst
*New
= new SwitchInst(*this);
3215 New
->SubclassOptionalData
= SubclassOptionalData
;
3219 InvokeInst
*InvokeInst::clone(LLVMContext
&) const {
3220 InvokeInst
*New
= new(getNumOperands()) InvokeInst(*this);
3221 New
->SubclassOptionalData
= SubclassOptionalData
;
3225 UnwindInst
*UnwindInst::clone(LLVMContext
&C
) const {
3226 UnwindInst
*New
= new UnwindInst(C
);
3227 New
->SubclassOptionalData
= SubclassOptionalData
;
3231 UnreachableInst
*UnreachableInst::clone(LLVMContext
&C
) const {
3232 UnreachableInst
*New
= new UnreachableInst(C
);
3233 New
->SubclassOptionalData
= SubclassOptionalData
;