make -debug-pass=Executions show information about what call graph nodes
[llvm/avr.git] / lib / VMCore / ConstantsContext.h
blob4f55502ff94825c029bbcc27c7f16624e7340eb2
1 //===-- ConstantsContext.h - Constants-related Context Interals -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various helper methods and classes used by
11 // LLVMContextImpl for creating and managing constants.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CONSTANTSCONTEXT_H
16 #define LLVM_CONSTANTSCONTEXT_H
18 #include "llvm/Instructions.h"
19 #include "llvm/Operator.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/System/Mutex.h"
24 #include "llvm/System/RWMutex.h"
25 #include <map>
27 namespace llvm {
28 template<class ValType>
29 struct ConstantTraits;
31 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
32 /// behind the scenes to implement unary constant exprs.
33 class UnaryConstantExpr : public ConstantExpr {
34 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
35 public:
36 // allocate space for exactly one operand
37 void *operator new(size_t s) {
38 return User::operator new(s, 1);
40 UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
41 : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
42 Op<0>() = C;
44 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
47 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
48 /// behind the scenes to implement binary constant exprs.
49 class BinaryConstantExpr : public ConstantExpr {
50 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
51 public:
52 // allocate space for exactly two operands
53 void *operator new(size_t s) {
54 return User::operator new(s, 2);
56 BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
57 unsigned Flags)
58 : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
59 Op<0>() = C1;
60 Op<1>() = C2;
61 SubclassOptionalData = Flags;
63 /// Transparently provide more efficient getOperand methods.
64 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
67 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
68 /// behind the scenes to implement select constant exprs.
69 class SelectConstantExpr : public ConstantExpr {
70 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
71 public:
72 // allocate space for exactly three operands
73 void *operator new(size_t s) {
74 return User::operator new(s, 3);
76 SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
77 : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
78 Op<0>() = C1;
79 Op<1>() = C2;
80 Op<2>() = C3;
82 /// Transparently provide more efficient getOperand methods.
83 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
86 /// ExtractElementConstantExpr - This class is private to
87 /// Constants.cpp, and is used behind the scenes to implement
88 /// extractelement constant exprs.
89 class ExtractElementConstantExpr : public ConstantExpr {
90 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
91 public:
92 // allocate space for exactly two operands
93 void *operator new(size_t s) {
94 return User::operator new(s, 2);
96 ExtractElementConstantExpr(Constant *C1, Constant *C2)
97 : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
98 Instruction::ExtractElement, &Op<0>(), 2) {
99 Op<0>() = C1;
100 Op<1>() = C2;
102 /// Transparently provide more efficient getOperand methods.
103 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
106 /// InsertElementConstantExpr - This class is private to
107 /// Constants.cpp, and is used behind the scenes to implement
108 /// insertelement constant exprs.
109 class InsertElementConstantExpr : public ConstantExpr {
110 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
111 public:
112 // allocate space for exactly three operands
113 void *operator new(size_t s) {
114 return User::operator new(s, 3);
116 InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
117 : ConstantExpr(C1->getType(), Instruction::InsertElement,
118 &Op<0>(), 3) {
119 Op<0>() = C1;
120 Op<1>() = C2;
121 Op<2>() = C3;
123 /// Transparently provide more efficient getOperand methods.
124 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
127 /// ShuffleVectorConstantExpr - This class is private to
128 /// Constants.cpp, and is used behind the scenes to implement
129 /// shufflevector constant exprs.
130 class ShuffleVectorConstantExpr : public ConstantExpr {
131 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
132 public:
133 // allocate space for exactly three operands
134 void *operator new(size_t s) {
135 return User::operator new(s, 3);
137 ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
138 : ConstantExpr(VectorType::get(
139 cast<VectorType>(C1->getType())->getElementType(),
140 cast<VectorType>(C3->getType())->getNumElements()),
141 Instruction::ShuffleVector,
142 &Op<0>(), 3) {
143 Op<0>() = C1;
144 Op<1>() = C2;
145 Op<2>() = C3;
147 /// Transparently provide more efficient getOperand methods.
148 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
151 /// ExtractValueConstantExpr - This class is private to
152 /// Constants.cpp, and is used behind the scenes to implement
153 /// extractvalue constant exprs.
154 class ExtractValueConstantExpr : public ConstantExpr {
155 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
156 public:
157 // allocate space for exactly one operand
158 void *operator new(size_t s) {
159 return User::operator new(s, 1);
161 ExtractValueConstantExpr(Constant *Agg,
162 const SmallVector<unsigned, 4> &IdxList,
163 const Type *DestTy)
164 : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
165 Indices(IdxList) {
166 Op<0>() = Agg;
169 /// Indices - These identify which value to extract.
170 const SmallVector<unsigned, 4> Indices;
172 /// Transparently provide more efficient getOperand methods.
173 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
176 /// InsertValueConstantExpr - This class is private to
177 /// Constants.cpp, and is used behind the scenes to implement
178 /// insertvalue constant exprs.
179 class InsertValueConstantExpr : public ConstantExpr {
180 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
181 public:
182 // allocate space for exactly one operand
183 void *operator new(size_t s) {
184 return User::operator new(s, 2);
186 InsertValueConstantExpr(Constant *Agg, Constant *Val,
187 const SmallVector<unsigned, 4> &IdxList,
188 const Type *DestTy)
189 : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
190 Indices(IdxList) {
191 Op<0>() = Agg;
192 Op<1>() = Val;
195 /// Indices - These identify the position for the insertion.
196 const SmallVector<unsigned, 4> Indices;
198 /// Transparently provide more efficient getOperand methods.
199 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
203 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
204 /// used behind the scenes to implement getelementpr constant exprs.
205 class GetElementPtrConstantExpr : public ConstantExpr {
206 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
207 const Type *DestTy);
208 public:
209 static GetElementPtrConstantExpr *Create(Constant *C,
210 const std::vector<Constant*>&IdxList,
211 const Type *DestTy,
212 unsigned Flags) {
213 GetElementPtrConstantExpr *Result =
214 new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
215 Result->SubclassOptionalData = Flags;
216 return Result;
218 /// Transparently provide more efficient getOperand methods.
219 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
222 // CompareConstantExpr - This class is private to Constants.cpp, and is used
223 // behind the scenes to implement ICmp and FCmp constant expressions. This is
224 // needed in order to store the predicate value for these instructions.
225 struct CompareConstantExpr : public ConstantExpr {
226 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
227 // allocate space for exactly two operands
228 void *operator new(size_t s) {
229 return User::operator new(s, 2);
231 unsigned short predicate;
232 CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
233 unsigned short pred, Constant* LHS, Constant* RHS)
234 : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
235 Op<0>() = LHS;
236 Op<1>() = RHS;
238 /// Transparently provide more efficient getOperand methods.
239 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
242 template <>
243 struct OperandTraits<UnaryConstantExpr> : public FixedNumOperandTraits<1> {
245 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
247 template <>
248 struct OperandTraits<BinaryConstantExpr> : public FixedNumOperandTraits<2> {
250 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
252 template <>
253 struct OperandTraits<SelectConstantExpr> : public FixedNumOperandTraits<3> {
255 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
257 template <>
258 struct OperandTraits<ExtractElementConstantExpr> : public FixedNumOperandTraits<2> {
260 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
262 template <>
263 struct OperandTraits<InsertElementConstantExpr> : public FixedNumOperandTraits<3> {
265 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
267 template <>
268 struct OperandTraits<ShuffleVectorConstantExpr> : public FixedNumOperandTraits<3> {
270 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
272 template <>
273 struct OperandTraits<ExtractValueConstantExpr> : public FixedNumOperandTraits<1> {
275 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
277 template <>
278 struct OperandTraits<InsertValueConstantExpr> : public FixedNumOperandTraits<2> {
280 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
282 template <>
283 struct OperandTraits<GetElementPtrConstantExpr> : public VariadicOperandTraits<1> {
286 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
289 template <>
290 struct OperandTraits<CompareConstantExpr> : public FixedNumOperandTraits<2> {
292 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
294 struct ExprMapKeyType {
295 typedef SmallVector<unsigned, 4> IndexList;
297 ExprMapKeyType(unsigned opc,
298 const std::vector<Constant*> &ops,
299 unsigned short flags = 0,
300 unsigned short optionalflags = 0,
301 const IndexList &inds = IndexList())
302 : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
303 operands(ops), indices(inds) {}
304 uint8_t opcode;
305 uint8_t subclassoptionaldata;
306 uint16_t subclassdata;
307 std::vector<Constant*> operands;
308 IndexList indices;
309 bool operator==(const ExprMapKeyType& that) const {
310 return this->opcode == that.opcode &&
311 this->subclassdata == that.subclassdata &&
312 this->subclassoptionaldata == that.subclassoptionaldata &&
313 this->operands == that.operands &&
314 this->indices == that.indices;
316 bool operator<(const ExprMapKeyType & that) const {
317 if (this->opcode != that.opcode) return this->opcode < that.opcode;
318 if (this->operands != that.operands) return this->operands < that.operands;
319 if (this->subclassdata != that.subclassdata)
320 return this->subclassdata < that.subclassdata;
321 if (this->subclassoptionaldata != that.subclassoptionaldata)
322 return this->subclassoptionaldata < that.subclassoptionaldata;
323 if (this->indices != that.indices) return this->indices < that.indices;
324 return false;
327 bool operator!=(const ExprMapKeyType& that) const {
328 return !(*this == that);
332 // The number of operands for each ConstantCreator::create method is
333 // determined by the ConstantTraits template.
334 // ConstantCreator - A class that is used to create constants by
335 // ValueMap*. This class should be partially specialized if there is
336 // something strange that needs to be done to interface to the ctor for the
337 // constant.
339 template<typename T, typename Alloc>
340 struct ConstantTraits< std::vector<T, Alloc> > {
341 static unsigned uses(const std::vector<T, Alloc>& v) {
342 return v.size();
346 template<class ConstantClass, class TypeClass, class ValType>
347 struct ConstantCreator {
348 static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
349 return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
353 template<class ConstantClass, class TypeClass>
354 struct ConvertConstantType {
355 static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
356 llvm_unreachable("This type cannot be converted!");
360 template<>
361 struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
362 static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
363 unsigned short pred = 0) {
364 if (Instruction::isCast(V.opcode))
365 return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
366 if ((V.opcode >= Instruction::BinaryOpsBegin &&
367 V.opcode < Instruction::BinaryOpsEnd))
368 return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
369 V.subclassoptionaldata);
370 if (V.opcode == Instruction::Select)
371 return new SelectConstantExpr(V.operands[0], V.operands[1],
372 V.operands[2]);
373 if (V.opcode == Instruction::ExtractElement)
374 return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
375 if (V.opcode == Instruction::InsertElement)
376 return new InsertElementConstantExpr(V.operands[0], V.operands[1],
377 V.operands[2]);
378 if (V.opcode == Instruction::ShuffleVector)
379 return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
380 V.operands[2]);
381 if (V.opcode == Instruction::InsertValue)
382 return new InsertValueConstantExpr(V.operands[0], V.operands[1],
383 V.indices, Ty);
384 if (V.opcode == Instruction::ExtractValue)
385 return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
386 if (V.opcode == Instruction::GetElementPtr) {
387 std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
388 return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
389 V.subclassoptionaldata);
392 // The compare instructions are weird. We have to encode the predicate
393 // value and it is combined with the instruction opcode by multiplying
394 // the opcode by one hundred. We must decode this to get the predicate.
395 if (V.opcode == Instruction::ICmp)
396 return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
397 V.operands[0], V.operands[1]);
398 if (V.opcode == Instruction::FCmp)
399 return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
400 V.operands[0], V.operands[1]);
401 llvm_unreachable("Invalid ConstantExpr!");
402 return 0;
406 template<>
407 struct ConvertConstantType<ConstantExpr, Type> {
408 static void convert(ConstantExpr *OldC, const Type *NewTy) {
409 Constant *New;
410 switch (OldC->getOpcode()) {
411 case Instruction::Trunc:
412 case Instruction::ZExt:
413 case Instruction::SExt:
414 case Instruction::FPTrunc:
415 case Instruction::FPExt:
416 case Instruction::UIToFP:
417 case Instruction::SIToFP:
418 case Instruction::FPToUI:
419 case Instruction::FPToSI:
420 case Instruction::PtrToInt:
421 case Instruction::IntToPtr:
422 case Instruction::BitCast:
423 New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0),
424 NewTy);
425 break;
426 case Instruction::Select:
427 New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
428 OldC->getOperand(1),
429 OldC->getOperand(2));
430 break;
431 default:
432 assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
433 OldC->getOpcode() < Instruction::BinaryOpsEnd);
434 New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
435 OldC->getOperand(1));
436 break;
437 case Instruction::GetElementPtr:
438 // Make everyone now use a constant of the new type...
439 std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
440 New = cast<GEPOperator>(OldC)->isInBounds() ?
441 ConstantExpr::getInBoundsGetElementPtrTy(NewTy, OldC->getOperand(0),
442 &Idx[0], Idx.size()) :
443 ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
444 &Idx[0], Idx.size());
445 break;
448 assert(New != OldC && "Didn't replace constant??");
449 OldC->uncheckedReplaceAllUsesWith(New);
450 OldC->destroyConstant(); // This constant is now dead, destroy it.
454 // ConstantAggregateZero does not take extra "value" argument...
455 template<class ValType>
456 struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
457 static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
458 return new ConstantAggregateZero(Ty);
462 template<>
463 struct ConvertConstantType<ConstantVector, VectorType> {
464 static void convert(ConstantVector *OldC, const VectorType *NewTy) {
465 // Make everyone now use a constant of the new type...
466 std::vector<Constant*> C;
467 for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
468 C.push_back(cast<Constant>(OldC->getOperand(i)));
469 Constant *New = ConstantVector::get(NewTy, C);
470 assert(New != OldC && "Didn't replace constant??");
471 OldC->uncheckedReplaceAllUsesWith(New);
472 OldC->destroyConstant(); // This constant is now dead, destroy it.
476 template<>
477 struct ConvertConstantType<ConstantAggregateZero, Type> {
478 static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
479 // Make everyone now use a constant of the new type...
480 Constant *New = ConstantAggregateZero::get(NewTy);
481 assert(New != OldC && "Didn't replace constant??");
482 OldC->uncheckedReplaceAllUsesWith(New);
483 OldC->destroyConstant(); // This constant is now dead, destroy it.
487 template<>
488 struct ConvertConstantType<ConstantArray, ArrayType> {
489 static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
490 // Make everyone now use a constant of the new type...
491 std::vector<Constant*> C;
492 for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
493 C.push_back(cast<Constant>(OldC->getOperand(i)));
494 Constant *New = ConstantArray::get(NewTy, C);
495 assert(New != OldC && "Didn't replace constant??");
496 OldC->uncheckedReplaceAllUsesWith(New);
497 OldC->destroyConstant(); // This constant is now dead, destroy it.
501 template<>
502 struct ConvertConstantType<ConstantStruct, StructType> {
503 static void convert(ConstantStruct *OldC, const StructType *NewTy) {
504 // Make everyone now use a constant of the new type...
505 std::vector<Constant*> C;
506 for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
507 C.push_back(cast<Constant>(OldC->getOperand(i)));
508 Constant *New = ConstantStruct::get(NewTy, C);
509 assert(New != OldC && "Didn't replace constant??");
511 OldC->uncheckedReplaceAllUsesWith(New);
512 OldC->destroyConstant(); // This constant is now dead, destroy it.
516 // ConstantPointerNull does not take extra "value" argument...
517 template<class ValType>
518 struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
519 static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
520 return new ConstantPointerNull(Ty);
524 template<>
525 struct ConvertConstantType<ConstantPointerNull, PointerType> {
526 static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
527 // Make everyone now use a constant of the new type...
528 Constant *New = ConstantPointerNull::get(NewTy);
529 assert(New != OldC && "Didn't replace constant??");
530 OldC->uncheckedReplaceAllUsesWith(New);
531 OldC->destroyConstant(); // This constant is now dead, destroy it.
535 // UndefValue does not take extra "value" argument...
536 template<class ValType>
537 struct ConstantCreator<UndefValue, Type, ValType> {
538 static UndefValue *create(const Type *Ty, const ValType &V) {
539 return new UndefValue(Ty);
543 template<>
544 struct ConvertConstantType<UndefValue, Type> {
545 static void convert(UndefValue *OldC, const Type *NewTy) {
546 // Make everyone now use a constant of the new type.
547 Constant *New = UndefValue::get(NewTy);
548 assert(New != OldC && "Didn't replace constant??");
549 OldC->uncheckedReplaceAllUsesWith(New);
550 OldC->destroyConstant(); // This constant is now dead, destroy it.
554 template<class ValType, class TypeClass, class ConstantClass,
555 bool HasLargeKey = false /*true for arrays and structs*/ >
556 class ValueMap : public AbstractTypeUser {
557 public:
558 typedef std::pair<const Type*, ValType> MapKey;
559 typedef std::map<MapKey, Constant *> MapTy;
560 typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
561 typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
562 private:
563 /// Map - This is the main map from the element descriptor to the Constants.
564 /// This is the primary way we avoid creating two of the same shape
565 /// constant.
566 MapTy Map;
568 /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
569 /// from the constants to their element in Map. This is important for
570 /// removal of constants from the array, which would otherwise have to scan
571 /// through the map with very large keys.
572 InverseMapTy InverseMap;
574 /// AbstractTypeMap - Map for abstract type constants.
576 AbstractTypeMapTy AbstractTypeMap;
578 /// ValueMapLock - Mutex for this map.
579 sys::SmartMutex<true> ValueMapLock;
581 public:
582 // NOTE: This function is not locked. It is the caller's responsibility
583 // to enforce proper synchronization.
584 typename MapTy::iterator map_begin() { return Map.begin(); }
585 typename MapTy::iterator map_end() { return Map.end(); }
587 void freeConstants() {
588 for (typename MapTy::iterator I=Map.begin(), E=Map.end();
589 I != E; ++I) {
590 if (I->second->use_empty())
591 delete I->second;
595 /// InsertOrGetItem - Return an iterator for the specified element.
596 /// If the element exists in the map, the returned iterator points to the
597 /// entry and Exists=true. If not, the iterator points to the newly
598 /// inserted entry and returns Exists=false. Newly inserted entries have
599 /// I->second == 0, and should be filled in.
600 /// NOTE: This function is not locked. It is the caller's responsibility
601 // to enforce proper synchronization.
602 typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
603 &InsertVal,
604 bool &Exists) {
605 std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
606 Exists = !IP.second;
607 return IP.first;
610 private:
611 typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
612 if (HasLargeKey) {
613 typename InverseMapTy::iterator IMI = InverseMap.find(CP);
614 assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
615 IMI->second->second == CP &&
616 "InverseMap corrupt!");
617 return IMI->second;
620 typename MapTy::iterator I =
621 Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
622 getValType(CP)));
623 if (I == Map.end() || I->second != CP) {
624 // FIXME: This should not use a linear scan. If this gets to be a
625 // performance problem, someone should look at this.
626 for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
627 /* empty */;
629 return I;
632 ConstantClass* Create(const TypeClass *Ty, const ValType &V,
633 typename MapTy::iterator I) {
634 ConstantClass* Result =
635 ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
637 assert(Result->getType() == Ty && "Type specified is not correct!");
638 I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
640 if (HasLargeKey) // Remember the reverse mapping if needed.
641 InverseMap.insert(std::make_pair(Result, I));
643 // If the type of the constant is abstract, make sure that an entry
644 // exists for it in the AbstractTypeMap.
645 if (Ty->isAbstract()) {
646 typename AbstractTypeMapTy::iterator TI =
647 AbstractTypeMap.find(Ty);
649 if (TI == AbstractTypeMap.end()) {
650 // Add ourselves to the ATU list of the type.
651 cast<DerivedType>(Ty)->addAbstractTypeUser(this);
653 AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
657 return Result;
659 public:
661 /// getOrCreate - Return the specified constant from the map, creating it if
662 /// necessary.
663 ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
664 sys::SmartScopedLock<true> Lock(ValueMapLock);
665 MapKey Lookup(Ty, V);
666 ConstantClass* Result = 0;
668 typename MapTy::iterator I = Map.find(Lookup);
669 // Is it in the map?
670 if (I != Map.end())
671 Result = static_cast<ConstantClass *>(I->second);
673 if (!Result) {
674 // If no preexisting value, create one now...
675 Result = Create(Ty, V, I);
678 return Result;
681 void remove(ConstantClass *CP) {
682 sys::SmartScopedLock<true> Lock(ValueMapLock);
683 typename MapTy::iterator I = FindExistingElement(CP);
684 assert(I != Map.end() && "Constant not found in constant table!");
685 assert(I->second == CP && "Didn't find correct element?");
687 if (HasLargeKey) // Remember the reverse mapping if needed.
688 InverseMap.erase(CP);
690 // Now that we found the entry, make sure this isn't the entry that
691 // the AbstractTypeMap points to.
692 const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
693 if (Ty->isAbstract()) {
694 assert(AbstractTypeMap.count(Ty) &&
695 "Abstract type not in AbstractTypeMap?");
696 typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
697 if (ATMEntryIt == I) {
698 // Yes, we are removing the representative entry for this type.
699 // See if there are any other entries of the same type.
700 typename MapTy::iterator TmpIt = ATMEntryIt;
702 // First check the entry before this one...
703 if (TmpIt != Map.begin()) {
704 --TmpIt;
705 if (TmpIt->first.first != Ty) // Not the same type, move back...
706 ++TmpIt;
709 // If we didn't find the same type, try to move forward...
710 if (TmpIt == ATMEntryIt) {
711 ++TmpIt;
712 if (TmpIt == Map.end() || TmpIt->first.first != Ty)
713 --TmpIt; // No entry afterwards with the same type
716 // If there is another entry in the map of the same abstract type,
717 // update the AbstractTypeMap entry now.
718 if (TmpIt != ATMEntryIt) {
719 ATMEntryIt = TmpIt;
720 } else {
721 // Otherwise, we are removing the last instance of this type
722 // from the table. Remove from the ATM, and from user list.
723 cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
724 AbstractTypeMap.erase(Ty);
729 Map.erase(I);
733 /// MoveConstantToNewSlot - If we are about to change C to be the element
734 /// specified by I, update our internal data structures to reflect this
735 /// fact.
736 /// NOTE: This function is not locked. It is the responsibility of the
737 /// caller to enforce proper synchronization if using this method.
738 void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
739 // First, remove the old location of the specified constant in the map.
740 typename MapTy::iterator OldI = FindExistingElement(C);
741 assert(OldI != Map.end() && "Constant not found in constant table!");
742 assert(OldI->second == C && "Didn't find correct element?");
744 // If this constant is the representative element for its abstract type,
745 // update the AbstractTypeMap so that the representative element is I.
746 if (C->getType()->isAbstract()) {
747 typename AbstractTypeMapTy::iterator ATI =
748 AbstractTypeMap.find(C->getType());
749 assert(ATI != AbstractTypeMap.end() &&
750 "Abstract type not in AbstractTypeMap?");
751 if (ATI->second == OldI)
752 ATI->second = I;
755 // Remove the old entry from the map.
756 Map.erase(OldI);
758 // Update the inverse map so that we know that this constant is now
759 // located at descriptor I.
760 if (HasLargeKey) {
761 assert(I->second == C && "Bad inversemap entry!");
762 InverseMap[C] = I;
766 void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
767 sys::SmartScopedLock<true> Lock(ValueMapLock);
768 typename AbstractTypeMapTy::iterator I =
769 AbstractTypeMap.find(cast<Type>(OldTy));
771 assert(I != AbstractTypeMap.end() &&
772 "Abstract type not in AbstractTypeMap?");
774 // Convert a constant at a time until the last one is gone. The last one
775 // leaving will remove() itself, causing the AbstractTypeMapEntry to be
776 // eliminated eventually.
777 do {
778 ConvertConstantType<ConstantClass,
779 TypeClass>::convert(
780 static_cast<ConstantClass *>(I->second->second),
781 cast<TypeClass>(NewTy));
783 I = AbstractTypeMap.find(cast<Type>(OldTy));
784 } while (I != AbstractTypeMap.end());
787 // If the type became concrete without being refined to any other existing
788 // type, we just remove ourselves from the ATU list.
789 void typeBecameConcrete(const DerivedType *AbsTy) {
790 AbsTy->removeAbstractTypeUser(this);
793 void dump() const {
794 DEBUG(errs() << "Constant.cpp: ValueMap\n");
800 #endif