make -debug-pass=Executions show information about what call graph nodes
[llvm/avr.git] / lib / VMCore / Value.cpp
blobf6740626096398327e56050983aefcc3baafd93d
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
12 //===----------------------------------------------------------------------===//
14 #include "LLVMContextImpl.h"
15 #include "llvm/Constant.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InstrTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Module.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/ValueSymbolTable.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/LeakDetector.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/RWMutex.h"
32 #include "llvm/System/Threading.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include <algorithm>
35 using namespace llvm;
37 //===----------------------------------------------------------------------===//
38 // Value Class
39 //===----------------------------------------------------------------------===//
41 static inline const Type *checkType(const Type *Ty) {
42 assert(Ty && "Value defined with a null type: Error!");
43 return Ty;
46 Value::Value(const Type *ty, unsigned scid)
47 : SubclassID(scid), HasValueHandle(0), SubclassOptionalData(0),
48 SubclassData(0), VTy(checkType(ty)),
49 UseList(0), Name(0) {
50 if (isa<CallInst>(this) || isa<InvokeInst>(this))
51 assert((VTy->isFirstClassType() ||
52 VTy == Type::getVoidTy(ty->getContext()) ||
53 isa<OpaqueType>(ty) || VTy->getTypeID() == Type::StructTyID) &&
54 "invalid CallInst type!");
55 else if (!isa<Constant>(this) && !isa<BasicBlock>(this))
56 assert((VTy->isFirstClassType() ||
57 VTy == Type::getVoidTy(ty->getContext()) ||
58 isa<OpaqueType>(ty)) &&
59 "Cannot create non-first-class values except for constants!");
62 Value::~Value() {
63 // Notify all ValueHandles (if present) that this value is going away.
64 if (HasValueHandle)
65 ValueHandleBase::ValueIsDeleted(this);
67 #ifndef NDEBUG // Only in -g mode...
68 // Check to make sure that there are no uses of this value that are still
69 // around when the value is destroyed. If there are, then we have a dangling
70 // reference and something is wrong. This code is here to print out what is
71 // still being referenced. The value in question should be printed as
72 // a <badref>
74 if (!use_empty()) {
75 errs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n";
76 for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
77 errs() << "Use still stuck around after Def is destroyed:"
78 << **I << "\n";
80 #endif
81 assert(use_empty() && "Uses remain when a value is destroyed!");
83 // If this value is named, destroy the name. This should not be in a symtab
84 // at this point.
85 if (Name)
86 Name->Destroy();
88 // There should be no uses of this object anymore, remove it.
89 LeakDetector::removeGarbageObject(this);
92 /// hasNUses - Return true if this Value has exactly N users.
93 ///
94 bool Value::hasNUses(unsigned N) const {
95 use_const_iterator UI = use_begin(), E = use_end();
97 for (; N; --N, ++UI)
98 if (UI == E) return false; // Too few.
99 return UI == E;
102 /// hasNUsesOrMore - Return true if this value has N users or more. This is
103 /// logically equivalent to getNumUses() >= N.
105 bool Value::hasNUsesOrMore(unsigned N) const {
106 use_const_iterator UI = use_begin(), E = use_end();
108 for (; N; --N, ++UI)
109 if (UI == E) return false; // Too few.
111 return true;
114 /// isUsedInBasicBlock - Return true if this value is used in the specified
115 /// basic block.
116 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
117 for (use_const_iterator I = use_begin(), E = use_end(); I != E; ++I) {
118 const Instruction *User = dyn_cast<Instruction>(*I);
119 if (User && User->getParent() == BB)
120 return true;
122 return false;
126 /// getNumUses - This method computes the number of uses of this Value. This
127 /// is a linear time operation. Use hasOneUse or hasNUses to check for specific
128 /// values.
129 unsigned Value::getNumUses() const {
130 return (unsigned)std::distance(use_begin(), use_end());
133 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
134 ST = 0;
135 if (Instruction *I = dyn_cast<Instruction>(V)) {
136 if (BasicBlock *P = I->getParent())
137 if (Function *PP = P->getParent())
138 ST = &PP->getValueSymbolTable();
139 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
140 if (Function *P = BB->getParent())
141 ST = &P->getValueSymbolTable();
142 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
143 if (Module *P = GV->getParent())
144 ST = &P->getValueSymbolTable();
145 } else if (Argument *A = dyn_cast<Argument>(V)) {
146 if (Function *P = A->getParent())
147 ST = &P->getValueSymbolTable();
148 } else if (NamedMDNode *N = dyn_cast<NamedMDNode>(V)) {
149 if (Module *P = N->getParent()) {
150 ST = &P->getValueSymbolTable();
152 } else if (isa<MDString>(V))
153 return true;
154 else {
155 assert(isa<Constant>(V) && "Unknown value type!");
156 return true; // no name is setable for this.
158 return false;
161 StringRef Value::getName() const {
162 // Make sure the empty string is still a C string. For historical reasons,
163 // some clients want to call .data() on the result and expect it to be null
164 // terminated.
165 if (!Name) return StringRef("", 0);
166 return Name->getKey();
169 std::string Value::getNameStr() const {
170 return getName().str();
173 void Value::setName(const Twine &NewName) {
174 // Fast path for common IRBuilder case of setName("") when there is no name.
175 if (NewName.isTriviallyEmpty() && !hasName())
176 return;
178 SmallString<256> NameData;
179 NewName.toVector(NameData);
181 const char *NameStr = NameData.data();
182 unsigned NameLen = NameData.size();
184 // Name isn't changing?
185 if (getName() == StringRef(NameStr, NameLen))
186 return;
188 assert(getType() != Type::getVoidTy(getContext()) &&
189 "Cannot assign a name to void values!");
191 // Get the symbol table to update for this object.
192 ValueSymbolTable *ST;
193 if (getSymTab(this, ST))
194 return; // Cannot set a name on this value (e.g. constant).
196 if (!ST) { // No symbol table to update? Just do the change.
197 if (NameLen == 0) {
198 // Free the name for this value.
199 Name->Destroy();
200 Name = 0;
201 return;
204 if (Name)
205 Name->Destroy();
207 // NOTE: Could optimize for the case the name is shrinking to not deallocate
208 // then reallocated.
210 // Create the new name.
211 Name = ValueName::Create(NameStr, NameStr+NameLen);
212 Name->setValue(this);
213 return;
216 // NOTE: Could optimize for the case the name is shrinking to not deallocate
217 // then reallocated.
218 if (hasName()) {
219 // Remove old name.
220 ST->removeValueName(Name);
221 Name->Destroy();
222 Name = 0;
224 if (NameLen == 0)
225 return;
228 // Name is changing to something new.
229 Name = ST->createValueName(StringRef(NameStr, NameLen), this);
233 /// takeName - transfer the name from V to this value, setting V's name to
234 /// empty. It is an error to call V->takeName(V).
235 void Value::takeName(Value *V) {
236 ValueSymbolTable *ST = 0;
237 // If this value has a name, drop it.
238 if (hasName()) {
239 // Get the symtab this is in.
240 if (getSymTab(this, ST)) {
241 // We can't set a name on this value, but we need to clear V's name if
242 // it has one.
243 if (V->hasName()) V->setName("");
244 return; // Cannot set a name on this value (e.g. constant).
247 // Remove old name.
248 if (ST)
249 ST->removeValueName(Name);
250 Name->Destroy();
251 Name = 0;
254 // Now we know that this has no name.
256 // If V has no name either, we're done.
257 if (!V->hasName()) return;
259 // Get this's symtab if we didn't before.
260 if (!ST) {
261 if (getSymTab(this, ST)) {
262 // Clear V's name.
263 V->setName("");
264 return; // Cannot set a name on this value (e.g. constant).
268 // Get V's ST, this should always succed, because V has a name.
269 ValueSymbolTable *VST;
270 bool Failure = getSymTab(V, VST);
271 assert(!Failure && "V has a name, so it should have a ST!"); Failure=Failure;
273 // If these values are both in the same symtab, we can do this very fast.
274 // This works even if both values have no symtab yet.
275 if (ST == VST) {
276 // Take the name!
277 Name = V->Name;
278 V->Name = 0;
279 Name->setValue(this);
280 return;
283 // Otherwise, things are slightly more complex. Remove V's name from VST and
284 // then reinsert it into ST.
286 if (VST)
287 VST->removeValueName(V->Name);
288 Name = V->Name;
289 V->Name = 0;
290 Name->setValue(this);
292 if (ST)
293 ST->reinsertValue(this);
297 // uncheckedReplaceAllUsesWith - This is exactly the same as replaceAllUsesWith,
298 // except that it doesn't have all of the asserts. The asserts fail because we
299 // are half-way done resolving types, which causes some types to exist as two
300 // different Type*'s at the same time. This is a sledgehammer to work around
301 // this problem.
303 void Value::uncheckedReplaceAllUsesWith(Value *New) {
304 // Notify all ValueHandles (if present) that this value is going away.
305 if (HasValueHandle)
306 ValueHandleBase::ValueIsRAUWd(this, New);
308 while (!use_empty()) {
309 Use &U = *UseList;
310 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
311 // constant because they are uniqued.
312 if (Constant *C = dyn_cast<Constant>(U.getUser())) {
313 if (!isa<GlobalValue>(C)) {
314 C->replaceUsesOfWithOnConstant(this, New, &U);
315 continue;
319 U.set(New);
323 void Value::replaceAllUsesWith(Value *New) {
324 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
325 assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
326 assert(New->getType() == getType() &&
327 "replaceAllUses of value with new value of different type!");
329 uncheckedReplaceAllUsesWith(New);
332 Value *Value::stripPointerCasts() {
333 if (!isa<PointerType>(getType()))
334 return this;
335 Value *V = this;
336 do {
337 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
338 if (!GEP->hasAllZeroIndices())
339 return V;
340 V = GEP->getPointerOperand();
341 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
342 V = cast<Operator>(V)->getOperand(0);
343 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
344 if (GA->mayBeOverridden())
345 return V;
346 V = GA->getAliasee();
347 } else {
348 return V;
350 assert(isa<PointerType>(V->getType()) && "Unexpected operand type!");
351 } while (1);
354 Value *Value::getUnderlyingObject() {
355 if (!isa<PointerType>(getType()))
356 return this;
357 Value *V = this;
358 unsigned MaxLookup = 6;
359 do {
360 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
361 V = GEP->getPointerOperand();
362 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
363 V = cast<Operator>(V)->getOperand(0);
364 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
365 if (GA->mayBeOverridden())
366 return V;
367 V = GA->getAliasee();
368 } else {
369 return V;
371 assert(isa<PointerType>(V->getType()) && "Unexpected operand type!");
372 } while (--MaxLookup);
373 return V;
376 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
377 /// return the value in the PHI node corresponding to PredBB. If not, return
378 /// ourself. This is useful if you want to know the value something has in a
379 /// predecessor block.
380 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
381 const BasicBlock *PredBB) {
382 PHINode *PN = dyn_cast<PHINode>(this);
383 if (PN && PN->getParent() == CurBB)
384 return PN->getIncomingValueForBlock(PredBB);
385 return this;
388 LLVMContext &Value::getContext() const { return VTy->getContext(); }
390 //===----------------------------------------------------------------------===//
391 // ValueHandleBase Class
392 //===----------------------------------------------------------------------===//
394 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
395 /// List is known to point into the existing use list.
396 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
397 assert(List && "Handle list is null?");
399 // Splice ourselves into the list.
400 Next = *List;
401 *List = this;
402 setPrevPtr(List);
403 if (Next) {
404 Next->setPrevPtr(&Next);
405 assert(VP == Next->VP && "Added to wrong list?");
409 /// AddToUseList - Add this ValueHandle to the use list for VP.
410 void ValueHandleBase::AddToUseList() {
411 assert(VP && "Null pointer doesn't have a use list!");
413 LLVMContextImpl *pImpl = VP->getContext().pImpl;
415 if (VP->HasValueHandle) {
416 // If this value already has a ValueHandle, then it must be in the
417 // ValueHandles map already.
418 ValueHandleBase *&Entry = pImpl->ValueHandles[VP];
419 assert(Entry != 0 && "Value doesn't have any handles?");
420 AddToExistingUseList(&Entry);
421 return;
424 // Ok, it doesn't have any handles yet, so we must insert it into the
425 // DenseMap. However, doing this insertion could cause the DenseMap to
426 // reallocate itself, which would invalidate all of the PrevP pointers that
427 // point into the old table. Handle this by checking for reallocation and
428 // updating the stale pointers only if needed.
429 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
430 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
432 ValueHandleBase *&Entry = Handles[VP];
433 assert(Entry == 0 && "Value really did already have handles?");
434 AddToExistingUseList(&Entry);
435 VP->HasValueHandle = true;
437 // If reallocation didn't happen or if this was the first insertion, don't
438 // walk the table.
439 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
440 Handles.size() == 1) {
441 return;
444 // Okay, reallocation did happen. Fix the Prev Pointers.
445 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
446 E = Handles.end(); I != E; ++I) {
447 assert(I->second && I->first == I->second->VP && "List invariant broken!");
448 I->second->setPrevPtr(&I->second);
452 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
453 void ValueHandleBase::RemoveFromUseList() {
454 assert(VP && VP->HasValueHandle && "Pointer doesn't have a use list!");
456 // Unlink this from its use list.
457 ValueHandleBase **PrevPtr = getPrevPtr();
458 assert(*PrevPtr == this && "List invariant broken");
460 *PrevPtr = Next;
461 if (Next) {
462 assert(Next->getPrevPtr() == &Next && "List invariant broken");
463 Next->setPrevPtr(PrevPtr);
464 return;
467 // If the Next pointer was null, then it is possible that this was the last
468 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
469 // map.
470 LLVMContextImpl *pImpl = VP->getContext().pImpl;
471 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
472 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
473 Handles.erase(VP);
474 VP->HasValueHandle = false;
479 void ValueHandleBase::ValueIsDeleted(Value *V) {
480 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
482 // Get the linked list base, which is guaranteed to exist since the
483 // HasValueHandle flag is set.
484 LLVMContextImpl *pImpl = V->getContext().pImpl;
485 ValueHandleBase *Entry = pImpl->ValueHandles[V];
486 assert(Entry && "Value bit set but no entries exist");
488 while (Entry) {
489 // Advance pointer to avoid invalidation.
490 ValueHandleBase *ThisNode = Entry;
491 Entry = Entry->Next;
493 switch (ThisNode->getKind()) {
494 case Assert:
495 #ifndef NDEBUG // Only in -g mode...
496 errs() << "While deleting: " << *V->getType() << " %" << V->getNameStr()
497 << "\n";
498 #endif
499 llvm_unreachable("An asserting value handle still pointed to this"
500 " value!");
501 case Weak:
502 // Weak just goes to null, which will unlink it from the list.
503 ThisNode->operator=(0);
504 break;
505 case Callback:
506 // Forward to the subclass's implementation.
507 static_cast<CallbackVH*>(ThisNode)->deleted();
508 break;
512 // All callbacks and weak references should be dropped by now.
513 assert(!V->HasValueHandle && "All references to V were not removed?");
517 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
518 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
519 assert(Old != New && "Changing value into itself!");
521 // Get the linked list base, which is guaranteed to exist since the
522 // HasValueHandle flag is set.
523 LLVMContextImpl *pImpl = Old->getContext().pImpl;
524 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
526 assert(Entry && "Value bit set but no entries exist");
528 while (Entry) {
529 // Advance pointer to avoid invalidation.
530 ValueHandleBase *ThisNode = Entry;
531 Entry = Entry->Next;
533 switch (ThisNode->getKind()) {
534 case Assert:
535 // Asserting handle does not follow RAUW implicitly.
536 break;
537 case Weak:
538 // Weak goes to the new value, which will unlink it from Old's list.
539 ThisNode->operator=(New);
540 break;
541 case Callback:
542 // Forward to the subclass's implementation.
543 static_cast<CallbackVH*>(ThisNode)->allUsesReplacedWith(New);
544 break;
549 /// ~CallbackVH. Empty, but defined here to avoid emitting the vtable
550 /// more than once.
551 CallbackVH::~CallbackVH() {}
554 //===----------------------------------------------------------------------===//
555 // User Class
556 //===----------------------------------------------------------------------===//
558 // replaceUsesOfWith - Replaces all references to the "From" definition with
559 // references to the "To" definition.
561 void User::replaceUsesOfWith(Value *From, Value *To) {
562 if (From == To) return; // Duh what?
564 assert((!isa<Constant>(this) || isa<GlobalValue>(this)) &&
565 "Cannot call User::replaceUsesOfWith on a constant!");
567 for (unsigned i = 0, E = getNumOperands(); i != E; ++i)
568 if (getOperand(i) == From) { // Is This operand is pointing to oldval?
569 // The side effects of this setOperand call include linking to
570 // "To", adding "this" to the uses list of To, and
571 // most importantly, removing "this" from the use list of "From".
572 setOperand(i, To); // Fix it now...