make X86ATTAsmPrinter::PrintPICBaseSymbol forward to X86MCInstLower.
[llvm/avr.git] / lib / Bitcode / Reader / BitcodeReader.cpp
blobb217c188868122787d1323bb84def4b0ab4eecd6
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/Metadata.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/AutoUpgrade.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include "llvm/OperandTraits.h"
30 using namespace llvm;
32 void BitcodeReader::FreeState() {
33 delete Buffer;
34 Buffer = 0;
35 std::vector<PATypeHolder>().swap(TypeList);
36 ValueList.clear();
37 MDValueList.clear();
39 std::vector<AttrListPtr>().swap(MAttributes);
40 std::vector<BasicBlock*>().swap(FunctionBBs);
41 std::vector<Function*>().swap(FunctionsWithBodies);
42 DeferredFunctionInfo.clear();
45 //===----------------------------------------------------------------------===//
46 // Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53 StrTy &Result) {
54 if (Idx > Record.size())
55 return true;
57 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58 Result += (char)Record[i];
59 return false;
62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63 switch (Val) {
64 default: // Map unknown/new linkages to external
65 case 0: return GlobalValue::ExternalLinkage;
66 case 1: return GlobalValue::WeakAnyLinkage;
67 case 2: return GlobalValue::AppendingLinkage;
68 case 3: return GlobalValue::InternalLinkage;
69 case 4: return GlobalValue::LinkOnceAnyLinkage;
70 case 5: return GlobalValue::DLLImportLinkage;
71 case 6: return GlobalValue::DLLExportLinkage;
72 case 7: return GlobalValue::ExternalWeakLinkage;
73 case 8: return GlobalValue::CommonLinkage;
74 case 9: return GlobalValue::PrivateLinkage;
75 case 10: return GlobalValue::WeakODRLinkage;
76 case 11: return GlobalValue::LinkOnceODRLinkage;
77 case 12: return GlobalValue::AvailableExternallyLinkage;
78 case 13: return GlobalValue::LinkerPrivateLinkage;
82 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83 switch (Val) {
84 default: // Map unknown visibilities to default.
85 case 0: return GlobalValue::DefaultVisibility;
86 case 1: return GlobalValue::HiddenVisibility;
87 case 2: return GlobalValue::ProtectedVisibility;
91 static int GetDecodedCastOpcode(unsigned Val) {
92 switch (Val) {
93 default: return -1;
94 case bitc::CAST_TRUNC : return Instruction::Trunc;
95 case bitc::CAST_ZEXT : return Instruction::ZExt;
96 case bitc::CAST_SEXT : return Instruction::SExt;
97 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
98 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
99 case bitc::CAST_UITOFP : return Instruction::UIToFP;
100 case bitc::CAST_SITOFP : return Instruction::SIToFP;
101 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102 case bitc::CAST_FPEXT : return Instruction::FPExt;
103 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105 case bitc::CAST_BITCAST : return Instruction::BitCast;
108 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109 switch (Val) {
110 default: return -1;
111 case bitc::BINOP_ADD:
112 return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
113 case bitc::BINOP_SUB:
114 return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
115 case bitc::BINOP_MUL:
116 return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
117 case bitc::BINOP_UDIV: return Instruction::UDiv;
118 case bitc::BINOP_SDIV:
119 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
120 case bitc::BINOP_UREM: return Instruction::URem;
121 case bitc::BINOP_SREM:
122 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
123 case bitc::BINOP_SHL: return Instruction::Shl;
124 case bitc::BINOP_LSHR: return Instruction::LShr;
125 case bitc::BINOP_ASHR: return Instruction::AShr;
126 case bitc::BINOP_AND: return Instruction::And;
127 case bitc::BINOP_OR: return Instruction::Or;
128 case bitc::BINOP_XOR: return Instruction::Xor;
132 namespace llvm {
133 namespace {
134 /// @brief A class for maintaining the slot number definition
135 /// as a placeholder for the actual definition for forward constants defs.
136 class ConstantPlaceHolder : public ConstantExpr {
137 ConstantPlaceHolder(); // DO NOT IMPLEMENT
138 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139 public:
140 // allocate space for exactly one operand
141 void *operator new(size_t s) {
142 return User::operator new(s, 1);
144 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146 Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
149 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150 static inline bool classof(const ConstantPlaceHolder *) { return true; }
151 static bool classof(const Value *V) {
152 return isa<ConstantExpr>(V) &&
153 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
157 /// Provide fast operand accessors
158 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
162 // FIXME: can we inherit this from ConstantExpr?
163 template <>
164 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
169 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170 if (Idx == size()) {
171 push_back(V);
172 return;
175 if (Idx >= size())
176 resize(Idx+1);
178 WeakVH &OldV = ValuePtrs[Idx];
179 if (OldV == 0) {
180 OldV = V;
181 return;
184 // Handle constants and non-constants (e.g. instrs) differently for
185 // efficiency.
186 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187 ResolveConstants.push_back(std::make_pair(PHC, Idx));
188 OldV = V;
189 } else {
190 // If there was a forward reference to this value, replace it.
191 Value *PrevVal = OldV;
192 OldV->replaceAllUsesWith(V);
193 delete PrevVal;
198 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199 const Type *Ty) {
200 if (Idx >= size())
201 resize(Idx + 1);
203 if (Value *V = ValuePtrs[Idx]) {
204 assert(Ty == V->getType() && "Type mismatch in constant table!");
205 return cast<Constant>(V);
208 // Create and return a placeholder, which will later be RAUW'd.
209 Constant *C = new ConstantPlaceHolder(Ty, Context);
210 ValuePtrs[Idx] = C;
211 return C;
214 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215 if (Idx >= size())
216 resize(Idx + 1);
218 if (Value *V = ValuePtrs[Idx]) {
219 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220 return V;
223 // No type specified, must be invalid reference.
224 if (Ty == 0) return 0;
226 // Create and return a placeholder, which will later be RAUW'd.
227 Value *V = new Argument(Ty);
228 ValuePtrs[Idx] = V;
229 return V;
232 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233 /// resolves any forward references. The idea behind this is that we sometimes
234 /// get constants (such as large arrays) which reference *many* forward ref
235 /// constants. Replacing each of these causes a lot of thrashing when
236 /// building/reuniquing the constant. Instead of doing this, we look at all the
237 /// uses and rewrite all the place holders at once for any constant that uses
238 /// a placeholder.
239 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240 // Sort the values by-pointer so that they are efficient to look up with a
241 // binary search.
242 std::sort(ResolveConstants.begin(), ResolveConstants.end());
244 SmallVector<Constant*, 64> NewOps;
246 while (!ResolveConstants.empty()) {
247 Value *RealVal = operator[](ResolveConstants.back().second);
248 Constant *Placeholder = ResolveConstants.back().first;
249 ResolveConstants.pop_back();
251 // Loop over all users of the placeholder, updating them to reference the
252 // new value. If they reference more than one placeholder, update them all
253 // at once.
254 while (!Placeholder->use_empty()) {
255 Value::use_iterator UI = Placeholder->use_begin();
257 // If the using object isn't uniqued, just update the operands. This
258 // handles instructions and initializers for global variables.
259 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
260 UI.getUse().set(RealVal);
261 continue;
264 // Otherwise, we have a constant that uses the placeholder. Replace that
265 // constant with a new constant that has *all* placeholder uses updated.
266 Constant *UserC = cast<Constant>(*UI);
267 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
268 I != E; ++I) {
269 Value *NewOp;
270 if (!isa<ConstantPlaceHolder>(*I)) {
271 // Not a placeholder reference.
272 NewOp = *I;
273 } else if (*I == Placeholder) {
274 // Common case is that it just references this one placeholder.
275 NewOp = RealVal;
276 } else {
277 // Otherwise, look up the placeholder in ResolveConstants.
278 ResolveConstantsTy::iterator It =
279 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
280 std::pair<Constant*, unsigned>(cast<Constant>(*I),
281 0));
282 assert(It != ResolveConstants.end() && It->first == *I);
283 NewOp = operator[](It->second);
286 NewOps.push_back(cast<Constant>(NewOp));
289 // Make the new constant.
290 Constant *NewC;
291 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
292 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
293 NewOps.size());
294 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
295 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
296 UserCS->getType()->isPacked());
297 } else if (isa<ConstantVector>(UserC)) {
298 NewC = ConstantVector::get(&NewOps[0], NewOps.size());
299 } else {
300 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
301 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
302 NewOps.size());
305 UserC->replaceAllUsesWith(NewC);
306 UserC->destroyConstant();
307 NewOps.clear();
310 // Update all ValueHandles, they should be the only users at this point.
311 Placeholder->replaceAllUsesWith(RealVal);
312 delete Placeholder;
316 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317 if (Idx == size()) {
318 push_back(V);
319 return;
322 if (Idx >= size())
323 resize(Idx+1);
325 WeakVH &OldV = MDValuePtrs[Idx];
326 if (OldV == 0) {
327 OldV = V;
328 return;
331 // If there was a forward reference to this value, replace it.
332 Value *PrevVal = OldV;
333 OldV->replaceAllUsesWith(V);
334 delete PrevVal;
335 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
336 // value for Idx.
337 MDValuePtrs[Idx] = V;
340 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
341 if (Idx >= size())
342 resize(Idx + 1);
344 if (Value *V = MDValuePtrs[Idx]) {
345 assert(V->getType() == Type::getMetadataTy(Context) && "Type mismatch in value table!");
346 return V;
349 // Create and return a placeholder, which will later be RAUW'd.
350 Value *V = new Argument(Type::getMetadataTy(Context));
351 MDValuePtrs[Idx] = V;
352 return V;
355 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
356 // If the TypeID is in range, return it.
357 if (ID < TypeList.size())
358 return TypeList[ID].get();
359 if (!isTypeTable) return 0;
361 // The type table allows forward references. Push as many Opaque types as
362 // needed to get up to ID.
363 while (TypeList.size() <= ID)
364 TypeList.push_back(OpaqueType::get(Context));
365 return TypeList.back().get();
368 //===----------------------------------------------------------------------===//
369 // Functions for parsing blocks from the bitcode file
370 //===----------------------------------------------------------------------===//
372 bool BitcodeReader::ParseAttributeBlock() {
373 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
374 return Error("Malformed block record");
376 if (!MAttributes.empty())
377 return Error("Multiple PARAMATTR blocks found!");
379 SmallVector<uint64_t, 64> Record;
381 SmallVector<AttributeWithIndex, 8> Attrs;
383 // Read all the records.
384 while (1) {
385 unsigned Code = Stream.ReadCode();
386 if (Code == bitc::END_BLOCK) {
387 if (Stream.ReadBlockEnd())
388 return Error("Error at end of PARAMATTR block");
389 return false;
392 if (Code == bitc::ENTER_SUBBLOCK) {
393 // No known subblocks, always skip them.
394 Stream.ReadSubBlockID();
395 if (Stream.SkipBlock())
396 return Error("Malformed block record");
397 continue;
400 if (Code == bitc::DEFINE_ABBREV) {
401 Stream.ReadAbbrevRecord();
402 continue;
405 // Read a record.
406 Record.clear();
407 switch (Stream.ReadRecord(Code, Record)) {
408 default: // Default behavior: ignore.
409 break;
410 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
411 if (Record.size() & 1)
412 return Error("Invalid ENTRY record");
414 // FIXME : Remove this autoupgrade code in LLVM 3.0.
415 // If Function attributes are using index 0 then transfer them
416 // to index ~0. Index 0 is used for return value attributes but used to be
417 // used for function attributes.
418 Attributes RetAttribute = Attribute::None;
419 Attributes FnAttribute = Attribute::None;
420 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
421 // FIXME: remove in LLVM 3.0
422 // The alignment is stored as a 16-bit raw value from bits 31--16.
423 // We shift the bits above 31 down by 11 bits.
425 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
426 if (Alignment && !isPowerOf2_32(Alignment))
427 return Error("Alignment is not a power of two.");
429 Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
430 if (Alignment)
431 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
432 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
433 Record[i+1] = ReconstitutedAttr;
435 if (Record[i] == 0)
436 RetAttribute = Record[i+1];
437 else if (Record[i] == ~0U)
438 FnAttribute = Record[i+1];
441 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
442 Attribute::ReadOnly|Attribute::ReadNone);
444 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
445 (RetAttribute & OldRetAttrs) != 0) {
446 if (FnAttribute == Attribute::None) { // add a slot so they get added.
447 Record.push_back(~0U);
448 Record.push_back(0);
451 FnAttribute |= RetAttribute & OldRetAttrs;
452 RetAttribute &= ~OldRetAttrs;
455 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
456 if (Record[i] == 0) {
457 if (RetAttribute != Attribute::None)
458 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
459 } else if (Record[i] == ~0U) {
460 if (FnAttribute != Attribute::None)
461 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
462 } else if (Record[i+1] != Attribute::None)
463 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
466 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
467 Attrs.clear();
468 break;
475 bool BitcodeReader::ParseTypeTable() {
476 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
477 return Error("Malformed block record");
479 if (!TypeList.empty())
480 return Error("Multiple TYPE_BLOCKs found!");
482 SmallVector<uint64_t, 64> Record;
483 unsigned NumRecords = 0;
485 // Read all the records for this type table.
486 while (1) {
487 unsigned Code = Stream.ReadCode();
488 if (Code == bitc::END_BLOCK) {
489 if (NumRecords != TypeList.size())
490 return Error("Invalid type forward reference in TYPE_BLOCK");
491 if (Stream.ReadBlockEnd())
492 return Error("Error at end of type table block");
493 return false;
496 if (Code == bitc::ENTER_SUBBLOCK) {
497 // No known subblocks, always skip them.
498 Stream.ReadSubBlockID();
499 if (Stream.SkipBlock())
500 return Error("Malformed block record");
501 continue;
504 if (Code == bitc::DEFINE_ABBREV) {
505 Stream.ReadAbbrevRecord();
506 continue;
509 // Read a record.
510 Record.clear();
511 const Type *ResultTy = 0;
512 switch (Stream.ReadRecord(Code, Record)) {
513 default: // Default behavior: unknown type.
514 ResultTy = 0;
515 break;
516 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
517 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
518 // type list. This allows us to reserve space.
519 if (Record.size() < 1)
520 return Error("Invalid TYPE_CODE_NUMENTRY record");
521 TypeList.reserve(Record[0]);
522 continue;
523 case bitc::TYPE_CODE_VOID: // VOID
524 ResultTy = Type::getVoidTy(Context);
525 break;
526 case bitc::TYPE_CODE_FLOAT: // FLOAT
527 ResultTy = Type::getFloatTy(Context);
528 break;
529 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
530 ResultTy = Type::getDoubleTy(Context);
531 break;
532 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
533 ResultTy = Type::getX86_FP80Ty(Context);
534 break;
535 case bitc::TYPE_CODE_FP128: // FP128
536 ResultTy = Type::getFP128Ty(Context);
537 break;
538 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
539 ResultTy = Type::getPPC_FP128Ty(Context);
540 break;
541 case bitc::TYPE_CODE_LABEL: // LABEL
542 ResultTy = Type::getLabelTy(Context);
543 break;
544 case bitc::TYPE_CODE_OPAQUE: // OPAQUE
545 ResultTy = 0;
546 break;
547 case bitc::TYPE_CODE_METADATA: // METADATA
548 ResultTy = Type::getMetadataTy(Context);
549 break;
550 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
551 if (Record.size() < 1)
552 return Error("Invalid Integer type record");
554 ResultTy = IntegerType::get(Context, Record[0]);
555 break;
556 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
557 // [pointee type, address space]
558 if (Record.size() < 1)
559 return Error("Invalid POINTER type record");
560 unsigned AddressSpace = 0;
561 if (Record.size() == 2)
562 AddressSpace = Record[1];
563 ResultTy = PointerType::get(getTypeByID(Record[0], true),
564 AddressSpace);
565 break;
567 case bitc::TYPE_CODE_FUNCTION: {
568 // FIXME: attrid is dead, remove it in LLVM 3.0
569 // FUNCTION: [vararg, attrid, retty, paramty x N]
570 if (Record.size() < 3)
571 return Error("Invalid FUNCTION type record");
572 std::vector<const Type*> ArgTys;
573 for (unsigned i = 3, e = Record.size(); i != e; ++i)
574 ArgTys.push_back(getTypeByID(Record[i], true));
576 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
577 Record[0]);
578 break;
580 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N]
581 if (Record.size() < 1)
582 return Error("Invalid STRUCT type record");
583 std::vector<const Type*> EltTys;
584 for (unsigned i = 1, e = Record.size(); i != e; ++i)
585 EltTys.push_back(getTypeByID(Record[i], true));
586 ResultTy = StructType::get(Context, EltTys, Record[0]);
587 break;
589 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
590 if (Record.size() < 2)
591 return Error("Invalid ARRAY type record");
592 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
593 break;
594 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
595 if (Record.size() < 2)
596 return Error("Invalid VECTOR type record");
597 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
598 break;
601 if (NumRecords == TypeList.size()) {
602 // If this is a new type slot, just append it.
603 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
604 ++NumRecords;
605 } else if (ResultTy == 0) {
606 // Otherwise, this was forward referenced, so an opaque type was created,
607 // but the result type is actually just an opaque. Leave the one we
608 // created previously.
609 ++NumRecords;
610 } else {
611 // Otherwise, this was forward referenced, so an opaque type was created.
612 // Resolve the opaque type to the real type now.
613 assert(NumRecords < TypeList.size() && "Typelist imbalance");
614 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
616 // Don't directly push the new type on the Tab. Instead we want to replace
617 // the opaque type we previously inserted with the new concrete value. The
618 // refinement from the abstract (opaque) type to the new type causes all
619 // uses of the abstract type to use the concrete type (NewTy). This will
620 // also cause the opaque type to be deleted.
621 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
623 // This should have replaced the old opaque type with the new type in the
624 // value table... or with a preexisting type that was already in the
625 // system. Let's just make sure it did.
626 assert(TypeList[NumRecords-1].get() != OldTy &&
627 "refineAbstractType didn't work!");
633 bool BitcodeReader::ParseTypeSymbolTable() {
634 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
635 return Error("Malformed block record");
637 SmallVector<uint64_t, 64> Record;
639 // Read all the records for this type table.
640 std::string TypeName;
641 while (1) {
642 unsigned Code = Stream.ReadCode();
643 if (Code == bitc::END_BLOCK) {
644 if (Stream.ReadBlockEnd())
645 return Error("Error at end of type symbol table block");
646 return false;
649 if (Code == bitc::ENTER_SUBBLOCK) {
650 // No known subblocks, always skip them.
651 Stream.ReadSubBlockID();
652 if (Stream.SkipBlock())
653 return Error("Malformed block record");
654 continue;
657 if (Code == bitc::DEFINE_ABBREV) {
658 Stream.ReadAbbrevRecord();
659 continue;
662 // Read a record.
663 Record.clear();
664 switch (Stream.ReadRecord(Code, Record)) {
665 default: // Default behavior: unknown type.
666 break;
667 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N]
668 if (ConvertToString(Record, 1, TypeName))
669 return Error("Invalid TST_ENTRY record");
670 unsigned TypeID = Record[0];
671 if (TypeID >= TypeList.size())
672 return Error("Invalid Type ID in TST_ENTRY record");
674 TheModule->addTypeName(TypeName, TypeList[TypeID].get());
675 TypeName.clear();
676 break;
681 bool BitcodeReader::ParseValueSymbolTable() {
682 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
683 return Error("Malformed block record");
685 SmallVector<uint64_t, 64> Record;
687 // Read all the records for this value table.
688 SmallString<128> ValueName;
689 while (1) {
690 unsigned Code = Stream.ReadCode();
691 if (Code == bitc::END_BLOCK) {
692 if (Stream.ReadBlockEnd())
693 return Error("Error at end of value symbol table block");
694 return false;
696 if (Code == bitc::ENTER_SUBBLOCK) {
697 // No known subblocks, always skip them.
698 Stream.ReadSubBlockID();
699 if (Stream.SkipBlock())
700 return Error("Malformed block record");
701 continue;
704 if (Code == bitc::DEFINE_ABBREV) {
705 Stream.ReadAbbrevRecord();
706 continue;
709 // Read a record.
710 Record.clear();
711 switch (Stream.ReadRecord(Code, Record)) {
712 default: // Default behavior: unknown type.
713 break;
714 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
715 if (ConvertToString(Record, 1, ValueName))
716 return Error("Invalid VST_ENTRY record");
717 unsigned ValueID = Record[0];
718 if (ValueID >= ValueList.size())
719 return Error("Invalid Value ID in VST_ENTRY record");
720 Value *V = ValueList[ValueID];
722 V->setName(StringRef(ValueName.data(), ValueName.size()));
723 ValueName.clear();
724 break;
726 case bitc::VST_CODE_BBENTRY: {
727 if (ConvertToString(Record, 1, ValueName))
728 return Error("Invalid VST_BBENTRY record");
729 BasicBlock *BB = getBasicBlock(Record[0]);
730 if (BB == 0)
731 return Error("Invalid BB ID in VST_BBENTRY record");
733 BB->setName(StringRef(ValueName.data(), ValueName.size()));
734 ValueName.clear();
735 break;
741 bool BitcodeReader::ParseMetadata() {
742 unsigned NextValueNo = MDValueList.size();
744 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
745 return Error("Malformed block record");
747 SmallVector<uint64_t, 64> Record;
749 // Read all the records.
750 while (1) {
751 unsigned Code = Stream.ReadCode();
752 if (Code == bitc::END_BLOCK) {
753 if (Stream.ReadBlockEnd())
754 return Error("Error at end of PARAMATTR block");
755 return false;
758 if (Code == bitc::ENTER_SUBBLOCK) {
759 // No known subblocks, always skip them.
760 Stream.ReadSubBlockID();
761 if (Stream.SkipBlock())
762 return Error("Malformed block record");
763 continue;
766 if (Code == bitc::DEFINE_ABBREV) {
767 Stream.ReadAbbrevRecord();
768 continue;
771 // Read a record.
772 Record.clear();
773 switch (Stream.ReadRecord(Code, Record)) {
774 default: // Default behavior: ignore.
775 break;
776 case bitc::METADATA_NAME: {
777 // Read named of the named metadata.
778 unsigned NameLength = Record.size();
779 SmallString<8> Name;
780 Name.resize(NameLength);
781 for (unsigned i = 0; i != NameLength; ++i)
782 Name[i] = Record[i];
783 Record.clear();
784 Code = Stream.ReadCode();
786 // METADATA_NAME is always followed by METADATA_NAMED_NODE.
787 if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
788 assert ( 0 && "Inavlid Named Metadata record");
790 // Read named metadata elements.
791 unsigned Size = Record.size();
792 SmallVector<MetadataBase*, 8> Elts;
793 for (unsigned i = 0; i != Size; ++i) {
794 Value *MD = MDValueList.getValueFwdRef(Record[i]);
795 if (MetadataBase *B = dyn_cast<MetadataBase>(MD))
796 Elts.push_back(B);
798 Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
799 Elts.size(), TheModule);
800 MDValueList.AssignValue(V, NextValueNo++);
801 break;
803 case bitc::METADATA_NODE: {
804 if (Record.empty() || Record.size() % 2 == 1)
805 return Error("Invalid METADATA_NODE record");
807 unsigned Size = Record.size();
808 SmallVector<Value*, 8> Elts;
809 for (unsigned i = 0; i != Size; i += 2) {
810 const Type *Ty = getTypeByID(Record[i], false);
811 if (Ty == Type::getMetadataTy(Context))
812 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
813 else if (Ty != Type::getVoidTy(Context))
814 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
815 else
816 Elts.push_back(NULL);
818 Value *V = MDNode::get(Context, &Elts[0], Elts.size());
819 MDValueList.AssignValue(V, NextValueNo++);
820 break;
822 case bitc::METADATA_STRING: {
823 unsigned MDStringLength = Record.size();
824 SmallString<8> String;
825 String.resize(MDStringLength);
826 for (unsigned i = 0; i != MDStringLength; ++i)
827 String[i] = Record[i];
828 Value *V = MDString::get(Context,
829 StringRef(String.data(), String.size()));
830 MDValueList.AssignValue(V, NextValueNo++);
831 break;
837 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
838 /// the LSB for dense VBR encoding.
839 static uint64_t DecodeSignRotatedValue(uint64_t V) {
840 if ((V & 1) == 0)
841 return V >> 1;
842 if (V != 1)
843 return -(V >> 1);
844 // There is no such thing as -0 with integers. "-0" really means MININT.
845 return 1ULL << 63;
848 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
849 /// values and aliases that we can.
850 bool BitcodeReader::ResolveGlobalAndAliasInits() {
851 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
852 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
854 GlobalInitWorklist.swap(GlobalInits);
855 AliasInitWorklist.swap(AliasInits);
857 while (!GlobalInitWorklist.empty()) {
858 unsigned ValID = GlobalInitWorklist.back().second;
859 if (ValID >= ValueList.size()) {
860 // Not ready to resolve this yet, it requires something later in the file.
861 GlobalInits.push_back(GlobalInitWorklist.back());
862 } else {
863 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
864 GlobalInitWorklist.back().first->setInitializer(C);
865 else
866 return Error("Global variable initializer is not a constant!");
868 GlobalInitWorklist.pop_back();
871 while (!AliasInitWorklist.empty()) {
872 unsigned ValID = AliasInitWorklist.back().second;
873 if (ValID >= ValueList.size()) {
874 AliasInits.push_back(AliasInitWorklist.back());
875 } else {
876 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
877 AliasInitWorklist.back().first->setAliasee(C);
878 else
879 return Error("Alias initializer is not a constant!");
881 AliasInitWorklist.pop_back();
883 return false;
886 bool BitcodeReader::ParseConstants() {
887 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
888 return Error("Malformed block record");
890 SmallVector<uint64_t, 64> Record;
892 // Read all the records for this value table.
893 const Type *CurTy = Type::getInt32Ty(Context);
894 unsigned NextCstNo = ValueList.size();
895 while (1) {
896 unsigned Code = Stream.ReadCode();
897 if (Code == bitc::END_BLOCK)
898 break;
900 if (Code == bitc::ENTER_SUBBLOCK) {
901 // No known subblocks, always skip them.
902 Stream.ReadSubBlockID();
903 if (Stream.SkipBlock())
904 return Error("Malformed block record");
905 continue;
908 if (Code == bitc::DEFINE_ABBREV) {
909 Stream.ReadAbbrevRecord();
910 continue;
913 // Read a record.
914 Record.clear();
915 Value *V = 0;
916 unsigned BitCode = Stream.ReadRecord(Code, Record);
917 switch (BitCode) {
918 default: // Default behavior: unknown constant
919 case bitc::CST_CODE_UNDEF: // UNDEF
920 V = UndefValue::get(CurTy);
921 break;
922 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
923 if (Record.empty())
924 return Error("Malformed CST_SETTYPE record");
925 if (Record[0] >= TypeList.size())
926 return Error("Invalid Type ID in CST_SETTYPE record");
927 CurTy = TypeList[Record[0]];
928 continue; // Skip the ValueList manipulation.
929 case bitc::CST_CODE_NULL: // NULL
930 V = Constant::getNullValue(CurTy);
931 break;
932 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
933 if (!isa<IntegerType>(CurTy) || Record.empty())
934 return Error("Invalid CST_INTEGER record");
935 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
936 break;
937 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
938 if (!isa<IntegerType>(CurTy) || Record.empty())
939 return Error("Invalid WIDE_INTEGER record");
941 unsigned NumWords = Record.size();
942 SmallVector<uint64_t, 8> Words;
943 Words.resize(NumWords);
944 for (unsigned i = 0; i != NumWords; ++i)
945 Words[i] = DecodeSignRotatedValue(Record[i]);
946 V = ConstantInt::get(Context,
947 APInt(cast<IntegerType>(CurTy)->getBitWidth(),
948 NumWords, &Words[0]));
949 break;
951 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
952 if (Record.empty())
953 return Error("Invalid FLOAT record");
954 if (CurTy == Type::getFloatTy(Context))
955 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
956 else if (CurTy == Type::getDoubleTy(Context))
957 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
958 else if (CurTy == Type::getX86_FP80Ty(Context)) {
959 // Bits are not stored the same way as a normal i80 APInt, compensate.
960 uint64_t Rearrange[2];
961 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
962 Rearrange[1] = Record[0] >> 48;
963 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
964 } else if (CurTy == Type::getFP128Ty(Context))
965 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
966 else if (CurTy == Type::getPPC_FP128Ty(Context))
967 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
968 else
969 V = UndefValue::get(CurTy);
970 break;
973 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
974 if (Record.empty())
975 return Error("Invalid CST_AGGREGATE record");
977 unsigned Size = Record.size();
978 std::vector<Constant*> Elts;
980 if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
981 for (unsigned i = 0; i != Size; ++i)
982 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
983 STy->getElementType(i)));
984 V = ConstantStruct::get(STy, Elts);
985 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
986 const Type *EltTy = ATy->getElementType();
987 for (unsigned i = 0; i != Size; ++i)
988 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
989 V = ConstantArray::get(ATy, Elts);
990 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
991 const Type *EltTy = VTy->getElementType();
992 for (unsigned i = 0; i != Size; ++i)
993 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
994 V = ConstantVector::get(Elts);
995 } else {
996 V = UndefValue::get(CurTy);
998 break;
1000 case bitc::CST_CODE_STRING: { // STRING: [values]
1001 if (Record.empty())
1002 return Error("Invalid CST_AGGREGATE record");
1004 const ArrayType *ATy = cast<ArrayType>(CurTy);
1005 const Type *EltTy = ATy->getElementType();
1007 unsigned Size = Record.size();
1008 std::vector<Constant*> Elts;
1009 for (unsigned i = 0; i != Size; ++i)
1010 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1011 V = ConstantArray::get(ATy, Elts);
1012 break;
1014 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1015 if (Record.empty())
1016 return Error("Invalid CST_AGGREGATE record");
1018 const ArrayType *ATy = cast<ArrayType>(CurTy);
1019 const Type *EltTy = ATy->getElementType();
1021 unsigned Size = Record.size();
1022 std::vector<Constant*> Elts;
1023 for (unsigned i = 0; i != Size; ++i)
1024 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1025 Elts.push_back(Constant::getNullValue(EltTy));
1026 V = ConstantArray::get(ATy, Elts);
1027 break;
1029 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
1030 if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1031 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1032 if (Opc < 0) {
1033 V = UndefValue::get(CurTy); // Unknown binop.
1034 } else {
1035 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1036 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1037 unsigned Flags = 0;
1038 if (Record.size() >= 4) {
1039 if (Opc == Instruction::Add ||
1040 Opc == Instruction::Sub ||
1041 Opc == Instruction::Mul) {
1042 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1043 Flags |= OverflowingBinaryOperator::NoSignedWrap;
1044 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1045 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1046 } else if (Opc == Instruction::SDiv) {
1047 if (Record[3] & (1 << bitc::SDIV_EXACT))
1048 Flags |= SDivOperator::IsExact;
1051 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1053 break;
1055 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
1056 if (Record.size() < 3) return Error("Invalid CE_CAST record");
1057 int Opc = GetDecodedCastOpcode(Record[0]);
1058 if (Opc < 0) {
1059 V = UndefValue::get(CurTy); // Unknown cast.
1060 } else {
1061 const Type *OpTy = getTypeByID(Record[1]);
1062 if (!OpTy) return Error("Invalid CE_CAST record");
1063 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1064 V = ConstantExpr::getCast(Opc, Op, CurTy);
1066 break;
1068 case bitc::CST_CODE_CE_INBOUNDS_GEP:
1069 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
1070 if (Record.size() & 1) return Error("Invalid CE_GEP record");
1071 SmallVector<Constant*, 16> Elts;
1072 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1073 const Type *ElTy = getTypeByID(Record[i]);
1074 if (!ElTy) return Error("Invalid CE_GEP record");
1075 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1077 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1078 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1079 Elts.size()-1);
1080 else
1081 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1082 Elts.size()-1);
1083 break;
1085 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
1086 if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1087 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1088 Type::getInt1Ty(Context)),
1089 ValueList.getConstantFwdRef(Record[1],CurTy),
1090 ValueList.getConstantFwdRef(Record[2],CurTy));
1091 break;
1092 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1093 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1094 const VectorType *OpTy =
1095 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1096 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1097 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1098 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1099 V = ConstantExpr::getExtractElement(Op0, Op1);
1100 break;
1102 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1103 const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1104 if (Record.size() < 3 || OpTy == 0)
1105 return Error("Invalid CE_INSERTELT record");
1106 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1107 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1108 OpTy->getElementType());
1109 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1110 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1111 break;
1113 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1114 const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1115 if (Record.size() < 3 || OpTy == 0)
1116 return Error("Invalid CE_SHUFFLEVEC record");
1117 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1118 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1119 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1120 OpTy->getNumElements());
1121 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1122 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1123 break;
1125 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1126 const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1127 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1128 if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1129 return Error("Invalid CE_SHUFVEC_EX record");
1130 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1131 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1132 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1133 RTy->getNumElements());
1134 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1135 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1136 break;
1138 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
1139 if (Record.size() < 4) return Error("Invalid CE_CMP record");
1140 const Type *OpTy = getTypeByID(Record[0]);
1141 if (OpTy == 0) return Error("Invalid CE_CMP record");
1142 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1143 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1145 if (OpTy->isFloatingPoint())
1146 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1147 else
1148 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1149 break;
1151 case bitc::CST_CODE_INLINEASM: {
1152 if (Record.size() < 2) return Error("Invalid INLINEASM record");
1153 std::string AsmStr, ConstrStr;
1154 bool HasSideEffects = Record[0];
1155 unsigned AsmStrSize = Record[1];
1156 if (2+AsmStrSize >= Record.size())
1157 return Error("Invalid INLINEASM record");
1158 unsigned ConstStrSize = Record[2+AsmStrSize];
1159 if (3+AsmStrSize+ConstStrSize > Record.size())
1160 return Error("Invalid INLINEASM record");
1162 for (unsigned i = 0; i != AsmStrSize; ++i)
1163 AsmStr += (char)Record[2+i];
1164 for (unsigned i = 0; i != ConstStrSize; ++i)
1165 ConstrStr += (char)Record[3+AsmStrSize+i];
1166 const PointerType *PTy = cast<PointerType>(CurTy);
1167 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1168 AsmStr, ConstrStr, HasSideEffects);
1169 break;
1173 ValueList.AssignValue(V, NextCstNo);
1174 ++NextCstNo;
1177 if (NextCstNo != ValueList.size())
1178 return Error("Invalid constant reference!");
1180 if (Stream.ReadBlockEnd())
1181 return Error("Error at end of constants block");
1183 // Once all the constants have been read, go through and resolve forward
1184 // references.
1185 ValueList.ResolveConstantForwardRefs();
1186 return false;
1189 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1190 /// remember where it is and then skip it. This lets us lazily deserialize the
1191 /// functions.
1192 bool BitcodeReader::RememberAndSkipFunctionBody() {
1193 // Get the function we are talking about.
1194 if (FunctionsWithBodies.empty())
1195 return Error("Insufficient function protos");
1197 Function *Fn = FunctionsWithBodies.back();
1198 FunctionsWithBodies.pop_back();
1200 // Save the current stream state.
1201 uint64_t CurBit = Stream.GetCurrentBitNo();
1202 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1204 // Set the functions linkage to GhostLinkage so we know it is lazily
1205 // deserialized.
1206 Fn->setLinkage(GlobalValue::GhostLinkage);
1208 // Skip over the function block for now.
1209 if (Stream.SkipBlock())
1210 return Error("Malformed block record");
1211 return false;
1214 bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1215 // Reject multiple MODULE_BLOCK's in a single bitstream.
1216 if (TheModule)
1217 return Error("Multiple MODULE_BLOCKs in same stream");
1219 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1220 return Error("Malformed block record");
1222 // Otherwise, create the module.
1223 TheModule = new Module(ModuleID, Context);
1225 SmallVector<uint64_t, 64> Record;
1226 std::vector<std::string> SectionTable;
1227 std::vector<std::string> GCTable;
1229 // Read all the records for this module.
1230 while (!Stream.AtEndOfStream()) {
1231 unsigned Code = Stream.ReadCode();
1232 if (Code == bitc::END_BLOCK) {
1233 if (Stream.ReadBlockEnd())
1234 return Error("Error at end of module block");
1236 // Patch the initializers for globals and aliases up.
1237 ResolveGlobalAndAliasInits();
1238 if (!GlobalInits.empty() || !AliasInits.empty())
1239 return Error("Malformed global initializer set");
1240 if (!FunctionsWithBodies.empty())
1241 return Error("Too few function bodies found");
1243 // Look for intrinsic functions which need to be upgraded at some point
1244 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1245 FI != FE; ++FI) {
1246 Function* NewFn;
1247 if (UpgradeIntrinsicFunction(FI, NewFn))
1248 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1251 // Force deallocation of memory for these vectors to favor the client that
1252 // want lazy deserialization.
1253 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1254 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1255 std::vector<Function*>().swap(FunctionsWithBodies);
1256 return false;
1259 if (Code == bitc::ENTER_SUBBLOCK) {
1260 switch (Stream.ReadSubBlockID()) {
1261 default: // Skip unknown content.
1262 if (Stream.SkipBlock())
1263 return Error("Malformed block record");
1264 break;
1265 case bitc::BLOCKINFO_BLOCK_ID:
1266 if (Stream.ReadBlockInfoBlock())
1267 return Error("Malformed BlockInfoBlock");
1268 break;
1269 case bitc::PARAMATTR_BLOCK_ID:
1270 if (ParseAttributeBlock())
1271 return true;
1272 break;
1273 case bitc::TYPE_BLOCK_ID:
1274 if (ParseTypeTable())
1275 return true;
1276 break;
1277 case bitc::TYPE_SYMTAB_BLOCK_ID:
1278 if (ParseTypeSymbolTable())
1279 return true;
1280 break;
1281 case bitc::VALUE_SYMTAB_BLOCK_ID:
1282 if (ParseValueSymbolTable())
1283 return true;
1284 break;
1285 case bitc::CONSTANTS_BLOCK_ID:
1286 if (ParseConstants() || ResolveGlobalAndAliasInits())
1287 return true;
1288 break;
1289 case bitc::METADATA_BLOCK_ID:
1290 if (ParseMetadata())
1291 return true;
1292 break;
1293 case bitc::FUNCTION_BLOCK_ID:
1294 // If this is the first function body we've seen, reverse the
1295 // FunctionsWithBodies list.
1296 if (!HasReversedFunctionsWithBodies) {
1297 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1298 HasReversedFunctionsWithBodies = true;
1301 if (RememberAndSkipFunctionBody())
1302 return true;
1303 break;
1305 continue;
1308 if (Code == bitc::DEFINE_ABBREV) {
1309 Stream.ReadAbbrevRecord();
1310 continue;
1313 // Read a record.
1314 switch (Stream.ReadRecord(Code, Record)) {
1315 default: break; // Default behavior, ignore unknown content.
1316 case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
1317 if (Record.size() < 1)
1318 return Error("Malformed MODULE_CODE_VERSION");
1319 // Only version #0 is supported so far.
1320 if (Record[0] != 0)
1321 return Error("Unknown bitstream version!");
1322 break;
1323 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
1324 std::string S;
1325 if (ConvertToString(Record, 0, S))
1326 return Error("Invalid MODULE_CODE_TRIPLE record");
1327 TheModule->setTargetTriple(S);
1328 break;
1330 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
1331 std::string S;
1332 if (ConvertToString(Record, 0, S))
1333 return Error("Invalid MODULE_CODE_DATALAYOUT record");
1334 TheModule->setDataLayout(S);
1335 break;
1337 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
1338 std::string S;
1339 if (ConvertToString(Record, 0, S))
1340 return Error("Invalid MODULE_CODE_ASM record");
1341 TheModule->setModuleInlineAsm(S);
1342 break;
1344 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
1345 std::string S;
1346 if (ConvertToString(Record, 0, S))
1347 return Error("Invalid MODULE_CODE_DEPLIB record");
1348 TheModule->addLibrary(S);
1349 break;
1351 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
1352 std::string S;
1353 if (ConvertToString(Record, 0, S))
1354 return Error("Invalid MODULE_CODE_SECTIONNAME record");
1355 SectionTable.push_back(S);
1356 break;
1358 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
1359 std::string S;
1360 if (ConvertToString(Record, 0, S))
1361 return Error("Invalid MODULE_CODE_GCNAME record");
1362 GCTable.push_back(S);
1363 break;
1365 // GLOBALVAR: [pointer type, isconst, initid,
1366 // linkage, alignment, section, visibility, threadlocal]
1367 case bitc::MODULE_CODE_GLOBALVAR: {
1368 if (Record.size() < 6)
1369 return Error("Invalid MODULE_CODE_GLOBALVAR record");
1370 const Type *Ty = getTypeByID(Record[0]);
1371 if (!isa<PointerType>(Ty))
1372 return Error("Global not a pointer type!");
1373 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1374 Ty = cast<PointerType>(Ty)->getElementType();
1376 bool isConstant = Record[1];
1377 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1378 unsigned Alignment = (1 << Record[4]) >> 1;
1379 std::string Section;
1380 if (Record[5]) {
1381 if (Record[5]-1 >= SectionTable.size())
1382 return Error("Invalid section ID");
1383 Section = SectionTable[Record[5]-1];
1385 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1386 if (Record.size() > 6)
1387 Visibility = GetDecodedVisibility(Record[6]);
1388 bool isThreadLocal = false;
1389 if (Record.size() > 7)
1390 isThreadLocal = Record[7];
1392 GlobalVariable *NewGV =
1393 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1394 isThreadLocal, AddressSpace);
1395 NewGV->setAlignment(Alignment);
1396 if (!Section.empty())
1397 NewGV->setSection(Section);
1398 NewGV->setVisibility(Visibility);
1399 NewGV->setThreadLocal(isThreadLocal);
1401 ValueList.push_back(NewGV);
1403 // Remember which value to use for the global initializer.
1404 if (unsigned InitID = Record[2])
1405 GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1406 break;
1408 // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
1409 // alignment, section, visibility, gc]
1410 case bitc::MODULE_CODE_FUNCTION: {
1411 if (Record.size() < 8)
1412 return Error("Invalid MODULE_CODE_FUNCTION record");
1413 const Type *Ty = getTypeByID(Record[0]);
1414 if (!isa<PointerType>(Ty))
1415 return Error("Function not a pointer type!");
1416 const FunctionType *FTy =
1417 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1418 if (!FTy)
1419 return Error("Function not a pointer to function type!");
1421 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1422 "", TheModule);
1424 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1425 bool isProto = Record[2];
1426 Func->setLinkage(GetDecodedLinkage(Record[3]));
1427 Func->setAttributes(getAttributes(Record[4]));
1429 Func->setAlignment((1 << Record[5]) >> 1);
1430 if (Record[6]) {
1431 if (Record[6]-1 >= SectionTable.size())
1432 return Error("Invalid section ID");
1433 Func->setSection(SectionTable[Record[6]-1]);
1435 Func->setVisibility(GetDecodedVisibility(Record[7]));
1436 if (Record.size() > 8 && Record[8]) {
1437 if (Record[8]-1 > GCTable.size())
1438 return Error("Invalid GC ID");
1439 Func->setGC(GCTable[Record[8]-1].c_str());
1441 ValueList.push_back(Func);
1443 // If this is a function with a body, remember the prototype we are
1444 // creating now, so that we can match up the body with them later.
1445 if (!isProto)
1446 FunctionsWithBodies.push_back(Func);
1447 break;
1449 // ALIAS: [alias type, aliasee val#, linkage]
1450 // ALIAS: [alias type, aliasee val#, linkage, visibility]
1451 case bitc::MODULE_CODE_ALIAS: {
1452 if (Record.size() < 3)
1453 return Error("Invalid MODULE_ALIAS record");
1454 const Type *Ty = getTypeByID(Record[0]);
1455 if (!isa<PointerType>(Ty))
1456 return Error("Function not a pointer type!");
1458 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1459 "", 0, TheModule);
1460 // Old bitcode files didn't have visibility field.
1461 if (Record.size() > 3)
1462 NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1463 ValueList.push_back(NewGA);
1464 AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1465 break;
1467 /// MODULE_CODE_PURGEVALS: [numvals]
1468 case bitc::MODULE_CODE_PURGEVALS:
1469 // Trim down the value list to the specified size.
1470 if (Record.size() < 1 || Record[0] > ValueList.size())
1471 return Error("Invalid MODULE_PURGEVALS record");
1472 ValueList.shrinkTo(Record[0]);
1473 break;
1475 Record.clear();
1478 return Error("Premature end of bitstream");
1481 bool BitcodeReader::ParseBitcode() {
1482 TheModule = 0;
1484 if (Buffer->getBufferSize() & 3)
1485 return Error("Bitcode stream should be a multiple of 4 bytes in length");
1487 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1488 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1490 // If we have a wrapper header, parse it and ignore the non-bc file contents.
1491 // The magic number is 0x0B17C0DE stored in little endian.
1492 if (isBitcodeWrapper(BufPtr, BufEnd))
1493 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1494 return Error("Invalid bitcode wrapper header");
1496 StreamFile.init(BufPtr, BufEnd);
1497 Stream.init(StreamFile);
1499 // Sniff for the signature.
1500 if (Stream.Read(8) != 'B' ||
1501 Stream.Read(8) != 'C' ||
1502 Stream.Read(4) != 0x0 ||
1503 Stream.Read(4) != 0xC ||
1504 Stream.Read(4) != 0xE ||
1505 Stream.Read(4) != 0xD)
1506 return Error("Invalid bitcode signature");
1508 // We expect a number of well-defined blocks, though we don't necessarily
1509 // need to understand them all.
1510 while (!Stream.AtEndOfStream()) {
1511 unsigned Code = Stream.ReadCode();
1513 if (Code != bitc::ENTER_SUBBLOCK)
1514 return Error("Invalid record at top-level");
1516 unsigned BlockID = Stream.ReadSubBlockID();
1518 // We only know the MODULE subblock ID.
1519 switch (BlockID) {
1520 case bitc::BLOCKINFO_BLOCK_ID:
1521 if (Stream.ReadBlockInfoBlock())
1522 return Error("Malformed BlockInfoBlock");
1523 break;
1524 case bitc::MODULE_BLOCK_ID:
1525 if (ParseModule(Buffer->getBufferIdentifier()))
1526 return true;
1527 break;
1528 default:
1529 if (Stream.SkipBlock())
1530 return Error("Malformed block record");
1531 break;
1535 return false;
1539 /// ParseFunctionBody - Lazily parse the specified function body block.
1540 bool BitcodeReader::ParseFunctionBody(Function *F) {
1541 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1542 return Error("Malformed block record");
1544 unsigned ModuleValueListSize = ValueList.size();
1546 // Add all the function arguments to the value table.
1547 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1548 ValueList.push_back(I);
1550 unsigned NextValueNo = ValueList.size();
1551 BasicBlock *CurBB = 0;
1552 unsigned CurBBNo = 0;
1554 // Read all the records.
1555 SmallVector<uint64_t, 64> Record;
1556 while (1) {
1557 unsigned Code = Stream.ReadCode();
1558 if (Code == bitc::END_BLOCK) {
1559 if (Stream.ReadBlockEnd())
1560 return Error("Error at end of function block");
1561 break;
1564 if (Code == bitc::ENTER_SUBBLOCK) {
1565 switch (Stream.ReadSubBlockID()) {
1566 default: // Skip unknown content.
1567 if (Stream.SkipBlock())
1568 return Error("Malformed block record");
1569 break;
1570 case bitc::CONSTANTS_BLOCK_ID:
1571 if (ParseConstants()) return true;
1572 NextValueNo = ValueList.size();
1573 break;
1574 case bitc::VALUE_SYMTAB_BLOCK_ID:
1575 if (ParseValueSymbolTable()) return true;
1576 break;
1578 continue;
1581 if (Code == bitc::DEFINE_ABBREV) {
1582 Stream.ReadAbbrevRecord();
1583 continue;
1586 // Read a record.
1587 Record.clear();
1588 Instruction *I = 0;
1589 unsigned BitCode = Stream.ReadRecord(Code, Record);
1590 switch (BitCode) {
1591 default: // Default behavior: reject
1592 return Error("Unknown instruction");
1593 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
1594 if (Record.size() < 1 || Record[0] == 0)
1595 return Error("Invalid DECLAREBLOCKS record");
1596 // Create all the basic blocks for the function.
1597 FunctionBBs.resize(Record[0]);
1598 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1599 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1600 CurBB = FunctionBBs[0];
1601 continue;
1603 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
1604 unsigned OpNum = 0;
1605 Value *LHS, *RHS;
1606 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1607 getValue(Record, OpNum, LHS->getType(), RHS) ||
1608 OpNum+1 > Record.size())
1609 return Error("Invalid BINOP record");
1611 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1612 if (Opc == -1) return Error("Invalid BINOP record");
1613 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1614 if (OpNum < Record.size()) {
1615 if (Opc == Instruction::Add ||
1616 Opc == Instruction::Sub ||
1617 Opc == Instruction::Mul) {
1618 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1619 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1620 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1621 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1622 } else if (Opc == Instruction::SDiv) {
1623 if (Record[3] & (1 << bitc::SDIV_EXACT))
1624 cast<BinaryOperator>(I)->setIsExact(true);
1627 break;
1629 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
1630 unsigned OpNum = 0;
1631 Value *Op;
1632 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1633 OpNum+2 != Record.size())
1634 return Error("Invalid CAST record");
1636 const Type *ResTy = getTypeByID(Record[OpNum]);
1637 int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1638 if (Opc == -1 || ResTy == 0)
1639 return Error("Invalid CAST record");
1640 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1641 break;
1643 case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1644 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1645 unsigned OpNum = 0;
1646 Value *BasePtr;
1647 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1648 return Error("Invalid GEP record");
1650 SmallVector<Value*, 16> GEPIdx;
1651 while (OpNum != Record.size()) {
1652 Value *Op;
1653 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1654 return Error("Invalid GEP record");
1655 GEPIdx.push_back(Op);
1658 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1659 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1660 cast<GetElementPtrInst>(I)->setIsInBounds(true);
1661 break;
1664 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1665 // EXTRACTVAL: [opty, opval, n x indices]
1666 unsigned OpNum = 0;
1667 Value *Agg;
1668 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1669 return Error("Invalid EXTRACTVAL record");
1671 SmallVector<unsigned, 4> EXTRACTVALIdx;
1672 for (unsigned RecSize = Record.size();
1673 OpNum != RecSize; ++OpNum) {
1674 uint64_t Index = Record[OpNum];
1675 if ((unsigned)Index != Index)
1676 return Error("Invalid EXTRACTVAL index");
1677 EXTRACTVALIdx.push_back((unsigned)Index);
1680 I = ExtractValueInst::Create(Agg,
1681 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1682 break;
1685 case bitc::FUNC_CODE_INST_INSERTVAL: {
1686 // INSERTVAL: [opty, opval, opty, opval, n x indices]
1687 unsigned OpNum = 0;
1688 Value *Agg;
1689 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1690 return Error("Invalid INSERTVAL record");
1691 Value *Val;
1692 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1693 return Error("Invalid INSERTVAL record");
1695 SmallVector<unsigned, 4> INSERTVALIdx;
1696 for (unsigned RecSize = Record.size();
1697 OpNum != RecSize; ++OpNum) {
1698 uint64_t Index = Record[OpNum];
1699 if ((unsigned)Index != Index)
1700 return Error("Invalid INSERTVAL index");
1701 INSERTVALIdx.push_back((unsigned)Index);
1704 I = InsertValueInst::Create(Agg, Val,
1705 INSERTVALIdx.begin(), INSERTVALIdx.end());
1706 break;
1709 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1710 // obsolete form of select
1711 // handles select i1 ... in old bitcode
1712 unsigned OpNum = 0;
1713 Value *TrueVal, *FalseVal, *Cond;
1714 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1715 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1716 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1717 return Error("Invalid SELECT record");
1719 I = SelectInst::Create(Cond, TrueVal, FalseVal);
1720 break;
1723 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1724 // new form of select
1725 // handles select i1 or select [N x i1]
1726 unsigned OpNum = 0;
1727 Value *TrueVal, *FalseVal, *Cond;
1728 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1729 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1730 getValueTypePair(Record, OpNum, NextValueNo, Cond))
1731 return Error("Invalid SELECT record");
1733 // select condition can be either i1 or [N x i1]
1734 if (const VectorType* vector_type =
1735 dyn_cast<const VectorType>(Cond->getType())) {
1736 // expect <n x i1>
1737 if (vector_type->getElementType() != Type::getInt1Ty(Context))
1738 return Error("Invalid SELECT condition type");
1739 } else {
1740 // expect i1
1741 if (Cond->getType() != Type::getInt1Ty(Context))
1742 return Error("Invalid SELECT condition type");
1745 I = SelectInst::Create(Cond, TrueVal, FalseVal);
1746 break;
1749 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1750 unsigned OpNum = 0;
1751 Value *Vec, *Idx;
1752 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1753 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1754 return Error("Invalid EXTRACTELT record");
1755 I = ExtractElementInst::Create(Vec, Idx);
1756 break;
1759 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1760 unsigned OpNum = 0;
1761 Value *Vec, *Elt, *Idx;
1762 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1763 getValue(Record, OpNum,
1764 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1765 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1766 return Error("Invalid INSERTELT record");
1767 I = InsertElementInst::Create(Vec, Elt, Idx);
1768 break;
1771 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1772 unsigned OpNum = 0;
1773 Value *Vec1, *Vec2, *Mask;
1774 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1775 getValue(Record, OpNum, Vec1->getType(), Vec2))
1776 return Error("Invalid SHUFFLEVEC record");
1778 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1779 return Error("Invalid SHUFFLEVEC record");
1780 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1781 break;
1784 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
1785 // Old form of ICmp/FCmp returning bool
1786 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1787 // both legal on vectors but had different behaviour.
1788 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1789 // FCmp/ICmp returning bool or vector of bool
1791 unsigned OpNum = 0;
1792 Value *LHS, *RHS;
1793 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1794 getValue(Record, OpNum, LHS->getType(), RHS) ||
1795 OpNum+1 != Record.size())
1796 return Error("Invalid CMP record");
1798 if (LHS->getType()->isFPOrFPVector())
1799 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1800 else
1801 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1802 break;
1805 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1806 if (Record.size() != 2)
1807 return Error("Invalid GETRESULT record");
1808 unsigned OpNum = 0;
1809 Value *Op;
1810 getValueTypePair(Record, OpNum, NextValueNo, Op);
1811 unsigned Index = Record[1];
1812 I = ExtractValueInst::Create(Op, Index);
1813 break;
1816 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1818 unsigned Size = Record.size();
1819 if (Size == 0) {
1820 I = ReturnInst::Create(Context);
1821 break;
1824 unsigned OpNum = 0;
1825 SmallVector<Value *,4> Vs;
1826 do {
1827 Value *Op = NULL;
1828 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1829 return Error("Invalid RET record");
1830 Vs.push_back(Op);
1831 } while(OpNum != Record.size());
1833 const Type *ReturnType = F->getReturnType();
1834 if (Vs.size() > 1 ||
1835 (isa<StructType>(ReturnType) &&
1836 (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1837 Value *RV = UndefValue::get(ReturnType);
1838 for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1839 I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1840 CurBB->getInstList().push_back(I);
1841 ValueList.AssignValue(I, NextValueNo++);
1842 RV = I;
1844 I = ReturnInst::Create(Context, RV);
1845 break;
1848 I = ReturnInst::Create(Context, Vs[0]);
1849 break;
1851 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1852 if (Record.size() != 1 && Record.size() != 3)
1853 return Error("Invalid BR record");
1854 BasicBlock *TrueDest = getBasicBlock(Record[0]);
1855 if (TrueDest == 0)
1856 return Error("Invalid BR record");
1858 if (Record.size() == 1)
1859 I = BranchInst::Create(TrueDest);
1860 else {
1861 BasicBlock *FalseDest = getBasicBlock(Record[1]);
1862 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1863 if (FalseDest == 0 || Cond == 0)
1864 return Error("Invalid BR record");
1865 I = BranchInst::Create(TrueDest, FalseDest, Cond);
1867 break;
1869 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1870 if (Record.size() < 3 || (Record.size() & 1) == 0)
1871 return Error("Invalid SWITCH record");
1872 const Type *OpTy = getTypeByID(Record[0]);
1873 Value *Cond = getFnValueByID(Record[1], OpTy);
1874 BasicBlock *Default = getBasicBlock(Record[2]);
1875 if (OpTy == 0 || Cond == 0 || Default == 0)
1876 return Error("Invalid SWITCH record");
1877 unsigned NumCases = (Record.size()-3)/2;
1878 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1879 for (unsigned i = 0, e = NumCases; i != e; ++i) {
1880 ConstantInt *CaseVal =
1881 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1882 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1883 if (CaseVal == 0 || DestBB == 0) {
1884 delete SI;
1885 return Error("Invalid SWITCH record!");
1887 SI->addCase(CaseVal, DestBB);
1889 I = SI;
1890 break;
1893 case bitc::FUNC_CODE_INST_INVOKE: {
1894 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1895 if (Record.size() < 4) return Error("Invalid INVOKE record");
1896 AttrListPtr PAL = getAttributes(Record[0]);
1897 unsigned CCInfo = Record[1];
1898 BasicBlock *NormalBB = getBasicBlock(Record[2]);
1899 BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1901 unsigned OpNum = 4;
1902 Value *Callee;
1903 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1904 return Error("Invalid INVOKE record");
1906 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1907 const FunctionType *FTy = !CalleeTy ? 0 :
1908 dyn_cast<FunctionType>(CalleeTy->getElementType());
1910 // Check that the right number of fixed parameters are here.
1911 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1912 Record.size() < OpNum+FTy->getNumParams())
1913 return Error("Invalid INVOKE record");
1915 SmallVector<Value*, 16> Ops;
1916 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1917 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1918 if (Ops.back() == 0) return Error("Invalid INVOKE record");
1921 if (!FTy->isVarArg()) {
1922 if (Record.size() != OpNum)
1923 return Error("Invalid INVOKE record");
1924 } else {
1925 // Read type/value pairs for varargs params.
1926 while (OpNum != Record.size()) {
1927 Value *Op;
1928 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1929 return Error("Invalid INVOKE record");
1930 Ops.push_back(Op);
1934 I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1935 Ops.begin(), Ops.end());
1936 cast<InvokeInst>(I)->setCallingConv(
1937 static_cast<CallingConv::ID>(CCInfo));
1938 cast<InvokeInst>(I)->setAttributes(PAL);
1939 break;
1941 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1942 I = new UnwindInst(Context);
1943 break;
1944 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1945 I = new UnreachableInst(Context);
1946 break;
1947 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1948 if (Record.size() < 1 || ((Record.size()-1)&1))
1949 return Error("Invalid PHI record");
1950 const Type *Ty = getTypeByID(Record[0]);
1951 if (!Ty) return Error("Invalid PHI record");
1953 PHINode *PN = PHINode::Create(Ty);
1954 PN->reserveOperandSpace((Record.size()-1)/2);
1956 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1957 Value *V = getFnValueByID(Record[1+i], Ty);
1958 BasicBlock *BB = getBasicBlock(Record[2+i]);
1959 if (!V || !BB) return Error("Invalid PHI record");
1960 PN->addIncoming(V, BB);
1962 I = PN;
1963 break;
1966 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1967 if (Record.size() < 3)
1968 return Error("Invalid MALLOC record");
1969 const PointerType *Ty =
1970 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1971 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
1972 unsigned Align = Record[2];
1973 if (!Ty || !Size) return Error("Invalid MALLOC record");
1974 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1975 break;
1977 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1978 unsigned OpNum = 0;
1979 Value *Op;
1980 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1981 OpNum != Record.size())
1982 return Error("Invalid FREE record");
1983 I = new FreeInst(Op);
1984 break;
1986 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1987 if (Record.size() < 3)
1988 return Error("Invalid ALLOCA record");
1989 const PointerType *Ty =
1990 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1991 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
1992 unsigned Align = Record[2];
1993 if (!Ty || !Size) return Error("Invalid ALLOCA record");
1994 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1995 break;
1997 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1998 unsigned OpNum = 0;
1999 Value *Op;
2000 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2001 OpNum+2 != Record.size())
2002 return Error("Invalid LOAD record");
2004 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2005 break;
2007 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2008 unsigned OpNum = 0;
2009 Value *Val, *Ptr;
2010 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2011 getValue(Record, OpNum,
2012 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2013 OpNum+2 != Record.size())
2014 return Error("Invalid STORE record");
2016 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2017 break;
2019 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2020 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2021 unsigned OpNum = 0;
2022 Value *Val, *Ptr;
2023 if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2024 getValue(Record, OpNum,
2025 PointerType::getUnqual(Val->getType()), Ptr)||
2026 OpNum+2 != Record.size())
2027 return Error("Invalid STORE record");
2029 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2030 break;
2032 case bitc::FUNC_CODE_INST_CALL: {
2033 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2034 if (Record.size() < 3)
2035 return Error("Invalid CALL record");
2037 AttrListPtr PAL = getAttributes(Record[0]);
2038 unsigned CCInfo = Record[1];
2040 unsigned OpNum = 2;
2041 Value *Callee;
2042 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2043 return Error("Invalid CALL record");
2045 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2046 const FunctionType *FTy = 0;
2047 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2048 if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2049 return Error("Invalid CALL record");
2051 SmallVector<Value*, 16> Args;
2052 // Read the fixed params.
2053 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2054 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2055 Args.push_back(getBasicBlock(Record[OpNum]));
2056 else
2057 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2058 if (Args.back() == 0) return Error("Invalid CALL record");
2061 // Read type/value pairs for varargs params.
2062 if (!FTy->isVarArg()) {
2063 if (OpNum != Record.size())
2064 return Error("Invalid CALL record");
2065 } else {
2066 while (OpNum != Record.size()) {
2067 Value *Op;
2068 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2069 return Error("Invalid CALL record");
2070 Args.push_back(Op);
2074 I = CallInst::Create(Callee, Args.begin(), Args.end());
2075 cast<CallInst>(I)->setCallingConv(
2076 static_cast<CallingConv::ID>(CCInfo>>1));
2077 cast<CallInst>(I)->setTailCall(CCInfo & 1);
2078 cast<CallInst>(I)->setAttributes(PAL);
2079 break;
2081 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2082 if (Record.size() < 3)
2083 return Error("Invalid VAARG record");
2084 const Type *OpTy = getTypeByID(Record[0]);
2085 Value *Op = getFnValueByID(Record[1], OpTy);
2086 const Type *ResTy = getTypeByID(Record[2]);
2087 if (!OpTy || !Op || !ResTy)
2088 return Error("Invalid VAARG record");
2089 I = new VAArgInst(Op, ResTy);
2090 break;
2094 // Add instruction to end of current BB. If there is no current BB, reject
2095 // this file.
2096 if (CurBB == 0) {
2097 delete I;
2098 return Error("Invalid instruction with no BB");
2100 CurBB->getInstList().push_back(I);
2102 // If this was a terminator instruction, move to the next block.
2103 if (isa<TerminatorInst>(I)) {
2104 ++CurBBNo;
2105 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2108 // Non-void values get registered in the value table for future use.
2109 if (I && I->getType() != Type::getVoidTy(Context))
2110 ValueList.AssignValue(I, NextValueNo++);
2113 // Check the function list for unresolved values.
2114 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2115 if (A->getParent() == 0) {
2116 // We found at least one unresolved value. Nuke them all to avoid leaks.
2117 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2118 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2119 A->replaceAllUsesWith(UndefValue::get(A->getType()));
2120 delete A;
2123 return Error("Never resolved value found in function!");
2127 // Trim the value list down to the size it was before we parsed this function.
2128 ValueList.shrinkTo(ModuleValueListSize);
2129 std::vector<BasicBlock*>().swap(FunctionBBs);
2131 return false;
2134 //===----------------------------------------------------------------------===//
2135 // ModuleProvider implementation
2136 //===----------------------------------------------------------------------===//
2139 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2140 // If it already is material, ignore the request.
2141 if (!F->hasNotBeenReadFromBitcode()) return false;
2143 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2144 DeferredFunctionInfo.find(F);
2145 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2147 // Move the bit stream to the saved position of the deferred function body and
2148 // restore the real linkage type for the function.
2149 Stream.JumpToBit(DFII->second.first);
2150 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2152 if (ParseFunctionBody(F)) {
2153 if (ErrInfo) *ErrInfo = ErrorString;
2154 return true;
2157 // Upgrade any old intrinsic calls in the function.
2158 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2159 E = UpgradedIntrinsics.end(); I != E; ++I) {
2160 if (I->first != I->second) {
2161 for (Value::use_iterator UI = I->first->use_begin(),
2162 UE = I->first->use_end(); UI != UE; ) {
2163 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2164 UpgradeIntrinsicCall(CI, I->second);
2169 return false;
2172 void BitcodeReader::dematerializeFunction(Function *F) {
2173 // If this function isn't materialized, or if it is a proto, this is a noop.
2174 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2175 return;
2177 assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2179 // Just forget the function body, we can remat it later.
2180 F->deleteBody();
2181 F->setLinkage(GlobalValue::GhostLinkage);
2185 Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2186 // Iterate over the module, deserializing any functions that are still on
2187 // disk.
2188 for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2189 F != E; ++F)
2190 if (F->hasNotBeenReadFromBitcode() &&
2191 materializeFunction(F, ErrInfo))
2192 return 0;
2194 // Upgrade any intrinsic calls that slipped through (should not happen!) and
2195 // delete the old functions to clean up. We can't do this unless the entire
2196 // module is materialized because there could always be another function body
2197 // with calls to the old function.
2198 for (std::vector<std::pair<Function*, Function*> >::iterator I =
2199 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2200 if (I->first != I->second) {
2201 for (Value::use_iterator UI = I->first->use_begin(),
2202 UE = I->first->use_end(); UI != UE; ) {
2203 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2204 UpgradeIntrinsicCall(CI, I->second);
2206 if (!I->first->use_empty())
2207 I->first->replaceAllUsesWith(I->second);
2208 I->first->eraseFromParent();
2211 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2213 // Check debug info intrinsics.
2214 CheckDebugInfoIntrinsics(TheModule);
2216 return TheModule;
2220 /// This method is provided by the parent ModuleProvde class and overriden
2221 /// here. It simply releases the module from its provided and frees up our
2222 /// state.
2223 /// @brief Release our hold on the generated module
2224 Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2225 // Since we're losing control of this Module, we must hand it back complete
2226 Module *M = ModuleProvider::releaseModule(ErrInfo);
2227 FreeState();
2228 return M;
2232 //===----------------------------------------------------------------------===//
2233 // External interface
2234 //===----------------------------------------------------------------------===//
2236 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2238 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2239 LLVMContext& Context,
2240 std::string *ErrMsg) {
2241 BitcodeReader *R = new BitcodeReader(Buffer, Context);
2242 if (R->ParseBitcode()) {
2243 if (ErrMsg)
2244 *ErrMsg = R->getErrorString();
2246 // Don't let the BitcodeReader dtor delete 'Buffer'.
2247 R->releaseMemoryBuffer();
2248 delete R;
2249 return 0;
2251 return R;
2254 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2255 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2256 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2257 std::string *ErrMsg){
2258 BitcodeReader *R;
2259 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2260 ErrMsg));
2261 if (!R) return 0;
2263 // Read in the entire module.
2264 Module *M = R->materializeModule(ErrMsg);
2266 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2267 // there was an error.
2268 R->releaseMemoryBuffer();
2270 // If there was no error, tell ModuleProvider not to delete it when its dtor
2271 // is run.
2272 if (M)
2273 M = R->releaseModule(ErrMsg);
2275 delete R;
2276 return M;