1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the ValueEnumerator class.
12 //===----------------------------------------------------------------------===//
14 #include "ValueEnumerator.h"
15 #include "llvm/Constants.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Metadata.h"
18 #include "llvm/Module.h"
19 #include "llvm/TypeSymbolTable.h"
20 #include "llvm/ValueSymbolTable.h"
21 #include "llvm/Instructions.h"
25 static bool isSingleValueType(const std::pair
<const llvm::Type
*,
27 return P
.first
->isSingleValueType();
30 static bool isIntegerValue(const std::pair
<const Value
*, unsigned> &V
) {
31 return isa
<IntegerType
>(V
.first
->getType());
34 static bool CompareByFrequency(const std::pair
<const llvm::Type
*,
36 const std::pair
<const llvm::Type
*,
38 return P1
.second
> P2
.second
;
41 /// ValueEnumerator - Enumerate module-level information.
42 ValueEnumerator::ValueEnumerator(const Module
*M
) {
43 // Enumerate the global variables.
44 for (Module::const_global_iterator I
= M
->global_begin(),
45 E
= M
->global_end(); I
!= E
; ++I
)
48 // Enumerate the functions.
49 for (Module::const_iterator I
= M
->begin(), E
= M
->end(); I
!= E
; ++I
) {
51 EnumerateAttributes(cast
<Function
>(I
)->getAttributes());
54 // Enumerate the aliases.
55 for (Module::const_alias_iterator I
= M
->alias_begin(), E
= M
->alias_end();
59 // Remember what is the cutoff between globalvalue's and other constants.
60 unsigned FirstConstant
= Values
.size();
62 // Enumerate the global variable initializers.
63 for (Module::const_global_iterator I
= M
->global_begin(),
64 E
= M
->global_end(); I
!= E
; ++I
)
65 if (I
->hasInitializer())
66 EnumerateValue(I
->getInitializer());
68 // Enumerate the aliasees.
69 for (Module::const_alias_iterator I
= M
->alias_begin(), E
= M
->alias_end();
71 EnumerateValue(I
->getAliasee());
73 // Enumerate types used by the type symbol table.
74 EnumerateTypeSymbolTable(M
->getTypeSymbolTable());
76 // Insert constants that are named at module level into the slot pool so that
77 // the module symbol table can refer to them...
78 EnumerateValueSymbolTable(M
->getValueSymbolTable());
80 // Enumerate types used by function bodies and argument lists.
81 for (Module::const_iterator F
= M
->begin(), E
= M
->end(); F
!= E
; ++F
) {
83 for (Function::const_arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
85 EnumerateType(I
->getType());
87 for (Function::const_iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
88 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!=E
;++I
){
89 for (User::const_op_iterator OI
= I
->op_begin(), E
= I
->op_end();
91 EnumerateOperandType(*OI
);
92 EnumerateType(I
->getType());
93 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
94 EnumerateAttributes(CI
->getAttributes());
95 else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(I
))
96 EnumerateAttributes(II
->getAttributes());
100 // Optimize constant ordering.
101 OptimizeConstants(FirstConstant
, Values
.size());
103 // Sort the type table by frequency so that most commonly used types are early
104 // in the table (have low bit-width).
105 std::stable_sort(Types
.begin(), Types
.end(), CompareByFrequency
);
107 // Partition the Type ID's so that the single-value types occur before the
108 // aggregate types. This allows the aggregate types to be dropped from the
109 // type table after parsing the global variable initializers.
110 std::partition(Types
.begin(), Types
.end(), isSingleValueType
);
112 // Now that we rearranged the type table, rebuild TypeMap.
113 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
114 TypeMap
[Types
[i
].first
] = i
+1;
117 unsigned ValueEnumerator::getValueID(const Value
*V
) const {
118 if (isa
<MetadataBase
>(V
)) {
119 ValueMapType::const_iterator I
= MDValueMap
.find(V
);
120 assert(I
!= MDValueMap
.end() && "Value not in slotcalculator!");
124 ValueMapType::const_iterator I
= ValueMap
.find(V
);
125 assert(I
!= ValueMap
.end() && "Value not in slotcalculator!");
129 // Optimize constant ordering.
131 struct CstSortPredicate
{
133 explicit CstSortPredicate(ValueEnumerator
&ve
) : VE(ve
) {}
134 bool operator()(const std::pair
<const Value
*, unsigned> &LHS
,
135 const std::pair
<const Value
*, unsigned> &RHS
) {
137 if (LHS
.first
->getType() != RHS
.first
->getType())
138 return VE
.getTypeID(LHS
.first
->getType()) <
139 VE
.getTypeID(RHS
.first
->getType());
140 // Then by frequency.
141 return LHS
.second
> RHS
.second
;
146 /// OptimizeConstants - Reorder constant pool for denser encoding.
147 void ValueEnumerator::OptimizeConstants(unsigned CstStart
, unsigned CstEnd
) {
148 if (CstStart
== CstEnd
|| CstStart
+1 == CstEnd
) return;
150 CstSortPredicate
P(*this);
151 std::stable_sort(Values
.begin()+CstStart
, Values
.begin()+CstEnd
, P
);
153 // Ensure that integer constants are at the start of the constant pool. This
154 // is important so that GEP structure indices come before gep constant exprs.
155 std::partition(Values
.begin()+CstStart
, Values
.begin()+CstEnd
,
158 // Rebuild the modified portion of ValueMap.
159 for (; CstStart
!= CstEnd
; ++CstStart
)
160 ValueMap
[Values
[CstStart
].first
] = CstStart
+1;
164 /// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
166 void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable
&TST
) {
167 for (TypeSymbolTable::const_iterator TI
= TST
.begin(), TE
= TST
.end();
169 EnumerateType(TI
->second
);
172 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
173 /// table into the values table.
174 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable
&VST
) {
175 for (ValueSymbolTable::const_iterator VI
= VST
.begin(), VE
= VST
.end();
177 EnumerateValue(VI
->getValue());
180 void ValueEnumerator::EnumerateMetadata(const MetadataBase
*MD
) {
181 // Check to see if it's already in!
182 unsigned &MDValueID
= MDValueMap
[MD
];
184 // Increment use count.
185 MDValues
[MDValueID
-1].second
++;
189 // Enumerate the type of this value.
190 EnumerateType(MD
->getType());
192 if (const MDNode
*N
= dyn_cast
<MDNode
>(MD
)) {
193 MDValues
.push_back(std::make_pair(MD
, 1U));
194 MDValueMap
[MD
] = MDValues
.size();
195 MDValueID
= MDValues
.size();
196 for (MDNode::const_elem_iterator I
= N
->elem_begin(), E
= N
->elem_end();
201 EnumerateType(Type::getVoidTy(MD
->getContext()));
204 } else if (const NamedMDNode
*N
= dyn_cast
<NamedMDNode
>(MD
)) {
205 for(NamedMDNode::const_elem_iterator I
= N
->elem_begin(),
206 E
= N
->elem_end(); I
!= E
; ++I
) {
207 MetadataBase
*M
= *I
;
210 MDValues
.push_back(std::make_pair(MD
, 1U));
211 MDValueMap
[MD
] = Values
.size();
216 MDValues
.push_back(std::make_pair(MD
, 1U));
217 MDValueID
= MDValues
.size();
220 void ValueEnumerator::EnumerateValue(const Value
*V
) {
221 assert(V
->getType() != Type::getVoidTy(V
->getContext()) &&
222 "Can't insert void values!");
223 if (const MetadataBase
*MB
= dyn_cast
<MetadataBase
>(V
))
224 return EnumerateMetadata(MB
);
226 // Check to see if it's already in!
227 unsigned &ValueID
= ValueMap
[V
];
229 // Increment use count.
230 Values
[ValueID
-1].second
++;
234 // Enumerate the type of this value.
235 EnumerateType(V
->getType());
237 if (const Constant
*C
= dyn_cast
<Constant
>(V
)) {
238 if (isa
<GlobalValue
>(C
)) {
239 // Initializers for globals are handled explicitly elsewhere.
240 } else if (isa
<ConstantArray
>(C
) && cast
<ConstantArray
>(C
)->isString()) {
241 // Do not enumerate the initializers for an array of simple characters.
242 // The initializers just polute the value table, and we emit the strings
244 } else if (C
->getNumOperands()) {
245 // If a constant has operands, enumerate them. This makes sure that if a
246 // constant has uses (for example an array of const ints), that they are
249 // We prefer to enumerate them with values before we enumerate the user
250 // itself. This makes it more likely that we can avoid forward references
251 // in the reader. We know that there can be no cycles in the constants
252 // graph that don't go through a global variable.
253 for (User::const_op_iterator I
= C
->op_begin(), E
= C
->op_end();
257 // Finally, add the value. Doing this could make the ValueID reference be
258 // dangling, don't reuse it.
259 Values
.push_back(std::make_pair(V
, 1U));
260 ValueMap
[V
] = Values
.size();
266 Values
.push_back(std::make_pair(V
, 1U));
267 ValueID
= Values
.size();
271 void ValueEnumerator::EnumerateType(const Type
*Ty
) {
272 unsigned &TypeID
= TypeMap
[Ty
];
275 // If we've already seen this type, just increase its occurrence count.
276 Types
[TypeID
-1].second
++;
280 // First time we saw this type, add it.
281 Types
.push_back(std::make_pair(Ty
, 1U));
282 TypeID
= Types
.size();
284 // Enumerate subtypes.
285 for (Type::subtype_iterator I
= Ty
->subtype_begin(), E
= Ty
->subtype_end();
290 // Enumerate the types for the specified value. If the value is a constant,
291 // walk through it, enumerating the types of the constant.
292 void ValueEnumerator::EnumerateOperandType(const Value
*V
) {
293 EnumerateType(V
->getType());
294 if (const Constant
*C
= dyn_cast
<Constant
>(V
)) {
295 // If this constant is already enumerated, ignore it, we know its type must
297 if (ValueMap
.count(V
)) return;
299 // This constant may have operands, make sure to enumerate the types in
301 for (unsigned i
= 0, e
= C
->getNumOperands(); i
!= e
; ++i
)
302 EnumerateOperandType(C
->getOperand(i
));
304 if (const MDNode
*N
= dyn_cast
<MDNode
>(V
)) {
305 for (unsigned i
= 0, e
= N
->getNumElements(); i
!= e
; ++i
) {
306 Value
*Elem
= N
->getElement(i
);
308 EnumerateOperandType(Elem
);
311 } else if (isa
<MDString
>(V
) || isa
<MDNode
>(V
))
315 void ValueEnumerator::EnumerateAttributes(const AttrListPtr
&PAL
) {
316 if (PAL
.isEmpty()) return; // null is always 0.
318 unsigned &Entry
= AttributeMap
[PAL
.getRawPointer()];
320 // Never saw this before, add it.
321 Attributes
.push_back(PAL
);
322 Entry
= Attributes
.size();
327 void ValueEnumerator::incorporateFunction(const Function
&F
) {
328 NumModuleValues
= Values
.size();
330 // Adding function arguments to the value table.
331 for(Function::const_arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
335 FirstFuncConstantID
= Values
.size();
337 // Add all function-level constants to the value table.
338 for (Function::const_iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
339 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!=E
; ++I
)
340 for (User::const_op_iterator OI
= I
->op_begin(), E
= I
->op_end();
342 if ((isa
<Constant
>(*OI
) && !isa
<GlobalValue
>(*OI
)) ||
346 BasicBlocks
.push_back(BB
);
347 ValueMap
[BB
] = BasicBlocks
.size();
350 // Optimize the constant layout.
351 OptimizeConstants(FirstFuncConstantID
, Values
.size());
353 // Add the function's parameter attributes so they are available for use in
354 // the function's instruction.
355 EnumerateAttributes(F
.getAttributes());
357 FirstInstID
= Values
.size();
359 // Add all of the instructions.
360 for (Function::const_iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
361 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!=E
; ++I
) {
362 if (I
->getType() != Type::getVoidTy(F
.getContext()))
368 void ValueEnumerator::purgeFunction() {
369 /// Remove purged values from the ValueMap.
370 for (unsigned i
= NumModuleValues
, e
= Values
.size(); i
!= e
; ++i
)
371 ValueMap
.erase(Values
[i
].first
);
372 for (unsigned i
= 0, e
= BasicBlocks
.size(); i
!= e
; ++i
)
373 ValueMap
.erase(BasicBlocks
[i
]);
375 Values
.resize(NumModuleValues
);