Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
blob02ff2f0b50ad8bcb4d1cfc8b05a24d2e94ca43f6
1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "llvm/Assembly/Writer.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/GCMetadataPrinter.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/DwarfWriter.h"
25 #include "llvm/Analysis/DebugInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCSection.h"
29 #include "llvm/MC/MCStreamer.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/FormattedStream.h"
33 #include "llvm/Support/IOManip.h"
34 #include "llvm/Support/Mangler.h"
35 #include "llvm/Target/TargetAsmInfo.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Target/TargetLowering.h"
38 #include "llvm/Target/TargetLoweringObjectFile.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/StringExtras.h"
44 #include <cerrno>
45 using namespace llvm;
47 static cl::opt<cl::boolOrDefault>
48 AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
49 cl::init(cl::BOU_UNSET));
51 static cl::opt<cl::boolOrDefault>
52 AsmExuberant("asm-exuberant", cl::desc("Add many comments."),
53 cl::init(cl::BOU_FALSE));
55 char AsmPrinter::ID = 0;
56 AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm,
57 const TargetAsmInfo *T, bool VDef)
58 : MachineFunctionPass(&ID), FunctionNumber(0), O(o),
59 TM(tm), TAI(T), TRI(tm.getRegisterInfo()),
61 OutContext(*new MCContext()),
62 OutStreamer(*createAsmStreamer(OutContext, O)),
64 LastMI(0), LastFn(0), Counter(~0U),
65 PrevDLT(0, ~0U, ~0U) {
66 CurrentSection = 0;
67 DW = 0; MMI = 0;
68 switch (AsmVerbose) {
69 case cl::BOU_UNSET: VerboseAsm = VDef; break;
70 case cl::BOU_TRUE: VerboseAsm = true; break;
71 case cl::BOU_FALSE: VerboseAsm = false; break;
73 switch (AsmExuberant) {
74 case cl::BOU_UNSET: ExuberantAsm = false; break;
75 case cl::BOU_TRUE: ExuberantAsm = true; break;
76 case cl::BOU_FALSE: ExuberantAsm = false; break;
80 AsmPrinter::~AsmPrinter() {
81 for (gcp_iterator I = GCMetadataPrinters.begin(),
82 E = GCMetadataPrinters.end(); I != E; ++I)
83 delete I->second;
85 delete &OutStreamer;
86 delete &OutContext;
89 TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
90 return TM.getTargetLowering()->getObjFileLowering();
93 /// SwitchToSection - Switch to the specified section of the executable if we
94 /// are not already in it! If "NS" is null, then this causes us to exit the
95 /// current section and not reenter another one. This is generally used for
96 /// asmprinter hacks.
97 ///
98 /// FIXME: Remove support for null sections.
99 ///
100 void AsmPrinter::SwitchToSection(const MCSection *NS) {
101 // If we're already in this section, we're done.
102 if (CurrentSection == NS) return;
104 CurrentSection = NS;
106 if (NS == 0) return;
108 NS->PrintSwitchToSection(*TAI, O);
111 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
112 AU.setPreservesAll();
113 MachineFunctionPass::getAnalysisUsage(AU);
114 AU.addRequired<GCModuleInfo>();
115 if (ExuberantAsm) {
116 AU.addRequired<MachineLoopInfo>();
120 bool AsmPrinter::doInitialization(Module &M) {
121 // Initialize TargetLoweringObjectFile.
122 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
123 .Initialize(OutContext, TM);
125 Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(),
126 TAI->getLinkerPrivateGlobalPrefix());
128 if (TAI->doesAllowQuotesInName())
129 Mang->setUseQuotes(true);
131 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
132 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
134 if (TAI->hasSingleParameterDotFile()) {
135 /* Very minimal debug info. It is ignored if we emit actual
136 debug info. If we don't, this at helps the user find where
137 a function came from. */
138 O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
141 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
142 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
143 MP->beginAssembly(O, *this, *TAI);
145 if (!M.getModuleInlineAsm().empty())
146 O << TAI->getCommentString() << " Start of file scope inline assembly\n"
147 << M.getModuleInlineAsm()
148 << '\n' << TAI->getCommentString()
149 << " End of file scope inline assembly\n";
151 SwitchToSection(0); // Reset back to no section to close off sections.
153 if (TAI->doesSupportDebugInformation() ||
154 TAI->doesSupportExceptionHandling()) {
155 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
156 if (MMI)
157 MMI->AnalyzeModule(M);
158 DW = getAnalysisIfAvailable<DwarfWriter>();
159 if (DW)
160 DW->BeginModule(&M, MMI, O, this, TAI);
163 return false;
166 bool AsmPrinter::doFinalization(Module &M) {
167 // Emit global variables.
168 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
169 I != E; ++I)
170 PrintGlobalVariable(I);
172 // Emit final debug information.
173 if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
174 DW->EndModule();
176 // If the target wants to know about weak references, print them all.
177 if (TAI->getWeakRefDirective()) {
178 // FIXME: This is not lazy, it would be nice to only print weak references
179 // to stuff that is actually used. Note that doing so would require targets
180 // to notice uses in operands (due to constant exprs etc). This should
181 // happen with the MC stuff eventually.
182 SwitchToSection(0);
184 // Print out module-level global variables here.
185 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
186 I != E; ++I) {
187 if (I->hasExternalWeakLinkage())
188 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
191 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
192 if (I->hasExternalWeakLinkage())
193 O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
197 if (TAI->getSetDirective()) {
198 O << '\n';
199 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
200 I != E; ++I) {
201 std::string Name = Mang->getMangledName(I);
203 const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
204 std::string Target = Mang->getMangledName(GV);
206 if (I->hasExternalLinkage() || !TAI->getWeakRefDirective())
207 O << "\t.globl\t" << Name << '\n';
208 else if (I->hasWeakLinkage())
209 O << TAI->getWeakRefDirective() << Name << '\n';
210 else if (!I->hasLocalLinkage())
211 llvm_unreachable("Invalid alias linkage");
213 printVisibility(Name, I->getVisibility());
215 O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
219 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
220 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
221 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
222 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
223 MP->finishAssembly(O, *this, *TAI);
225 // If we don't have any trampolines, then we don't require stack memory
226 // to be executable. Some targets have a directive to declare this.
227 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
228 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
229 if (TAI->getNonexecutableStackDirective())
230 O << TAI->getNonexecutableStackDirective() << '\n';
232 delete Mang; Mang = 0;
233 DW = 0; MMI = 0;
235 OutStreamer.Finish();
236 return false;
239 std::string
240 AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const {
241 assert(MF && "No machine function?");
242 return Mang->getMangledName(MF->getFunction(), ".eh",
243 TAI->is_EHSymbolPrivate());
246 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
247 // What's my mangled name?
248 CurrentFnName = Mang->getMangledName(MF.getFunction());
249 IncrementFunctionNumber();
251 if (ExuberantAsm) {
252 LI = &getAnalysis<MachineLoopInfo>();
256 namespace {
257 // SectionCPs - Keep track the alignment, constpool entries per Section.
258 struct SectionCPs {
259 const MCSection *S;
260 unsigned Alignment;
261 SmallVector<unsigned, 4> CPEs;
262 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
266 /// EmitConstantPool - Print to the current output stream assembly
267 /// representations of the constants in the constant pool MCP. This is
268 /// used to print out constants which have been "spilled to memory" by
269 /// the code generator.
271 void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
272 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
273 if (CP.empty()) return;
275 // Calculate sections for constant pool entries. We collect entries to go into
276 // the same section together to reduce amount of section switch statements.
277 SmallVector<SectionCPs, 4> CPSections;
278 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
279 const MachineConstantPoolEntry &CPE = CP[i];
280 unsigned Align = CPE.getAlignment();
282 SectionKind Kind;
283 switch (CPE.getRelocationInfo()) {
284 default: llvm_unreachable("Unknown section kind");
285 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
286 case 1:
287 Kind = SectionKind::getReadOnlyWithRelLocal();
288 break;
289 case 0:
290 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
291 case 4: Kind = SectionKind::getMergeableConst4(); break;
292 case 8: Kind = SectionKind::getMergeableConst8(); break;
293 case 16: Kind = SectionKind::getMergeableConst16();break;
294 default: Kind = SectionKind::getMergeableConst(); break;
298 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
300 // The number of sections are small, just do a linear search from the
301 // last section to the first.
302 bool Found = false;
303 unsigned SecIdx = CPSections.size();
304 while (SecIdx != 0) {
305 if (CPSections[--SecIdx].S == S) {
306 Found = true;
307 break;
310 if (!Found) {
311 SecIdx = CPSections.size();
312 CPSections.push_back(SectionCPs(S, Align));
315 if (Align > CPSections[SecIdx].Alignment)
316 CPSections[SecIdx].Alignment = Align;
317 CPSections[SecIdx].CPEs.push_back(i);
320 // Now print stuff into the calculated sections.
321 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
322 SwitchToSection(CPSections[i].S);
323 EmitAlignment(Log2_32(CPSections[i].Alignment));
325 unsigned Offset = 0;
326 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
327 unsigned CPI = CPSections[i].CPEs[j];
328 MachineConstantPoolEntry CPE = CP[CPI];
330 // Emit inter-object padding for alignment.
331 unsigned AlignMask = CPE.getAlignment() - 1;
332 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
333 EmitZeros(NewOffset - Offset);
335 const Type *Ty = CPE.getType();
336 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
338 O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
339 << CPI << ':';
340 if (VerboseAsm) {
341 O.PadToColumn(TAI->getCommentColumn(), 1);
342 O << TAI->getCommentString() << " constant ";
343 WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
345 O << '\n';
346 if (CPE.isMachineConstantPoolEntry())
347 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
348 else
349 EmitGlobalConstant(CPE.Val.ConstVal);
354 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
355 /// by the current function to the current output stream.
357 void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
358 MachineFunction &MF) {
359 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
360 if (JT.empty()) return;
362 bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
364 // Pick the directive to use to print the jump table entries, and switch to
365 // the appropriate section.
366 TargetLowering *LoweringInfo = TM.getTargetLowering();
368 const Function *F = MF.getFunction();
369 bool JTInDiffSection = false;
370 if (F->isWeakForLinker() ||
371 (IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
372 // In PIC mode, we need to emit the jump table to the same section as the
373 // function body itself, otherwise the label differences won't make sense.
374 // We should also do if the section name is NULL or function is declared in
375 // discardable section.
376 SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
377 } else {
378 // Otherwise, drop it in the readonly section.
379 const MCSection *ReadOnlySection =
380 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
381 SwitchToSection(ReadOnlySection);
382 JTInDiffSection = true;
385 EmitAlignment(Log2_32(MJTI->getAlignment()));
387 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
388 const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
390 // If this jump table was deleted, ignore it.
391 if (JTBBs.empty()) continue;
393 // For PIC codegen, if possible we want to use the SetDirective to reduce
394 // the number of relocations the assembler will generate for the jump table.
395 // Set directives are all printed before the jump table itself.
396 SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
397 if (TAI->getSetDirective() && IsPic)
398 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
399 if (EmittedSets.insert(JTBBs[ii]))
400 printPICJumpTableSetLabel(i, JTBBs[ii]);
402 // On some targets (e.g. darwin) we want to emit two consequtive labels
403 // before each jump table. The first label is never referenced, but tells
404 // the assembler and linker the extents of the jump table object. The
405 // second label is actually referenced by the code.
406 if (JTInDiffSection) {
407 if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix())
408 O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n";
411 O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
412 << '_' << i << ":\n";
414 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
415 printPICJumpTableEntry(MJTI, JTBBs[ii], i);
416 O << '\n';
421 void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
422 const MachineBasicBlock *MBB,
423 unsigned uid) const {
424 bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
426 // Use JumpTableDirective otherwise honor the entry size from the jump table
427 // info.
428 const char *JTEntryDirective = TAI->getJumpTableDirective(isPIC);
429 bool HadJTEntryDirective = JTEntryDirective != NULL;
430 if (!HadJTEntryDirective) {
431 JTEntryDirective = MJTI->getEntrySize() == 4 ?
432 TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
435 O << JTEntryDirective << ' ';
437 // If we have emitted set directives for the jump table entries, print
438 // them rather than the entries themselves. If we're emitting PIC, then
439 // emit the table entries as differences between two text section labels.
440 // If we're emitting non-PIC code, then emit the entries as direct
441 // references to the target basic blocks.
442 if (!isPIC) {
443 printBasicBlockLabel(MBB, false, false, false);
444 } else if (TAI->getSetDirective()) {
445 O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
446 << '_' << uid << "_set_" << MBB->getNumber();
447 } else {
448 printBasicBlockLabel(MBB, false, false, false);
449 // If the arch uses custom Jump Table directives, don't calc relative to
450 // JT
451 if (!HadJTEntryDirective)
452 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI"
453 << getFunctionNumber() << '_' << uid;
458 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
459 /// special global used by LLVM. If so, emit it and return true, otherwise
460 /// do nothing and return false.
461 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
462 if (GV->getName() == "llvm.used") {
463 if (TAI->getUsedDirective() != 0) // No need to emit this at all.
464 EmitLLVMUsedList(GV->getInitializer());
465 return true;
468 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
469 if (GV->getSection() == "llvm.metadata" ||
470 GV->hasAvailableExternallyLinkage())
471 return true;
473 if (!GV->hasAppendingLinkage()) return false;
475 assert(GV->hasInitializer() && "Not a special LLVM global!");
477 const TargetData *TD = TM.getTargetData();
478 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
479 if (GV->getName() == "llvm.global_ctors") {
480 SwitchToSection(getObjFileLowering().getStaticCtorSection());
481 EmitAlignment(Align, 0);
482 EmitXXStructorList(GV->getInitializer());
483 return true;
486 if (GV->getName() == "llvm.global_dtors") {
487 SwitchToSection(getObjFileLowering().getStaticDtorSection());
488 EmitAlignment(Align, 0);
489 EmitXXStructorList(GV->getInitializer());
490 return true;
493 return false;
496 /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
497 /// global in the specified llvm.used list for which emitUsedDirectiveFor
498 /// is true, as being used with this directive.
499 void AsmPrinter::EmitLLVMUsedList(Constant *List) {
500 const char *Directive = TAI->getUsedDirective();
502 // Should be an array of 'i8*'.
503 ConstantArray *InitList = dyn_cast<ConstantArray>(List);
504 if (InitList == 0) return;
506 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
507 const GlobalValue *GV =
508 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
509 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
510 O << Directive;
511 EmitConstantValueOnly(InitList->getOperand(i));
512 O << '\n';
517 /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
518 /// function pointers, ignoring the init priority.
519 void AsmPrinter::EmitXXStructorList(Constant *List) {
520 // Should be an array of '{ int, void ()* }' structs. The first value is the
521 // init priority, which we ignore.
522 if (!isa<ConstantArray>(List)) return;
523 ConstantArray *InitList = cast<ConstantArray>(List);
524 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
525 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
526 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
528 if (CS->getOperand(1)->isNullValue())
529 return; // Found a null terminator, exit printing.
530 // Emit the function pointer.
531 EmitGlobalConstant(CS->getOperand(1));
535 /// getGlobalLinkName - Returns the asm/link name of of the specified
536 /// global variable. Should be overridden by each target asm printer to
537 /// generate the appropriate value.
538 const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV,
539 std::string &LinkName) const {
540 if (isa<Function>(GV)) {
541 LinkName += TAI->getFunctionAddrPrefix();
542 LinkName += Mang->getMangledName(GV);
543 LinkName += TAI->getFunctionAddrSuffix();
544 } else {
545 LinkName += TAI->getGlobalVarAddrPrefix();
546 LinkName += Mang->getMangledName(GV);
547 LinkName += TAI->getGlobalVarAddrSuffix();
550 return LinkName;
553 /// EmitExternalGlobal - Emit the external reference to a global variable.
554 /// Should be overridden if an indirect reference should be used.
555 void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) {
556 std::string GLN;
557 O << getGlobalLinkName(GV, GLN);
562 //===----------------------------------------------------------------------===//
563 /// LEB 128 number encoding.
565 /// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
566 /// representing an unsigned leb128 value.
567 void AsmPrinter::PrintULEB128(unsigned Value) const {
568 char Buffer[20];
569 do {
570 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
571 Value >>= 7;
572 if (Value) Byte |= 0x80;
573 O << "0x" << utohex_buffer(Byte, Buffer+20);
574 if (Value) O << ", ";
575 } while (Value);
578 /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
579 /// representing a signed leb128 value.
580 void AsmPrinter::PrintSLEB128(int Value) const {
581 int Sign = Value >> (8 * sizeof(Value) - 1);
582 bool IsMore;
583 char Buffer[20];
585 do {
586 unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
587 Value >>= 7;
588 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
589 if (IsMore) Byte |= 0x80;
590 O << "0x" << utohex_buffer(Byte, Buffer+20);
591 if (IsMore) O << ", ";
592 } while (IsMore);
595 //===--------------------------------------------------------------------===//
596 // Emission and print routines
599 /// PrintHex - Print a value as a hexidecimal value.
601 void AsmPrinter::PrintHex(int Value) const {
602 char Buffer[20];
603 O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
606 /// EOL - Print a newline character to asm stream. If a comment is present
607 /// then it will be printed first. Comments should not contain '\n'.
608 void AsmPrinter::EOL() const {
609 O << '\n';
612 void AsmPrinter::EOL(const std::string &Comment) const {
613 if (VerboseAsm && !Comment.empty()) {
614 O.PadToColumn(TAI->getCommentColumn(), 1);
615 O << TAI->getCommentString()
616 << ' '
617 << Comment;
619 O << '\n';
622 void AsmPrinter::EOL(const char* Comment) const {
623 if (VerboseAsm && *Comment) {
624 O.PadToColumn(TAI->getCommentColumn(), 1);
625 O << TAI->getCommentString()
626 << ' '
627 << Comment;
629 O << '\n';
632 /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
633 /// unsigned leb128 value.
634 void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
635 if (TAI->hasLEB128()) {
636 O << "\t.uleb128\t"
637 << Value;
638 } else {
639 O << TAI->getData8bitsDirective();
640 PrintULEB128(Value);
644 /// EmitSLEB128Bytes - print an assembler byte data directive to compose a
645 /// signed leb128 value.
646 void AsmPrinter::EmitSLEB128Bytes(int Value) const {
647 if (TAI->hasLEB128()) {
648 O << "\t.sleb128\t"
649 << Value;
650 } else {
651 O << TAI->getData8bitsDirective();
652 PrintSLEB128(Value);
656 /// EmitInt8 - Emit a byte directive and value.
658 void AsmPrinter::EmitInt8(int Value) const {
659 O << TAI->getData8bitsDirective();
660 PrintHex(Value & 0xFF);
663 /// EmitInt16 - Emit a short directive and value.
665 void AsmPrinter::EmitInt16(int Value) const {
666 O << TAI->getData16bitsDirective();
667 PrintHex(Value & 0xFFFF);
670 /// EmitInt32 - Emit a long directive and value.
672 void AsmPrinter::EmitInt32(int Value) const {
673 O << TAI->getData32bitsDirective();
674 PrintHex(Value);
677 /// EmitInt64 - Emit a long long directive and value.
679 void AsmPrinter::EmitInt64(uint64_t Value) const {
680 if (TAI->getData64bitsDirective()) {
681 O << TAI->getData64bitsDirective();
682 PrintHex(Value);
683 } else {
684 if (TM.getTargetData()->isBigEndian()) {
685 EmitInt32(unsigned(Value >> 32)); O << '\n';
686 EmitInt32(unsigned(Value));
687 } else {
688 EmitInt32(unsigned(Value)); O << '\n';
689 EmitInt32(unsigned(Value >> 32));
694 /// toOctal - Convert the low order bits of X into an octal digit.
696 static inline char toOctal(int X) {
697 return (X&7)+'0';
700 /// printStringChar - Print a char, escaped if necessary.
702 static void printStringChar(formatted_raw_ostream &O, unsigned char C) {
703 if (C == '"') {
704 O << "\\\"";
705 } else if (C == '\\') {
706 O << "\\\\";
707 } else if (isprint((unsigned char)C)) {
708 O << C;
709 } else {
710 switch(C) {
711 case '\b': O << "\\b"; break;
712 case '\f': O << "\\f"; break;
713 case '\n': O << "\\n"; break;
714 case '\r': O << "\\r"; break;
715 case '\t': O << "\\t"; break;
716 default:
717 O << '\\';
718 O << toOctal(C >> 6);
719 O << toOctal(C >> 3);
720 O << toOctal(C >> 0);
721 break;
726 /// EmitString - Emit a string with quotes and a null terminator.
727 /// Special characters are emitted properly.
728 /// \literal (Eg. '\t') \endliteral
729 void AsmPrinter::EmitString(const std::string &String) const {
730 EmitString(String.c_str(), String.size());
733 void AsmPrinter::EmitString(const char *String, unsigned Size) const {
734 const char* AscizDirective = TAI->getAscizDirective();
735 if (AscizDirective)
736 O << AscizDirective;
737 else
738 O << TAI->getAsciiDirective();
739 O << '\"';
740 for (unsigned i = 0; i < Size; ++i)
741 printStringChar(O, String[i]);
742 if (AscizDirective)
743 O << '\"';
744 else
745 O << "\\0\"";
749 /// EmitFile - Emit a .file directive.
750 void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
751 O << "\t.file\t" << Number << " \"";
752 for (unsigned i = 0, N = Name.size(); i < N; ++i)
753 printStringChar(O, Name[i]);
754 O << '\"';
758 //===----------------------------------------------------------------------===//
760 // EmitAlignment - Emit an alignment directive to the specified power of
761 // two boundary. For example, if you pass in 3 here, you will get an 8
762 // byte alignment. If a global value is specified, and if that global has
763 // an explicit alignment requested, it will unconditionally override the
764 // alignment request. However, if ForcedAlignBits is specified, this value
765 // has final say: the ultimate alignment will be the max of ForcedAlignBits
766 // and the alignment computed with NumBits and the global.
768 // The algorithm is:
769 // Align = NumBits;
770 // if (GV && GV->hasalignment) Align = GV->getalignment();
771 // Align = std::max(Align, ForcedAlignBits);
773 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
774 unsigned ForcedAlignBits,
775 bool UseFillExpr) const {
776 if (GV && GV->getAlignment())
777 NumBits = Log2_32(GV->getAlignment());
778 NumBits = std::max(NumBits, ForcedAlignBits);
780 if (NumBits == 0) return; // No need to emit alignment.
781 if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits;
782 O << TAI->getAlignDirective() << NumBits;
784 if (CurrentSection && CurrentSection->getKind().isText())
785 if (unsigned FillValue = TAI->getTextAlignFillValue()) {
786 O << ',';
787 PrintHex(FillValue);
789 O << '\n';
792 /// EmitZeros - Emit a block of zeros.
794 void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
795 if (NumZeros) {
796 if (TAI->getZeroDirective()) {
797 O << TAI->getZeroDirective() << NumZeros;
798 if (TAI->getZeroDirectiveSuffix())
799 O << TAI->getZeroDirectiveSuffix();
800 O << '\n';
801 } else {
802 for (; NumZeros; --NumZeros)
803 O << TAI->getData8bitsDirective(AddrSpace) << "0\n";
808 // Print out the specified constant, without a storage class. Only the
809 // constants valid in constant expressions can occur here.
810 void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
811 if (CV->isNullValue() || isa<UndefValue>(CV))
812 O << '0';
813 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
814 O << CI->getZExtValue();
815 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
816 // This is a constant address for a global variable or function. Use the
817 // name of the variable or function as the address value, possibly
818 // decorating it with GlobalVarAddrPrefix/Suffix or
819 // FunctionAddrPrefix/Suffix (these all default to "" )
820 if (isa<Function>(GV)) {
821 O << TAI->getFunctionAddrPrefix()
822 << Mang->getMangledName(GV)
823 << TAI->getFunctionAddrSuffix();
824 } else {
825 O << TAI->getGlobalVarAddrPrefix()
826 << Mang->getMangledName(GV)
827 << TAI->getGlobalVarAddrSuffix();
829 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
830 const TargetData *TD = TM.getTargetData();
831 unsigned Opcode = CE->getOpcode();
832 switch (Opcode) {
833 case Instruction::Trunc:
834 case Instruction::ZExt:
835 case Instruction::SExt:
836 case Instruction::FPTrunc:
837 case Instruction::FPExt:
838 case Instruction::UIToFP:
839 case Instruction::SIToFP:
840 case Instruction::FPToUI:
841 case Instruction::FPToSI:
842 llvm_unreachable("FIXME: Don't support this constant cast expr");
843 case Instruction::GetElementPtr: {
844 // generate a symbolic expression for the byte address
845 const Constant *ptrVal = CE->getOperand(0);
846 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
847 if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
848 idxVec.size())) {
849 // Truncate/sext the offset to the pointer size.
850 if (TD->getPointerSizeInBits() != 64) {
851 int SExtAmount = 64-TD->getPointerSizeInBits();
852 Offset = (Offset << SExtAmount) >> SExtAmount;
855 if (Offset)
856 O << '(';
857 EmitConstantValueOnly(ptrVal);
858 if (Offset > 0)
859 O << ") + " << Offset;
860 else if (Offset < 0)
861 O << ") - " << -Offset;
862 } else {
863 EmitConstantValueOnly(ptrVal);
865 break;
867 case Instruction::BitCast:
868 return EmitConstantValueOnly(CE->getOperand(0));
870 case Instruction::IntToPtr: {
871 // Handle casts to pointers by changing them into casts to the appropriate
872 // integer type. This promotes constant folding and simplifies this code.
873 Constant *Op = CE->getOperand(0);
874 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
875 false/*ZExt*/);
876 return EmitConstantValueOnly(Op);
880 case Instruction::PtrToInt: {
881 // Support only foldable casts to/from pointers that can be eliminated by
882 // changing the pointer to the appropriately sized integer type.
883 Constant *Op = CE->getOperand(0);
884 const Type *Ty = CE->getType();
886 // We can emit the pointer value into this slot if the slot is an
887 // integer slot greater or equal to the size of the pointer.
888 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
889 return EmitConstantValueOnly(Op);
891 O << "((";
892 EmitConstantValueOnly(Op);
893 APInt ptrMask =
894 APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
896 SmallString<40> S;
897 ptrMask.toStringUnsigned(S);
898 O << ") & " << S.c_str() << ')';
899 break;
901 case Instruction::Add:
902 case Instruction::Sub:
903 case Instruction::And:
904 case Instruction::Or:
905 case Instruction::Xor:
906 O << '(';
907 EmitConstantValueOnly(CE->getOperand(0));
908 O << ')';
909 switch (Opcode) {
910 case Instruction::Add:
911 O << " + ";
912 break;
913 case Instruction::Sub:
914 O << " - ";
915 break;
916 case Instruction::And:
917 O << " & ";
918 break;
919 case Instruction::Or:
920 O << " | ";
921 break;
922 case Instruction::Xor:
923 O << " ^ ";
924 break;
925 default:
926 break;
928 O << '(';
929 EmitConstantValueOnly(CE->getOperand(1));
930 O << ')';
931 break;
932 default:
933 llvm_unreachable("Unsupported operator!");
935 } else {
936 llvm_unreachable("Unknown constant value!");
940 /// printAsCString - Print the specified array as a C compatible string, only if
941 /// the predicate isString is true.
943 static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
944 unsigned LastElt) {
945 assert(CVA->isString() && "Array is not string compatible!");
947 O << '\"';
948 for (unsigned i = 0; i != LastElt; ++i) {
949 unsigned char C =
950 (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
951 printStringChar(O, C);
953 O << '\"';
956 /// EmitString - Emit a zero-byte-terminated string constant.
958 void AsmPrinter::EmitString(const ConstantArray *CVA) const {
959 unsigned NumElts = CVA->getNumOperands();
960 if (TAI->getAscizDirective() && NumElts &&
961 cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
962 O << TAI->getAscizDirective();
963 printAsCString(O, CVA, NumElts-1);
964 } else {
965 O << TAI->getAsciiDirective();
966 printAsCString(O, CVA, NumElts);
968 O << '\n';
971 void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
972 unsigned AddrSpace) {
973 if (CVA->isString()) {
974 EmitString(CVA);
975 } else { // Not a string. Print the values in successive locations
976 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
977 EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
981 void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
982 const VectorType *PTy = CP->getType();
984 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
985 EmitGlobalConstant(CP->getOperand(I));
988 void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
989 unsigned AddrSpace) {
990 // Print the fields in successive locations. Pad to align if needed!
991 const TargetData *TD = TM.getTargetData();
992 unsigned Size = TD->getTypeAllocSize(CVS->getType());
993 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
994 uint64_t sizeSoFar = 0;
995 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
996 const Constant* field = CVS->getOperand(i);
998 // Check if padding is needed and insert one or more 0s.
999 uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
1000 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
1001 - cvsLayout->getElementOffset(i)) - fieldSize;
1002 sizeSoFar += fieldSize + padSize;
1004 // Now print the actual field value.
1005 EmitGlobalConstant(field, AddrSpace);
1007 // Insert padding - this may include padding to increase the size of the
1008 // current field up to the ABI size (if the struct is not packed) as well
1009 // as padding to ensure that the next field starts at the right offset.
1010 EmitZeros(padSize, AddrSpace);
1012 assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
1013 "Layout of constant struct may be incorrect!");
1016 void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
1017 unsigned AddrSpace) {
1018 // FP Constants are printed as integer constants to avoid losing
1019 // precision...
1020 LLVMContext &Context = CFP->getContext();
1021 const TargetData *TD = TM.getTargetData();
1022 if (CFP->getType() == Type::getDoubleTy(Context)) {
1023 double Val = CFP->getValueAPF().convertToDouble(); // for comment only
1024 uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1025 if (TAI->getData64bitsDirective(AddrSpace)) {
1026 O << TAI->getData64bitsDirective(AddrSpace) << i;
1027 if (VerboseAsm) {
1028 O.PadToColumn(TAI->getCommentColumn(), 1);
1029 O << TAI->getCommentString() << " double " << Val;
1031 O << '\n';
1032 } else if (TD->isBigEndian()) {
1033 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1034 if (VerboseAsm) {
1035 O.PadToColumn(TAI->getCommentColumn(), 1);
1036 O << TAI->getCommentString()
1037 << " most significant word of double " << Val;
1039 O << '\n';
1040 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1041 if (VerboseAsm) {
1042 O.PadToColumn(TAI->getCommentColumn(), 1);
1043 O << TAI->getCommentString()
1044 << " least significant word of double " << Val;
1046 O << '\n';
1047 } else {
1048 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i);
1049 if (VerboseAsm) {
1050 O.PadToColumn(TAI->getCommentColumn(), 1);
1051 O << TAI->getCommentString()
1052 << " least significant word of double " << Val;
1054 O << '\n';
1055 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
1056 if (VerboseAsm) {
1057 O.PadToColumn(TAI->getCommentColumn(), 1);
1058 O << TAI->getCommentString()
1059 << " most significant word of double " << Val;
1061 O << '\n';
1063 return;
1064 } else if (CFP->getType() == Type::getFloatTy(Context)) {
1065 float Val = CFP->getValueAPF().convertToFloat(); // for comment only
1066 O << TAI->getData32bitsDirective(AddrSpace)
1067 << CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1068 if (VerboseAsm) {
1069 O.PadToColumn(TAI->getCommentColumn(), 1);
1070 O << TAI->getCommentString() << " float " << Val;
1072 O << '\n';
1073 return;
1074 } else if (CFP->getType() == Type::getX86_FP80Ty(Context)) {
1075 // all long double variants are printed as hex
1076 // api needed to prevent premature destruction
1077 APInt api = CFP->getValueAPF().bitcastToAPInt();
1078 const uint64_t *p = api.getRawData();
1079 // Convert to double so we can print the approximate val as a comment.
1080 APFloat DoubleVal = CFP->getValueAPF();
1081 bool ignored;
1082 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1083 &ignored);
1084 if (TD->isBigEndian()) {
1085 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1086 if (VerboseAsm) {
1087 O.PadToColumn(TAI->getCommentColumn(), 1);
1088 O << TAI->getCommentString()
1089 << " most significant halfword of x86_fp80 ~"
1090 << DoubleVal.convertToDouble();
1092 O << '\n';
1093 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1094 if (VerboseAsm) {
1095 O.PadToColumn(TAI->getCommentColumn(), 1);
1096 O << TAI->getCommentString() << " next halfword";
1098 O << '\n';
1099 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1100 if (VerboseAsm) {
1101 O.PadToColumn(TAI->getCommentColumn(), 1);
1102 O << TAI->getCommentString() << " next halfword";
1104 O << '\n';
1105 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1106 if (VerboseAsm) {
1107 O.PadToColumn(TAI->getCommentColumn(), 1);
1108 O << TAI->getCommentString() << " next halfword";
1110 O << '\n';
1111 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1112 if (VerboseAsm) {
1113 O.PadToColumn(TAI->getCommentColumn(), 1);
1114 O << TAI->getCommentString()
1115 << " least significant halfword";
1117 O << '\n';
1118 } else {
1119 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
1120 if (VerboseAsm) {
1121 O.PadToColumn(TAI->getCommentColumn(), 1);
1122 O << TAI->getCommentString()
1123 << " least significant halfword of x86_fp80 ~"
1124 << DoubleVal.convertToDouble();
1126 O << '\n';
1127 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
1128 if (VerboseAsm) {
1129 O.PadToColumn(TAI->getCommentColumn(), 1);
1130 O << TAI->getCommentString()
1131 << " next halfword";
1133 O << '\n';
1134 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
1135 if (VerboseAsm) {
1136 O.PadToColumn(TAI->getCommentColumn(), 1);
1137 O << TAI->getCommentString()
1138 << " next halfword";
1140 O << '\n';
1141 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
1142 if (VerboseAsm) {
1143 O.PadToColumn(TAI->getCommentColumn(), 1);
1144 O << TAI->getCommentString()
1145 << " next halfword";
1147 O << '\n';
1148 O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
1149 if (VerboseAsm) {
1150 O.PadToColumn(TAI->getCommentColumn(), 1);
1151 O << TAI->getCommentString()
1152 << " most significant halfword";
1154 O << '\n';
1156 EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
1157 TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
1158 return;
1159 } else if (CFP->getType() == Type::getPPC_FP128Ty(Context)) {
1160 // all long double variants are printed as hex
1161 // api needed to prevent premature destruction
1162 APInt api = CFP->getValueAPF().bitcastToAPInt();
1163 const uint64_t *p = api.getRawData();
1164 if (TD->isBigEndian()) {
1165 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1166 if (VerboseAsm) {
1167 O.PadToColumn(TAI->getCommentColumn(), 1);
1168 O << TAI->getCommentString()
1169 << " most significant word of ppc_fp128";
1171 O << '\n';
1172 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1173 if (VerboseAsm) {
1174 O.PadToColumn(TAI->getCommentColumn(), 1);
1175 O << TAI->getCommentString()
1176 << " next word";
1178 O << '\n';
1179 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1180 if (VerboseAsm) {
1181 O.PadToColumn(TAI->getCommentColumn(), 1);
1182 O << TAI->getCommentString()
1183 << " next word";
1185 O << '\n';
1186 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1187 if (VerboseAsm) {
1188 O.PadToColumn(TAI->getCommentColumn(), 1);
1189 O << TAI->getCommentString()
1190 << " least significant word";
1192 O << '\n';
1193 } else {
1194 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
1195 if (VerboseAsm) {
1196 O.PadToColumn(TAI->getCommentColumn(), 1);
1197 O << TAI->getCommentString()
1198 << " least significant word of ppc_fp128";
1200 O << '\n';
1201 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
1202 if (VerboseAsm) {
1203 O.PadToColumn(TAI->getCommentColumn(), 1);
1204 O << TAI->getCommentString()
1205 << " next word";
1207 O << '\n';
1208 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
1209 if (VerboseAsm) {
1210 O.PadToColumn(TAI->getCommentColumn(), 1);
1211 O << TAI->getCommentString()
1212 << " next word";
1214 O << '\n';
1215 O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
1216 if (VerboseAsm) {
1217 O.PadToColumn(TAI->getCommentColumn(), 1);
1218 O << TAI->getCommentString()
1219 << " most significant word";
1221 O << '\n';
1223 return;
1224 } else llvm_unreachable("Floating point constant type not handled");
1227 void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
1228 unsigned AddrSpace) {
1229 const TargetData *TD = TM.getTargetData();
1230 unsigned BitWidth = CI->getBitWidth();
1231 assert(isPowerOf2_32(BitWidth) &&
1232 "Non-power-of-2-sized integers not handled!");
1234 // We don't expect assemblers to support integer data directives
1235 // for more than 64 bits, so we emit the data in at most 64-bit
1236 // quantities at a time.
1237 const uint64_t *RawData = CI->getValue().getRawData();
1238 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1239 uint64_t Val;
1240 if (TD->isBigEndian())
1241 Val = RawData[e - i - 1];
1242 else
1243 Val = RawData[i];
1245 if (TAI->getData64bitsDirective(AddrSpace))
1246 O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n';
1247 else if (TD->isBigEndian()) {
1248 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1249 if (VerboseAsm) {
1250 O.PadToColumn(TAI->getCommentColumn(), 1);
1251 O << TAI->getCommentString()
1252 << " most significant half of i64 " << Val;
1254 O << '\n';
1255 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1256 if (VerboseAsm) {
1257 O.PadToColumn(TAI->getCommentColumn(), 1);
1258 O << TAI->getCommentString()
1259 << " least significant half of i64 " << Val;
1261 O << '\n';
1262 } else {
1263 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
1264 if (VerboseAsm) {
1265 O.PadToColumn(TAI->getCommentColumn(), 1);
1266 O << TAI->getCommentString()
1267 << " least significant half of i64 " << Val;
1269 O << '\n';
1270 O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
1271 if (VerboseAsm) {
1272 O.PadToColumn(TAI->getCommentColumn(), 1);
1273 O << TAI->getCommentString()
1274 << " most significant half of i64 " << Val;
1276 O << '\n';
1281 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1282 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1283 const TargetData *TD = TM.getTargetData();
1284 const Type *type = CV->getType();
1285 unsigned Size = TD->getTypeAllocSize(type);
1287 if (CV->isNullValue() || isa<UndefValue>(CV)) {
1288 EmitZeros(Size, AddrSpace);
1289 return;
1290 } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
1291 EmitGlobalConstantArray(CVA , AddrSpace);
1292 return;
1293 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
1294 EmitGlobalConstantStruct(CVS, AddrSpace);
1295 return;
1296 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1297 EmitGlobalConstantFP(CFP, AddrSpace);
1298 return;
1299 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1300 // Small integers are handled below; large integers are handled here.
1301 if (Size > 4) {
1302 EmitGlobalConstantLargeInt(CI, AddrSpace);
1303 return;
1305 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1306 EmitGlobalConstantVector(CP);
1307 return;
1310 printDataDirective(type, AddrSpace);
1311 EmitConstantValueOnly(CV);
1312 if (VerboseAsm) {
1313 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1314 SmallString<40> S;
1315 CI->getValue().toStringUnsigned(S, 16);
1316 O.PadToColumn(TAI->getCommentColumn(), 1);
1317 O << TAI->getCommentString() << " 0x" << S.c_str();
1320 O << '\n';
1323 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1324 // Target doesn't support this yet!
1325 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1328 /// PrintSpecial - Print information related to the specified machine instr
1329 /// that is independent of the operand, and may be independent of the instr
1330 /// itself. This can be useful for portably encoding the comment character
1331 /// or other bits of target-specific knowledge into the asmstrings. The
1332 /// syntax used is ${:comment}. Targets can override this to add support
1333 /// for their own strange codes.
1334 void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
1335 if (!strcmp(Code, "private")) {
1336 O << TAI->getPrivateGlobalPrefix();
1337 } else if (!strcmp(Code, "comment")) {
1338 if (VerboseAsm)
1339 O << TAI->getCommentString();
1340 } else if (!strcmp(Code, "uid")) {
1341 // Comparing the address of MI isn't sufficient, because machineinstrs may
1342 // be allocated to the same address across functions.
1343 const Function *ThisF = MI->getParent()->getParent()->getFunction();
1345 // If this is a new LastFn instruction, bump the counter.
1346 if (LastMI != MI || LastFn != ThisF) {
1347 ++Counter;
1348 LastMI = MI;
1349 LastFn = ThisF;
1351 O << Counter;
1352 } else {
1353 std::string msg;
1354 raw_string_ostream Msg(msg);
1355 Msg << "Unknown special formatter '" << Code
1356 << "' for machine instr: " << *MI;
1357 llvm_report_error(Msg.str());
1361 /// processDebugLoc - Processes the debug information of each machine
1362 /// instruction's DebugLoc.
1363 void AsmPrinter::processDebugLoc(DebugLoc DL) {
1364 if (!TAI || !DW)
1365 return;
1367 if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
1368 if (!DL.isUnknown()) {
1369 DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
1371 if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT)
1372 printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
1373 DICompileUnit(CurDLT.CompileUnit)));
1375 PrevDLT = CurDLT;
1380 /// printInlineAsm - This method formats and prints the specified machine
1381 /// instruction that is an inline asm.
1382 void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
1383 unsigned NumOperands = MI->getNumOperands();
1385 // Count the number of register definitions.
1386 unsigned NumDefs = 0;
1387 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1388 ++NumDefs)
1389 assert(NumDefs != NumOperands-1 && "No asm string?");
1391 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
1393 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1394 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1396 // If this asmstr is empty, just print the #APP/#NOAPP markers.
1397 // These are useful to see where empty asm's wound up.
1398 if (AsmStr[0] == 0) {
1399 O << TAI->getCommentString() << TAI->getInlineAsmStart() << "\n\t";
1400 O << TAI->getCommentString() << TAI->getInlineAsmEnd() << '\n';
1401 return;
1404 O << TAI->getCommentString() << TAI->getInlineAsmStart() << "\n\t";
1406 // The variant of the current asmprinter.
1407 int AsmPrinterVariant = TAI->getAssemblerDialect();
1409 int CurVariant = -1; // The number of the {.|.|.} region we are in.
1410 const char *LastEmitted = AsmStr; // One past the last character emitted.
1412 while (*LastEmitted) {
1413 switch (*LastEmitted) {
1414 default: {
1415 // Not a special case, emit the string section literally.
1416 const char *LiteralEnd = LastEmitted+1;
1417 while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
1418 *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
1419 ++LiteralEnd;
1420 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1421 O.write(LastEmitted, LiteralEnd-LastEmitted);
1422 LastEmitted = LiteralEnd;
1423 break;
1425 case '\n':
1426 ++LastEmitted; // Consume newline character.
1427 O << '\n'; // Indent code with newline.
1428 break;
1429 case '$': {
1430 ++LastEmitted; // Consume '$' character.
1431 bool Done = true;
1433 // Handle escapes.
1434 switch (*LastEmitted) {
1435 default: Done = false; break;
1436 case '$': // $$ -> $
1437 if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
1438 O << '$';
1439 ++LastEmitted; // Consume second '$' character.
1440 break;
1441 case '(': // $( -> same as GCC's { character.
1442 ++LastEmitted; // Consume '(' character.
1443 if (CurVariant != -1) {
1444 llvm_report_error("Nested variants found in inline asm string: '"
1445 + std::string(AsmStr) + "'");
1447 CurVariant = 0; // We're in the first variant now.
1448 break;
1449 case '|':
1450 ++LastEmitted; // consume '|' character.
1451 if (CurVariant == -1)
1452 O << '|'; // this is gcc's behavior for | outside a variant
1453 else
1454 ++CurVariant; // We're in the next variant.
1455 break;
1456 case ')': // $) -> same as GCC's } char.
1457 ++LastEmitted; // consume ')' character.
1458 if (CurVariant == -1)
1459 O << '}'; // this is gcc's behavior for } outside a variant
1460 else
1461 CurVariant = -1;
1462 break;
1464 if (Done) break;
1466 bool HasCurlyBraces = false;
1467 if (*LastEmitted == '{') { // ${variable}
1468 ++LastEmitted; // Consume '{' character.
1469 HasCurlyBraces = true;
1472 // If we have ${:foo}, then this is not a real operand reference, it is a
1473 // "magic" string reference, just like in .td files. Arrange to call
1474 // PrintSpecial.
1475 if (HasCurlyBraces && *LastEmitted == ':') {
1476 ++LastEmitted;
1477 const char *StrStart = LastEmitted;
1478 const char *StrEnd = strchr(StrStart, '}');
1479 if (StrEnd == 0) {
1480 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1481 + std::string(AsmStr) + "'");
1484 std::string Val(StrStart, StrEnd);
1485 PrintSpecial(MI, Val.c_str());
1486 LastEmitted = StrEnd+1;
1487 break;
1490 const char *IDStart = LastEmitted;
1491 char *IDEnd;
1492 errno = 0;
1493 long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
1494 if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
1495 llvm_report_error("Bad $ operand number in inline asm string: '"
1496 + std::string(AsmStr) + "'");
1498 LastEmitted = IDEnd;
1500 char Modifier[2] = { 0, 0 };
1502 if (HasCurlyBraces) {
1503 // If we have curly braces, check for a modifier character. This
1504 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1505 if (*LastEmitted == ':') {
1506 ++LastEmitted; // Consume ':' character.
1507 if (*LastEmitted == 0) {
1508 llvm_report_error("Bad ${:} expression in inline asm string: '"
1509 + std::string(AsmStr) + "'");
1512 Modifier[0] = *LastEmitted;
1513 ++LastEmitted; // Consume modifier character.
1516 if (*LastEmitted != '}') {
1517 llvm_report_error("Bad ${} expression in inline asm string: '"
1518 + std::string(AsmStr) + "'");
1520 ++LastEmitted; // Consume '}' character.
1523 if ((unsigned)Val >= NumOperands-1) {
1524 llvm_report_error("Invalid $ operand number in inline asm string: '"
1525 + std::string(AsmStr) + "'");
1528 // Okay, we finally have a value number. Ask the target to print this
1529 // operand!
1530 if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
1531 unsigned OpNo = 1;
1533 bool Error = false;
1535 // Scan to find the machine operand number for the operand.
1536 for (; Val; --Val) {
1537 if (OpNo >= MI->getNumOperands()) break;
1538 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1539 OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
1542 if (OpNo >= MI->getNumOperands()) {
1543 Error = true;
1544 } else {
1545 unsigned OpFlags = MI->getOperand(OpNo).getImm();
1546 ++OpNo; // Skip over the ID number.
1548 if (Modifier[0]=='l') // labels are target independent
1549 printBasicBlockLabel(MI->getOperand(OpNo).getMBB(),
1550 false, false, false);
1551 else {
1552 AsmPrinter *AP = const_cast<AsmPrinter*>(this);
1553 if ((OpFlags & 7) == 4) {
1554 Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
1555 Modifier[0] ? Modifier : 0);
1556 } else {
1557 Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
1558 Modifier[0] ? Modifier : 0);
1562 if (Error) {
1563 std::string msg;
1564 raw_string_ostream Msg(msg);
1565 Msg << "Invalid operand found in inline asm: '"
1566 << AsmStr << "'\n";
1567 MI->print(Msg);
1568 llvm_report_error(Msg.str());
1571 break;
1575 O << "\n\t" << TAI->getCommentString() << TAI->getInlineAsmEnd() << '\n';
1578 /// printImplicitDef - This method prints the specified machine instruction
1579 /// that is an implicit def.
1580 void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
1581 if (VerboseAsm) {
1582 O.PadToColumn(TAI->getCommentColumn(), 1);
1583 O << TAI->getCommentString() << " implicit-def: "
1584 << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n';
1588 /// printLabel - This method prints a local label used by debug and
1589 /// exception handling tables.
1590 void AsmPrinter::printLabel(const MachineInstr *MI) const {
1591 printLabel(MI->getOperand(0).getImm());
1594 void AsmPrinter::printLabel(unsigned Id) const {
1595 O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n";
1598 /// printDeclare - This method prints a local variable declaration used by
1599 /// debug tables.
1600 /// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1601 /// entry into dwarf table.
1602 void AsmPrinter::printDeclare(const MachineInstr *MI) const {
1603 unsigned FI = MI->getOperand(0).getIndex();
1604 GlobalValue *GV = MI->getOperand(1).getGlobal();
1605 DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI);
1608 /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1609 /// instruction, using the specified assembler variant. Targets should
1610 /// overried this to format as appropriate.
1611 bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1612 unsigned AsmVariant, const char *ExtraCode) {
1613 // Target doesn't support this yet!
1614 return true;
1617 bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
1618 unsigned AsmVariant,
1619 const char *ExtraCode) {
1620 // Target doesn't support this yet!
1621 return true;
1624 /// printBasicBlockLabel - This method prints the label for the specified
1625 /// MachineBasicBlock
1626 void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB,
1627 bool printAlign,
1628 bool printColon,
1629 bool printComment) const {
1630 if (printAlign) {
1631 unsigned Align = MBB->getAlignment();
1632 if (Align)
1633 EmitAlignment(Log2_32(Align));
1636 O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1637 << MBB->getNumber();
1638 if (printColon)
1639 O << ':';
1640 if (printComment) {
1641 if (const BasicBlock *BB = MBB->getBasicBlock())
1642 if (BB->hasName()) {
1643 O.PadToColumn(TAI->getCommentColumn(), 1);
1644 O << TAI->getCommentString() << ' ';
1645 WriteAsOperand(O, BB, /*PrintType=*/false);
1648 if (printColon)
1649 EmitComments(*MBB);
1653 /// printPICJumpTableSetLabel - This method prints a set label for the
1654 /// specified MachineBasicBlock for a jumptable entry.
1655 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
1656 const MachineBasicBlock *MBB) const {
1657 if (!TAI->getSetDirective())
1658 return;
1660 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1661 << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
1662 printBasicBlockLabel(MBB, false, false, false);
1663 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1664 << '_' << uid << '\n';
1667 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
1668 const MachineBasicBlock *MBB) const {
1669 if (!TAI->getSetDirective())
1670 return;
1672 O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
1673 << getFunctionNumber() << '_' << uid << '_' << uid2
1674 << "_set_" << MBB->getNumber() << ',';
1675 printBasicBlockLabel(MBB, false, false, false);
1676 O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1677 << '_' << uid << '_' << uid2 << '\n';
1680 /// printDataDirective - This method prints the asm directive for the
1681 /// specified type.
1682 void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
1683 const TargetData *TD = TM.getTargetData();
1684 switch (type->getTypeID()) {
1685 case Type::FloatTyID: case Type::DoubleTyID:
1686 case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
1687 assert(0 && "Should have already output floating point constant.");
1688 default:
1689 assert(0 && "Can't handle printing this type of thing");
1690 case Type::IntegerTyID: {
1691 unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
1692 if (BitWidth <= 8)
1693 O << TAI->getData8bitsDirective(AddrSpace);
1694 else if (BitWidth <= 16)
1695 O << TAI->getData16bitsDirective(AddrSpace);
1696 else if (BitWidth <= 32)
1697 O << TAI->getData32bitsDirective(AddrSpace);
1698 else if (BitWidth <= 64) {
1699 assert(TAI->getData64bitsDirective(AddrSpace) &&
1700 "Target cannot handle 64-bit constant exprs!");
1701 O << TAI->getData64bitsDirective(AddrSpace);
1702 } else {
1703 llvm_unreachable("Target cannot handle given data directive width!");
1705 break;
1707 case Type::PointerTyID:
1708 if (TD->getPointerSize() == 8) {
1709 assert(TAI->getData64bitsDirective(AddrSpace) &&
1710 "Target cannot handle 64-bit pointer exprs!");
1711 O << TAI->getData64bitsDirective(AddrSpace);
1712 } else if (TD->getPointerSize() == 2) {
1713 O << TAI->getData16bitsDirective(AddrSpace);
1714 } else if (TD->getPointerSize() == 1) {
1715 O << TAI->getData8bitsDirective(AddrSpace);
1716 } else {
1717 O << TAI->getData32bitsDirective(AddrSpace);
1719 break;
1723 void AsmPrinter::printVisibility(const std::string& Name,
1724 unsigned Visibility) const {
1725 if (Visibility == GlobalValue::HiddenVisibility) {
1726 if (const char *Directive = TAI->getHiddenDirective())
1727 O << Directive << Name << '\n';
1728 } else if (Visibility == GlobalValue::ProtectedVisibility) {
1729 if (const char *Directive = TAI->getProtectedDirective())
1730 O << Directive << Name << '\n';
1734 void AsmPrinter::printOffset(int64_t Offset) const {
1735 if (Offset > 0)
1736 O << '+' << Offset;
1737 else if (Offset < 0)
1738 O << Offset;
1741 void AsmPrinter::printMCInst(const MCInst *MI) {
1742 llvm_unreachable("MCInst printing unavailable on this target!");
1745 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
1746 if (!S->usesMetadata())
1747 return 0;
1749 gcp_iterator GCPI = GCMetadataPrinters.find(S);
1750 if (GCPI != GCMetadataPrinters.end())
1751 return GCPI->second;
1753 const char *Name = S->getName().c_str();
1755 for (GCMetadataPrinterRegistry::iterator
1756 I = GCMetadataPrinterRegistry::begin(),
1757 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
1758 if (strcmp(Name, I->getName()) == 0) {
1759 GCMetadataPrinter *GMP = I->instantiate();
1760 GMP->S = S;
1761 GCMetadataPrinters.insert(std::make_pair(S, GMP));
1762 return GMP;
1765 cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n";
1766 llvm_unreachable(0);
1769 /// EmitComments - Pretty-print comments for instructions
1770 void AsmPrinter::EmitComments(const MachineInstr &MI) const {
1771 if (!VerboseAsm ||
1772 MI.getDebugLoc().isUnknown())
1773 return;
1775 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1777 // Print source line info
1778 O.PadToColumn(TAI->getCommentColumn(), 1);
1779 O << TAI->getCommentString() << " SrcLine ";
1780 if (DLT.CompileUnit->hasInitializer()) {
1781 Constant *Name = DLT.CompileUnit->getInitializer();
1782 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1783 if (NameString->isString())
1784 O << NameString->getAsString() << " ";
1786 O << DLT.Line;
1787 if (DLT.Col != 0)
1788 O << ":" << DLT.Col;
1791 /// EmitComments - Pretty-print comments for instructions
1792 void AsmPrinter::EmitComments(const MCInst &MI) const
1794 if (VerboseAsm) {
1795 if (!MI.getDebugLoc().isUnknown()) {
1796 DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc());
1798 // Print source line info
1799 O.PadToColumn(TAI->getCommentColumn(), 1);
1800 O << TAI->getCommentString() << " SrcLine ";
1801 if (DLT.CompileUnit->hasInitializer()) {
1802 Constant *Name = DLT.CompileUnit->getInitializer();
1803 if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name))
1804 if (NameString->isString()) {
1805 O << NameString->getAsString() << " ";
1808 O << DLT.Line;
1809 if (DLT.Col != 0)
1810 O << ":" << DLT.Col;
1815 /// EmitComments - Pretty-print comments for basic blocks
1816 void AsmPrinter::EmitComments(const MachineBasicBlock &MBB) const
1818 if (ExuberantAsm) {
1819 // Add loop depth information
1820 const MachineLoop *loop = LI->getLoopFor(&MBB);
1822 if (loop) {
1823 // Print a newline after bb# annotation.
1824 O << "\n";
1825 O.PadToColumn(TAI->getCommentColumn(), 1);
1826 O << TAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
1827 << '\n';
1829 O.PadToColumn(TAI->getCommentColumn(), 1);
1831 MachineBasicBlock *Header = loop->getHeader();
1832 assert(Header && "No header for loop");
1834 if (Header == &MBB) {
1835 O << TAI->getCommentString() << " Loop Header";
1836 PrintChildLoopComment(loop);
1838 else {
1839 O << TAI->getCommentString() << " Loop Header is BB"
1840 << getFunctionNumber() << "_" << loop->getHeader()->getNumber();
1843 if (loop->empty()) {
1844 O << '\n';
1845 O.PadToColumn(TAI->getCommentColumn(), 1);
1846 O << TAI->getCommentString() << " Inner Loop";
1849 // Add parent loop information
1850 for (const MachineLoop *CurLoop = loop->getParentLoop();
1851 CurLoop;
1852 CurLoop = CurLoop->getParentLoop()) {
1853 MachineBasicBlock *Header = CurLoop->getHeader();
1854 assert(Header && "No header for loop");
1856 O << '\n';
1857 O.PadToColumn(TAI->getCommentColumn(), 1);
1858 O << TAI->getCommentString() << Indent(CurLoop->getLoopDepth()-1)
1859 << " Inside Loop BB" << getFunctionNumber() << "_"
1860 << Header->getNumber() << " Depth " << CurLoop->getLoopDepth();
1866 void AsmPrinter::PrintChildLoopComment(const MachineLoop *loop) const {
1867 // Add child loop information
1868 for(MachineLoop::iterator cl = loop->begin(),
1869 clend = loop->end();
1870 cl != clend;
1871 ++cl) {
1872 MachineBasicBlock *Header = (*cl)->getHeader();
1873 assert(Header && "No header for loop");
1875 O << '\n';
1876 O.PadToColumn(TAI->getCommentColumn(), 1);
1878 O << TAI->getCommentString() << Indent((*cl)->getLoopDepth()-1)
1879 << " Child Loop BB" << getFunctionNumber() << "_"
1880 << Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
1882 PrintChildLoopComment(*cl);