Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / CodeGen / MachOWriter.cpp
blob0ce9044e858abb715ea4833b7b27a05d54ac61bb
1 //===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the target-independent Mach-O writer. This file writes
11 // out the Mach-O file in the following order:
13 // #1 FatHeader (universal-only)
14 // #2 FatArch (universal-only, 1 per universal arch)
15 // Per arch:
16 // #3 Header
17 // #4 Load Commands
18 // #5 Sections
19 // #6 Relocations
20 // #7 Symbols
21 // #8 Strings
23 //===----------------------------------------------------------------------===//
25 #include "MachO.h"
26 #include "MachOWriter.h"
27 #include "MachOCodeEmitter.h"
28 #include "llvm/Constants.h"
29 #include "llvm/DerivedTypes.h"
30 #include "llvm/Module.h"
31 #include "llvm/PassManager.h"
32 #include "llvm/Target/TargetAsmInfo.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetMachOWriterInfo.h"
36 #include "llvm/Support/Mangler.h"
37 #include "llvm/Support/OutputBuffer.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
41 namespace llvm {
43 /// AddMachOWriter - Concrete function to add the Mach-O writer to the function
44 /// pass manager.
45 ObjectCodeEmitter *AddMachOWriter(PassManagerBase &PM,
46 raw_ostream &O,
47 TargetMachine &TM) {
48 MachOWriter *MOW = new MachOWriter(O, TM);
49 PM.add(MOW);
50 return MOW->getObjectCodeEmitter();
53 //===----------------------------------------------------------------------===//
54 // MachOWriter Implementation
55 //===----------------------------------------------------------------------===//
57 char MachOWriter::ID = 0;
59 MachOWriter::MachOWriter(raw_ostream &o, TargetMachine &tm)
60 : MachineFunctionPass(&ID), O(o), TM(tm) {
61 is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
62 isLittleEndian = TM.getTargetData()->isLittleEndian();
64 TAI = TM.getTargetAsmInfo();
66 // Create the machine code emitter object for this target.
67 MachOCE = new MachOCodeEmitter(*this, *getTextSection(true));
70 MachOWriter::~MachOWriter() {
71 delete MachOCE;
74 bool MachOWriter::doInitialization(Module &M) {
75 // Set the magic value, now that we know the pointer size and endianness
76 Header.setMagic(isLittleEndian, is64Bit);
78 // Set the file type
79 // FIXME: this only works for object files, we do not support the creation
80 // of dynamic libraries or executables at this time.
81 Header.filetype = MachOHeader::MH_OBJECT;
83 Mang = new Mangler(M);
84 return false;
87 bool MachOWriter::runOnMachineFunction(MachineFunction &MF) {
88 return false;
91 /// doFinalization - Now that the module has been completely processed, emit
92 /// the Mach-O file to 'O'.
93 bool MachOWriter::doFinalization(Module &M) {
94 // FIXME: we don't handle debug info yet, we should probably do that.
95 // Okay, the.text section has been completed, build the .data, .bss, and
96 // "common" sections next.
98 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
99 I != E; ++I)
100 EmitGlobal(I);
102 // Emit the header and load commands.
103 EmitHeaderAndLoadCommands();
105 // Emit the various sections and their relocation info.
106 EmitSections();
107 EmitRelocations();
109 // Write the symbol table and the string table to the end of the file.
110 O.write((char*)&SymT[0], SymT.size());
111 O.write((char*)&StrT[0], StrT.size());
113 // We are done with the abstract symbols.
114 SectionList.clear();
115 SymbolTable.clear();
116 DynamicSymbolTable.clear();
118 // Release the name mangler object.
119 delete Mang; Mang = 0;
120 return false;
123 // getConstSection - Get constant section for Constant 'C'
124 MachOSection *MachOWriter::getConstSection(Constant *C) {
125 const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
126 if (CVA && CVA->isCString())
127 return getSection("__TEXT", "__cstring",
128 MachOSection::S_CSTRING_LITERALS);
130 const Type *Ty = C->getType();
131 if (Ty->isPrimitiveType() || Ty->isInteger()) {
132 unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
133 switch(Size) {
134 default: break; // Fall through to __TEXT,__const
135 case 4:
136 return getSection("__TEXT", "__literal4",
137 MachOSection::S_4BYTE_LITERALS);
138 case 8:
139 return getSection("__TEXT", "__literal8",
140 MachOSection::S_8BYTE_LITERALS);
141 case 16:
142 return getSection("__TEXT", "__literal16",
143 MachOSection::S_16BYTE_LITERALS);
146 return getSection("__TEXT", "__const");
149 // getJumpTableSection - Select the Jump Table section
150 MachOSection *MachOWriter::getJumpTableSection() {
151 if (TM.getRelocationModel() == Reloc::PIC_)
152 return getTextSection(false);
153 else
154 return getSection("__TEXT", "__const");
157 // getSection - Return the section with the specified name, creating a new
158 // section if one does not already exist.
159 MachOSection *MachOWriter::getSection(const std::string &seg,
160 const std::string &sect,
161 unsigned Flags /* = 0 */ ) {
162 MachOSection *MOS = SectionLookup[seg+sect];
163 if (MOS) return MOS;
165 MOS = new MachOSection(seg, sect);
166 SectionList.push_back(MOS);
167 MOS->Index = SectionList.size();
168 MOS->flags = MachOSection::S_REGULAR | Flags;
169 SectionLookup[seg+sect] = MOS;
170 return MOS;
173 // getTextSection - Return text section with different flags for code/data
174 MachOSection *MachOWriter::getTextSection(bool isCode /* = true */ ) {
175 if (isCode)
176 return getSection("__TEXT", "__text",
177 MachOSection::S_ATTR_PURE_INSTRUCTIONS |
178 MachOSection::S_ATTR_SOME_INSTRUCTIONS);
179 else
180 return getSection("__TEXT", "__text");
183 MachOSection *MachOWriter::getBSSSection() {
184 return getSection("__DATA", "__bss", MachOSection::S_ZEROFILL);
187 // GetJTRelocation - Get a relocation a new BB relocation based
188 // on target information.
189 MachineRelocation MachOWriter::GetJTRelocation(unsigned Offset,
190 MachineBasicBlock *MBB) const {
191 return TM.getMachOWriterInfo()->GetJTRelocation(Offset, MBB);
194 // GetTargetRelocation - Returns the number of relocations.
195 unsigned MachOWriter::GetTargetRelocation(MachineRelocation &MR,
196 unsigned FromIdx, unsigned ToAddr,
197 unsigned ToIndex, OutputBuffer &RelocOut,
198 OutputBuffer &SecOut, bool Scattered,
199 bool Extern) {
200 return TM.getMachOWriterInfo()->GetTargetRelocation(MR, FromIdx, ToAddr,
201 ToIndex, RelocOut,
202 SecOut, Scattered,
203 Extern);
206 void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) {
207 const Type *Ty = GV->getType()->getElementType();
208 unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
209 unsigned Align = TM.getTargetData()->getPreferredAlignment(GV);
211 // Reserve space in the .bss section for this symbol while maintaining the
212 // desired section alignment, which must be at least as much as required by
213 // this symbol.
214 OutputBuffer SecDataOut(Sec->getData(), is64Bit, isLittleEndian);
216 if (Align) {
217 Align = Log2_32(Align);
218 Sec->align = std::max(unsigned(Sec->align), Align);
220 Sec->emitAlignment(Sec->align);
222 // Globals without external linkage apparently do not go in the symbol table.
223 if (!GV->hasLocalLinkage()) {
224 MachOSym Sym(GV, Mang->getMangledName(GV), Sec->Index, TAI);
225 Sym.n_value = Sec->size();
226 SymbolTable.push_back(Sym);
229 // Record the offset of the symbol, and then allocate space for it.
230 // FIXME: remove when we have unified size + output buffer
232 // Now that we know what section the GlovalVariable is going to be emitted
233 // into, update our mappings.
234 // FIXME: We may also need to update this when outputting non-GlobalVariable
235 // GlobalValues such as functions.
237 GVSection[GV] = Sec;
238 GVOffset[GV] = Sec->size();
240 // Allocate space in the section for the global.
241 for (unsigned i = 0; i < Size; ++i)
242 SecDataOut.outbyte(0);
245 void MachOWriter::EmitGlobal(GlobalVariable *GV) {
246 const Type *Ty = GV->getType()->getElementType();
247 unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
248 bool NoInit = !GV->hasInitializer();
250 // If this global has a zero initializer, it is part of the .bss or common
251 // section.
252 if (NoInit || GV->getInitializer()->isNullValue()) {
253 // If this global is part of the common block, add it now. Variables are
254 // part of the common block if they are zero initialized and allowed to be
255 // merged with other symbols.
256 if (NoInit || GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() ||
257 GV->hasCommonLinkage()) {
258 MachOSym ExtOrCommonSym(GV, Mang->getMangledName(GV),
259 MachOSym::NO_SECT, TAI);
260 // For undefined (N_UNDF) external (N_EXT) types, n_value is the size in
261 // bytes of the symbol.
262 ExtOrCommonSym.n_value = Size;
263 SymbolTable.push_back(ExtOrCommonSym);
264 // Remember that we've seen this symbol
265 GVOffset[GV] = Size;
266 return;
268 // Otherwise, this symbol is part of the .bss section.
269 MachOSection *BSS = getBSSSection();
270 AddSymbolToSection(BSS, GV);
271 return;
274 // Scalar read-only data goes in a literal section if the scalar is 4, 8, or
275 // 16 bytes, or a cstring. Other read only data goes into a regular const
276 // section. Read-write data goes in the data section.
277 MachOSection *Sec = GV->isConstant() ? getConstSection(GV->getInitializer()) :
278 getDataSection();
279 AddSymbolToSection(Sec, GV);
280 InitMem(GV->getInitializer(), GVOffset[GV], TM.getTargetData(), Sec);
285 void MachOWriter::EmitHeaderAndLoadCommands() {
286 // Step #0: Fill in the segment load command size, since we need it to figure
287 // out the rest of the header fields
289 MachOSegment SEG("", is64Bit);
290 SEG.nsects = SectionList.size();
291 SEG.cmdsize = SEG.cmdSize(is64Bit) +
292 SEG.nsects * SectionList[0]->cmdSize(is64Bit);
294 // Step #1: calculate the number of load commands. We always have at least
295 // one, for the LC_SEGMENT load command, plus two for the normal
296 // and dynamic symbol tables, if there are any symbols.
297 Header.ncmds = SymbolTable.empty() ? 1 : 3;
299 // Step #2: calculate the size of the load commands
300 Header.sizeofcmds = SEG.cmdsize;
301 if (!SymbolTable.empty())
302 Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize;
304 // Step #3: write the header to the file
305 // Local alias to shortenify coming code.
306 std::vector<unsigned char> &FH = Header.HeaderData;
307 OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
309 FHOut.outword(Header.magic);
310 FHOut.outword(TM.getMachOWriterInfo()->getCPUType());
311 FHOut.outword(TM.getMachOWriterInfo()->getCPUSubType());
312 FHOut.outword(Header.filetype);
313 FHOut.outword(Header.ncmds);
314 FHOut.outword(Header.sizeofcmds);
315 FHOut.outword(Header.flags);
316 if (is64Bit)
317 FHOut.outword(Header.reserved);
319 // Step #4: Finish filling in the segment load command and write it out
320 for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
321 E = SectionList.end(); I != E; ++I)
322 SEG.filesize += (*I)->size();
324 SEG.vmsize = SEG.filesize;
325 SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds;
327 FHOut.outword(SEG.cmd);
328 FHOut.outword(SEG.cmdsize);
329 FHOut.outstring(SEG.segname, 16);
330 FHOut.outaddr(SEG.vmaddr);
331 FHOut.outaddr(SEG.vmsize);
332 FHOut.outaddr(SEG.fileoff);
333 FHOut.outaddr(SEG.filesize);
334 FHOut.outword(SEG.maxprot);
335 FHOut.outword(SEG.initprot);
336 FHOut.outword(SEG.nsects);
337 FHOut.outword(SEG.flags);
339 // Step #5: Finish filling in the fields of the MachOSections
340 uint64_t currentAddr = 0;
341 for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
342 E = SectionList.end(); I != E; ++I) {
343 MachOSection *MOS = *I;
344 MOS->addr = currentAddr;
345 MOS->offset = currentAddr + SEG.fileoff;
346 // FIXME: do we need to do something with alignment here?
347 currentAddr += MOS->size();
350 // Step #6: Emit the symbol table to temporary buffers, so that we know the
351 // size of the string table when we write the next load command. This also
352 // sorts and assigns indices to each of the symbols, which is necessary for
353 // emitting relocations to externally-defined objects.
354 BufferSymbolAndStringTable();
356 // Step #7: Calculate the number of relocations for each section and write out
357 // the section commands for each section
358 currentAddr += SEG.fileoff;
359 for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
360 E = SectionList.end(); I != E; ++I) {
361 MachOSection *MOS = *I;
363 // Convert the relocations to target-specific relocations, and fill in the
364 // relocation offset for this section.
365 CalculateRelocations(*MOS);
366 MOS->reloff = MOS->nreloc ? currentAddr : 0;
367 currentAddr += MOS->nreloc * 8;
369 // write the finalized section command to the output buffer
370 FHOut.outstring(MOS->sectname, 16);
371 FHOut.outstring(MOS->segname, 16);
372 FHOut.outaddr(MOS->addr);
373 FHOut.outaddr(MOS->size());
374 FHOut.outword(MOS->offset);
375 FHOut.outword(MOS->align);
376 FHOut.outword(MOS->reloff);
377 FHOut.outword(MOS->nreloc);
378 FHOut.outword(MOS->flags);
379 FHOut.outword(MOS->reserved1);
380 FHOut.outword(MOS->reserved2);
381 if (is64Bit)
382 FHOut.outword(MOS->reserved3);
385 // Step #8: Emit LC_SYMTAB/LC_DYSYMTAB load commands
386 SymTab.symoff = currentAddr;
387 SymTab.nsyms = SymbolTable.size();
388 SymTab.stroff = SymTab.symoff + SymT.size();
389 SymTab.strsize = StrT.size();
390 FHOut.outword(SymTab.cmd);
391 FHOut.outword(SymTab.cmdsize);
392 FHOut.outword(SymTab.symoff);
393 FHOut.outword(SymTab.nsyms);
394 FHOut.outword(SymTab.stroff);
395 FHOut.outword(SymTab.strsize);
397 // FIXME: set DySymTab fields appropriately
398 // We should probably just update these in BufferSymbolAndStringTable since
399 // thats where we're partitioning up the different kinds of symbols.
400 FHOut.outword(DySymTab.cmd);
401 FHOut.outword(DySymTab.cmdsize);
402 FHOut.outword(DySymTab.ilocalsym);
403 FHOut.outword(DySymTab.nlocalsym);
404 FHOut.outword(DySymTab.iextdefsym);
405 FHOut.outword(DySymTab.nextdefsym);
406 FHOut.outword(DySymTab.iundefsym);
407 FHOut.outword(DySymTab.nundefsym);
408 FHOut.outword(DySymTab.tocoff);
409 FHOut.outword(DySymTab.ntoc);
410 FHOut.outword(DySymTab.modtaboff);
411 FHOut.outword(DySymTab.nmodtab);
412 FHOut.outword(DySymTab.extrefsymoff);
413 FHOut.outword(DySymTab.nextrefsyms);
414 FHOut.outword(DySymTab.indirectsymoff);
415 FHOut.outword(DySymTab.nindirectsyms);
416 FHOut.outword(DySymTab.extreloff);
417 FHOut.outword(DySymTab.nextrel);
418 FHOut.outword(DySymTab.locreloff);
419 FHOut.outword(DySymTab.nlocrel);
421 O.write((char*)&FH[0], FH.size());
424 /// EmitSections - Now that we have constructed the file header and load
425 /// commands, emit the data for each section to the file.
426 void MachOWriter::EmitSections() {
427 for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
428 E = SectionList.end(); I != E; ++I)
429 // Emit the contents of each section
430 if ((*I)->size())
431 O.write((char*)&(*I)->getData()[0], (*I)->size());
434 /// EmitRelocations - emit relocation data from buffer.
435 void MachOWriter::EmitRelocations() {
436 for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
437 E = SectionList.end(); I != E; ++I)
438 // Emit the relocation entry data for each section.
439 if ((*I)->RelocBuffer.size())
440 O.write((char*)&(*I)->RelocBuffer[0], (*I)->RelocBuffer.size());
443 /// BufferSymbolAndStringTable - Sort the symbols we encountered and assign them
444 /// each a string table index so that they appear in the correct order in the
445 /// output file.
446 void MachOWriter::BufferSymbolAndStringTable() {
447 // The order of the symbol table is:
448 // 1. local symbols
449 // 2. defined external symbols (sorted by name)
450 // 3. undefined external symbols (sorted by name)
452 // Before sorting the symbols, check the PendingGlobals for any undefined
453 // globals that need to be put in the symbol table.
454 for (std::vector<GlobalValue*>::iterator I = PendingGlobals.begin(),
455 E = PendingGlobals.end(); I != E; ++I) {
456 if (GVOffset[*I] == 0 && GVSection[*I] == 0) {
457 MachOSym UndfSym(*I, Mang->getMangledName(*I), MachOSym::NO_SECT, TAI);
458 SymbolTable.push_back(UndfSym);
459 GVOffset[*I] = -1;
463 // Sort the symbols by name, so that when we partition the symbols by scope
464 // of definition, we won't have to sort by name within each partition.
465 std::sort(SymbolTable.begin(), SymbolTable.end(), MachOSym::SymCmp());
467 // Parition the symbol table entries so that all local symbols come before
468 // all symbols with external linkage. { 1 | 2 3 }
469 std::partition(SymbolTable.begin(), SymbolTable.end(),
470 MachOSym::PartitionByLocal);
472 // Advance iterator to beginning of external symbols and partition so that
473 // all external symbols defined in this module come before all external
474 // symbols defined elsewhere. { 1 | 2 | 3 }
475 for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
476 E = SymbolTable.end(); I != E; ++I) {
477 if (!MachOSym::PartitionByLocal(*I)) {
478 std::partition(I, E, MachOSym::PartitionByDefined);
479 break;
483 // Calculate the starting index for each of the local, extern defined, and
484 // undefined symbols, as well as the number of each to put in the LC_DYSYMTAB
485 // load command.
486 for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
487 E = SymbolTable.end(); I != E; ++I) {
488 if (MachOSym::PartitionByLocal(*I)) {
489 ++DySymTab.nlocalsym;
490 ++DySymTab.iextdefsym;
491 ++DySymTab.iundefsym;
492 } else if (MachOSym::PartitionByDefined(*I)) {
493 ++DySymTab.nextdefsym;
494 ++DySymTab.iundefsym;
495 } else {
496 ++DySymTab.nundefsym;
500 // Write out a leading zero byte when emitting string table, for n_strx == 0
501 // which means an empty string.
502 OutputBuffer StrTOut(StrT, is64Bit, isLittleEndian);
503 StrTOut.outbyte(0);
505 // The order of the string table is:
506 // 1. strings for external symbols
507 // 2. strings for local symbols
508 // Since this is the opposite order from the symbol table, which we have just
509 // sorted, we can walk the symbol table backwards to output the string table.
510 for (std::vector<MachOSym>::reverse_iterator I = SymbolTable.rbegin(),
511 E = SymbolTable.rend(); I != E; ++I) {
512 if (I->GVName == "") {
513 I->n_strx = 0;
514 } else {
515 I->n_strx = StrT.size();
516 StrTOut.outstring(I->GVName, I->GVName.length()+1);
520 OutputBuffer SymTOut(SymT, is64Bit, isLittleEndian);
522 unsigned index = 0;
523 for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
524 E = SymbolTable.end(); I != E; ++I, ++index) {
525 // Add the section base address to the section offset in the n_value field
526 // to calculate the full address.
527 // FIXME: handle symbols where the n_value field is not the address
528 GlobalValue *GV = const_cast<GlobalValue*>(I->GV);
529 if (GV && GVSection[GV])
530 I->n_value += GVSection[GV]->addr;
531 if (GV && (GVOffset[GV] == -1))
532 GVOffset[GV] = index;
534 // Emit nlist to buffer
535 SymTOut.outword(I->n_strx);
536 SymTOut.outbyte(I->n_type);
537 SymTOut.outbyte(I->n_sect);
538 SymTOut.outhalf(I->n_desc);
539 SymTOut.outaddr(I->n_value);
543 /// CalculateRelocations - For each MachineRelocation in the current section,
544 /// calculate the index of the section containing the object to be relocated,
545 /// and the offset into that section. From this information, create the
546 /// appropriate target-specific MachORelocation type and add buffer it to be
547 /// written out after we are finished writing out sections.
548 void MachOWriter::CalculateRelocations(MachOSection &MOS) {
549 std::vector<MachineRelocation> Relocations = MOS.getRelocations();
550 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
551 MachineRelocation &MR = Relocations[i];
552 unsigned TargetSection = MR.getConstantVal();
553 unsigned TargetAddr = 0;
554 unsigned TargetIndex = 0;
556 // This is a scattered relocation entry if it points to a global value with
557 // a non-zero offset.
558 bool Scattered = false;
559 bool Extern = false;
561 // Since we may not have seen the GlobalValue we were interested in yet at
562 // the time we emitted the relocation for it, fix it up now so that it
563 // points to the offset into the correct section.
564 if (MR.isGlobalValue()) {
565 GlobalValue *GV = MR.getGlobalValue();
566 MachOSection *MOSPtr = GVSection[GV];
567 intptr_t Offset = GVOffset[GV];
569 // If we have never seen the global before, it must be to a symbol
570 // defined in another module (N_UNDF).
571 if (!MOSPtr) {
572 // FIXME: need to append stub suffix
573 Extern = true;
574 TargetAddr = 0;
575 TargetIndex = GVOffset[GV];
576 } else {
577 Scattered = TargetSection != 0;
578 TargetSection = MOSPtr->Index;
580 MR.setResultPointer((void*)Offset);
583 // If the symbol is locally defined, pass in the address of the section and
584 // the section index to the code which will generate the target relocation.
585 if (!Extern) {
586 MachOSection &To = *SectionList[TargetSection - 1];
587 TargetAddr = To.addr;
588 TargetIndex = To.Index;
591 OutputBuffer RelocOut(MOS.RelocBuffer, is64Bit, isLittleEndian);
592 OutputBuffer SecOut(MOS.getData(), is64Bit, isLittleEndian);
594 MOS.nreloc += GetTargetRelocation(MR, MOS.Index, TargetAddr, TargetIndex,
595 RelocOut, SecOut, Scattered, Extern);
599 // InitMem - Write the value of a Constant to the specified memory location,
600 // converting it into bytes and relocations.
601 void MachOWriter::InitMem(const Constant *C, uintptr_t Offset,
602 const TargetData *TD, MachOSection* mos) {
603 typedef std::pair<const Constant*, intptr_t> CPair;
604 std::vector<CPair> WorkList;
605 uint8_t *Addr = &mos->getData()[0];
607 WorkList.push_back(CPair(C,(intptr_t)Addr + Offset));
609 intptr_t ScatteredOffset = 0;
611 while (!WorkList.empty()) {
612 const Constant *PC = WorkList.back().first;
613 intptr_t PA = WorkList.back().second;
614 WorkList.pop_back();
616 if (isa<UndefValue>(PC)) {
617 continue;
618 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(PC)) {
619 unsigned ElementSize =
620 TD->getTypeAllocSize(CP->getType()->getElementType());
621 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
622 WorkList.push_back(CPair(CP->getOperand(i), PA+i*ElementSize));
623 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(PC)) {
625 // FIXME: Handle ConstantExpression. See EE::getConstantValue()
627 switch (CE->getOpcode()) {
628 case Instruction::GetElementPtr: {
629 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
630 ScatteredOffset = TD->getIndexedOffset(CE->getOperand(0)->getType(),
631 &Indices[0], Indices.size());
632 WorkList.push_back(CPair(CE->getOperand(0), PA));
633 break;
635 case Instruction::Add:
636 default:
637 cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
638 llvm_unreachable(0);
640 } else if (PC->getType()->isSingleValueType()) {
641 unsigned char *ptr = (unsigned char *)PA;
642 switch (PC->getType()->getTypeID()) {
643 case Type::IntegerTyID: {
644 unsigned NumBits = cast<IntegerType>(PC->getType())->getBitWidth();
645 uint64_t val = cast<ConstantInt>(PC)->getZExtValue();
646 if (NumBits <= 8)
647 ptr[0] = val;
648 else if (NumBits <= 16) {
649 if (TD->isBigEndian())
650 val = ByteSwap_16(val);
651 ptr[0] = val;
652 ptr[1] = val >> 8;
653 } else if (NumBits <= 32) {
654 if (TD->isBigEndian())
655 val = ByteSwap_32(val);
656 ptr[0] = val;
657 ptr[1] = val >> 8;
658 ptr[2] = val >> 16;
659 ptr[3] = val >> 24;
660 } else if (NumBits <= 64) {
661 if (TD->isBigEndian())
662 val = ByteSwap_64(val);
663 ptr[0] = val;
664 ptr[1] = val >> 8;
665 ptr[2] = val >> 16;
666 ptr[3] = val >> 24;
667 ptr[4] = val >> 32;
668 ptr[5] = val >> 40;
669 ptr[6] = val >> 48;
670 ptr[7] = val >> 56;
671 } else {
672 llvm_unreachable("Not implemented: bit widths > 64");
674 break;
676 case Type::FloatTyID: {
677 uint32_t val = cast<ConstantFP>(PC)->getValueAPF().bitcastToAPInt().
678 getZExtValue();
679 if (TD->isBigEndian())
680 val = ByteSwap_32(val);
681 ptr[0] = val;
682 ptr[1] = val >> 8;
683 ptr[2] = val >> 16;
684 ptr[3] = val >> 24;
685 break;
687 case Type::DoubleTyID: {
688 uint64_t val = cast<ConstantFP>(PC)->getValueAPF().bitcastToAPInt().
689 getZExtValue();
690 if (TD->isBigEndian())
691 val = ByteSwap_64(val);
692 ptr[0] = val;
693 ptr[1] = val >> 8;
694 ptr[2] = val >> 16;
695 ptr[3] = val >> 24;
696 ptr[4] = val >> 32;
697 ptr[5] = val >> 40;
698 ptr[6] = val >> 48;
699 ptr[7] = val >> 56;
700 break;
702 case Type::PointerTyID:
703 if (isa<ConstantPointerNull>(PC))
704 memset(ptr, 0, TD->getPointerSize());
705 else if (const GlobalValue* GV = dyn_cast<GlobalValue>(PC)) {
706 // FIXME: what about function stubs?
707 mos->addRelocation(MachineRelocation::getGV(PA-(intptr_t)Addr,
708 MachineRelocation::VANILLA,
709 const_cast<GlobalValue*>(GV),
710 ScatteredOffset));
711 ScatteredOffset = 0;
712 } else
713 llvm_unreachable("Unknown constant pointer type!");
714 break;
715 default:
716 std::string msg;
717 raw_string_ostream Msg(msg);
718 Msg << "ERROR: Constant unimp for type: " << *PC->getType();
719 llvm_report_error(Msg.str());
721 } else if (isa<ConstantAggregateZero>(PC)) {
722 memset((void*)PA, 0, (size_t)TD->getTypeAllocSize(PC->getType()));
723 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(PC)) {
724 unsigned ElementSize =
725 TD->getTypeAllocSize(CPA->getType()->getElementType());
726 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
727 WorkList.push_back(CPair(CPA->getOperand(i), PA+i*ElementSize));
728 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(PC)) {
729 const StructLayout *SL =
730 TD->getStructLayout(cast<StructType>(CPS->getType()));
731 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
732 WorkList.push_back(CPair(CPS->getOperand(i),
733 PA+SL->getElementOffset(i)));
734 } else {
735 cerr << "Bad Type: " << *PC->getType() << "\n";
736 llvm_unreachable("Unknown constant type to initialize memory with!");
741 //===----------------------------------------------------------------------===//
742 // MachOSym Implementation
743 //===----------------------------------------------------------------------===//
745 MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect,
746 const TargetAsmInfo *TAI) :
747 GV(gv), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), n_sect(sect),
748 n_desc(0), n_value(0) {
750 // FIXME: This is completely broken, it should use the mangler interface.
751 switch (GV->getLinkage()) {
752 default:
753 llvm_unreachable("Unexpected linkage type!");
754 break;
755 case GlobalValue::WeakAnyLinkage:
756 case GlobalValue::WeakODRLinkage:
757 case GlobalValue::LinkOnceAnyLinkage:
758 case GlobalValue::LinkOnceODRLinkage:
759 case GlobalValue::CommonLinkage:
760 assert(!isa<Function>(gv) && "Unexpected linkage type for Function!");
761 case GlobalValue::ExternalLinkage:
762 GVName = TAI->getGlobalPrefix() + name;
763 n_type |= GV->hasHiddenVisibility() ? N_PEXT : N_EXT;
764 break;
765 case GlobalValue::PrivateLinkage:
766 GVName = TAI->getPrivateGlobalPrefix() + name;
767 break;
768 case GlobalValue::LinkerPrivateLinkage:
769 GVName = TAI->getLinkerPrivateGlobalPrefix() + name;
770 break;
771 case GlobalValue::InternalLinkage:
772 GVName = TAI->getGlobalPrefix() + name;
773 break;
777 } // end namespace llvm