Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / CodeGen / ScheduleDAGInstrs.cpp
blobc5ee7ac2d4520468c3d36770bf9864340dd2d514
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "sched-instrs"
16 #include "ScheduleDAGInstrs.h"
17 #include "llvm/Operator.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/PseudoSourceValue.h"
22 #include "llvm/Target/TargetMachine.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 #include "llvm/Target/TargetSubtarget.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/ADT/SmallSet.h"
29 using namespace llvm;
31 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
32 const MachineLoopInfo &mli,
33 const MachineDominatorTree &mdt)
34 : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {}
36 /// Run - perform scheduling.
37 ///
38 void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
39 MachineBasicBlock::iterator begin,
40 MachineBasicBlock::iterator end,
41 unsigned endcount) {
42 BB = bb;
43 Begin = begin;
44 InsertPosIndex = endcount;
46 ScheduleDAG::Run(bb, end);
49 /// getUnderlyingObjectFromInt - This is the function that does the work of
50 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
51 static const Value *getUnderlyingObjectFromInt(const Value *V) {
52 do {
53 if (const Operator *U = dyn_cast<Operator>(V)) {
54 // If we find a ptrtoint, we can transfer control back to the
55 // regular getUnderlyingObjectFromInt.
56 if (U->getOpcode() == Instruction::PtrToInt)
57 return U->getOperand(0);
58 // If we find an add of a constant or a multiplied value, it's
59 // likely that the other operand will lead us to the base
60 // object. We don't have to worry about the case where the
61 // object address is somehow being computed by the multiply,
62 // because our callers only care when the result is an
63 // identifibale object.
64 if (U->getOpcode() != Instruction::Add ||
65 (!isa<ConstantInt>(U->getOperand(1)) &&
66 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
67 return V;
68 V = U->getOperand(0);
69 } else {
70 return V;
72 assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!");
73 } while (1);
76 /// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
77 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
78 static const Value *getUnderlyingObject(const Value *V) {
79 // First just call Value::getUnderlyingObject to let it do what it does.
80 do {
81 V = V->getUnderlyingObject();
82 // If it found an inttoptr, use special code to continue climing.
83 if (Operator::getOpcode(V) != Instruction::IntToPtr)
84 break;
85 const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
86 // If that succeeded in finding a pointer, continue the search.
87 if (!isa<PointerType>(O->getType()))
88 break;
89 V = O;
90 } while (1);
91 return V;
94 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
95 /// information and it can be tracked to a normal reference to a known
96 /// object, return the Value for that object. Otherwise return null.
97 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI) {
98 if (!MI->hasOneMemOperand() ||
99 !MI->memoperands_begin()->getValue() ||
100 MI->memoperands_begin()->isVolatile())
101 return 0;
103 const Value *V = MI->memoperands_begin()->getValue();
104 if (!V)
105 return 0;
107 V = getUnderlyingObject(V);
108 if (!isa<PseudoSourceValue>(V) && !isIdentifiedObject(V))
109 return 0;
111 return V;
114 void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
115 if (MachineLoop *ML = MLI.getLoopFor(BB))
116 if (BB == ML->getLoopLatch()) {
117 MachineBasicBlock *Header = ML->getHeader();
118 for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
119 E = Header->livein_end(); I != E; ++I)
120 LoopLiveInRegs.insert(*I);
121 LoopRegs.VisitLoop(ML);
125 void ScheduleDAGInstrs::BuildSchedGraph() {
126 // We'll be allocating one SUnit for each instruction, plus one for
127 // the region exit node.
128 SUnits.reserve(BB->size());
130 // We build scheduling units by walking a block's instruction list from bottom
131 // to top.
133 // Remember where a generic side-effecting instruction is as we procede. If
134 // ChainMMO is null, this is assumed to have arbitrary side-effects. If
135 // ChainMMO is non-null, then Chain makes only a single memory reference.
136 SUnit *Chain = 0;
137 MachineMemOperand *ChainMMO = 0;
139 // Memory references to specific known memory locations are tracked so that
140 // they can be given more precise dependencies.
141 std::map<const Value *, SUnit *> MemDefs;
142 std::map<const Value *, std::vector<SUnit *> > MemUses;
144 // Check to see if the scheduler cares about latencies.
145 bool UnitLatencies = ForceUnitLatencies();
147 // Ask the target if address-backscheduling is desirable, and if so how much.
148 const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
149 unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
151 // Walk the list of instructions, from bottom moving up.
152 for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
153 MII != MIE; --MII) {
154 MachineInstr *MI = prior(MII);
155 const TargetInstrDesc &TID = MI->getDesc();
156 assert(!TID.isTerminator() && !MI->isLabel() &&
157 "Cannot schedule terminators or labels!");
158 // Create the SUnit for this MI.
159 SUnit *SU = NewSUnit(MI);
161 // Assign the Latency field of SU using target-provided information.
162 if (UnitLatencies)
163 SU->Latency = 1;
164 else
165 ComputeLatency(SU);
167 // Add register-based dependencies (data, anti, and output).
168 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
169 const MachineOperand &MO = MI->getOperand(j);
170 if (!MO.isReg()) continue;
171 unsigned Reg = MO.getReg();
172 if (Reg == 0) continue;
174 assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
175 std::vector<SUnit *> &UseList = Uses[Reg];
176 std::vector<SUnit *> &DefList = Defs[Reg];
177 // Optionally add output and anti dependencies. For anti
178 // dependencies we use a latency of 0 because for a multi-issue
179 // target we want to allow the defining instruction to issue
180 // in the same cycle as the using instruction.
181 // TODO: Using a latency of 1 here for output dependencies assumes
182 // there's no cost for reusing registers.
183 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
184 unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
185 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
186 SUnit *DefSU = DefList[i];
187 if (DefSU != SU &&
188 (Kind != SDep::Output || !MO.isDead() ||
189 !DefSU->getInstr()->registerDefIsDead(Reg)))
190 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
192 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
193 std::vector<SUnit *> &DefList = Defs[*Alias];
194 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
195 SUnit *DefSU = DefList[i];
196 if (DefSU != SU &&
197 (Kind != SDep::Output || !MO.isDead() ||
198 !DefSU->getInstr()->registerDefIsDead(Reg)))
199 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
203 if (MO.isDef()) {
204 // Add any data dependencies.
205 unsigned DataLatency = SU->Latency;
206 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
207 SUnit *UseSU = UseList[i];
208 if (UseSU != SU) {
209 unsigned LDataLatency = DataLatency;
210 // Optionally add in a special extra latency for nodes that
211 // feed addresses.
212 // TODO: Do this for register aliases too.
213 if (SpecialAddressLatency != 0 && !UnitLatencies) {
214 MachineInstr *UseMI = UseSU->getInstr();
215 const TargetInstrDesc &UseTID = UseMI->getDesc();
216 int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
217 assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
218 if ((UseTID.mayLoad() || UseTID.mayStore()) &&
219 (unsigned)RegUseIndex < UseTID.getNumOperands() &&
220 UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
221 LDataLatency += SpecialAddressLatency;
223 const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
224 ST.adjustSchedDependency((SDep &)dep);
225 UseSU->addPred(dep);
228 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
229 std::vector<SUnit *> &UseList = Uses[*Alias];
230 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
231 SUnit *UseSU = UseList[i];
232 if (UseSU != SU) {
233 const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
234 ST.adjustSchedDependency((SDep &)dep);
235 UseSU->addPred(dep);
240 // If a def is going to wrap back around to the top of the loop,
241 // backschedule it.
242 if (!UnitLatencies && DefList.empty()) {
243 LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
244 if (I != LoopRegs.Deps.end()) {
245 const MachineOperand *UseMO = I->second.first;
246 unsigned Count = I->second.second;
247 const MachineInstr *UseMI = UseMO->getParent();
248 unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
249 const TargetInstrDesc &UseTID = UseMI->getDesc();
250 // TODO: If we knew the total depth of the region here, we could
251 // handle the case where the whole loop is inside the region but
252 // is large enough that the isScheduleHigh trick isn't needed.
253 if (UseMOIdx < UseTID.getNumOperands()) {
254 // Currently, we only support scheduling regions consisting of
255 // single basic blocks. Check to see if the instruction is in
256 // the same region by checking to see if it has the same parent.
257 if (UseMI->getParent() != MI->getParent()) {
258 unsigned Latency = SU->Latency;
259 if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
260 Latency += SpecialAddressLatency;
261 // This is a wild guess as to the portion of the latency which
262 // will be overlapped by work done outside the current
263 // scheduling region.
264 Latency -= std::min(Latency, Count);
265 // Add the artifical edge.
266 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
267 /*Reg=*/0, /*isNormalMemory=*/false,
268 /*isMustAlias=*/false,
269 /*isArtificial=*/true));
270 } else if (SpecialAddressLatency > 0 &&
271 UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
272 // The entire loop body is within the current scheduling region
273 // and the latency of this operation is assumed to be greater
274 // than the latency of the loop.
275 // TODO: Recursively mark data-edge predecessors as
276 // isScheduleHigh too.
277 SU->isScheduleHigh = true;
280 LoopRegs.Deps.erase(I);
284 UseList.clear();
285 if (!MO.isDead())
286 DefList.clear();
287 DefList.push_back(SU);
288 } else {
289 UseList.push_back(SU);
293 // Add chain dependencies.
294 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
295 // after stack slots are lowered to actual addresses.
296 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
297 // produce more precise dependence information.
298 if (TID.isCall() || TID.hasUnmodeledSideEffects()) {
299 new_chain:
300 // This is the conservative case. Add dependencies on all memory
301 // references.
302 if (Chain)
303 Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
304 Chain = SU;
305 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
306 PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
307 PendingLoads.clear();
308 for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
309 E = MemDefs.end(); I != E; ++I) {
310 I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
311 I->second = SU;
313 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
314 MemUses.begin(), E = MemUses.end(); I != E; ++I) {
315 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
316 I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
317 I->second.clear();
319 // See if it is known to just have a single memory reference.
320 MachineInstr *ChainMI = Chain->getInstr();
321 const TargetInstrDesc &ChainTID = ChainMI->getDesc();
322 if (!ChainTID.isCall() &&
323 !ChainTID.hasUnmodeledSideEffects() &&
324 ChainMI->hasOneMemOperand() &&
325 !ChainMI->memoperands_begin()->isVolatile() &&
326 ChainMI->memoperands_begin()->getValue())
327 // We know that the Chain accesses one specific memory location.
328 ChainMMO = &*ChainMI->memoperands_begin();
329 else
330 // Unknown memory accesses. Assume the worst.
331 ChainMMO = 0;
332 } else if (TID.mayStore()) {
333 if (const Value *V = getUnderlyingObjectForInstr(MI)) {
334 // A store to a specific PseudoSourceValue. Add precise dependencies.
335 // Handle the def in MemDefs, if there is one.
336 std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
337 if (I != MemDefs.end()) {
338 I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
339 /*isNormalMemory=*/true));
340 I->second = SU;
341 } else {
342 MemDefs[V] = SU;
344 // Handle the uses in MemUses, if there are any.
345 std::map<const Value *, std::vector<SUnit *> >::iterator J =
346 MemUses.find(V);
347 if (J != MemUses.end()) {
348 for (unsigned i = 0, e = J->second.size(); i != e; ++i)
349 J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
350 /*isNormalMemory=*/true));
351 J->second.clear();
353 // Add dependencies from all the PendingLoads, since without
354 // memoperands we must assume they alias anything.
355 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
356 PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
357 // Add a general dependence too, if needed.
358 if (Chain)
359 Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
360 } else
361 // Treat all other stores conservatively.
362 goto new_chain;
363 } else if (TID.mayLoad()) {
364 if (TII->isInvariantLoad(MI)) {
365 // Invariant load, no chain dependencies needed!
366 } else if (const Value *V = getUnderlyingObjectForInstr(MI)) {
367 // A load from a specific PseudoSourceValue. Add precise dependencies.
368 std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
369 if (I != MemDefs.end())
370 I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
371 /*isNormalMemory=*/true));
372 MemUses[V].push_back(SU);
374 // Add a general dependence too, if needed.
375 if (Chain && (!ChainMMO ||
376 (ChainMMO->isStore() || ChainMMO->isVolatile())))
377 Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
378 } else if (MI->hasVolatileMemoryRef()) {
379 // Treat volatile loads conservatively. Note that this includes
380 // cases where memoperand information is unavailable.
381 goto new_chain;
382 } else {
383 // A normal load. Depend on the general chain, as well as on
384 // all stores. In the absense of MachineMemOperand information,
385 // we can't even assume that the load doesn't alias well-behaved
386 // memory locations.
387 if (Chain)
388 Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
389 for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
390 E = MemDefs.end(); I != E; ++I)
391 I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
392 PendingLoads.push_back(SU);
397 for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
398 Defs[i].clear();
399 Uses[i].clear();
401 PendingLoads.clear();
404 void ScheduleDAGInstrs::FinishBlock() {
405 // Nothing to do.
408 void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
409 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
411 // Compute the latency for the node.
412 SU->Latency =
413 InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass());
415 // Simplistic target-independent heuristic: assume that loads take
416 // extra time.
417 if (InstrItins.isEmpty())
418 if (SU->getInstr()->getDesc().mayLoad())
419 SU->Latency += 2;
422 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
423 SU->getInstr()->dump();
426 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
427 std::string s;
428 raw_string_ostream oss(s);
429 if (SU == &EntrySU)
430 oss << "<entry>";
431 else if (SU == &ExitSU)
432 oss << "<exit>";
433 else
434 SU->getInstr()->print(oss);
435 return oss.str();
438 // EmitSchedule - Emit the machine code in scheduled order.
439 MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
440 // For MachineInstr-based scheduling, we're rescheduling the instructions in
441 // the block, so start by removing them from the block.
442 while (Begin != InsertPos) {
443 MachineBasicBlock::iterator I = Begin;
444 ++Begin;
445 BB->remove(I);
448 // Then re-insert them according to the given schedule.
449 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
450 SUnit *SU = Sequence[i];
451 if (!SU) {
452 // Null SUnit* is a noop.
453 EmitNoop();
454 continue;
457 BB->insert(InsertPos, SU->getInstr());
460 // Update the Begin iterator, as the first instruction in the block
461 // may have been scheduled later.
462 if (!Sequence.empty())
463 Begin = Sequence[0]->getInstr();
465 return BB;