Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / CodeGen / SelectionDAG / LegalizeTypes.cpp
blob1518317328fa8af3d8cb9a5f91c09dd99173be0f
1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeTypes method. It transforms
11 // an arbitrary well-formed SelectionDAG to only consist of legal types. This
12 // is common code shared among the LegalizeTypes*.cpp files.
14 //===----------------------------------------------------------------------===//
16 #include "LegalizeTypes.h"
17 #include "llvm/CallingConv.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Target/TargetData.h"
22 using namespace llvm;
24 static cl::opt<bool>
25 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
27 /// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
28 void DAGTypeLegalizer::PerformExpensiveChecks() {
29 // If a node is not processed, then none of its values should be mapped by any
30 // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
32 // If a node is processed, then each value with an illegal type must be mapped
33 // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
34 // Values with a legal type may be mapped by ReplacedValues, but not by any of
35 // the other maps.
37 // Note that these invariants may not hold momentarily when processing a node:
38 // the node being processed may be put in a map before being marked Processed.
40 // Note that it is possible to have nodes marked NewNode in the DAG. This can
41 // occur in two ways. Firstly, a node may be created during legalization but
42 // never passed to the legalization core. This is usually due to the implicit
43 // folding that occurs when using the DAG.getNode operators. Secondly, a new
44 // node may be passed to the legalization core, but when analyzed may morph
45 // into a different node, leaving the original node as a NewNode in the DAG.
46 // A node may morph if one of its operands changes during analysis. Whether
47 // it actually morphs or not depends on whether, after updating its operands,
48 // it is equivalent to an existing node: if so, it morphs into that existing
49 // node (CSE). An operand can change during analysis if the operand is a new
50 // node that morphs, or it is a processed value that was mapped to some other
51 // value (as recorded in ReplacedValues) in which case the operand is turned
52 // into that other value. If a node morphs then the node it morphed into will
53 // be used instead of it for legalization, however the original node continues
54 // to live on in the DAG.
55 // The conclusion is that though there may be nodes marked NewNode in the DAG,
56 // all uses of such nodes are also marked NewNode: the result is a fungus of
57 // NewNodes growing on top of the useful nodes, and perhaps using them, but
58 // not used by them.
60 // If a value is mapped by ReplacedValues, then it must have no uses, except
61 // by nodes marked NewNode (see above).
63 // The final node obtained by mapping by ReplacedValues is not marked NewNode.
64 // Note that ReplacedValues should be applied iteratively.
66 // Note that the ReplacedValues map may also map deleted nodes. By iterating
67 // over the DAG we only consider non-deleted nodes.
68 SmallVector<SDNode*, 16> NewNodes;
69 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
70 E = DAG.allnodes_end(); I != E; ++I) {
71 // Remember nodes marked NewNode - they are subject to extra checking below.
72 if (I->getNodeId() == NewNode)
73 NewNodes.push_back(I);
75 for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
76 SDValue Res(I, i);
77 bool Failed = false;
79 unsigned Mapped = 0;
80 if (ReplacedValues.find(Res) != ReplacedValues.end()) {
81 Mapped |= 1;
82 // Check that remapped values are only used by nodes marked NewNode.
83 for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
84 UI != UE; ++UI)
85 if (UI.getUse().getResNo() == i)
86 assert(UI->getNodeId() == NewNode &&
87 "Remapped value has non-trivial use!");
89 // Check that the final result of applying ReplacedValues is not
90 // marked NewNode.
91 SDValue NewVal = ReplacedValues[Res];
92 DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
93 while (I != ReplacedValues.end()) {
94 NewVal = I->second;
95 I = ReplacedValues.find(NewVal);
97 assert(NewVal.getNode()->getNodeId() != NewNode &&
98 "ReplacedValues maps to a new node!");
100 if (PromotedIntegers.find(Res) != PromotedIntegers.end())
101 Mapped |= 2;
102 if (SoftenedFloats.find(Res) != SoftenedFloats.end())
103 Mapped |= 4;
104 if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
105 Mapped |= 8;
106 if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
107 Mapped |= 16;
108 if (ExpandedFloats.find(Res) != ExpandedFloats.end())
109 Mapped |= 32;
110 if (SplitVectors.find(Res) != SplitVectors.end())
111 Mapped |= 64;
112 if (WidenedVectors.find(Res) != WidenedVectors.end())
113 Mapped |= 128;
115 if (I->getNodeId() != Processed) {
116 if (Mapped != 0) {
117 cerr << "Unprocessed value in a map!";
118 Failed = true;
120 } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
121 if (Mapped > 1) {
122 cerr << "Value with legal type was transformed!";
123 Failed = true;
125 } else {
126 if (Mapped == 0) {
127 cerr << "Processed value not in any map!";
128 Failed = true;
129 } else if (Mapped & (Mapped - 1)) {
130 cerr << "Value in multiple maps!";
131 Failed = true;
135 if (Failed) {
136 if (Mapped & 1)
137 cerr << " ReplacedValues";
138 if (Mapped & 2)
139 cerr << " PromotedIntegers";
140 if (Mapped & 4)
141 cerr << " SoftenedFloats";
142 if (Mapped & 8)
143 cerr << " ScalarizedVectors";
144 if (Mapped & 16)
145 cerr << " ExpandedIntegers";
146 if (Mapped & 32)
147 cerr << " ExpandedFloats";
148 if (Mapped & 64)
149 cerr << " SplitVectors";
150 if (Mapped & 128)
151 cerr << " WidenedVectors";
152 cerr << "\n";
153 llvm_unreachable(0);
158 // Checked that NewNodes are only used by other NewNodes.
159 for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
160 SDNode *N = NewNodes[i];
161 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
162 UI != UE; ++UI)
163 assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
167 /// run - This is the main entry point for the type legalizer. This does a
168 /// top-down traversal of the dag, legalizing types as it goes. Returns "true"
169 /// if it made any changes.
170 bool DAGTypeLegalizer::run() {
171 bool Changed = false;
173 // Create a dummy node (which is not added to allnodes), that adds a reference
174 // to the root node, preventing it from being deleted, and tracking any
175 // changes of the root.
176 HandleSDNode Dummy(DAG.getRoot());
177 Dummy.setNodeId(Unanalyzed);
179 // The root of the dag may dangle to deleted nodes until the type legalizer is
180 // done. Set it to null to avoid confusion.
181 DAG.setRoot(SDValue());
183 // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
184 // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
185 // non-leaves.
186 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
187 E = DAG.allnodes_end(); I != E; ++I) {
188 if (I->getNumOperands() == 0) {
189 I->setNodeId(ReadyToProcess);
190 Worklist.push_back(I);
191 } else {
192 I->setNodeId(Unanalyzed);
196 // Now that we have a set of nodes to process, handle them all.
197 while (!Worklist.empty()) {
198 #ifndef XDEBUG
199 if (EnableExpensiveChecks)
200 #endif
201 PerformExpensiveChecks();
203 SDNode *N = Worklist.back();
204 Worklist.pop_back();
205 assert(N->getNodeId() == ReadyToProcess &&
206 "Node should be ready if on worklist!");
208 if (IgnoreNodeResults(N))
209 goto ScanOperands;
211 // Scan the values produced by the node, checking to see if any result
212 // types are illegal.
213 for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
214 EVT ResultVT = N->getValueType(i);
215 switch (getTypeAction(ResultVT)) {
216 default:
217 assert(false && "Unknown action!");
218 case Legal:
219 break;
220 // The following calls must take care of *all* of the node's results,
221 // not just the illegal result they were passed (this includes results
222 // with a legal type). Results can be remapped using ReplaceValueWith,
223 // or their promoted/expanded/etc values registered in PromotedIntegers,
224 // ExpandedIntegers etc.
225 case PromoteInteger:
226 PromoteIntegerResult(N, i);
227 Changed = true;
228 goto NodeDone;
229 case ExpandInteger:
230 ExpandIntegerResult(N, i);
231 Changed = true;
232 goto NodeDone;
233 case SoftenFloat:
234 SoftenFloatResult(N, i);
235 Changed = true;
236 goto NodeDone;
237 case ExpandFloat:
238 ExpandFloatResult(N, i);
239 Changed = true;
240 goto NodeDone;
241 case ScalarizeVector:
242 ScalarizeVectorResult(N, i);
243 Changed = true;
244 goto NodeDone;
245 case SplitVector:
246 SplitVectorResult(N, i);
247 Changed = true;
248 goto NodeDone;
249 case WidenVector:
250 WidenVectorResult(N, i);
251 Changed = true;
252 goto NodeDone;
256 ScanOperands:
257 // Scan the operand list for the node, handling any nodes with operands that
258 // are illegal.
260 unsigned NumOperands = N->getNumOperands();
261 bool NeedsReanalyzing = false;
262 unsigned i;
263 for (i = 0; i != NumOperands; ++i) {
264 if (IgnoreNodeResults(N->getOperand(i).getNode()))
265 continue;
267 EVT OpVT = N->getOperand(i).getValueType();
268 switch (getTypeAction(OpVT)) {
269 default:
270 assert(false && "Unknown action!");
271 case Legal:
272 continue;
273 // The following calls must either replace all of the node's results
274 // using ReplaceValueWith, and return "false"; or update the node's
275 // operands in place, and return "true".
276 case PromoteInteger:
277 NeedsReanalyzing = PromoteIntegerOperand(N, i);
278 Changed = true;
279 break;
280 case ExpandInteger:
281 NeedsReanalyzing = ExpandIntegerOperand(N, i);
282 Changed = true;
283 break;
284 case SoftenFloat:
285 NeedsReanalyzing = SoftenFloatOperand(N, i);
286 Changed = true;
287 break;
288 case ExpandFloat:
289 NeedsReanalyzing = ExpandFloatOperand(N, i);
290 Changed = true;
291 break;
292 case ScalarizeVector:
293 NeedsReanalyzing = ScalarizeVectorOperand(N, i);
294 Changed = true;
295 break;
296 case SplitVector:
297 NeedsReanalyzing = SplitVectorOperand(N, i);
298 Changed = true;
299 break;
300 case WidenVector:
301 NeedsReanalyzing = WidenVectorOperand(N, i);
302 Changed = true;
303 break;
305 break;
308 // The sub-method updated N in place. Check to see if any operands are new,
309 // and if so, mark them. If the node needs revisiting, don't add all users
310 // to the worklist etc.
311 if (NeedsReanalyzing) {
312 assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
313 N->setNodeId(NewNode);
314 // Recompute the NodeId and correct processed operands, adding the node to
315 // the worklist if ready.
316 SDNode *M = AnalyzeNewNode(N);
317 if (M == N)
318 // The node didn't morph - nothing special to do, it will be revisited.
319 continue;
321 // The node morphed - this is equivalent to legalizing by replacing every
322 // value of N with the corresponding value of M. So do that now. However
323 // there is no need to remember the replacement - morphing will make sure
324 // it is never used non-trivially.
325 assert(N->getNumValues() == M->getNumValues() &&
326 "Node morphing changed the number of results!");
327 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
328 // Replacing the value takes care of remapping the new value. Do the
329 // replacement without recording it in ReplacedValues. This does not
330 // expunge From but that is fine - it is not really a new node.
331 ReplaceValueWithHelper(SDValue(N, i), SDValue(M, i));
332 assert(N->getNodeId() == NewNode && "Unexpected node state!");
333 // The node continues to live on as part of the NewNode fungus that
334 // grows on top of the useful nodes. Nothing more needs to be done
335 // with it - move on to the next node.
336 continue;
339 if (i == NumOperands) {
340 DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
343 NodeDone:
345 // If we reach here, the node was processed, potentially creating new nodes.
346 // Mark it as processed and add its users to the worklist as appropriate.
347 assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
348 N->setNodeId(Processed);
350 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
351 UI != E; ++UI) {
352 SDNode *User = *UI;
353 int NodeId = User->getNodeId();
355 // This node has two options: it can either be a new node or its Node ID
356 // may be a count of the number of operands it has that are not ready.
357 if (NodeId > 0) {
358 User->setNodeId(NodeId-1);
360 // If this was the last use it was waiting on, add it to the ready list.
361 if (NodeId-1 == ReadyToProcess)
362 Worklist.push_back(User);
363 continue;
366 // If this is an unreachable new node, then ignore it. If it ever becomes
367 // reachable by being used by a newly created node then it will be handled
368 // by AnalyzeNewNode.
369 if (NodeId == NewNode)
370 continue;
372 // Otherwise, this node is new: this is the first operand of it that
373 // became ready. Its new NodeId is the number of operands it has minus 1
374 // (as this node is now processed).
375 assert(NodeId == Unanalyzed && "Unknown node ID!");
376 User->setNodeId(User->getNumOperands() - 1);
378 // If the node only has a single operand, it is now ready.
379 if (User->getNumOperands() == 1)
380 Worklist.push_back(User);
384 #ifndef XDEBUG
385 if (EnableExpensiveChecks)
386 #endif
387 PerformExpensiveChecks();
389 // If the root changed (e.g. it was a dead load) update the root.
390 DAG.setRoot(Dummy.getValue());
392 // Remove dead nodes. This is important to do for cleanliness but also before
393 // the checking loop below. Implicit folding by the DAG.getNode operators and
394 // node morphing can cause unreachable nodes to be around with their flags set
395 // to new.
396 DAG.RemoveDeadNodes();
398 // In a debug build, scan all the nodes to make sure we found them all. This
399 // ensures that there are no cycles and that everything got processed.
400 #ifndef NDEBUG
401 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
402 E = DAG.allnodes_end(); I != E; ++I) {
403 bool Failed = false;
405 // Check that all result types are legal.
406 if (!IgnoreNodeResults(I))
407 for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
408 if (!isTypeLegal(I->getValueType(i))) {
409 cerr << "Result type " << i << " illegal!\n";
410 Failed = true;
413 // Check that all operand types are legal.
414 for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
415 if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
416 !isTypeLegal(I->getOperand(i).getValueType())) {
417 cerr << "Operand type " << i << " illegal!\n";
418 Failed = true;
421 if (I->getNodeId() != Processed) {
422 if (I->getNodeId() == NewNode)
423 cerr << "New node not analyzed?\n";
424 else if (I->getNodeId() == Unanalyzed)
425 cerr << "Unanalyzed node not noticed?\n";
426 else if (I->getNodeId() > 0)
427 cerr << "Operand not processed?\n";
428 else if (I->getNodeId() == ReadyToProcess)
429 cerr << "Not added to worklist?\n";
430 Failed = true;
433 if (Failed) {
434 I->dump(&DAG); cerr << "\n";
435 llvm_unreachable(0);
438 #endif
440 return Changed;
443 /// AnalyzeNewNode - The specified node is the root of a subtree of potentially
444 /// new nodes. Correct any processed operands (this may change the node) and
445 /// calculate the NodeId. If the node itself changes to a processed node, it
446 /// is not remapped - the caller needs to take care of this.
447 /// Returns the potentially changed node.
448 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
449 // If this was an existing node that is already done, we're done.
450 if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
451 return N;
453 // Remove any stale map entries.
454 ExpungeNode(N);
456 // Okay, we know that this node is new. Recursively walk all of its operands
457 // to see if they are new also. The depth of this walk is bounded by the size
458 // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
459 // about revisiting of nodes.
461 // As we walk the operands, keep track of the number of nodes that are
462 // processed. If non-zero, this will become the new nodeid of this node.
463 // Operands may morph when they are analyzed. If so, the node will be
464 // updated after all operands have been analyzed. Since this is rare,
465 // the code tries to minimize overhead in the non-morphing case.
467 SmallVector<SDValue, 8> NewOps;
468 unsigned NumProcessed = 0;
469 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
470 SDValue OrigOp = N->getOperand(i);
471 SDValue Op = OrigOp;
473 AnalyzeNewValue(Op); // Op may morph.
475 if (Op.getNode()->getNodeId() == Processed)
476 ++NumProcessed;
478 if (!NewOps.empty()) {
479 // Some previous operand changed. Add this one to the list.
480 NewOps.push_back(Op);
481 } else if (Op != OrigOp) {
482 // This is the first operand to change - add all operands so far.
483 NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
484 NewOps.push_back(Op);
488 // Some operands changed - update the node.
489 if (!NewOps.empty()) {
490 SDNode *M = DAG.UpdateNodeOperands(SDValue(N, 0), &NewOps[0],
491 NewOps.size()).getNode();
492 if (M != N) {
493 // The node morphed into a different node. Normally for this to happen
494 // the original node would have to be marked NewNode. However this can
495 // in theory momentarily not be the case while ReplaceValueWith is doing
496 // its stuff. Mark the original node NewNode to help sanity checking.
497 N->setNodeId(NewNode);
498 if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
499 // It morphed into a previously analyzed node - nothing more to do.
500 return M;
502 // It morphed into a different new node. Do the equivalent of passing
503 // it to AnalyzeNewNode: expunge it and calculate the NodeId. No need
504 // to remap the operands, since they are the same as the operands we
505 // remapped above.
506 N = M;
507 ExpungeNode(N);
511 // Calculate the NodeId.
512 N->setNodeId(N->getNumOperands() - NumProcessed);
513 if (N->getNodeId() == ReadyToProcess)
514 Worklist.push_back(N);
516 return N;
519 /// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
520 /// If the node changes to a processed node, then remap it.
521 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
522 Val.setNode(AnalyzeNewNode(Val.getNode()));
523 if (Val.getNode()->getNodeId() == Processed)
524 // We were passed a processed node, or it morphed into one - remap it.
525 RemapValue(Val);
528 /// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
529 /// This can occur when a node is deleted then reallocated as a new node -
530 /// the mapping in ReplacedValues applies to the deleted node, not the new
531 /// one.
532 /// The only map that can have a deleted node as a source is ReplacedValues.
533 /// Other maps can have deleted nodes as targets, but since their looked-up
534 /// values are always immediately remapped using RemapValue, resulting in a
535 /// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
536 /// always performs correct mappings. In order to keep the mapping correct,
537 /// ExpungeNode should be called on any new nodes *before* adding them as
538 /// either source or target to ReplacedValues (which typically means calling
539 /// Expunge when a new node is first seen, since it may no longer be marked
540 /// NewNode by the time it is added to ReplacedValues).
541 void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
542 if (N->getNodeId() != NewNode)
543 return;
545 // If N is not remapped by ReplacedValues then there is nothing to do.
546 unsigned i, e;
547 for (i = 0, e = N->getNumValues(); i != e; ++i)
548 if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
549 break;
551 if (i == e)
552 return;
554 // Remove N from all maps - this is expensive but rare.
556 for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
557 E = PromotedIntegers.end(); I != E; ++I) {
558 assert(I->first.getNode() != N);
559 RemapValue(I->second);
562 for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
563 E = SoftenedFloats.end(); I != E; ++I) {
564 assert(I->first.getNode() != N);
565 RemapValue(I->second);
568 for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
569 E = ScalarizedVectors.end(); I != E; ++I) {
570 assert(I->first.getNode() != N);
571 RemapValue(I->second);
574 for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
575 E = WidenedVectors.end(); I != E; ++I) {
576 assert(I->first.getNode() != N);
577 RemapValue(I->second);
580 for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
581 I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
582 assert(I->first.getNode() != N);
583 RemapValue(I->second.first);
584 RemapValue(I->second.second);
587 for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
588 I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
589 assert(I->first.getNode() != N);
590 RemapValue(I->second.first);
591 RemapValue(I->second.second);
594 for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
595 I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
596 assert(I->first.getNode() != N);
597 RemapValue(I->second.first);
598 RemapValue(I->second.second);
601 for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
602 E = ReplacedValues.end(); I != E; ++I)
603 RemapValue(I->second);
605 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
606 ReplacedValues.erase(SDValue(N, i));
609 /// RemapValue - If the specified value was already legalized to another value,
610 /// replace it by that value.
611 void DAGTypeLegalizer::RemapValue(SDValue &N) {
612 DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
613 if (I != ReplacedValues.end()) {
614 // Use path compression to speed up future lookups if values get multiply
615 // replaced with other values.
616 RemapValue(I->second);
617 N = I->second;
618 assert(N.getNode()->getNodeId() != NewNode && "Mapped to new node!");
622 namespace {
623 /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
624 /// updates to nodes and recomputes their ready state.
625 class VISIBILITY_HIDDEN NodeUpdateListener :
626 public SelectionDAG::DAGUpdateListener {
627 DAGTypeLegalizer &DTL;
628 SmallSetVector<SDNode*, 16> &NodesToAnalyze;
629 public:
630 explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
631 SmallSetVector<SDNode*, 16> &nta)
632 : DTL(dtl), NodesToAnalyze(nta) {}
634 virtual void NodeDeleted(SDNode *N, SDNode *E) {
635 assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
636 N->getNodeId() != DAGTypeLegalizer::Processed &&
637 "Invalid node ID for RAUW deletion!");
638 // It is possible, though rare, for the deleted node N to occur as a
639 // target in a map, so note the replacement N -> E in ReplacedValues.
640 assert(E && "Node not replaced?");
641 DTL.NoteDeletion(N, E);
643 // In theory the deleted node could also have been scheduled for analysis.
644 // So remove it from the set of nodes which will be analyzed.
645 NodesToAnalyze.remove(N);
647 // In general nothing needs to be done for E, since it didn't change but
648 // only gained new uses. However N -> E was just added to ReplacedValues,
649 // and the result of a ReplacedValues mapping is not allowed to be marked
650 // NewNode. So if E is marked NewNode, then it needs to be analyzed.
651 if (E->getNodeId() == DAGTypeLegalizer::NewNode)
652 NodesToAnalyze.insert(E);
655 virtual void NodeUpdated(SDNode *N) {
656 // Node updates can mean pretty much anything. It is possible that an
657 // operand was set to something already processed (f.e.) in which case
658 // this node could become ready. Recompute its flags.
659 assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
660 N->getNodeId() != DAGTypeLegalizer::Processed &&
661 "Invalid node ID for RAUW deletion!");
662 N->setNodeId(DAGTypeLegalizer::NewNode);
663 NodesToAnalyze.insert(N);
669 /// ReplaceValueWithHelper - Internal helper for ReplaceValueWith. Updates the
670 /// DAG causing any uses of From to use To instead, but without expunging From
671 /// or recording the replacement in ReplacedValues. Do not call directly unless
672 /// you really know what you are doing!
673 void DAGTypeLegalizer::ReplaceValueWithHelper(SDValue From, SDValue To) {
674 assert(From.getNode() != To.getNode() && "Potential legalization loop!");
676 // If expansion produced new nodes, make sure they are properly marked.
677 AnalyzeNewValue(To); // Expunges To.
679 // Anything that used the old node should now use the new one. Note that this
680 // can potentially cause recursive merging.
681 SmallSetVector<SDNode*, 16> NodesToAnalyze;
682 NodeUpdateListener NUL(*this, NodesToAnalyze);
683 DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
685 // Process the list of nodes that need to be reanalyzed.
686 while (!NodesToAnalyze.empty()) {
687 SDNode *N = NodesToAnalyze.back();
688 NodesToAnalyze.pop_back();
689 if (N->getNodeId() != DAGTypeLegalizer::NewNode)
690 // The node was analyzed while reanalyzing an earlier node - it is safe to
691 // skip. Note that this is not a morphing node - otherwise it would still
692 // be marked NewNode.
693 continue;
695 // Analyze the node's operands and recalculate the node ID.
696 SDNode *M = AnalyzeNewNode(N);
697 if (M != N) {
698 // The node morphed into a different node. Make everyone use the new node
699 // instead.
700 assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
701 assert(N->getNumValues() == M->getNumValues() &&
702 "Node morphing changed the number of results!");
703 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
704 SDValue OldVal(N, i);
705 SDValue NewVal(M, i);
706 if (M->getNodeId() == Processed)
707 RemapValue(NewVal);
708 DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal, &NUL);
710 // The original node continues to exist in the DAG, marked NewNode.
715 /// ReplaceValueWith - The specified value was legalized to the specified other
716 /// value. Update the DAG and NodeIds replacing any uses of From to use To
717 /// instead.
718 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
719 assert(From.getNode()->getNodeId() == ReadyToProcess &&
720 "Only the node being processed may be remapped!");
722 // If expansion produced new nodes, make sure they are properly marked.
723 ExpungeNode(From.getNode());
724 AnalyzeNewValue(To); // Expunges To.
726 // The old node may still be present in a map like ExpandedIntegers or
727 // PromotedIntegers. Inform maps about the replacement.
728 ReplacedValues[From] = To;
730 // Do the replacement.
731 ReplaceValueWithHelper(From, To);
734 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
735 assert(Result.getValueType() == TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
736 "Invalid type for promoted integer");
737 AnalyzeNewValue(Result);
739 SDValue &OpEntry = PromotedIntegers[Op];
740 assert(OpEntry.getNode() == 0 && "Node is already promoted!");
741 OpEntry = Result;
744 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
745 assert(Result.getValueType() == TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
746 "Invalid type for softened float");
747 AnalyzeNewValue(Result);
749 SDValue &OpEntry = SoftenedFloats[Op];
750 assert(OpEntry.getNode() == 0 && "Node is already converted to integer!");
751 OpEntry = Result;
754 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
755 assert(Result.getValueType() == Op.getValueType().getVectorElementType() &&
756 "Invalid type for scalarized vector");
757 AnalyzeNewValue(Result);
759 SDValue &OpEntry = ScalarizedVectors[Op];
760 assert(OpEntry.getNode() == 0 && "Node is already scalarized!");
761 OpEntry = Result;
764 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
765 SDValue &Hi) {
766 std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
767 RemapValue(Entry.first);
768 RemapValue(Entry.second);
769 assert(Entry.first.getNode() && "Operand isn't expanded");
770 Lo = Entry.first;
771 Hi = Entry.second;
774 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
775 SDValue Hi) {
776 assert(Lo.getValueType() == TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
777 Hi.getValueType() == Lo.getValueType() &&
778 "Invalid type for expanded integer");
779 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
780 AnalyzeNewValue(Lo);
781 AnalyzeNewValue(Hi);
783 // Remember that this is the result of the node.
784 std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
785 assert(Entry.first.getNode() == 0 && "Node already expanded");
786 Entry.first = Lo;
787 Entry.second = Hi;
790 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
791 SDValue &Hi) {
792 std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
793 RemapValue(Entry.first);
794 RemapValue(Entry.second);
795 assert(Entry.first.getNode() && "Operand isn't expanded");
796 Lo = Entry.first;
797 Hi = Entry.second;
800 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
801 SDValue Hi) {
802 assert(Lo.getValueType() == TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
803 Hi.getValueType() == Lo.getValueType() &&
804 "Invalid type for expanded float");
805 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
806 AnalyzeNewValue(Lo);
807 AnalyzeNewValue(Hi);
809 // Remember that this is the result of the node.
810 std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
811 assert(Entry.first.getNode() == 0 && "Node already expanded");
812 Entry.first = Lo;
813 Entry.second = Hi;
816 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
817 SDValue &Hi) {
818 std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
819 RemapValue(Entry.first);
820 RemapValue(Entry.second);
821 assert(Entry.first.getNode() && "Operand isn't split");
822 Lo = Entry.first;
823 Hi = Entry.second;
826 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
827 SDValue Hi) {
828 assert(Lo.getValueType().getVectorElementType() ==
829 Op.getValueType().getVectorElementType() &&
830 2*Lo.getValueType().getVectorNumElements() ==
831 Op.getValueType().getVectorNumElements() &&
832 Hi.getValueType() == Lo.getValueType() &&
833 "Invalid type for split vector");
834 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
835 AnalyzeNewValue(Lo);
836 AnalyzeNewValue(Hi);
838 // Remember that this is the result of the node.
839 std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
840 assert(Entry.first.getNode() == 0 && "Node already split");
841 Entry.first = Lo;
842 Entry.second = Hi;
845 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
846 assert(Result.getValueType() == TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
847 "Invalid type for widened vector");
848 AnalyzeNewValue(Result);
850 SDValue &OpEntry = WidenedVectors[Op];
851 assert(OpEntry.getNode() == 0 && "Node already widened!");
852 OpEntry = Result;
856 //===----------------------------------------------------------------------===//
857 // Utilities.
858 //===----------------------------------------------------------------------===//
860 /// BitConvertToInteger - Convert to an integer of the same size.
861 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
862 unsigned BitWidth = Op.getValueType().getSizeInBits();
863 return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
864 EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
867 /// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
868 /// same size.
869 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
870 assert(Op.getValueType().isVector() && "Only applies to vectors!");
871 unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
872 EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
873 unsigned NumElts = Op.getValueType().getVectorNumElements();
874 return DAG.getNode(ISD::BIT_CONVERT, Op.getDebugLoc(),
875 EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
878 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
879 EVT DestVT) {
880 DebugLoc dl = Op.getDebugLoc();
881 // Create the stack frame object. Make sure it is aligned for both
882 // the source and destination types.
883 SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
884 // Emit a store to the stack slot.
885 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr, NULL, 0);
886 // Result is a load from the stack slot.
887 return DAG.getLoad(DestVT, dl, Store, StackPtr, NULL, 0);
890 /// CustomLowerNode - Replace the node's results with custom code provided
891 /// by the target and return "true", or do nothing and return "false".
892 /// The last parameter is FALSE if we are dealing with a node with legal
893 /// result types and illegal operand. The second parameter denotes the type of
894 /// illegal OperandNo in that case.
895 /// The last parameter being TRUE means we are dealing with a
896 /// node with illegal result types. The second parameter denotes the type of
897 /// illegal ResNo in that case.
898 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
899 // See if the target wants to custom lower this node.
900 if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
901 return false;
903 SmallVector<SDValue, 8> Results;
904 if (LegalizeResult)
905 TLI.ReplaceNodeResults(N, Results, DAG);
906 else
907 TLI.LowerOperationWrapper(N, Results, DAG);
909 if (Results.empty())
910 // The target didn't want to custom lower it after all.
911 return false;
913 // Make everything that once used N's values now use those in Results instead.
914 assert(Results.size() == N->getNumValues() &&
915 "Custom lowering returned the wrong number of results!");
916 for (unsigned i = 0, e = Results.size(); i != e; ++i)
917 ReplaceValueWith(SDValue(N, i), Results[i]);
918 return true;
921 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
922 /// which is split into two not necessarily identical pieces.
923 void DAGTypeLegalizer::GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT) {
924 // Currently all types are split in half.
925 if (!InVT.isVector()) {
926 LoVT = HiVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
927 } else {
928 unsigned NumElements = InVT.getVectorNumElements();
929 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
930 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(), NumElements/2);
934 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
935 /// high parts of the given value.
936 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
937 SDValue &Lo, SDValue &Hi) {
938 DebugLoc dl = Pair.getDebugLoc();
939 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
940 Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
941 DAG.getIntPtrConstant(0));
942 Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
943 DAG.getIntPtrConstant(1));
946 SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
947 SDValue Index) {
948 DebugLoc dl = Index.getDebugLoc();
949 // Make sure the index type is big enough to compute in.
950 if (Index.getValueType().bitsGT(TLI.getPointerTy()))
951 Index = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Index);
952 else
953 Index = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Index);
955 // Calculate the element offset and add it to the pointer.
956 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
958 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
959 DAG.getConstant(EltSize, Index.getValueType()));
960 return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
963 /// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
964 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
965 // Arbitrarily use dlHi for result DebugLoc
966 DebugLoc dlHi = Hi.getDebugLoc();
967 DebugLoc dlLo = Lo.getDebugLoc();
968 EVT LVT = Lo.getValueType();
969 EVT HVT = Hi.getValueType();
970 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), LVT.getSizeInBits() + HVT.getSizeInBits());
972 Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
973 Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
974 Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
975 DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy()));
976 return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
979 /// LibCallify - Convert the node into a libcall with the same prototype.
980 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
981 bool isSigned) {
982 unsigned NumOps = N->getNumOperands();
983 DebugLoc dl = N->getDebugLoc();
984 if (NumOps == 0) {
985 return MakeLibCall(LC, N->getValueType(0), 0, 0, isSigned, dl);
986 } else if (NumOps == 1) {
987 SDValue Op = N->getOperand(0);
988 return MakeLibCall(LC, N->getValueType(0), &Op, 1, isSigned, dl);
989 } else if (NumOps == 2) {
990 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
991 return MakeLibCall(LC, N->getValueType(0), Ops, 2, isSigned, dl);
993 SmallVector<SDValue, 8> Ops(NumOps);
994 for (unsigned i = 0; i < NumOps; ++i)
995 Ops[i] = N->getOperand(i);
997 return MakeLibCall(LC, N->getValueType(0), &Ops[0], NumOps, isSigned, dl);
1000 /// MakeLibCall - Generate a libcall taking the given operands as arguments and
1001 /// returning a result of type RetVT.
1002 SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
1003 const SDValue *Ops, unsigned NumOps,
1004 bool isSigned, DebugLoc dl) {
1005 TargetLowering::ArgListTy Args;
1006 Args.reserve(NumOps);
1008 TargetLowering::ArgListEntry Entry;
1009 for (unsigned i = 0; i != NumOps; ++i) {
1010 Entry.Node = Ops[i];
1011 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1012 Entry.isSExt = isSigned;
1013 Entry.isZExt = !isSigned;
1014 Args.push_back(Entry);
1016 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1017 TLI.getPointerTy());
1019 const Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1020 std::pair<SDValue,SDValue> CallInfo =
1021 TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1022 false, 0, TLI.getLibcallCallingConv(LC), false,
1023 /*isReturnValueUsed=*/true,
1024 Callee, Args, DAG, dl);
1025 return CallInfo.first;
1028 /// PromoteTargetBoolean - Promote the given target boolean to a target boolean
1029 /// of the given type. A target boolean is an integer value, not necessarily of
1030 /// type i1, the bits of which conform to getBooleanContents.
1031 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT VT) {
1032 DebugLoc dl = Bool.getDebugLoc();
1033 ISD::NodeType ExtendCode;
1034 switch (TLI.getBooleanContents()) {
1035 default:
1036 assert(false && "Unknown BooleanContent!");
1037 case TargetLowering::UndefinedBooleanContent:
1038 // Extend to VT by adding rubbish bits.
1039 ExtendCode = ISD::ANY_EXTEND;
1040 break;
1041 case TargetLowering::ZeroOrOneBooleanContent:
1042 // Extend to VT by adding zero bits.
1043 ExtendCode = ISD::ZERO_EXTEND;
1044 break;
1045 case TargetLowering::ZeroOrNegativeOneBooleanContent: {
1046 // Extend to VT by copying the sign bit.
1047 ExtendCode = ISD::SIGN_EXTEND;
1048 break;
1051 return DAG.getNode(ExtendCode, dl, VT, Bool);
1054 /// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
1055 /// bits in Hi.
1056 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1057 EVT LoVT, EVT HiVT,
1058 SDValue &Lo, SDValue &Hi) {
1059 DebugLoc dl = Op.getDebugLoc();
1060 assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1061 Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
1062 Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1063 Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1064 DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy()));
1065 Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1068 /// SplitInteger - Return the lower and upper halves of Op's bits in a value
1069 /// type half the size of Op's.
1070 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1071 SDValue &Lo, SDValue &Hi) {
1072 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Op.getValueType().getSizeInBits()/2);
1073 SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1077 //===----------------------------------------------------------------------===//
1078 // Entry Point
1079 //===----------------------------------------------------------------------===//
1081 /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
1082 /// only uses types natively supported by the target. Returns "true" if it made
1083 /// any changes.
1085 /// Note that this is an involved process that may invalidate pointers into
1086 /// the graph.
1087 bool SelectionDAG::LegalizeTypes() {
1088 return DAGTypeLegalizer(*this).run();