Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / CodeGen / SelectionDAG / LegalizeTypes.h
blob859c65668da4469caf63e8b536e90d66414b6835
1 //===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DAGTypeLegalizer class. This is a private interface
11 // shared between the code that implements the SelectionDAG::LegalizeTypes
12 // method.
14 //===----------------------------------------------------------------------===//
16 #ifndef SELECTIONDAG_LEGALIZETYPES_H
17 #define SELECTIONDAG_LEGALIZETYPES_H
19 #define DEBUG_TYPE "legalize-types"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
27 namespace llvm {
29 //===----------------------------------------------------------------------===//
30 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31 /// on it until only value types the target machine can handle are left. This
32 /// involves promoting small sizes to large sizes or splitting up large values
33 /// into small values.
34 ///
35 class VISIBILITY_HIDDEN DAGTypeLegalizer {
36 TargetLowering &TLI;
37 SelectionDAG &DAG;
38 public:
39 // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40 // about the state of the node. The enum has all the values.
41 enum NodeIdFlags {
42 /// ReadyToProcess - All operands have been processed, so this node is ready
43 /// to be handled.
44 ReadyToProcess = 0,
46 /// NewNode - This is a new node, not before seen, that was created in the
47 /// process of legalizing some other node.
48 NewNode = -1,
50 /// Unanalyzed - This node's ID needs to be set to the number of its
51 /// unprocessed operands.
52 Unanalyzed = -2,
54 /// Processed - This is a node that has already been processed.
55 Processed = -3
57 // 1+ - This is a node which has this many unprocessed operands.
59 private:
60 enum LegalizeAction {
61 Legal, // The target natively supports this type.
62 PromoteInteger, // Replace this integer type with a larger one.
63 ExpandInteger, // Split this integer type into two of half the size.
64 SoftenFloat, // Convert this float type to a same size integer type.
65 ExpandFloat, // Split this float type into two of half the size.
66 ScalarizeVector, // Replace this one-element vector with its element type.
67 SplitVector, // Split this vector type into two of half the size.
68 WidenVector // This vector type should be widened into a larger vector.
71 /// ValueTypeActions - This is a bitvector that contains two bits for each
72 /// simple value type, where the two bits correspond to the LegalizeAction
73 /// enum from TargetLowering. This can be queried with "getTypeAction(VT)".
74 TargetLowering::ValueTypeActionImpl ValueTypeActions;
76 /// getTypeAction - Return how we should legalize values of this type.
77 LegalizeAction getTypeAction(EVT VT) const {
78 switch (ValueTypeActions.getTypeAction(*DAG.getContext(), VT)) {
79 default:
80 assert(false && "Unknown legalize action!");
81 case TargetLowering::Legal:
82 return Legal;
83 case TargetLowering::Promote:
84 // Promote can mean
85 // 1) For integers, use a larger integer type (e.g. i8 -> i32).
86 // 2) For vectors, use a wider vector type (e.g. v3i32 -> v4i32).
87 if (!VT.isVector())
88 return PromoteInteger;
89 else
90 return WidenVector;
91 case TargetLowering::Expand:
92 // Expand can mean
93 // 1) split scalar in half, 2) convert a float to an integer,
94 // 3) scalarize a single-element vector, 4) split a vector in two.
95 if (!VT.isVector()) {
96 if (VT.isInteger())
97 return ExpandInteger;
98 else if (VT.getSizeInBits() ==
99 TLI.getTypeToTransformTo(*DAG.getContext(), VT).getSizeInBits())
100 return SoftenFloat;
101 else
102 return ExpandFloat;
103 } else if (VT.getVectorNumElements() == 1) {
104 return ScalarizeVector;
105 } else {
106 return SplitVector;
111 /// isTypeLegal - Return true if this type is legal on this target.
112 bool isTypeLegal(EVT VT) const {
113 return (ValueTypeActions.getTypeAction(*DAG.getContext(), VT) ==
114 TargetLowering::Legal);
117 /// IgnoreNodeResults - Pretend all of this node's results are legal.
118 bool IgnoreNodeResults(SDNode *N) const {
119 return N->getOpcode() == ISD::TargetConstant;
122 /// PromotedIntegers - For integer nodes that are below legal width, this map
123 /// indicates what promoted value to use.
124 DenseMap<SDValue, SDValue> PromotedIntegers;
126 /// ExpandedIntegers - For integer nodes that need to be expanded this map
127 /// indicates which operands are the expanded version of the input.
128 DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
130 /// SoftenedFloats - For floating point nodes converted to integers of
131 /// the same size, this map indicates the converted value to use.
132 DenseMap<SDValue, SDValue> SoftenedFloats;
134 /// ExpandedFloats - For float nodes that need to be expanded this map
135 /// indicates which operands are the expanded version of the input.
136 DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
138 /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
139 /// scalar value of type 'ty' to use.
140 DenseMap<SDValue, SDValue> ScalarizedVectors;
142 /// SplitVectors - For nodes that need to be split this map indicates
143 /// which operands are the expanded version of the input.
144 DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
146 /// WidenedVectors - For vector nodes that need to be widened, indicates
147 /// the widened value to use.
148 DenseMap<SDValue, SDValue> WidenedVectors;
150 /// ReplacedValues - For values that have been replaced with another,
151 /// indicates the replacement value to use.
152 DenseMap<SDValue, SDValue> ReplacedValues;
154 /// Worklist - This defines a worklist of nodes to process. In order to be
155 /// pushed onto this worklist, all operands of a node must have already been
156 /// processed.
157 SmallVector<SDNode*, 128> Worklist;
159 public:
160 explicit DAGTypeLegalizer(SelectionDAG &dag)
161 : TLI(dag.getTargetLoweringInfo()), DAG(dag),
162 ValueTypeActions(TLI.getValueTypeActions()) {
163 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
164 "Too many value types for ValueTypeActions to hold!");
167 /// run - This is the main entry point for the type legalizer. This does a
168 /// top-down traversal of the dag, legalizing types as it goes. Returns
169 /// "true" if it made any changes.
170 bool run();
172 void NoteDeletion(SDNode *Old, SDNode *New) {
173 ExpungeNode(Old);
174 ExpungeNode(New);
175 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
176 ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
179 private:
180 SDNode *AnalyzeNewNode(SDNode *N);
181 void AnalyzeNewValue(SDValue &Val);
182 void ExpungeNode(SDNode *N);
183 void PerformExpensiveChecks();
184 void RemapValue(SDValue &N);
186 // Common routines.
187 SDValue BitConvertToInteger(SDValue Op);
188 SDValue BitConvertVectorToIntegerVector(SDValue Op);
189 SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
190 bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
191 SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
192 SDValue JoinIntegers(SDValue Lo, SDValue Hi);
193 SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
194 SDValue MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
195 const SDValue *Ops, unsigned NumOps, bool isSigned,
196 DebugLoc dl);
197 SDValue PromoteTargetBoolean(SDValue Bool, EVT VT);
198 void ReplaceValueWith(SDValue From, SDValue To);
199 void ReplaceValueWithHelper(SDValue From, SDValue To);
200 void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
201 void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
202 SDValue &Lo, SDValue &Hi);
204 //===--------------------------------------------------------------------===//
205 // Integer Promotion Support: LegalizeIntegerTypes.cpp
206 //===--------------------------------------------------------------------===//
208 /// GetPromotedInteger - Given a processed operand Op which was promoted to a
209 /// larger integer type, this returns the promoted value. The low bits of the
210 /// promoted value corresponding to the original type are exactly equal to Op.
211 /// The extra bits contain rubbish, so the promoted value may need to be zero-
212 /// or sign-extended from the original type before it is usable (the helpers
213 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
214 /// For example, if Op is an i16 and was promoted to an i32, then this method
215 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
216 /// 16 bits of which contain rubbish.
217 SDValue GetPromotedInteger(SDValue Op) {
218 SDValue &PromotedOp = PromotedIntegers[Op];
219 RemapValue(PromotedOp);
220 assert(PromotedOp.getNode() && "Operand wasn't promoted?");
221 return PromotedOp;
223 void SetPromotedInteger(SDValue Op, SDValue Result);
225 /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
226 /// final size.
227 SDValue SExtPromotedInteger(SDValue Op) {
228 EVT OldVT = Op.getValueType();
229 DebugLoc dl = Op.getDebugLoc();
230 Op = GetPromotedInteger(Op);
231 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
232 DAG.getValueType(OldVT));
235 /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
236 /// final size.
237 SDValue ZExtPromotedInteger(SDValue Op) {
238 EVT OldVT = Op.getValueType();
239 DebugLoc dl = Op.getDebugLoc();
240 Op = GetPromotedInteger(Op);
241 return DAG.getZeroExtendInReg(Op, dl, OldVT);
244 // Integer Result Promotion.
245 void PromoteIntegerResult(SDNode *N, unsigned ResNo);
246 SDValue PromoteIntRes_AssertSext(SDNode *N);
247 SDValue PromoteIntRes_AssertZext(SDNode *N);
248 SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
249 SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
250 SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
251 SDValue PromoteIntRes_BSWAP(SDNode *N);
252 SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
253 SDValue PromoteIntRes_Constant(SDNode *N);
254 SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
255 SDValue PromoteIntRes_CTLZ(SDNode *N);
256 SDValue PromoteIntRes_CTPOP(SDNode *N);
257 SDValue PromoteIntRes_CTTZ(SDNode *N);
258 SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
259 SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
260 SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
261 SDValue PromoteIntRes_LOAD(LoadSDNode *N);
262 SDValue PromoteIntRes_Overflow(SDNode *N);
263 SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
264 SDValue PromoteIntRes_SDIV(SDNode *N);
265 SDValue PromoteIntRes_SELECT(SDNode *N);
266 SDValue PromoteIntRes_SELECT_CC(SDNode *N);
267 SDValue PromoteIntRes_SETCC(SDNode *N);
268 SDValue PromoteIntRes_SHL(SDNode *N);
269 SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
270 SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
271 SDValue PromoteIntRes_SRA(SDNode *N);
272 SDValue PromoteIntRes_SRL(SDNode *N);
273 SDValue PromoteIntRes_TRUNCATE(SDNode *N);
274 SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
275 SDValue PromoteIntRes_UDIV(SDNode *N);
276 SDValue PromoteIntRes_UNDEF(SDNode *N);
277 SDValue PromoteIntRes_VAARG(SDNode *N);
278 SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
280 // Integer Operand Promotion.
281 bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
282 SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
283 SDValue PromoteIntOp_BIT_CONVERT(SDNode *N);
284 SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
285 SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
286 SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
287 SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
288 SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
289 SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
290 SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
291 SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
292 SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
293 SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
294 SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
295 SDValue PromoteIntOp_Shift(SDNode *N);
296 SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
297 SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
298 SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
299 SDValue PromoteIntOp_TRUNCATE(SDNode *N);
300 SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
301 SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
303 void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
305 //===--------------------------------------------------------------------===//
306 // Integer Expansion Support: LegalizeIntegerTypes.cpp
307 //===--------------------------------------------------------------------===//
309 /// GetExpandedInteger - Given a processed operand Op which was expanded into
310 /// two integers of half the size, this returns the two halves. The low bits
311 /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
312 /// For example, if Op is an i64 which was expanded into two i32's, then this
313 /// method returns the two i32's, with Lo being equal to the lower 32 bits of
314 /// Op, and Hi being equal to the upper 32 bits.
315 void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
316 void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
318 // Integer Result Expansion.
319 void ExpandIntegerResult(SDNode *N, unsigned ResNo);
320 void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
321 void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi);
322 void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
323 void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi);
324 void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi);
325 void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi);
326 void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi);
327 void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
328 void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
329 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
330 void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
331 void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
332 void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi);
333 void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi);
335 void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi);
336 void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
337 void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi);
338 void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi);
339 void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi);
340 void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi);
341 void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
342 void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi);
343 void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
344 void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi);
345 void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi);
347 void ExpandShiftByConstant(SDNode *N, unsigned Amt,
348 SDValue &Lo, SDValue &Hi);
349 bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
350 bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
352 // Integer Operand Expansion.
353 bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
354 SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
355 SDValue ExpandIntOp_BR_CC(SDNode *N);
356 SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
357 SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
358 SDValue ExpandIntOp_SELECT_CC(SDNode *N);
359 SDValue ExpandIntOp_SETCC(SDNode *N);
360 SDValue ExpandIntOp_Shift(SDNode *N);
361 SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
362 SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
363 SDValue ExpandIntOp_TRUNCATE(SDNode *N);
364 SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
366 void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
367 ISD::CondCode &CCCode, DebugLoc dl);
369 //===--------------------------------------------------------------------===//
370 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
371 //===--------------------------------------------------------------------===//
373 /// GetSoftenedFloat - Given a processed operand Op which was converted to an
374 /// integer of the same size, this returns the integer. The integer contains
375 /// exactly the same bits as Op - only the type changed. For example, if Op
376 /// is an f32 which was softened to an i32, then this method returns an i32,
377 /// the bits of which coincide with those of Op.
378 SDValue GetSoftenedFloat(SDValue Op) {
379 SDValue &SoftenedOp = SoftenedFloats[Op];
380 RemapValue(SoftenedOp);
381 assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
382 return SoftenedOp;
384 void SetSoftenedFloat(SDValue Op, SDValue Result);
386 // Result Float to Integer Conversion.
387 void SoftenFloatResult(SDNode *N, unsigned OpNo);
388 SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
389 SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
390 SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
391 SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
392 SDValue SoftenFloatRes_FABS(SDNode *N);
393 SDValue SoftenFloatRes_FADD(SDNode *N);
394 SDValue SoftenFloatRes_FCEIL(SDNode *N);
395 SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
396 SDValue SoftenFloatRes_FCOS(SDNode *N);
397 SDValue SoftenFloatRes_FDIV(SDNode *N);
398 SDValue SoftenFloatRes_FEXP(SDNode *N);
399 SDValue SoftenFloatRes_FEXP2(SDNode *N);
400 SDValue SoftenFloatRes_FFLOOR(SDNode *N);
401 SDValue SoftenFloatRes_FLOG(SDNode *N);
402 SDValue SoftenFloatRes_FLOG2(SDNode *N);
403 SDValue SoftenFloatRes_FLOG10(SDNode *N);
404 SDValue SoftenFloatRes_FMUL(SDNode *N);
405 SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
406 SDValue SoftenFloatRes_FNEG(SDNode *N);
407 SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
408 SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
409 SDValue SoftenFloatRes_FPOW(SDNode *N);
410 SDValue SoftenFloatRes_FPOWI(SDNode *N);
411 SDValue SoftenFloatRes_FREM(SDNode *N);
412 SDValue SoftenFloatRes_FRINT(SDNode *N);
413 SDValue SoftenFloatRes_FSIN(SDNode *N);
414 SDValue SoftenFloatRes_FSQRT(SDNode *N);
415 SDValue SoftenFloatRes_FSUB(SDNode *N);
416 SDValue SoftenFloatRes_FTRUNC(SDNode *N);
417 SDValue SoftenFloatRes_LOAD(SDNode *N);
418 SDValue SoftenFloatRes_SELECT(SDNode *N);
419 SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
420 SDValue SoftenFloatRes_UNDEF(SDNode *N);
421 SDValue SoftenFloatRes_VAARG(SDNode *N);
422 SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
424 // Operand Float to Integer Conversion.
425 bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
426 SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
427 SDValue SoftenFloatOp_BR_CC(SDNode *N);
428 SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
429 SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
430 SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
431 SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
432 SDValue SoftenFloatOp_SETCC(SDNode *N);
433 SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
435 void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
436 ISD::CondCode &CCCode, DebugLoc dl);
438 //===--------------------------------------------------------------------===//
439 // Float Expansion Support: LegalizeFloatTypes.cpp
440 //===--------------------------------------------------------------------===//
442 /// GetExpandedFloat - Given a processed operand Op which was expanded into
443 /// two floating point values of half the size, this returns the two halves.
444 /// The low bits of Op are exactly equal to the bits of Lo; the high bits
445 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
446 /// into two f64's, then this method returns the two f64's, with Lo being
447 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
448 void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
449 void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
451 // Float Result Expansion.
452 void ExpandFloatResult(SDNode *N, unsigned ResNo);
453 void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
454 void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
455 void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
456 void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi);
457 void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi);
458 void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
459 void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
460 void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi);
461 void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi);
462 void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi);
463 void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi);
464 void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi);
465 void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi);
466 void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
467 void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi);
468 void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
469 void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi);
470 void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi);
471 void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
472 void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi);
473 void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi);
474 void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
475 void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi);
476 void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
477 void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
479 // Float Operand Expansion.
480 bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
481 SDValue ExpandFloatOp_BR_CC(SDNode *N);
482 SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
483 SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
484 SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
485 SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
486 SDValue ExpandFloatOp_SETCC(SDNode *N);
487 SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
489 void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
490 ISD::CondCode &CCCode, DebugLoc dl);
492 //===--------------------------------------------------------------------===//
493 // Scalarization Support: LegalizeVectorTypes.cpp
494 //===--------------------------------------------------------------------===//
496 /// GetScalarizedVector - Given a processed one-element vector Op which was
497 /// scalarized to its element type, this returns the element. For example,
498 /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
499 SDValue GetScalarizedVector(SDValue Op) {
500 SDValue &ScalarizedOp = ScalarizedVectors[Op];
501 RemapValue(ScalarizedOp);
502 assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
503 return ScalarizedOp;
505 void SetScalarizedVector(SDValue Op, SDValue Result);
507 // Vector Result Scalarization: <1 x ty> -> ty.
508 void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
509 SDValue ScalarizeVecRes_BinOp(SDNode *N);
510 SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
512 SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
513 SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
514 SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
515 SDValue ScalarizeVecRes_FPOWI(SDNode *N);
516 SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
517 SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
518 SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
519 SDValue ScalarizeVecRes_SELECT(SDNode *N);
520 SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
521 SDValue ScalarizeVecRes_SETCC(SDNode *N);
522 SDValue ScalarizeVecRes_UNDEF(SDNode *N);
523 SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
524 SDValue ScalarizeVecRes_VSETCC(SDNode *N);
526 // Vector Operand Scalarization: <1 x ty> -> ty.
527 bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
528 SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
529 SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
530 SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
531 SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
533 //===--------------------------------------------------------------------===//
534 // Vector Splitting Support: LegalizeVectorTypes.cpp
535 //===--------------------------------------------------------------------===//
537 /// GetSplitVector - Given a processed vector Op which was split into vectors
538 /// of half the size, this method returns the halves. The first elements of
539 /// Op coincide with the elements of Lo; the remaining elements of Op coincide
540 /// with the elements of Hi: Op is what you would get by concatenating Lo and
541 /// Hi. For example, if Op is a v8i32 that was split into two v4i32's, then
542 /// this method returns the two v4i32's, with Lo corresponding to the first 4
543 /// elements of Op, and Hi to the last 4 elements.
544 void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
545 void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
547 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
548 void SplitVectorResult(SDNode *N, unsigned OpNo);
549 void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
550 void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
552 void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
553 void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
554 void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
555 void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
556 void SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo, SDValue &Hi);
557 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
558 void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
559 void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
560 void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
561 void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
562 void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
563 void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
564 void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
565 SDValue &Hi);
567 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
568 bool SplitVectorOperand(SDNode *N, unsigned OpNo);
569 SDValue SplitVecOp_UnaryOp(SDNode *N);
571 SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
572 SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
573 SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
574 SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
576 //===--------------------------------------------------------------------===//
577 // Vector Widening Support: LegalizeVectorTypes.cpp
578 //===--------------------------------------------------------------------===//
580 /// GetWidenedVector - Given a processed vector Op which was widened into a
581 /// larger vector, this method returns the larger vector. The elements of
582 /// the returned vector consist of the elements of Op followed by elements
583 /// containing rubbish. For example, if Op is a v2i32 that was widened to a
584 /// v4i32, then this method returns a v4i32 for which the first two elements
585 /// are the same as those of Op, while the last two elements contain rubbish.
586 SDValue GetWidenedVector(SDValue Op) {
587 SDValue &WidenedOp = WidenedVectors[Op];
588 RemapValue(WidenedOp);
589 assert(WidenedOp.getNode() && "Operand wasn't widened?");
590 return WidenedOp;
592 void SetWidenedVector(SDValue Op, SDValue Result);
594 // Widen Vector Result Promotion.
595 void WidenVectorResult(SDNode *N, unsigned ResNo);
596 SDValue WidenVecRes_BIT_CONVERT(SDNode* N);
597 SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
598 SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
599 SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
600 SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
601 SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
602 SDValue WidenVecRes_LOAD(SDNode* N);
603 SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
604 SDValue WidenVecRes_SELECT(SDNode* N);
605 SDValue WidenVecRes_SELECT_CC(SDNode* N);
606 SDValue WidenVecRes_UNDEF(SDNode *N);
607 SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
608 SDValue WidenVecRes_VSETCC(SDNode* N);
610 SDValue WidenVecRes_Binary(SDNode *N);
611 SDValue WidenVecRes_Convert(SDNode *N);
612 SDValue WidenVecRes_Shift(SDNode *N);
613 SDValue WidenVecRes_Unary(SDNode *N);
615 // Widen Vector Operand.
616 bool WidenVectorOperand(SDNode *N, unsigned ResNo);
617 SDValue WidenVecOp_BIT_CONVERT(SDNode *N);
618 SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
619 SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
620 SDValue WidenVecOp_STORE(SDNode* N);
622 SDValue WidenVecOp_Convert(SDNode *N);
624 //===--------------------------------------------------------------------===//
625 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
626 //===--------------------------------------------------------------------===//
628 /// Helper genWidenVectorLoads - Helper function to generate a set of
629 /// loads to load a vector with a resulting wider type. It takes
630 /// ExtType: Extension type
631 /// LdChain: list of chains for the load we have generated.
632 /// Chain: incoming chain for the ld vector.
633 /// BasePtr: base pointer to load from.
634 /// SV: memory disambiguation source value.
635 /// SVOffset: memory disambiugation offset.
636 /// Alignment: alignment of the memory.
637 /// isVolatile: volatile load.
638 /// LdWidth: width of memory that we want to load.
639 /// ResType: the wider result result type for the resulting vector.
640 /// dl: DebugLoc to be applied to new nodes
641 SDValue GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain, SDValue Chain,
642 SDValue BasePtr, const Value *SV,
643 int SVOffset, unsigned Alignment,
644 bool isVolatile, unsigned LdWidth,
645 EVT ResType, DebugLoc dl);
647 /// Helper genWidenVectorStores - Helper function to generate a set of
648 /// stores to store a widen vector into non widen memory
649 /// It takes
650 /// StChain: list of chains for the stores we have generated
651 /// Chain: incoming chain for the ld vector
652 /// BasePtr: base pointer to load from
653 /// SV: memory disambiguation source value
654 /// SVOffset: memory disambiugation offset
655 /// Alignment: alignment of the memory
656 /// isVolatile: volatile lod
657 /// ValOp: value to store
658 /// StWidth: width of memory that we want to store
659 /// dl: DebugLoc to be applied to new nodes
660 void GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, SDValue Chain,
661 SDValue BasePtr, const Value *SV,
662 int SVOffset, unsigned Alignment,
663 bool isVolatile, SDValue ValOp,
664 unsigned StWidth, DebugLoc dl);
666 /// Modifies a vector input (widen or narrows) to a vector of NVT. The
667 /// input vector must have the same element type as NVT.
668 SDValue ModifyToType(SDValue InOp, EVT WidenVT);
671 //===--------------------------------------------------------------------===//
672 // Generic Splitting: LegalizeTypesGeneric.cpp
673 //===--------------------------------------------------------------------===//
675 // Legalization methods which only use that the illegal type is split into two
676 // not necessarily identical types. As such they can be used for splitting
677 // vectors and expanding integers and floats.
679 void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
680 if (Op.getValueType().isVector())
681 GetSplitVector(Op, Lo, Hi);
682 else if (Op.getValueType().isInteger())
683 GetExpandedInteger(Op, Lo, Hi);
684 else
685 GetExpandedFloat(Op, Lo, Hi);
688 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
689 /// which is split (or expanded) into two not necessarily identical pieces.
690 void GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT);
692 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
693 /// high parts of the given value.
694 void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
696 // Generic Result Splitting.
697 void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
698 void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi);
699 void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi);
700 void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi);
702 //===--------------------------------------------------------------------===//
703 // Generic Expansion: LegalizeTypesGeneric.cpp
704 //===--------------------------------------------------------------------===//
706 // Legalization methods which only use that the illegal type is split into two
707 // identical types of half the size, and that the Lo/Hi part is stored first
708 // in memory on little/big-endian machines, followed by the Hi/Lo part. As
709 // such they can be used for expanding integers and floats.
711 void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
712 if (Op.getValueType().isInteger())
713 GetExpandedInteger(Op, Lo, Hi);
714 else
715 GetExpandedFloat(Op, Lo, Hi);
718 // Generic Result Expansion.
719 void ExpandRes_BIT_CONVERT (SDNode *N, SDValue &Lo, SDValue &Hi);
720 void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi);
721 void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi);
722 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
723 void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi);
724 void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi);
726 // Generic Operand Expansion.
727 SDValue ExpandOp_BIT_CONVERT (SDNode *N);
728 SDValue ExpandOp_BUILD_VECTOR (SDNode *N);
729 SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N);
730 SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
731 SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
732 SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo);
735 } // end namespace llvm.
737 #endif