1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "llvm/Constants.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Function.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/Intrinsics.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/PseudoSourceValue.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Target/TargetData.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/ManagedStatic.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/System/Mutex.h"
40 #include "llvm/ADT/SetVector.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/SmallSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/StringExtras.h"
49 /// makeVTList - Return an instance of the SDVTList struct initialized with the
50 /// specified members.
51 static SDVTList
makeVTList(const EVT
*VTs
, unsigned NumVTs
) {
52 SDVTList Res
= {VTs
, NumVTs
};
56 static const fltSemantics
*EVTToAPFloatSemantics(EVT VT
) {
57 switch (VT
.getSimpleVT().SimpleTy
) {
58 default: llvm_unreachable("Unknown FP format");
59 case MVT::f32
: return &APFloat::IEEEsingle
;
60 case MVT::f64
: return &APFloat::IEEEdouble
;
61 case MVT::f80
: return &APFloat::x87DoubleExtended
;
62 case MVT::f128
: return &APFloat::IEEEquad
;
63 case MVT::ppcf128
: return &APFloat::PPCDoubleDouble
;
67 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
69 //===----------------------------------------------------------------------===//
70 // ConstantFPSDNode Class
71 //===----------------------------------------------------------------------===//
73 /// isExactlyValue - We don't rely on operator== working on double values, as
74 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
75 /// As such, this method can be used to do an exact bit-for-bit comparison of
76 /// two floating point values.
77 bool ConstantFPSDNode::isExactlyValue(const APFloat
& V
) const {
78 return getValueAPF().bitwiseIsEqual(V
);
81 bool ConstantFPSDNode::isValueValidForType(EVT VT
,
83 assert(VT
.isFloatingPoint() && "Can only convert between FP types");
85 // PPC long double cannot be converted to any other type.
86 if (VT
== MVT::ppcf128
||
87 &Val
.getSemantics() == &APFloat::PPCDoubleDouble
)
90 // convert modifies in place, so make a copy.
91 APFloat Val2
= APFloat(Val
);
93 (void) Val2
.convert(*EVTToAPFloatSemantics(VT
), APFloat::rmNearestTiesToEven
,
98 //===----------------------------------------------------------------------===//
100 //===----------------------------------------------------------------------===//
102 /// isBuildVectorAllOnes - Return true if the specified node is a
103 /// BUILD_VECTOR where all of the elements are ~0 or undef.
104 bool ISD::isBuildVectorAllOnes(const SDNode
*N
) {
105 // Look through a bit convert.
106 if (N
->getOpcode() == ISD::BIT_CONVERT
)
107 N
= N
->getOperand(0).getNode();
109 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
111 unsigned i
= 0, e
= N
->getNumOperands();
113 // Skip over all of the undef values.
114 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
117 // Do not accept an all-undef vector.
118 if (i
== e
) return false;
120 // Do not accept build_vectors that aren't all constants or which have non-~0
122 SDValue NotZero
= N
->getOperand(i
);
123 if (isa
<ConstantSDNode
>(NotZero
)) {
124 if (!cast
<ConstantSDNode
>(NotZero
)->isAllOnesValue())
126 } else if (isa
<ConstantFPSDNode
>(NotZero
)) {
127 if (!cast
<ConstantFPSDNode
>(NotZero
)->getValueAPF().
128 bitcastToAPInt().isAllOnesValue())
133 // Okay, we have at least one ~0 value, check to see if the rest match or are
135 for (++i
; i
!= e
; ++i
)
136 if (N
->getOperand(i
) != NotZero
&&
137 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
143 /// isBuildVectorAllZeros - Return true if the specified node is a
144 /// BUILD_VECTOR where all of the elements are 0 or undef.
145 bool ISD::isBuildVectorAllZeros(const SDNode
*N
) {
146 // Look through a bit convert.
147 if (N
->getOpcode() == ISD::BIT_CONVERT
)
148 N
= N
->getOperand(0).getNode();
150 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
152 unsigned i
= 0, e
= N
->getNumOperands();
154 // Skip over all of the undef values.
155 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
158 // Do not accept an all-undef vector.
159 if (i
== e
) return false;
161 // Do not accept build_vectors that aren't all constants or which have non-0
163 SDValue Zero
= N
->getOperand(i
);
164 if (isa
<ConstantSDNode
>(Zero
)) {
165 if (!cast
<ConstantSDNode
>(Zero
)->isNullValue())
167 } else if (isa
<ConstantFPSDNode
>(Zero
)) {
168 if (!cast
<ConstantFPSDNode
>(Zero
)->getValueAPF().isPosZero())
173 // Okay, we have at least one 0 value, check to see if the rest match or are
175 for (++i
; i
!= e
; ++i
)
176 if (N
->getOperand(i
) != Zero
&&
177 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
182 /// isScalarToVector - Return true if the specified node is a
183 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
184 /// element is not an undef.
185 bool ISD::isScalarToVector(const SDNode
*N
) {
186 if (N
->getOpcode() == ISD::SCALAR_TO_VECTOR
)
189 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
191 if (N
->getOperand(0).getOpcode() == ISD::UNDEF
)
193 unsigned NumElems
= N
->getNumOperands();
194 for (unsigned i
= 1; i
< NumElems
; ++i
) {
195 SDValue V
= N
->getOperand(i
);
196 if (V
.getOpcode() != ISD::UNDEF
)
203 /// isDebugLabel - Return true if the specified node represents a debug
204 /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
205 bool ISD::isDebugLabel(const SDNode
*N
) {
207 if (N
->getOpcode() == ISD::DBG_LABEL
)
209 if (N
->isMachineOpcode() &&
210 N
->getMachineOpcode() == TargetInstrInfo::DBG_LABEL
)
215 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
216 /// when given the operation for (X op Y).
217 ISD::CondCode
ISD::getSetCCSwappedOperands(ISD::CondCode Operation
) {
218 // To perform this operation, we just need to swap the L and G bits of the
220 unsigned OldL
= (Operation
>> 2) & 1;
221 unsigned OldG
= (Operation
>> 1) & 1;
222 return ISD::CondCode((Operation
& ~6) | // Keep the N, U, E bits
223 (OldL
<< 1) | // New G bit
224 (OldG
<< 2)); // New L bit.
227 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
228 /// 'op' is a valid SetCC operation.
229 ISD::CondCode
ISD::getSetCCInverse(ISD::CondCode Op
, bool isInteger
) {
230 unsigned Operation
= Op
;
232 Operation
^= 7; // Flip L, G, E bits, but not U.
234 Operation
^= 15; // Flip all of the condition bits.
236 if (Operation
> ISD::SETTRUE2
)
237 Operation
&= ~8; // Don't let N and U bits get set.
239 return ISD::CondCode(Operation
);
243 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
244 /// signed operation and 2 if the result is an unsigned comparison. Return zero
245 /// if the operation does not depend on the sign of the input (setne and seteq).
246 static int isSignedOp(ISD::CondCode Opcode
) {
248 default: llvm_unreachable("Illegal integer setcc operation!");
250 case ISD::SETNE
: return 0;
254 case ISD::SETGE
: return 1;
258 case ISD::SETUGE
: return 2;
262 /// getSetCCOrOperation - Return the result of a logical OR between different
263 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
264 /// returns SETCC_INVALID if it is not possible to represent the resultant
266 ISD::CondCode
ISD::getSetCCOrOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
268 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
269 // Cannot fold a signed integer setcc with an unsigned integer setcc.
270 return ISD::SETCC_INVALID
;
272 unsigned Op
= Op1
| Op2
; // Combine all of the condition bits.
274 // If the N and U bits get set then the resultant comparison DOES suddenly
275 // care about orderedness, and is true when ordered.
276 if (Op
> ISD::SETTRUE2
)
277 Op
&= ~16; // Clear the U bit if the N bit is set.
279 // Canonicalize illegal integer setcc's.
280 if (isInteger
&& Op
== ISD::SETUNE
) // e.g. SETUGT | SETULT
283 return ISD::CondCode(Op
);
286 /// getSetCCAndOperation - Return the result of a logical AND between different
287 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
288 /// function returns zero if it is not possible to represent the resultant
290 ISD::CondCode
ISD::getSetCCAndOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
292 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
293 // Cannot fold a signed setcc with an unsigned setcc.
294 return ISD::SETCC_INVALID
;
296 // Combine all of the condition bits.
297 ISD::CondCode Result
= ISD::CondCode(Op1
& Op2
);
299 // Canonicalize illegal integer setcc's.
303 case ISD::SETUO
: Result
= ISD::SETFALSE
; break; // SETUGT & SETULT
304 case ISD::SETOEQ
: // SETEQ & SETU[LG]E
305 case ISD::SETUEQ
: Result
= ISD::SETEQ
; break; // SETUGE & SETULE
306 case ISD::SETOLT
: Result
= ISD::SETULT
; break; // SETULT & SETNE
307 case ISD::SETOGT
: Result
= ISD::SETUGT
; break; // SETUGT & SETNE
314 const TargetMachine
&SelectionDAG::getTarget() const {
315 return MF
->getTarget();
318 //===----------------------------------------------------------------------===//
319 // SDNode Profile Support
320 //===----------------------------------------------------------------------===//
322 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
324 static void AddNodeIDOpcode(FoldingSetNodeID
&ID
, unsigned OpC
) {
328 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
329 /// solely with their pointer.
330 static void AddNodeIDValueTypes(FoldingSetNodeID
&ID
, SDVTList VTList
) {
331 ID
.AddPointer(VTList
.VTs
);
334 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
337 const SDValue
*Ops
, unsigned NumOps
) {
338 for (; NumOps
; --NumOps
, ++Ops
) {
339 ID
.AddPointer(Ops
->getNode());
340 ID
.AddInteger(Ops
->getResNo());
344 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
346 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
347 const SDUse
*Ops
, unsigned NumOps
) {
348 for (; NumOps
; --NumOps
, ++Ops
) {
349 ID
.AddPointer(Ops
->getNode());
350 ID
.AddInteger(Ops
->getResNo());
354 static void AddNodeIDNode(FoldingSetNodeID
&ID
,
355 unsigned short OpC
, SDVTList VTList
,
356 const SDValue
*OpList
, unsigned N
) {
357 AddNodeIDOpcode(ID
, OpC
);
358 AddNodeIDValueTypes(ID
, VTList
);
359 AddNodeIDOperands(ID
, OpList
, N
);
362 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
364 static void AddNodeIDCustom(FoldingSetNodeID
&ID
, const SDNode
*N
) {
365 switch (N
->getOpcode()) {
366 case ISD::TargetExternalSymbol
:
367 case ISD::ExternalSymbol
:
368 llvm_unreachable("Should only be used on nodes with operands");
369 default: break; // Normal nodes don't need extra info.
370 case ISD::TargetConstant
:
372 ID
.AddPointer(cast
<ConstantSDNode
>(N
)->getConstantIntValue());
374 case ISD::TargetConstantFP
:
375 case ISD::ConstantFP
: {
376 ID
.AddPointer(cast
<ConstantFPSDNode
>(N
)->getConstantFPValue());
379 case ISD::TargetGlobalAddress
:
380 case ISD::GlobalAddress
:
381 case ISD::TargetGlobalTLSAddress
:
382 case ISD::GlobalTLSAddress
: {
383 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
384 ID
.AddPointer(GA
->getGlobal());
385 ID
.AddInteger(GA
->getOffset());
386 ID
.AddInteger(GA
->getTargetFlags());
389 case ISD::BasicBlock
:
390 ID
.AddPointer(cast
<BasicBlockSDNode
>(N
)->getBasicBlock());
393 ID
.AddInteger(cast
<RegisterSDNode
>(N
)->getReg());
395 case ISD::DBG_STOPPOINT
: {
396 const DbgStopPointSDNode
*DSP
= cast
<DbgStopPointSDNode
>(N
);
397 ID
.AddInteger(DSP
->getLine());
398 ID
.AddInteger(DSP
->getColumn());
399 ID
.AddPointer(DSP
->getCompileUnit());
403 ID
.AddPointer(cast
<SrcValueSDNode
>(N
)->getValue());
405 case ISD::MEMOPERAND
: {
406 const MachineMemOperand
&MO
= cast
<MemOperandSDNode
>(N
)->MO
;
410 case ISD::FrameIndex
:
411 case ISD::TargetFrameIndex
:
412 ID
.AddInteger(cast
<FrameIndexSDNode
>(N
)->getIndex());
415 case ISD::TargetJumpTable
:
416 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getIndex());
417 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getTargetFlags());
419 case ISD::ConstantPool
:
420 case ISD::TargetConstantPool
: {
421 const ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
422 ID
.AddInteger(CP
->getAlignment());
423 ID
.AddInteger(CP
->getOffset());
424 if (CP
->isMachineConstantPoolEntry())
425 CP
->getMachineCPVal()->AddSelectionDAGCSEId(ID
);
427 ID
.AddPointer(CP
->getConstVal());
428 ID
.AddInteger(CP
->getTargetFlags());
432 const LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
433 ID
.AddInteger(LD
->getMemoryVT().getRawBits());
434 ID
.AddInteger(LD
->getRawSubclassData());
438 const StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
439 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
440 ID
.AddInteger(ST
->getRawSubclassData());
443 case ISD::ATOMIC_CMP_SWAP
:
444 case ISD::ATOMIC_SWAP
:
445 case ISD::ATOMIC_LOAD_ADD
:
446 case ISD::ATOMIC_LOAD_SUB
:
447 case ISD::ATOMIC_LOAD_AND
:
448 case ISD::ATOMIC_LOAD_OR
:
449 case ISD::ATOMIC_LOAD_XOR
:
450 case ISD::ATOMIC_LOAD_NAND
:
451 case ISD::ATOMIC_LOAD_MIN
:
452 case ISD::ATOMIC_LOAD_MAX
:
453 case ISD::ATOMIC_LOAD_UMIN
:
454 case ISD::ATOMIC_LOAD_UMAX
: {
455 const AtomicSDNode
*AT
= cast
<AtomicSDNode
>(N
);
456 ID
.AddInteger(AT
->getMemoryVT().getRawBits());
457 ID
.AddInteger(AT
->getRawSubclassData());
460 case ISD::VECTOR_SHUFFLE
: {
461 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
462 for (unsigned i
= 0, e
= N
->getValueType(0).getVectorNumElements();
464 ID
.AddInteger(SVN
->getMaskElt(i
));
467 } // end switch (N->getOpcode())
470 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
472 static void AddNodeIDNode(FoldingSetNodeID
&ID
, const SDNode
*N
) {
473 AddNodeIDOpcode(ID
, N
->getOpcode());
474 // Add the return value info.
475 AddNodeIDValueTypes(ID
, N
->getVTList());
476 // Add the operand info.
477 AddNodeIDOperands(ID
, N
->op_begin(), N
->getNumOperands());
479 // Handle SDNode leafs with special info.
480 AddNodeIDCustom(ID
, N
);
483 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
484 /// the CSE map that carries alignment, volatility, indexing mode, and
485 /// extension/truncation information.
487 static inline unsigned
488 encodeMemSDNodeFlags(int ConvType
, ISD::MemIndexedMode AM
,
489 bool isVolatile
, unsigned Alignment
) {
490 assert((ConvType
& 3) == ConvType
&&
491 "ConvType may not require more than 2 bits!");
492 assert((AM
& 7) == AM
&&
493 "AM may not require more than 3 bits!");
497 ((Log2_32(Alignment
) + 1) << 6);
500 //===----------------------------------------------------------------------===//
501 // SelectionDAG Class
502 //===----------------------------------------------------------------------===//
504 /// doNotCSE - Return true if CSE should not be performed for this node.
505 static bool doNotCSE(SDNode
*N
) {
506 if (N
->getValueType(0) == MVT::Flag
)
507 return true; // Never CSE anything that produces a flag.
509 switch (N
->getOpcode()) {
511 case ISD::HANDLENODE
:
513 case ISD::DBG_STOPPOINT
:
516 return true; // Never CSE these nodes.
519 // Check that remaining values produced are not flags.
520 for (unsigned i
= 1, e
= N
->getNumValues(); i
!= e
; ++i
)
521 if (N
->getValueType(i
) == MVT::Flag
)
522 return true; // Never CSE anything that produces a flag.
527 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
529 void SelectionDAG::RemoveDeadNodes() {
530 // Create a dummy node (which is not added to allnodes), that adds a reference
531 // to the root node, preventing it from being deleted.
532 HandleSDNode
Dummy(getRoot());
534 SmallVector
<SDNode
*, 128> DeadNodes
;
536 // Add all obviously-dead nodes to the DeadNodes worklist.
537 for (allnodes_iterator I
= allnodes_begin(), E
= allnodes_end(); I
!= E
; ++I
)
539 DeadNodes
.push_back(I
);
541 RemoveDeadNodes(DeadNodes
);
543 // If the root changed (e.g. it was a dead load, update the root).
544 setRoot(Dummy
.getValue());
547 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
548 /// given list, and any nodes that become unreachable as a result.
549 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
,
550 DAGUpdateListener
*UpdateListener
) {
552 // Process the worklist, deleting the nodes and adding their uses to the
554 while (!DeadNodes
.empty()) {
555 SDNode
*N
= DeadNodes
.pop_back_val();
558 UpdateListener
->NodeDeleted(N
, 0);
560 // Take the node out of the appropriate CSE map.
561 RemoveNodeFromCSEMaps(N
);
563 // Next, brutally remove the operand list. This is safe to do, as there are
564 // no cycles in the graph.
565 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
567 SDNode
*Operand
= Use
.getNode();
570 // Now that we removed this operand, see if there are no uses of it left.
571 if (Operand
->use_empty())
572 DeadNodes
.push_back(Operand
);
579 void SelectionDAG::RemoveDeadNode(SDNode
*N
, DAGUpdateListener
*UpdateListener
){
580 SmallVector
<SDNode
*, 16> DeadNodes(1, N
);
581 RemoveDeadNodes(DeadNodes
, UpdateListener
);
584 void SelectionDAG::DeleteNode(SDNode
*N
) {
585 // First take this out of the appropriate CSE map.
586 RemoveNodeFromCSEMaps(N
);
588 // Finally, remove uses due to operands of this node, remove from the
589 // AllNodes list, and delete the node.
590 DeleteNodeNotInCSEMaps(N
);
593 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode
*N
) {
594 assert(N
!= AllNodes
.begin() && "Cannot delete the entry node!");
595 assert(N
->use_empty() && "Cannot delete a node that is not dead!");
597 // Drop all of the operands and decrement used node's use counts.
603 void SelectionDAG::DeallocateNode(SDNode
*N
) {
604 if (N
->OperandsNeedDelete
)
605 delete[] N
->OperandList
;
607 // Set the opcode to DELETED_NODE to help catch bugs when node
608 // memory is reallocated.
609 N
->NodeType
= ISD::DELETED_NODE
;
611 NodeAllocator
.Deallocate(AllNodes
.remove(N
));
614 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
615 /// correspond to it. This is useful when we're about to delete or repurpose
616 /// the node. We don't want future request for structurally identical nodes
617 /// to return N anymore.
618 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode
*N
) {
620 switch (N
->getOpcode()) {
621 case ISD::EntryToken
:
622 llvm_unreachable("EntryToken should not be in CSEMaps!");
624 case ISD::HANDLENODE
: return false; // noop.
626 assert(CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] &&
627 "Cond code doesn't exist!");
628 Erased
= CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] != 0;
629 CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] = 0;
631 case ISD::ExternalSymbol
:
632 Erased
= ExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
634 case ISD::TargetExternalSymbol
: {
635 ExternalSymbolSDNode
*ESN
= cast
<ExternalSymbolSDNode
>(N
);
636 Erased
= TargetExternalSymbols
.erase(
637 std::pair
<std::string
,unsigned char>(ESN
->getSymbol(),
638 ESN
->getTargetFlags()));
641 case ISD::VALUETYPE
: {
642 EVT VT
= cast
<VTSDNode
>(N
)->getVT();
643 if (VT
.isExtended()) {
644 Erased
= ExtendedValueTypeNodes
.erase(VT
);
646 Erased
= ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] != 0;
647 ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] = 0;
652 // Remove it from the CSE Map.
653 Erased
= CSEMap
.RemoveNode(N
);
657 // Verify that the node was actually in one of the CSE maps, unless it has a
658 // flag result (which cannot be CSE'd) or is one of the special cases that are
659 // not subject to CSE.
660 if (!Erased
&& N
->getValueType(N
->getNumValues()-1) != MVT::Flag
&&
661 !N
->isMachineOpcode() && !doNotCSE(N
)) {
664 llvm_unreachable("Node is not in map!");
670 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
671 /// maps and modified in place. Add it back to the CSE maps, unless an identical
672 /// node already exists, in which case transfer all its users to the existing
673 /// node. This transfer can potentially trigger recursive merging.
676 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode
*N
,
677 DAGUpdateListener
*UpdateListener
) {
678 // For node types that aren't CSE'd, just act as if no identical node
681 SDNode
*Existing
= CSEMap
.GetOrInsertNode(N
);
683 // If there was already an existing matching node, use ReplaceAllUsesWith
684 // to replace the dead one with the existing one. This can cause
685 // recursive merging of other unrelated nodes down the line.
686 ReplaceAllUsesWith(N
, Existing
, UpdateListener
);
688 // N is now dead. Inform the listener if it exists and delete it.
690 UpdateListener
->NodeDeleted(N
, Existing
);
691 DeleteNodeNotInCSEMaps(N
);
696 // If the node doesn't already exist, we updated it. Inform a listener if
699 UpdateListener
->NodeUpdated(N
);
702 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
703 /// were replaced with those specified. If this node is never memoized,
704 /// return null, otherwise return a pointer to the slot it would take. If a
705 /// node already exists with these operands, the slot will be non-null.
706 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, SDValue Op
,
711 SDValue Ops
[] = { Op
};
713 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 1);
714 AddNodeIDCustom(ID
, N
);
715 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
718 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
719 /// were replaced with those specified. If this node is never memoized,
720 /// return null, otherwise return a pointer to the slot it would take. If a
721 /// node already exists with these operands, the slot will be non-null.
722 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
723 SDValue Op1
, SDValue Op2
,
728 SDValue Ops
[] = { Op1
, Op2
};
730 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 2);
731 AddNodeIDCustom(ID
, N
);
732 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
736 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
737 /// were replaced with those specified. If this node is never memoized,
738 /// return null, otherwise return a pointer to the slot it would take. If a
739 /// node already exists with these operands, the slot will be non-null.
740 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
741 const SDValue
*Ops
,unsigned NumOps
,
747 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, NumOps
);
748 AddNodeIDCustom(ID
, N
);
749 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
752 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
753 void SelectionDAG::VerifyNode(SDNode
*N
) {
754 switch (N
->getOpcode()) {
757 case ISD::BUILD_PAIR
: {
758 EVT VT
= N
->getValueType(0);
759 assert(N
->getNumValues() == 1 && "Too many results!");
760 assert(!VT
.isVector() && (VT
.isInteger() || VT
.isFloatingPoint()) &&
761 "Wrong return type!");
762 assert(N
->getNumOperands() == 2 && "Wrong number of operands!");
763 assert(N
->getOperand(0).getValueType() == N
->getOperand(1).getValueType() &&
764 "Mismatched operand types!");
765 assert(N
->getOperand(0).getValueType().isInteger() == VT
.isInteger() &&
766 "Wrong operand type!");
767 assert(VT
.getSizeInBits() == 2 * N
->getOperand(0).getValueSizeInBits() &&
768 "Wrong return type size");
771 case ISD::BUILD_VECTOR
: {
772 assert(N
->getNumValues() == 1 && "Too many results!");
773 assert(N
->getValueType(0).isVector() && "Wrong return type!");
774 assert(N
->getNumOperands() == N
->getValueType(0).getVectorNumElements() &&
775 "Wrong number of operands!");
776 EVT EltVT
= N
->getValueType(0).getVectorElementType();
777 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ++I
)
778 assert((I
->getValueType() == EltVT
||
779 (EltVT
.isInteger() && I
->getValueType().isInteger() &&
780 EltVT
.bitsLE(I
->getValueType()))) &&
781 "Wrong operand type!");
787 /// getEVTAlignment - Compute the default alignment value for the
790 unsigned SelectionDAG::getEVTAlignment(EVT VT
) const {
791 const Type
*Ty
= VT
== MVT::iPTR
?
792 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
793 VT
.getTypeForEVT(*getContext());
795 return TLI
.getTargetData()->getABITypeAlignment(Ty
);
798 // EntryNode could meaningfully have debug info if we can find it...
799 SelectionDAG::SelectionDAG(TargetLowering
&tli
, FunctionLoweringInfo
&fli
)
800 : TLI(tli
), FLI(fli
), DW(0),
801 EntryNode(ISD::EntryToken
, DebugLoc::getUnknownLoc(),
802 getVTList(MVT::Other
)), Root(getEntryNode()) {
803 AllNodes
.push_back(&EntryNode
);
806 void SelectionDAG::init(MachineFunction
&mf
, MachineModuleInfo
*mmi
,
811 Context
= &mf
.getFunction()->getContext();
814 SelectionDAG::~SelectionDAG() {
818 void SelectionDAG::allnodes_clear() {
819 assert(&*AllNodes
.begin() == &EntryNode
);
820 AllNodes
.remove(AllNodes
.begin());
821 while (!AllNodes
.empty())
822 DeallocateNode(AllNodes
.begin());
825 void SelectionDAG::clear() {
827 OperandAllocator
.Reset();
830 ExtendedValueTypeNodes
.clear();
831 ExternalSymbols
.clear();
832 TargetExternalSymbols
.clear();
833 std::fill(CondCodeNodes
.begin(), CondCodeNodes
.end(),
834 static_cast<CondCodeSDNode
*>(0));
835 std::fill(ValueTypeNodes
.begin(), ValueTypeNodes
.end(),
836 static_cast<SDNode
*>(0));
838 EntryNode
.UseList
= 0;
839 AllNodes
.push_back(&EntryNode
);
840 Root
= getEntryNode();
843 SDValue
SelectionDAG::getZeroExtendInReg(SDValue Op
, DebugLoc DL
, EVT VT
) {
844 if (Op
.getValueType() == VT
) return Op
;
845 APInt Imm
= APInt::getLowBitsSet(Op
.getValueSizeInBits(),
847 return getNode(ISD::AND
, DL
, Op
.getValueType(), Op
,
848 getConstant(Imm
, Op
.getValueType()));
851 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
853 SDValue
SelectionDAG::getNOT(DebugLoc DL
, SDValue Val
, EVT VT
) {
854 EVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
856 getConstant(APInt::getAllOnesValue(EltVT
.getSizeInBits()), VT
);
857 return getNode(ISD::XOR
, DL
, VT
, Val
, NegOne
);
860 SDValue
SelectionDAG::getConstant(uint64_t Val
, EVT VT
, bool isT
) {
861 EVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
862 assert((EltVT
.getSizeInBits() >= 64 ||
863 (uint64_t)((int64_t)Val
>> EltVT
.getSizeInBits()) + 1 < 2) &&
864 "getConstant with a uint64_t value that doesn't fit in the type!");
865 return getConstant(APInt(EltVT
.getSizeInBits(), Val
), VT
, isT
);
868 SDValue
SelectionDAG::getConstant(const APInt
&Val
, EVT VT
, bool isT
) {
869 return getConstant(*ConstantInt::get(*Context
, Val
), VT
, isT
);
872 SDValue
SelectionDAG::getConstant(const ConstantInt
&Val
, EVT VT
, bool isT
) {
873 assert(VT
.isInteger() && "Cannot create FP integer constant!");
875 EVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
876 assert(Val
.getBitWidth() == EltVT
.getSizeInBits() &&
877 "APInt size does not match type size!");
879 unsigned Opc
= isT
? ISD::TargetConstant
: ISD::Constant
;
881 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
885 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
887 return SDValue(N
, 0);
889 N
= NodeAllocator
.Allocate
<ConstantSDNode
>();
890 new (N
) ConstantSDNode(isT
, &Val
, EltVT
);
891 CSEMap
.InsertNode(N
, IP
);
892 AllNodes
.push_back(N
);
895 SDValue
Result(N
, 0);
897 SmallVector
<SDValue
, 8> Ops
;
898 Ops
.assign(VT
.getVectorNumElements(), Result
);
899 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
900 VT
, &Ops
[0], Ops
.size());
905 SDValue
SelectionDAG::getIntPtrConstant(uint64_t Val
, bool isTarget
) {
906 return getConstant(Val
, TLI
.getPointerTy(), isTarget
);
910 SDValue
SelectionDAG::getConstantFP(const APFloat
& V
, EVT VT
, bool isTarget
) {
911 return getConstantFP(*ConstantFP::get(*getContext(), V
), VT
, isTarget
);
914 SDValue
SelectionDAG::getConstantFP(const ConstantFP
& V
, EVT VT
, bool isTarget
){
915 assert(VT
.isFloatingPoint() && "Cannot create integer FP constant!");
918 VT
.isVector() ? VT
.getVectorElementType() : VT
;
920 // Do the map lookup using the actual bit pattern for the floating point
921 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
922 // we don't have issues with SNANs.
923 unsigned Opc
= isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
;
925 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
929 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
931 return SDValue(N
, 0);
933 N
= NodeAllocator
.Allocate
<ConstantFPSDNode
>();
934 new (N
) ConstantFPSDNode(isTarget
, &V
, EltVT
);
935 CSEMap
.InsertNode(N
, IP
);
936 AllNodes
.push_back(N
);
939 SDValue
Result(N
, 0);
941 SmallVector
<SDValue
, 8> Ops
;
942 Ops
.assign(VT
.getVectorNumElements(), Result
);
943 // FIXME DebugLoc info might be appropriate here
944 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
945 VT
, &Ops
[0], Ops
.size());
950 SDValue
SelectionDAG::getConstantFP(double Val
, EVT VT
, bool isTarget
) {
952 VT
.isVector() ? VT
.getVectorElementType() : VT
;
954 return getConstantFP(APFloat((float)Val
), VT
, isTarget
);
956 return getConstantFP(APFloat(Val
), VT
, isTarget
);
959 SDValue
SelectionDAG::getGlobalAddress(const GlobalValue
*GV
,
960 EVT VT
, int64_t Offset
,
962 unsigned char TargetFlags
) {
963 assert((TargetFlags
== 0 || isTargetGA
) &&
964 "Cannot set target flags on target-independent globals");
966 // Truncate (with sign-extension) the offset value to the pointer size.
967 EVT PTy
= TLI
.getPointerTy();
968 unsigned BitWidth
= PTy
.getSizeInBits();
970 Offset
= (Offset
<< (64 - BitWidth
) >> (64 - BitWidth
));
972 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
974 // If GV is an alias then use the aliasee for determining thread-localness.
975 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
976 GVar
= dyn_cast_or_null
<GlobalVariable
>(GA
->resolveAliasedGlobal(false));
980 if (GVar
&& GVar
->isThreadLocal())
981 Opc
= isTargetGA
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
;
983 Opc
= isTargetGA
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
;
986 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
988 ID
.AddInteger(Offset
);
989 ID
.AddInteger(TargetFlags
);
991 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
992 return SDValue(E
, 0);
993 SDNode
*N
= NodeAllocator
.Allocate
<GlobalAddressSDNode
>();
994 new (N
) GlobalAddressSDNode(Opc
, GV
, VT
, Offset
, TargetFlags
);
995 CSEMap
.InsertNode(N
, IP
);
996 AllNodes
.push_back(N
);
997 return SDValue(N
, 0);
1000 SDValue
SelectionDAG::getFrameIndex(int FI
, EVT VT
, bool isTarget
) {
1001 unsigned Opc
= isTarget
? ISD::TargetFrameIndex
: ISD::FrameIndex
;
1002 FoldingSetNodeID ID
;
1003 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1006 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1007 return SDValue(E
, 0);
1008 SDNode
*N
= NodeAllocator
.Allocate
<FrameIndexSDNode
>();
1009 new (N
) FrameIndexSDNode(FI
, VT
, isTarget
);
1010 CSEMap
.InsertNode(N
, IP
);
1011 AllNodes
.push_back(N
);
1012 return SDValue(N
, 0);
1015 SDValue
SelectionDAG::getJumpTable(int JTI
, EVT VT
, bool isTarget
,
1016 unsigned char TargetFlags
) {
1017 assert((TargetFlags
== 0 || isTarget
) &&
1018 "Cannot set target flags on target-independent jump tables");
1019 unsigned Opc
= isTarget
? ISD::TargetJumpTable
: ISD::JumpTable
;
1020 FoldingSetNodeID ID
;
1021 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1023 ID
.AddInteger(TargetFlags
);
1025 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1026 return SDValue(E
, 0);
1027 SDNode
*N
= NodeAllocator
.Allocate
<JumpTableSDNode
>();
1028 new (N
) JumpTableSDNode(JTI
, VT
, isTarget
, TargetFlags
);
1029 CSEMap
.InsertNode(N
, IP
);
1030 AllNodes
.push_back(N
);
1031 return SDValue(N
, 0);
1034 SDValue
SelectionDAG::getConstantPool(Constant
*C
, EVT VT
,
1035 unsigned Alignment
, int Offset
,
1037 unsigned char TargetFlags
) {
1038 assert((TargetFlags
== 0 || isTarget
) &&
1039 "Cannot set target flags on target-independent globals");
1041 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1042 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1043 FoldingSetNodeID ID
;
1044 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1045 ID
.AddInteger(Alignment
);
1046 ID
.AddInteger(Offset
);
1048 ID
.AddInteger(TargetFlags
);
1050 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1051 return SDValue(E
, 0);
1052 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1053 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
, TargetFlags
);
1054 CSEMap
.InsertNode(N
, IP
);
1055 AllNodes
.push_back(N
);
1056 return SDValue(N
, 0);
1060 SDValue
SelectionDAG::getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
1061 unsigned Alignment
, int Offset
,
1063 unsigned char TargetFlags
) {
1064 assert((TargetFlags
== 0 || isTarget
) &&
1065 "Cannot set target flags on target-independent globals");
1067 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1068 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1069 FoldingSetNodeID ID
;
1070 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1071 ID
.AddInteger(Alignment
);
1072 ID
.AddInteger(Offset
);
1073 C
->AddSelectionDAGCSEId(ID
);
1074 ID
.AddInteger(TargetFlags
);
1076 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1077 return SDValue(E
, 0);
1078 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1079 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
, TargetFlags
);
1080 CSEMap
.InsertNode(N
, IP
);
1081 AllNodes
.push_back(N
);
1082 return SDValue(N
, 0);
1085 SDValue
SelectionDAG::getBasicBlock(MachineBasicBlock
*MBB
) {
1086 FoldingSetNodeID ID
;
1087 AddNodeIDNode(ID
, ISD::BasicBlock
, getVTList(MVT::Other
), 0, 0);
1090 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1091 return SDValue(E
, 0);
1092 SDNode
*N
= NodeAllocator
.Allocate
<BasicBlockSDNode
>();
1093 new (N
) BasicBlockSDNode(MBB
);
1094 CSEMap
.InsertNode(N
, IP
);
1095 AllNodes
.push_back(N
);
1096 return SDValue(N
, 0);
1099 SDValue
SelectionDAG::getValueType(EVT VT
) {
1100 if (VT
.isSimple() && (unsigned)VT
.getSimpleVT().SimpleTy
>=
1101 ValueTypeNodes
.size())
1102 ValueTypeNodes
.resize(VT
.getSimpleVT().SimpleTy
+1);
1104 SDNode
*&N
= VT
.isExtended() ?
1105 ExtendedValueTypeNodes
[VT
] : ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
];
1107 if (N
) return SDValue(N
, 0);
1108 N
= NodeAllocator
.Allocate
<VTSDNode
>();
1109 new (N
) VTSDNode(VT
);
1110 AllNodes
.push_back(N
);
1111 return SDValue(N
, 0);
1114 SDValue
SelectionDAG::getExternalSymbol(const char *Sym
, EVT VT
) {
1115 SDNode
*&N
= ExternalSymbols
[Sym
];
1116 if (N
) return SDValue(N
, 0);
1117 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1118 new (N
) ExternalSymbolSDNode(false, Sym
, 0, VT
);
1119 AllNodes
.push_back(N
);
1120 return SDValue(N
, 0);
1123 SDValue
SelectionDAG::getTargetExternalSymbol(const char *Sym
, EVT VT
,
1124 unsigned char TargetFlags
) {
1126 TargetExternalSymbols
[std::pair
<std::string
,unsigned char>(Sym
,
1128 if (N
) return SDValue(N
, 0);
1129 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1130 new (N
) ExternalSymbolSDNode(true, Sym
, TargetFlags
, VT
);
1131 AllNodes
.push_back(N
);
1132 return SDValue(N
, 0);
1135 SDValue
SelectionDAG::getCondCode(ISD::CondCode Cond
) {
1136 if ((unsigned)Cond
>= CondCodeNodes
.size())
1137 CondCodeNodes
.resize(Cond
+1);
1139 if (CondCodeNodes
[Cond
] == 0) {
1140 CondCodeSDNode
*N
= NodeAllocator
.Allocate
<CondCodeSDNode
>();
1141 new (N
) CondCodeSDNode(Cond
);
1142 CondCodeNodes
[Cond
] = N
;
1143 AllNodes
.push_back(N
);
1145 return SDValue(CondCodeNodes
[Cond
], 0);
1148 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1149 // the shuffle mask M that point at N1 to point at N2, and indices that point
1150 // N2 to point at N1.
1151 static void commuteShuffle(SDValue
&N1
, SDValue
&N2
, SmallVectorImpl
<int> &M
) {
1153 int NElts
= M
.size();
1154 for (int i
= 0; i
!= NElts
; ++i
) {
1162 SDValue
SelectionDAG::getVectorShuffle(EVT VT
, DebugLoc dl
, SDValue N1
,
1163 SDValue N2
, const int *Mask
) {
1164 assert(N1
.getValueType() == N2
.getValueType() && "Invalid VECTOR_SHUFFLE");
1165 assert(VT
.isVector() && N1
.getValueType().isVector() &&
1166 "Vector Shuffle VTs must be a vectors");
1167 assert(VT
.getVectorElementType() == N1
.getValueType().getVectorElementType()
1168 && "Vector Shuffle VTs must have same element type");
1170 // Canonicalize shuffle undef, undef -> undef
1171 if (N1
.getOpcode() == ISD::UNDEF
&& N2
.getOpcode() == ISD::UNDEF
)
1172 return getUNDEF(VT
);
1174 // Validate that all indices in Mask are within the range of the elements
1175 // input to the shuffle.
1176 unsigned NElts
= VT
.getVectorNumElements();
1177 SmallVector
<int, 8> MaskVec
;
1178 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1179 assert(Mask
[i
] < (int)(NElts
* 2) && "Index out of range");
1180 MaskVec
.push_back(Mask
[i
]);
1183 // Canonicalize shuffle v, v -> v, undef
1186 for (unsigned i
= 0; i
!= NElts
; ++i
)
1187 if (MaskVec
[i
] >= (int)NElts
) MaskVec
[i
] -= NElts
;
1190 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1191 if (N1
.getOpcode() == ISD::UNDEF
)
1192 commuteShuffle(N1
, N2
, MaskVec
);
1194 // Canonicalize all index into lhs, -> shuffle lhs, undef
1195 // Canonicalize all index into rhs, -> shuffle rhs, undef
1196 bool AllLHS
= true, AllRHS
= true;
1197 bool N2Undef
= N2
.getOpcode() == ISD::UNDEF
;
1198 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1199 if (MaskVec
[i
] >= (int)NElts
) {
1204 } else if (MaskVec
[i
] >= 0) {
1208 if (AllLHS
&& AllRHS
)
1209 return getUNDEF(VT
);
1210 if (AllLHS
&& !N2Undef
)
1214 commuteShuffle(N1
, N2
, MaskVec
);
1217 // If Identity shuffle, or all shuffle in to undef, return that node.
1218 bool AllUndef
= true;
1219 bool Identity
= true;
1220 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1221 if (MaskVec
[i
] >= 0 && MaskVec
[i
] != (int)i
) Identity
= false;
1222 if (MaskVec
[i
] >= 0) AllUndef
= false;
1224 if (Identity
&& NElts
== N1
.getValueType().getVectorNumElements())
1227 return getUNDEF(VT
);
1229 FoldingSetNodeID ID
;
1230 SDValue Ops
[2] = { N1
, N2
};
1231 AddNodeIDNode(ID
, ISD::VECTOR_SHUFFLE
, getVTList(VT
), Ops
, 2);
1232 for (unsigned i
= 0; i
!= NElts
; ++i
)
1233 ID
.AddInteger(MaskVec
[i
]);
1236 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1237 return SDValue(E
, 0);
1239 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1240 // SDNode doesn't have access to it. This memory will be "leaked" when
1241 // the node is deallocated, but recovered when the NodeAllocator is released.
1242 int *MaskAlloc
= OperandAllocator
.Allocate
<int>(NElts
);
1243 memcpy(MaskAlloc
, &MaskVec
[0], NElts
* sizeof(int));
1245 ShuffleVectorSDNode
*N
= NodeAllocator
.Allocate
<ShuffleVectorSDNode
>();
1246 new (N
) ShuffleVectorSDNode(VT
, dl
, N1
, N2
, MaskAlloc
);
1247 CSEMap
.InsertNode(N
, IP
);
1248 AllNodes
.push_back(N
);
1249 return SDValue(N
, 0);
1252 SDValue
SelectionDAG::getConvertRndSat(EVT VT
, DebugLoc dl
,
1253 SDValue Val
, SDValue DTy
,
1254 SDValue STy
, SDValue Rnd
, SDValue Sat
,
1255 ISD::CvtCode Code
) {
1256 // If the src and dest types are the same and the conversion is between
1257 // integer types of the same sign or two floats, no conversion is necessary.
1259 (Code
== ISD::CVT_UU
|| Code
== ISD::CVT_SS
|| Code
== ISD::CVT_FF
))
1262 FoldingSetNodeID ID
;
1264 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1265 return SDValue(E
, 0);
1266 CvtRndSatSDNode
*N
= NodeAllocator
.Allocate
<CvtRndSatSDNode
>();
1267 SDValue Ops
[] = { Val
, DTy
, STy
, Rnd
, Sat
};
1268 new (N
) CvtRndSatSDNode(VT
, dl
, Ops
, 5, Code
);
1269 CSEMap
.InsertNode(N
, IP
);
1270 AllNodes
.push_back(N
);
1271 return SDValue(N
, 0);
1274 SDValue
SelectionDAG::getRegister(unsigned RegNo
, EVT VT
) {
1275 FoldingSetNodeID ID
;
1276 AddNodeIDNode(ID
, ISD::Register
, getVTList(VT
), 0, 0);
1277 ID
.AddInteger(RegNo
);
1279 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1280 return SDValue(E
, 0);
1281 SDNode
*N
= NodeAllocator
.Allocate
<RegisterSDNode
>();
1282 new (N
) RegisterSDNode(RegNo
, VT
);
1283 CSEMap
.InsertNode(N
, IP
);
1284 AllNodes
.push_back(N
);
1285 return SDValue(N
, 0);
1288 SDValue
SelectionDAG::getDbgStopPoint(DebugLoc DL
, SDValue Root
,
1289 unsigned Line
, unsigned Col
,
1291 SDNode
*N
= NodeAllocator
.Allocate
<DbgStopPointSDNode
>();
1292 new (N
) DbgStopPointSDNode(Root
, Line
, Col
, CU
);
1294 AllNodes
.push_back(N
);
1295 return SDValue(N
, 0);
1298 SDValue
SelectionDAG::getLabel(unsigned Opcode
, DebugLoc dl
,
1301 FoldingSetNodeID ID
;
1302 SDValue Ops
[] = { Root
};
1303 AddNodeIDNode(ID
, Opcode
, getVTList(MVT::Other
), &Ops
[0], 1);
1304 ID
.AddInteger(LabelID
);
1306 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1307 return SDValue(E
, 0);
1308 SDNode
*N
= NodeAllocator
.Allocate
<LabelSDNode
>();
1309 new (N
) LabelSDNode(Opcode
, dl
, Root
, LabelID
);
1310 CSEMap
.InsertNode(N
, IP
);
1311 AllNodes
.push_back(N
);
1312 return SDValue(N
, 0);
1315 SDValue
SelectionDAG::getSrcValue(const Value
*V
) {
1316 assert((!V
|| isa
<PointerType
>(V
->getType())) &&
1317 "SrcValue is not a pointer?");
1319 FoldingSetNodeID ID
;
1320 AddNodeIDNode(ID
, ISD::SRCVALUE
, getVTList(MVT::Other
), 0, 0);
1324 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1325 return SDValue(E
, 0);
1327 SDNode
*N
= NodeAllocator
.Allocate
<SrcValueSDNode
>();
1328 new (N
) SrcValueSDNode(V
);
1329 CSEMap
.InsertNode(N
, IP
);
1330 AllNodes
.push_back(N
);
1331 return SDValue(N
, 0);
1334 SDValue
SelectionDAG::getMemOperand(const MachineMemOperand
&MO
) {
1336 const Value
*v
= MO
.getValue();
1337 assert((!v
|| isa
<PointerType
>(v
->getType())) &&
1338 "SrcValue is not a pointer?");
1341 FoldingSetNodeID ID
;
1342 AddNodeIDNode(ID
, ISD::MEMOPERAND
, getVTList(MVT::Other
), 0, 0);
1346 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1347 return SDValue(E
, 0);
1349 SDNode
*N
= NodeAllocator
.Allocate
<MemOperandSDNode
>();
1350 new (N
) MemOperandSDNode(MO
);
1351 CSEMap
.InsertNode(N
, IP
);
1352 AllNodes
.push_back(N
);
1353 return SDValue(N
, 0);
1356 /// getShiftAmountOperand - Return the specified value casted to
1357 /// the target's desired shift amount type.
1358 SDValue
SelectionDAG::getShiftAmountOperand(SDValue Op
) {
1359 EVT OpTy
= Op
.getValueType();
1360 MVT ShTy
= TLI
.getShiftAmountTy();
1361 if (OpTy
== ShTy
|| OpTy
.isVector()) return Op
;
1363 ISD::NodeType Opcode
= OpTy
.bitsGT(ShTy
) ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
;
1364 return getNode(Opcode
, Op
.getDebugLoc(), ShTy
, Op
);
1367 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1368 /// specified value type.
1369 SDValue
SelectionDAG::CreateStackTemporary(EVT VT
, unsigned minAlign
) {
1370 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1371 unsigned ByteSize
= VT
.getStoreSizeInBits()/8;
1372 const Type
*Ty
= VT
.getTypeForEVT(*getContext());
1373 unsigned StackAlign
=
1374 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
), minAlign
);
1376 int FrameIdx
= FrameInfo
->CreateStackObject(ByteSize
, StackAlign
);
1377 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1380 /// CreateStackTemporary - Create a stack temporary suitable for holding
1381 /// either of the specified value types.
1382 SDValue
SelectionDAG::CreateStackTemporary(EVT VT1
, EVT VT2
) {
1383 unsigned Bytes
= std::max(VT1
.getStoreSizeInBits(),
1384 VT2
.getStoreSizeInBits())/8;
1385 const Type
*Ty1
= VT1
.getTypeForEVT(*getContext());
1386 const Type
*Ty2
= VT2
.getTypeForEVT(*getContext());
1387 const TargetData
*TD
= TLI
.getTargetData();
1388 unsigned Align
= std::max(TD
->getPrefTypeAlignment(Ty1
),
1389 TD
->getPrefTypeAlignment(Ty2
));
1391 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1392 int FrameIdx
= FrameInfo
->CreateStackObject(Bytes
, Align
);
1393 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1396 SDValue
SelectionDAG::FoldSetCC(EVT VT
, SDValue N1
,
1397 SDValue N2
, ISD::CondCode Cond
, DebugLoc dl
) {
1398 // These setcc operations always fold.
1402 case ISD::SETFALSE2
: return getConstant(0, VT
);
1404 case ISD::SETTRUE2
: return getConstant(1, VT
);
1416 assert(!N1
.getValueType().isInteger() && "Illegal setcc for integer!");
1420 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode())) {
1421 const APInt
&C2
= N2C
->getAPIntValue();
1422 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1423 const APInt
&C1
= N1C
->getAPIntValue();
1426 default: llvm_unreachable("Unknown integer setcc!");
1427 case ISD::SETEQ
: return getConstant(C1
== C2
, VT
);
1428 case ISD::SETNE
: return getConstant(C1
!= C2
, VT
);
1429 case ISD::SETULT
: return getConstant(C1
.ult(C2
), VT
);
1430 case ISD::SETUGT
: return getConstant(C1
.ugt(C2
), VT
);
1431 case ISD::SETULE
: return getConstant(C1
.ule(C2
), VT
);
1432 case ISD::SETUGE
: return getConstant(C1
.uge(C2
), VT
);
1433 case ISD::SETLT
: return getConstant(C1
.slt(C2
), VT
);
1434 case ISD::SETGT
: return getConstant(C1
.sgt(C2
), VT
);
1435 case ISD::SETLE
: return getConstant(C1
.sle(C2
), VT
);
1436 case ISD::SETGE
: return getConstant(C1
.sge(C2
), VT
);
1440 if (ConstantFPSDNode
*N1C
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
1441 if (ConstantFPSDNode
*N2C
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode())) {
1442 // No compile time operations on this type yet.
1443 if (N1C
->getValueType(0) == MVT::ppcf128
)
1446 APFloat::cmpResult R
= N1C
->getValueAPF().compare(N2C
->getValueAPF());
1449 case ISD::SETEQ
: if (R
==APFloat::cmpUnordered
)
1450 return getUNDEF(VT
);
1452 case ISD::SETOEQ
: return getConstant(R
==APFloat::cmpEqual
, VT
);
1453 case ISD::SETNE
: if (R
==APFloat::cmpUnordered
)
1454 return getUNDEF(VT
);
1456 case ISD::SETONE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1457 R
==APFloat::cmpLessThan
, VT
);
1458 case ISD::SETLT
: if (R
==APFloat::cmpUnordered
)
1459 return getUNDEF(VT
);
1461 case ISD::SETOLT
: return getConstant(R
==APFloat::cmpLessThan
, VT
);
1462 case ISD::SETGT
: if (R
==APFloat::cmpUnordered
)
1463 return getUNDEF(VT
);
1465 case ISD::SETOGT
: return getConstant(R
==APFloat::cmpGreaterThan
, VT
);
1466 case ISD::SETLE
: if (R
==APFloat::cmpUnordered
)
1467 return getUNDEF(VT
);
1469 case ISD::SETOLE
: return getConstant(R
==APFloat::cmpLessThan
||
1470 R
==APFloat::cmpEqual
, VT
);
1471 case ISD::SETGE
: if (R
==APFloat::cmpUnordered
)
1472 return getUNDEF(VT
);
1474 case ISD::SETOGE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1475 R
==APFloat::cmpEqual
, VT
);
1476 case ISD::SETO
: return getConstant(R
!=APFloat::cmpUnordered
, VT
);
1477 case ISD::SETUO
: return getConstant(R
==APFloat::cmpUnordered
, VT
);
1478 case ISD::SETUEQ
: return getConstant(R
==APFloat::cmpUnordered
||
1479 R
==APFloat::cmpEqual
, VT
);
1480 case ISD::SETUNE
: return getConstant(R
!=APFloat::cmpEqual
, VT
);
1481 case ISD::SETULT
: return getConstant(R
==APFloat::cmpUnordered
||
1482 R
==APFloat::cmpLessThan
, VT
);
1483 case ISD::SETUGT
: return getConstant(R
==APFloat::cmpGreaterThan
||
1484 R
==APFloat::cmpUnordered
, VT
);
1485 case ISD::SETULE
: return getConstant(R
!=APFloat::cmpGreaterThan
, VT
);
1486 case ISD::SETUGE
: return getConstant(R
!=APFloat::cmpLessThan
, VT
);
1489 // Ensure that the constant occurs on the RHS.
1490 return getSetCC(dl
, VT
, N2
, N1
, ISD::getSetCCSwappedOperands(Cond
));
1494 // Could not fold it.
1498 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1499 /// use this predicate to simplify operations downstream.
1500 bool SelectionDAG::SignBitIsZero(SDValue Op
, unsigned Depth
) const {
1501 // This predicate is not safe for vector operations.
1502 if (Op
.getValueType().isVector())
1505 unsigned BitWidth
= Op
.getValueSizeInBits();
1506 return MaskedValueIsZero(Op
, APInt::getSignBit(BitWidth
), Depth
);
1509 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1510 /// this predicate to simplify operations downstream. Mask is known to be zero
1511 /// for bits that V cannot have.
1512 bool SelectionDAG::MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1513 unsigned Depth
) const {
1514 APInt KnownZero
, KnownOne
;
1515 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
1516 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1517 return (KnownZero
& Mask
) == Mask
;
1520 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1521 /// known to be either zero or one and return them in the KnownZero/KnownOne
1522 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1524 void SelectionDAG::ComputeMaskedBits(SDValue Op
, const APInt
&Mask
,
1525 APInt
&KnownZero
, APInt
&KnownOne
,
1526 unsigned Depth
) const {
1527 unsigned BitWidth
= Mask
.getBitWidth();
1528 assert(BitWidth
== Op
.getValueType().getSizeInBits() &&
1529 "Mask size mismatches value type size!");
1531 KnownZero
= KnownOne
= APInt(BitWidth
, 0); // Don't know anything.
1532 if (Depth
== 6 || Mask
== 0)
1533 return; // Limit search depth.
1535 APInt KnownZero2
, KnownOne2
;
1537 switch (Op
.getOpcode()) {
1539 // We know all of the bits for a constant!
1540 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & Mask
;
1541 KnownZero
= ~KnownOne
& Mask
;
1544 // If either the LHS or the RHS are Zero, the result is zero.
1545 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1546 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownZero
,
1547 KnownZero2
, KnownOne2
, Depth
+1);
1548 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1549 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1551 // Output known-1 bits are only known if set in both the LHS & RHS.
1552 KnownOne
&= KnownOne2
;
1553 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1554 KnownZero
|= KnownZero2
;
1557 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1558 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownOne
,
1559 KnownZero2
, KnownOne2
, Depth
+1);
1560 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1561 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1563 // Output known-0 bits are only known if clear in both the LHS & RHS.
1564 KnownZero
&= KnownZero2
;
1565 // Output known-1 are known to be set if set in either the LHS | RHS.
1566 KnownOne
|= KnownOne2
;
1569 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1570 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1571 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1572 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1574 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1575 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1576 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1577 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1578 KnownZero
= KnownZeroOut
;
1582 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
1583 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero
, KnownOne
, Depth
+1);
1584 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1585 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1586 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1588 // If low bits are zero in either operand, output low known-0 bits.
1589 // Also compute a conserative estimate for high known-0 bits.
1590 // More trickiness is possible, but this is sufficient for the
1591 // interesting case of alignment computation.
1593 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
1594 KnownZero2
.countTrailingOnes();
1595 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
1596 KnownZero2
.countLeadingOnes(),
1597 BitWidth
) - BitWidth
;
1599 TrailZ
= std::min(TrailZ
, BitWidth
);
1600 LeadZ
= std::min(LeadZ
, BitWidth
);
1601 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
1602 APInt::getHighBitsSet(BitWidth
, LeadZ
);
1607 // For the purposes of computing leading zeros we can conservatively
1608 // treat a udiv as a logical right shift by the power of 2 known to
1609 // be less than the denominator.
1610 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1611 ComputeMaskedBits(Op
.getOperand(0),
1612 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1613 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
1617 ComputeMaskedBits(Op
.getOperand(1),
1618 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1619 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
1620 if (RHSUnknownLeadingOnes
!= BitWidth
)
1621 LeadZ
= std::min(BitWidth
,
1622 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
1624 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
1628 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero
, KnownOne
, Depth
+1);
1629 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1630 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1631 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1633 // Only known if known in both the LHS and RHS.
1634 KnownOne
&= KnownOne2
;
1635 KnownZero
&= KnownZero2
;
1637 case ISD::SELECT_CC
:
1638 ComputeMaskedBits(Op
.getOperand(3), Mask
, KnownZero
, KnownOne
, Depth
+1);
1639 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1640 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1641 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1643 // Only known if known in both the LHS and RHS.
1644 KnownOne
&= KnownOne2
;
1645 KnownZero
&= KnownZero2
;
1653 if (Op
.getResNo() != 1)
1655 // The boolean result conforms to getBooleanContents. Fall through.
1657 // If we know the result of a setcc has the top bits zero, use this info.
1658 if (TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
&&
1660 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1663 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1664 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1665 unsigned ShAmt
= SA
->getZExtValue();
1667 // If the shift count is an invalid immediate, don't do anything.
1668 if (ShAmt
>= BitWidth
)
1671 ComputeMaskedBits(Op
.getOperand(0), Mask
.lshr(ShAmt
),
1672 KnownZero
, KnownOne
, Depth
+1);
1673 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1674 KnownZero
<<= ShAmt
;
1676 // low bits known zero.
1677 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShAmt
);
1681 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1682 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1683 unsigned ShAmt
= SA
->getZExtValue();
1685 // If the shift count is an invalid immediate, don't do anything.
1686 if (ShAmt
>= BitWidth
)
1689 ComputeMaskedBits(Op
.getOperand(0), (Mask
<< ShAmt
),
1690 KnownZero
, KnownOne
, Depth
+1);
1691 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1692 KnownZero
= KnownZero
.lshr(ShAmt
);
1693 KnownOne
= KnownOne
.lshr(ShAmt
);
1695 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1696 KnownZero
|= HighBits
; // High bits known zero.
1700 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1701 unsigned ShAmt
= SA
->getZExtValue();
1703 // If the shift count is an invalid immediate, don't do anything.
1704 if (ShAmt
>= BitWidth
)
1707 APInt InDemandedMask
= (Mask
<< ShAmt
);
1708 // If any of the demanded bits are produced by the sign extension, we also
1709 // demand the input sign bit.
1710 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1711 if (HighBits
.getBoolValue())
1712 InDemandedMask
|= APInt::getSignBit(BitWidth
);
1714 ComputeMaskedBits(Op
.getOperand(0), InDemandedMask
, KnownZero
, KnownOne
,
1716 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1717 KnownZero
= KnownZero
.lshr(ShAmt
);
1718 KnownOne
= KnownOne
.lshr(ShAmt
);
1720 // Handle the sign bits.
1721 APInt SignBit
= APInt::getSignBit(BitWidth
);
1722 SignBit
= SignBit
.lshr(ShAmt
); // Adjust to where it is now in the mask.
1724 if (KnownZero
.intersects(SignBit
)) {
1725 KnownZero
|= HighBits
; // New bits are known zero.
1726 } else if (KnownOne
.intersects(SignBit
)) {
1727 KnownOne
|= HighBits
; // New bits are known one.
1731 case ISD::SIGN_EXTEND_INREG
: {
1732 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1733 unsigned EBits
= EVT
.getSizeInBits();
1735 // Sign extension. Compute the demanded bits in the result that are not
1736 // present in the input.
1737 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- EBits
) & Mask
;
1739 APInt InSignBit
= APInt::getSignBit(EBits
);
1740 APInt InputDemandedBits
= Mask
& APInt::getLowBitsSet(BitWidth
, EBits
);
1742 // If the sign extended bits are demanded, we know that the sign
1744 InSignBit
.zext(BitWidth
);
1745 if (NewBits
.getBoolValue())
1746 InputDemandedBits
|= InSignBit
;
1748 ComputeMaskedBits(Op
.getOperand(0), InputDemandedBits
,
1749 KnownZero
, KnownOne
, Depth
+1);
1750 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1752 // If the sign bit of the input is known set or clear, then we know the
1753 // top bits of the result.
1754 if (KnownZero
.intersects(InSignBit
)) { // Input sign bit known clear
1755 KnownZero
|= NewBits
;
1756 KnownOne
&= ~NewBits
;
1757 } else if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1758 KnownOne
|= NewBits
;
1759 KnownZero
&= ~NewBits
;
1760 } else { // Input sign bit unknown
1761 KnownZero
&= ~NewBits
;
1762 KnownOne
&= ~NewBits
;
1769 unsigned LowBits
= Log2_32(BitWidth
)+1;
1770 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
1775 if (ISD::isZEXTLoad(Op
.getNode())) {
1776 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1777 EVT VT
= LD
->getMemoryVT();
1778 unsigned MemBits
= VT
.getSizeInBits();
1779 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
) & Mask
;
1783 case ISD::ZERO_EXTEND
: {
1784 EVT InVT
= Op
.getOperand(0).getValueType();
1785 unsigned InBits
= InVT
.getSizeInBits();
1786 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1787 APInt InMask
= Mask
;
1788 InMask
.trunc(InBits
);
1789 KnownZero
.trunc(InBits
);
1790 KnownOne
.trunc(InBits
);
1791 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1792 KnownZero
.zext(BitWidth
);
1793 KnownOne
.zext(BitWidth
);
1794 KnownZero
|= NewBits
;
1797 case ISD::SIGN_EXTEND
: {
1798 EVT InVT
= Op
.getOperand(0).getValueType();
1799 unsigned InBits
= InVT
.getSizeInBits();
1800 APInt InSignBit
= APInt::getSignBit(InBits
);
1801 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1802 APInt InMask
= Mask
;
1803 InMask
.trunc(InBits
);
1805 // If any of the sign extended bits are demanded, we know that the sign
1806 // bit is demanded. Temporarily set this bit in the mask for our callee.
1807 if (NewBits
.getBoolValue())
1808 InMask
|= InSignBit
;
1810 KnownZero
.trunc(InBits
);
1811 KnownOne
.trunc(InBits
);
1812 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1814 // Note if the sign bit is known to be zero or one.
1815 bool SignBitKnownZero
= KnownZero
.isNegative();
1816 bool SignBitKnownOne
= KnownOne
.isNegative();
1817 assert(!(SignBitKnownZero
&& SignBitKnownOne
) &&
1818 "Sign bit can't be known to be both zero and one!");
1820 // If the sign bit wasn't actually demanded by our caller, we don't
1821 // want it set in the KnownZero and KnownOne result values. Reset the
1822 // mask and reapply it to the result values.
1824 InMask
.trunc(InBits
);
1825 KnownZero
&= InMask
;
1828 KnownZero
.zext(BitWidth
);
1829 KnownOne
.zext(BitWidth
);
1831 // If the sign bit is known zero or one, the top bits match.
1832 if (SignBitKnownZero
)
1833 KnownZero
|= NewBits
;
1834 else if (SignBitKnownOne
)
1835 KnownOne
|= NewBits
;
1838 case ISD::ANY_EXTEND
: {
1839 EVT InVT
= Op
.getOperand(0).getValueType();
1840 unsigned InBits
= InVT
.getSizeInBits();
1841 APInt InMask
= Mask
;
1842 InMask
.trunc(InBits
);
1843 KnownZero
.trunc(InBits
);
1844 KnownOne
.trunc(InBits
);
1845 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1846 KnownZero
.zext(BitWidth
);
1847 KnownOne
.zext(BitWidth
);
1850 case ISD::TRUNCATE
: {
1851 EVT InVT
= Op
.getOperand(0).getValueType();
1852 unsigned InBits
= InVT
.getSizeInBits();
1853 APInt InMask
= Mask
;
1854 InMask
.zext(InBits
);
1855 KnownZero
.zext(InBits
);
1856 KnownOne
.zext(InBits
);
1857 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1858 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1859 KnownZero
.trunc(BitWidth
);
1860 KnownOne
.trunc(BitWidth
);
1863 case ISD::AssertZext
: {
1864 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1865 APInt InMask
= APInt::getLowBitsSet(BitWidth
, VT
.getSizeInBits());
1866 ComputeMaskedBits(Op
.getOperand(0), Mask
& InMask
, KnownZero
,
1868 KnownZero
|= (~InMask
) & Mask
;
1872 // All bits are zero except the low bit.
1873 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1877 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))) {
1878 // We know that the top bits of C-X are clear if X contains less bits
1879 // than C (i.e. no wrap-around can happen). For example, 20-X is
1880 // positive if we can prove that X is >= 0 and < 16.
1881 if (CLHS
->getAPIntValue().isNonNegative()) {
1882 unsigned NLZ
= (CLHS
->getAPIntValue()+1).countLeadingZeros();
1883 // NLZ can't be BitWidth with no sign bit
1884 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
1885 ComputeMaskedBits(Op
.getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
1888 // If all of the MaskV bits are known to be zero, then we know the
1889 // output top bits are zero, because we now know that the output is
1891 if ((KnownZero2
& MaskV
) == MaskV
) {
1892 unsigned NLZ2
= CLHS
->getAPIntValue().countLeadingZeros();
1893 // Top bits known zero.
1894 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
1901 // Output known-0 bits are known if clear or set in both the low clear bits
1902 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1903 // low 3 bits clear.
1904 APInt Mask2
= APInt::getLowBitsSet(BitWidth
, Mask
.countTrailingOnes());
1905 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1906 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1907 unsigned KnownZeroOut
= KnownZero2
.countTrailingOnes();
1909 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1910 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1911 KnownZeroOut
= std::min(KnownZeroOut
,
1912 KnownZero2
.countTrailingOnes());
1914 KnownZero
|= APInt::getLowBitsSet(BitWidth
, KnownZeroOut
);
1918 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1919 const APInt
&RA
= Rem
->getAPIntValue();
1920 if (RA
.isPowerOf2() || (-RA
).isPowerOf2()) {
1921 APInt LowBits
= RA
.isStrictlyPositive() ? (RA
- 1) : ~RA
;
1922 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
1923 ComputeMaskedBits(Op
.getOperand(0), Mask2
,KnownZero2
,KnownOne2
,Depth
+1);
1925 // If the sign bit of the first operand is zero, the sign bit of
1926 // the result is zero. If the first operand has no one bits below
1927 // the second operand's single 1 bit, its sign will be zero.
1928 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
1929 KnownZero2
|= ~LowBits
;
1931 KnownZero
|= KnownZero2
& Mask
;
1933 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1938 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1939 const APInt
&RA
= Rem
->getAPIntValue();
1940 if (RA
.isPowerOf2()) {
1941 APInt LowBits
= (RA
- 1);
1942 APInt Mask2
= LowBits
& Mask
;
1943 KnownZero
|= ~LowBits
& Mask
;
1944 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero
, KnownOne
,Depth
+1);
1945 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1950 // Since the result is less than or equal to either operand, any leading
1951 // zero bits in either operand must also exist in the result.
1952 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1953 ComputeMaskedBits(Op
.getOperand(0), AllOnes
, KnownZero
, KnownOne
,
1955 ComputeMaskedBits(Op
.getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
1958 uint32_t Leaders
= std::max(KnownZero
.countLeadingOnes(),
1959 KnownZero2
.countLeadingOnes());
1961 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
1965 // Allow the target to implement this method for its nodes.
1966 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
1967 case ISD::INTRINSIC_WO_CHAIN
:
1968 case ISD::INTRINSIC_W_CHAIN
:
1969 case ISD::INTRINSIC_VOID
:
1970 TLI
.computeMaskedBitsForTargetNode(Op
, Mask
, KnownZero
, KnownOne
, *this,
1977 /// ComputeNumSignBits - Return the number of times the sign bit of the
1978 /// register is replicated into the other bits. We know that at least 1 bit
1979 /// is always equal to the sign bit (itself), but other cases can give us
1980 /// information. For example, immediately after an "SRA X, 2", we know that
1981 /// the top 3 bits are all equal to each other, so we return 3.
1982 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, unsigned Depth
) const{
1983 EVT VT
= Op
.getValueType();
1984 assert(VT
.isInteger() && "Invalid VT!");
1985 unsigned VTBits
= VT
.getSizeInBits();
1987 unsigned FirstAnswer
= 1;
1990 return 1; // Limit search depth.
1992 switch (Op
.getOpcode()) {
1994 case ISD::AssertSext
:
1995 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
1996 return VTBits
-Tmp
+1;
1997 case ISD::AssertZext
:
1998 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
2001 case ISD::Constant
: {
2002 const APInt
&Val
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
2003 // If negative, return # leading ones.
2004 if (Val
.isNegative())
2005 return Val
.countLeadingOnes();
2007 // Return # leading zeros.
2008 return Val
.countLeadingZeros();
2011 case ISD::SIGN_EXTEND
:
2012 Tmp
= VTBits
-Op
.getOperand(0).getValueType().getSizeInBits();
2013 return ComputeNumSignBits(Op
.getOperand(0), Depth
+1) + Tmp
;
2015 case ISD::SIGN_EXTEND_INREG
:
2016 // Max of the input and what this extends.
2017 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
2020 Tmp2
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2021 return std::max(Tmp
, Tmp2
);
2024 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2025 // SRA X, C -> adds C sign bits.
2026 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2027 Tmp
+= C
->getZExtValue();
2028 if (Tmp
> VTBits
) Tmp
= VTBits
;
2032 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2033 // shl destroys sign bits.
2034 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2035 if (C
->getZExtValue() >= VTBits
|| // Bad shift.
2036 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
2037 return Tmp
- C
->getZExtValue();
2042 case ISD::XOR
: // NOT is handled here.
2043 // Logical binary ops preserve the number of sign bits at the worst.
2044 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2046 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2047 FirstAnswer
= std::min(Tmp
, Tmp2
);
2048 // We computed what we know about the sign bits as our first
2049 // answer. Now proceed to the generic code that uses
2050 // ComputeMaskedBits, and pick whichever answer is better.
2055 Tmp
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2056 if (Tmp
== 1) return 1; // Early out.
2057 Tmp2
= ComputeNumSignBits(Op
.getOperand(2), Depth
+1);
2058 return std::min(Tmp
, Tmp2
);
2066 if (Op
.getResNo() != 1)
2068 // The boolean result conforms to getBooleanContents. Fall through.
2070 // If setcc returns 0/-1, all bits are sign bits.
2071 if (TLI
.getBooleanContents() ==
2072 TargetLowering::ZeroOrNegativeOneBooleanContent
)
2077 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2078 unsigned RotAmt
= C
->getZExtValue() & (VTBits
-1);
2080 // Handle rotate right by N like a rotate left by 32-N.
2081 if (Op
.getOpcode() == ISD::ROTR
)
2082 RotAmt
= (VTBits
-RotAmt
) & (VTBits
-1);
2084 // If we aren't rotating out all of the known-in sign bits, return the
2085 // number that are left. This handles rotl(sext(x), 1) for example.
2086 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2087 if (Tmp
> RotAmt
+1) return Tmp
-RotAmt
;
2091 // Add can have at most one carry bit. Thus we know that the output
2092 // is, at worst, one more bit than the inputs.
2093 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2094 if (Tmp
== 1) return 1; // Early out.
2096 // Special case decrementing a value (ADD X, -1):
2097 if (ConstantSDNode
*CRHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
2098 if (CRHS
->isAllOnesValue()) {
2099 APInt KnownZero
, KnownOne
;
2100 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2101 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero
, KnownOne
, Depth
+1);
2103 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2105 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2108 // If we are subtracting one from a positive number, there is no carry
2109 // out of the result.
2110 if (KnownZero
.isNegative())
2114 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2115 if (Tmp2
== 1) return 1;
2116 return std::min(Tmp
, Tmp2
)-1;
2120 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2121 if (Tmp2
== 1) return 1;
2124 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0)))
2125 if (CLHS
->isNullValue()) {
2126 APInt KnownZero
, KnownOne
;
2127 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2128 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
2129 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2131 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2134 // If the input is known to be positive (the sign bit is known clear),
2135 // the output of the NEG has the same number of sign bits as the input.
2136 if (KnownZero
.isNegative())
2139 // Otherwise, we treat this like a SUB.
2142 // Sub can have at most one carry bit. Thus we know that the output
2143 // is, at worst, one more bit than the inputs.
2144 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2145 if (Tmp
== 1) return 1; // Early out.
2146 return std::min(Tmp
, Tmp2
)-1;
2149 // FIXME: it's tricky to do anything useful for this, but it is an important
2150 // case for targets like X86.
2154 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2155 if (Op
.getOpcode() == ISD::LOAD
) {
2156 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2157 unsigned ExtType
= LD
->getExtensionType();
2160 case ISD::SEXTLOAD
: // '17' bits known
2161 Tmp
= LD
->getMemoryVT().getSizeInBits();
2162 return VTBits
-Tmp
+1;
2163 case ISD::ZEXTLOAD
: // '16' bits known
2164 Tmp
= LD
->getMemoryVT().getSizeInBits();
2169 // Allow the target to implement this method for its nodes.
2170 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2171 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2172 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2173 Op
.getOpcode() == ISD::INTRINSIC_VOID
) {
2174 unsigned NumBits
= TLI
.ComputeNumSignBitsForTargetNode(Op
, Depth
);
2175 if (NumBits
> 1) FirstAnswer
= std::max(FirstAnswer
, NumBits
);
2178 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2179 // use this information.
2180 APInt KnownZero
, KnownOne
;
2181 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2182 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
2184 if (KnownZero
.isNegative()) { // sign bit is 0
2186 } else if (KnownOne
.isNegative()) { // sign bit is 1;
2193 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2194 // the number of identical bits in the top of the input value.
2196 Mask
<<= Mask
.getBitWidth()-VTBits
;
2197 // Return # leading zeros. We use 'min' here in case Val was zero before
2198 // shifting. We don't want to return '64' as for an i32 "0".
2199 return std::max(FirstAnswer
, std::min(VTBits
, Mask
.countLeadingZeros()));
2203 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op
) const {
2204 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2205 if (!GA
) return false;
2206 if (GA
->getOffset() != 0) return false;
2207 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GA
->getGlobal());
2208 if (!GV
) return false;
2209 MachineModuleInfo
*MMI
= getMachineModuleInfo();
2210 return MMI
&& MMI
->hasDebugInfo();
2214 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
2215 /// element of the result of the vector shuffle.
2216 SDValue
SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode
*N
,
2218 EVT VT
= N
->getValueType(0);
2219 DebugLoc dl
= N
->getDebugLoc();
2220 if (N
->getMaskElt(i
) < 0)
2221 return getUNDEF(VT
.getVectorElementType());
2222 unsigned Index
= N
->getMaskElt(i
);
2223 unsigned NumElems
= VT
.getVectorNumElements();
2224 SDValue V
= (Index
< NumElems
) ? N
->getOperand(0) : N
->getOperand(1);
2227 if (V
.getOpcode() == ISD::BIT_CONVERT
) {
2228 V
= V
.getOperand(0);
2229 EVT VVT
= V
.getValueType();
2230 if (!VVT
.isVector() || VVT
.getVectorNumElements() != (unsigned)NumElems
)
2233 if (V
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
2234 return (Index
== 0) ? V
.getOperand(0)
2235 : getUNDEF(VT
.getVectorElementType());
2236 if (V
.getOpcode() == ISD::BUILD_VECTOR
)
2237 return V
.getOperand(Index
);
2238 if (const ShuffleVectorSDNode
*SVN
= dyn_cast
<ShuffleVectorSDNode
>(V
))
2239 return getShuffleScalarElt(SVN
, Index
);
2244 /// getNode - Gets or creates the specified node.
2246 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
) {
2247 FoldingSetNodeID ID
;
2248 AddNodeIDNode(ID
, Opcode
, getVTList(VT
), 0, 0);
2250 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2251 return SDValue(E
, 0);
2252 SDNode
*N
= NodeAllocator
.Allocate
<SDNode
>();
2253 new (N
) SDNode(Opcode
, DL
, getVTList(VT
));
2254 CSEMap
.InsertNode(N
, IP
);
2256 AllNodes
.push_back(N
);
2260 return SDValue(N
, 0);
2263 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
2264 EVT VT
, SDValue Operand
) {
2265 // Constant fold unary operations with an integer constant operand.
2266 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Operand
.getNode())) {
2267 const APInt
&Val
= C
->getAPIntValue();
2268 unsigned BitWidth
= VT
.getSizeInBits();
2271 case ISD::SIGN_EXTEND
:
2272 return getConstant(APInt(Val
).sextOrTrunc(BitWidth
), VT
);
2273 case ISD::ANY_EXTEND
:
2274 case ISD::ZERO_EXTEND
:
2276 return getConstant(APInt(Val
).zextOrTrunc(BitWidth
), VT
);
2277 case ISD::UINT_TO_FP
:
2278 case ISD::SINT_TO_FP
: {
2279 const uint64_t zero
[] = {0, 0};
2280 // No compile time operations on this type.
2281 if (VT
==MVT::ppcf128
)
2283 APFloat apf
= APFloat(APInt(BitWidth
, 2, zero
));
2284 (void)apf
.convertFromAPInt(Val
,
2285 Opcode
==ISD::SINT_TO_FP
,
2286 APFloat::rmNearestTiesToEven
);
2287 return getConstantFP(apf
, VT
);
2289 case ISD::BIT_CONVERT
:
2290 if (VT
== MVT::f32
&& C
->getValueType(0) == MVT::i32
)
2291 return getConstantFP(Val
.bitsToFloat(), VT
);
2292 else if (VT
== MVT::f64
&& C
->getValueType(0) == MVT::i64
)
2293 return getConstantFP(Val
.bitsToDouble(), VT
);
2296 return getConstant(Val
.byteSwap(), VT
);
2298 return getConstant(Val
.countPopulation(), VT
);
2300 return getConstant(Val
.countLeadingZeros(), VT
);
2302 return getConstant(Val
.countTrailingZeros(), VT
);
2306 // Constant fold unary operations with a floating point constant operand.
2307 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Operand
.getNode())) {
2308 APFloat V
= C
->getValueAPF(); // make copy
2309 if (VT
!= MVT::ppcf128
&& Operand
.getValueType() != MVT::ppcf128
) {
2313 return getConstantFP(V
, VT
);
2316 return getConstantFP(V
, VT
);
2318 case ISD::FP_EXTEND
: {
2320 // This can return overflow, underflow, or inexact; we don't care.
2321 // FIXME need to be more flexible about rounding mode.
2322 (void)V
.convert(*EVTToAPFloatSemantics(VT
),
2323 APFloat::rmNearestTiesToEven
, &ignored
);
2324 return getConstantFP(V
, VT
);
2326 case ISD::FP_TO_SINT
:
2327 case ISD::FP_TO_UINT
: {
2330 assert(integerPartWidth
>= 64);
2331 // FIXME need to be more flexible about rounding mode.
2332 APFloat::opStatus s
= V
.convertToInteger(x
, VT
.getSizeInBits(),
2333 Opcode
==ISD::FP_TO_SINT
,
2334 APFloat::rmTowardZero
, &ignored
);
2335 if (s
==APFloat::opInvalidOp
) // inexact is OK, in fact usual
2337 APInt
api(VT
.getSizeInBits(), 2, x
);
2338 return getConstant(api
, VT
);
2340 case ISD::BIT_CONVERT
:
2341 if (VT
== MVT::i32
&& C
->getValueType(0) == MVT::f32
)
2342 return getConstant((uint32_t)V
.bitcastToAPInt().getZExtValue(), VT
);
2343 else if (VT
== MVT::i64
&& C
->getValueType(0) == MVT::f64
)
2344 return getConstant(V
.bitcastToAPInt().getZExtValue(), VT
);
2350 unsigned OpOpcode
= Operand
.getNode()->getOpcode();
2352 case ISD::TokenFactor
:
2353 case ISD::MERGE_VALUES
:
2354 case ISD::CONCAT_VECTORS
:
2355 return Operand
; // Factor, merge or concat of one node? No need.
2356 case ISD::FP_ROUND
: llvm_unreachable("Invalid method to make FP_ROUND node");
2357 case ISD::FP_EXTEND
:
2358 assert(VT
.isFloatingPoint() &&
2359 Operand
.getValueType().isFloatingPoint() && "Invalid FP cast!");
2360 if (Operand
.getValueType() == VT
) return Operand
; // noop conversion.
2361 if (Operand
.getOpcode() == ISD::UNDEF
)
2362 return getUNDEF(VT
);
2364 case ISD::SIGN_EXTEND
:
2365 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2366 "Invalid SIGN_EXTEND!");
2367 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2368 assert(Operand
.getValueType().bitsLT(VT
)
2369 && "Invalid sext node, dst < src!");
2370 if (OpOpcode
== ISD::SIGN_EXTEND
|| OpOpcode
== ISD::ZERO_EXTEND
)
2371 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2373 case ISD::ZERO_EXTEND
:
2374 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2375 "Invalid ZERO_EXTEND!");
2376 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2377 assert(Operand
.getValueType().bitsLT(VT
)
2378 && "Invalid zext node, dst < src!");
2379 if (OpOpcode
== ISD::ZERO_EXTEND
) // (zext (zext x)) -> (zext x)
2380 return getNode(ISD::ZERO_EXTEND
, DL
, VT
,
2381 Operand
.getNode()->getOperand(0));
2383 case ISD::ANY_EXTEND
:
2384 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2385 "Invalid ANY_EXTEND!");
2386 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2387 assert(Operand
.getValueType().bitsLT(VT
)
2388 && "Invalid anyext node, dst < src!");
2389 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
)
2390 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2391 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2394 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2395 "Invalid TRUNCATE!");
2396 if (Operand
.getValueType() == VT
) return Operand
; // noop truncate
2397 assert(Operand
.getValueType().bitsGT(VT
)
2398 && "Invalid truncate node, src < dst!");
2399 if (OpOpcode
== ISD::TRUNCATE
)
2400 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2401 else if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
2402 OpOpcode
== ISD::ANY_EXTEND
) {
2403 // If the source is smaller than the dest, we still need an extend.
2404 if (Operand
.getNode()->getOperand(0).getValueType().bitsLT(VT
))
2405 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2406 else if (Operand
.getNode()->getOperand(0).getValueType().bitsGT(VT
))
2407 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2409 return Operand
.getNode()->getOperand(0);
2412 case ISD::BIT_CONVERT
:
2413 // Basic sanity checking.
2414 assert(VT
.getSizeInBits() == Operand
.getValueType().getSizeInBits()
2415 && "Cannot BIT_CONVERT between types of different sizes!");
2416 if (VT
== Operand
.getValueType()) return Operand
; // noop conversion.
2417 if (OpOpcode
== ISD::BIT_CONVERT
) // bitconv(bitconv(x)) -> bitconv(x)
2418 return getNode(ISD::BIT_CONVERT
, DL
, VT
, Operand
.getOperand(0));
2419 if (OpOpcode
== ISD::UNDEF
)
2420 return getUNDEF(VT
);
2422 case ISD::SCALAR_TO_VECTOR
:
2423 assert(VT
.isVector() && !Operand
.getValueType().isVector() &&
2424 (VT
.getVectorElementType() == Operand
.getValueType() ||
2425 (VT
.getVectorElementType().isInteger() &&
2426 Operand
.getValueType().isInteger() &&
2427 VT
.getVectorElementType().bitsLE(Operand
.getValueType()))) &&
2428 "Illegal SCALAR_TO_VECTOR node!");
2429 if (OpOpcode
== ISD::UNDEF
)
2430 return getUNDEF(VT
);
2431 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2432 if (OpOpcode
== ISD::EXTRACT_VECTOR_ELT
&&
2433 isa
<ConstantSDNode
>(Operand
.getOperand(1)) &&
2434 Operand
.getConstantOperandVal(1) == 0 &&
2435 Operand
.getOperand(0).getValueType() == VT
)
2436 return Operand
.getOperand(0);
2439 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2440 if (UnsafeFPMath
&& OpOpcode
== ISD::FSUB
)
2441 return getNode(ISD::FSUB
, DL
, VT
, Operand
.getNode()->getOperand(1),
2442 Operand
.getNode()->getOperand(0));
2443 if (OpOpcode
== ISD::FNEG
) // --X -> X
2444 return Operand
.getNode()->getOperand(0);
2447 if (OpOpcode
== ISD::FNEG
) // abs(-X) -> abs(X)
2448 return getNode(ISD::FABS
, DL
, VT
, Operand
.getNode()->getOperand(0));
2453 SDVTList VTs
= getVTList(VT
);
2454 if (VT
!= MVT::Flag
) { // Don't CSE flag producing nodes
2455 FoldingSetNodeID ID
;
2456 SDValue Ops
[1] = { Operand
};
2457 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 1);
2459 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2460 return SDValue(E
, 0);
2461 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2462 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2463 CSEMap
.InsertNode(N
, IP
);
2465 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2466 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2469 AllNodes
.push_back(N
);
2473 return SDValue(N
, 0);
2476 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
,
2478 ConstantSDNode
*Cst1
,
2479 ConstantSDNode
*Cst2
) {
2480 const APInt
&C1
= Cst1
->getAPIntValue(), &C2
= Cst2
->getAPIntValue();
2483 case ISD::ADD
: return getConstant(C1
+ C2
, VT
);
2484 case ISD::SUB
: return getConstant(C1
- C2
, VT
);
2485 case ISD::MUL
: return getConstant(C1
* C2
, VT
);
2487 if (C2
.getBoolValue()) return getConstant(C1
.udiv(C2
), VT
);
2490 if (C2
.getBoolValue()) return getConstant(C1
.urem(C2
), VT
);
2493 if (C2
.getBoolValue()) return getConstant(C1
.sdiv(C2
), VT
);
2496 if (C2
.getBoolValue()) return getConstant(C1
.srem(C2
), VT
);
2498 case ISD::AND
: return getConstant(C1
& C2
, VT
);
2499 case ISD::OR
: return getConstant(C1
| C2
, VT
);
2500 case ISD::XOR
: return getConstant(C1
^ C2
, VT
);
2501 case ISD::SHL
: return getConstant(C1
<< C2
, VT
);
2502 case ISD::SRL
: return getConstant(C1
.lshr(C2
), VT
);
2503 case ISD::SRA
: return getConstant(C1
.ashr(C2
), VT
);
2504 case ISD::ROTL
: return getConstant(C1
.rotl(C2
), VT
);
2505 case ISD::ROTR
: return getConstant(C1
.rotr(C2
), VT
);
2512 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2513 SDValue N1
, SDValue N2
) {
2514 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2515 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2518 case ISD::TokenFactor
:
2519 assert(VT
== MVT::Other
&& N1
.getValueType() == MVT::Other
&&
2520 N2
.getValueType() == MVT::Other
&& "Invalid token factor!");
2521 // Fold trivial token factors.
2522 if (N1
.getOpcode() == ISD::EntryToken
) return N2
;
2523 if (N2
.getOpcode() == ISD::EntryToken
) return N1
;
2524 if (N1
== N2
) return N1
;
2526 case ISD::CONCAT_VECTORS
:
2527 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2528 // one big BUILD_VECTOR.
2529 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2530 N2
.getOpcode() == ISD::BUILD_VECTOR
) {
2531 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2532 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2533 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2537 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2538 N1
.getValueType() == VT
&& "Binary operator types must match!");
2539 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2540 // worth handling here.
2541 if (N2C
&& N2C
->isNullValue())
2543 if (N2C
&& N2C
->isAllOnesValue()) // X & -1 -> X
2550 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2551 N1
.getValueType() == VT
&& "Binary operator types must match!");
2552 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2553 // it's worth handling here.
2554 if (N2C
&& N2C
->isNullValue())
2564 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2572 if (Opcode
== ISD::FADD
) {
2574 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
))
2575 if (CFP
->getValueAPF().isZero())
2578 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2579 if (CFP
->getValueAPF().isZero())
2581 } else if (Opcode
== ISD::FSUB
) {
2583 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2584 if (CFP
->getValueAPF().isZero())
2588 assert(N1
.getValueType() == N2
.getValueType() &&
2589 N1
.getValueType() == VT
&& "Binary operator types must match!");
2591 case ISD::FCOPYSIGN
: // N1 and result must match. N1/N2 need not match.
2592 assert(N1
.getValueType() == VT
&&
2593 N1
.getValueType().isFloatingPoint() &&
2594 N2
.getValueType().isFloatingPoint() &&
2595 "Invalid FCOPYSIGN!");
2602 assert(VT
== N1
.getValueType() &&
2603 "Shift operators return type must be the same as their first arg");
2604 assert(VT
.isInteger() && N2
.getValueType().isInteger() &&
2605 "Shifts only work on integers");
2607 // Always fold shifts of i1 values so the code generator doesn't need to
2608 // handle them. Since we know the size of the shift has to be less than the
2609 // size of the value, the shift/rotate count is guaranteed to be zero.
2613 case ISD::FP_ROUND_INREG
: {
2614 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2615 assert(VT
== N1
.getValueType() && "Not an inreg round!");
2616 assert(VT
.isFloatingPoint() && EVT
.isFloatingPoint() &&
2617 "Cannot FP_ROUND_INREG integer types");
2618 assert(EVT
.bitsLE(VT
) && "Not rounding down!");
2619 if (cast
<VTSDNode
>(N2
)->getVT() == VT
) return N1
; // Not actually rounding.
2623 assert(VT
.isFloatingPoint() &&
2624 N1
.getValueType().isFloatingPoint() &&
2625 VT
.bitsLE(N1
.getValueType()) &&
2626 isa
<ConstantSDNode
>(N2
) && "Invalid FP_ROUND!");
2627 if (N1
.getValueType() == VT
) return N1
; // noop conversion.
2629 case ISD::AssertSext
:
2630 case ISD::AssertZext
: {
2631 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2632 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2633 assert(VT
.isInteger() && EVT
.isInteger() &&
2634 "Cannot *_EXTEND_INREG FP types");
2635 assert(EVT
.bitsLE(VT
) && "Not extending!");
2636 if (VT
== EVT
) return N1
; // noop assertion.
2639 case ISD::SIGN_EXTEND_INREG
: {
2640 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2641 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2642 assert(VT
.isInteger() && EVT
.isInteger() &&
2643 "Cannot *_EXTEND_INREG FP types");
2644 assert(EVT
.bitsLE(VT
) && "Not extending!");
2645 if (EVT
== VT
) return N1
; // Not actually extending
2648 APInt Val
= N1C
->getAPIntValue();
2649 unsigned FromBits
= cast
<VTSDNode
>(N2
)->getVT().getSizeInBits();
2650 Val
<<= Val
.getBitWidth()-FromBits
;
2651 Val
= Val
.ashr(Val
.getBitWidth()-FromBits
);
2652 return getConstant(Val
, VT
);
2656 case ISD::EXTRACT_VECTOR_ELT
:
2657 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2658 if (N1
.getOpcode() == ISD::UNDEF
)
2659 return getUNDEF(VT
);
2661 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2662 // expanding copies of large vectors from registers.
2664 N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
2665 N1
.getNumOperands() > 0) {
2667 N1
.getOperand(0).getValueType().getVectorNumElements();
2668 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
,
2669 N1
.getOperand(N2C
->getZExtValue() / Factor
),
2670 getConstant(N2C
->getZExtValue() % Factor
,
2671 N2
.getValueType()));
2674 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2675 // expanding large vector constants.
2676 if (N2C
&& N1
.getOpcode() == ISD::BUILD_VECTOR
) {
2677 SDValue Elt
= N1
.getOperand(N2C
->getZExtValue());
2678 EVT VEltTy
= N1
.getValueType().getVectorElementType();
2679 if (Elt
.getValueType() != VEltTy
) {
2680 // If the vector element type is not legal, the BUILD_VECTOR operands
2681 // are promoted and implicitly truncated. Make that explicit here.
2682 Elt
= getNode(ISD::TRUNCATE
, DL
, VEltTy
, Elt
);
2685 // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2686 // result is implicitly extended.
2687 Elt
= getNode(ISD::ANY_EXTEND
, DL
, VT
, Elt
);
2692 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2693 // operations are lowered to scalars.
2694 if (N1
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
2695 // If the indices are the same, return the inserted element.
2696 if (N1
.getOperand(2) == N2
)
2697 return N1
.getOperand(1);
2698 // If the indices are known different, extract the element from
2699 // the original vector.
2700 else if (isa
<ConstantSDNode
>(N1
.getOperand(2)) &&
2701 isa
<ConstantSDNode
>(N2
))
2702 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0), N2
);
2705 case ISD::EXTRACT_ELEMENT
:
2706 assert(N2C
&& (unsigned)N2C
->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2707 assert(!N1
.getValueType().isVector() && !VT
.isVector() &&
2708 (N1
.getValueType().isInteger() == VT
.isInteger()) &&
2709 "Wrong types for EXTRACT_ELEMENT!");
2711 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2712 // 64-bit integers into 32-bit parts. Instead of building the extract of
2713 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2714 if (N1
.getOpcode() == ISD::BUILD_PAIR
)
2715 return N1
.getOperand(N2C
->getZExtValue());
2717 // EXTRACT_ELEMENT of a constant int is also very common.
2718 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
2719 unsigned ElementSize
= VT
.getSizeInBits();
2720 unsigned Shift
= ElementSize
* N2C
->getZExtValue();
2721 APInt ShiftedVal
= C
->getAPIntValue().lshr(Shift
);
2722 return getConstant(ShiftedVal
.trunc(ElementSize
), VT
);
2725 case ISD::EXTRACT_SUBVECTOR
:
2726 if (N1
.getValueType() == VT
) // Trivial extraction.
2733 SDValue SV
= FoldConstantArithmetic(Opcode
, VT
, N1C
, N2C
);
2734 if (SV
.getNode()) return SV
;
2735 } else { // Cannonicalize constant to RHS if commutative
2736 if (isCommutativeBinOp(Opcode
)) {
2737 std::swap(N1C
, N2C
);
2743 // Constant fold FP operations.
2744 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode());
2745 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode());
2747 if (!N2CFP
&& isCommutativeBinOp(Opcode
)) {
2748 // Cannonicalize constant to RHS if commutative
2749 std::swap(N1CFP
, N2CFP
);
2751 } else if (N2CFP
&& VT
!= MVT::ppcf128
) {
2752 APFloat V1
= N1CFP
->getValueAPF(), V2
= N2CFP
->getValueAPF();
2753 APFloat::opStatus s
;
2756 s
= V1
.add(V2
, APFloat::rmNearestTiesToEven
);
2757 if (s
!= APFloat::opInvalidOp
)
2758 return getConstantFP(V1
, VT
);
2761 s
= V1
.subtract(V2
, APFloat::rmNearestTiesToEven
);
2762 if (s
!=APFloat::opInvalidOp
)
2763 return getConstantFP(V1
, VT
);
2766 s
= V1
.multiply(V2
, APFloat::rmNearestTiesToEven
);
2767 if (s
!=APFloat::opInvalidOp
)
2768 return getConstantFP(V1
, VT
);
2771 s
= V1
.divide(V2
, APFloat::rmNearestTiesToEven
);
2772 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2773 return getConstantFP(V1
, VT
);
2776 s
= V1
.mod(V2
, APFloat::rmNearestTiesToEven
);
2777 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2778 return getConstantFP(V1
, VT
);
2780 case ISD::FCOPYSIGN
:
2782 return getConstantFP(V1
, VT
);
2788 // Canonicalize an UNDEF to the RHS, even over a constant.
2789 if (N1
.getOpcode() == ISD::UNDEF
) {
2790 if (isCommutativeBinOp(Opcode
)) {
2794 case ISD::FP_ROUND_INREG
:
2795 case ISD::SIGN_EXTEND_INREG
:
2801 return N1
; // fold op(undef, arg2) -> undef
2809 return getConstant(0, VT
); // fold op(undef, arg2) -> 0
2810 // For vectors, we can't easily build an all zero vector, just return
2817 // Fold a bunch of operators when the RHS is undef.
2818 if (N2
.getOpcode() == ISD::UNDEF
) {
2821 if (N1
.getOpcode() == ISD::UNDEF
)
2822 // Handle undef ^ undef -> 0 special case. This is a common
2824 return getConstant(0, VT
);
2834 return N2
; // fold op(arg1, undef) -> undef
2848 return getConstant(0, VT
); // fold op(arg1, undef) -> 0
2849 // For vectors, we can't easily build an all zero vector, just return
2854 return getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
2855 // For vectors, we can't easily build an all one vector, just return
2863 // Memoize this node if possible.
2865 SDVTList VTs
= getVTList(VT
);
2866 if (VT
!= MVT::Flag
) {
2867 SDValue Ops
[] = { N1
, N2
};
2868 FoldingSetNodeID ID
;
2869 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 2);
2871 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2872 return SDValue(E
, 0);
2873 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2874 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2875 CSEMap
.InsertNode(N
, IP
);
2877 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2878 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2881 AllNodes
.push_back(N
);
2885 return SDValue(N
, 0);
2888 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2889 SDValue N1
, SDValue N2
, SDValue N3
) {
2890 // Perform various simplifications.
2891 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2892 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2894 case ISD::CONCAT_VECTORS
:
2895 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2896 // one big BUILD_VECTOR.
2897 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2898 N2
.getOpcode() == ISD::BUILD_VECTOR
&&
2899 N3
.getOpcode() == ISD::BUILD_VECTOR
) {
2900 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2901 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2902 Elts
.insert(Elts
.end(), N3
.getNode()->op_begin(), N3
.getNode()->op_end());
2903 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2907 // Use FoldSetCC to simplify SETCC's.
2908 SDValue Simp
= FoldSetCC(VT
, N1
, N2
, cast
<CondCodeSDNode
>(N3
)->get(), DL
);
2909 if (Simp
.getNode()) return Simp
;
2914 if (N1C
->getZExtValue())
2915 return N2
; // select true, X, Y -> X
2917 return N3
; // select false, X, Y -> Y
2920 if (N2
== N3
) return N2
; // select C, X, X -> X
2924 if (N2C
->getZExtValue()) // Unconditional branch
2925 return getNode(ISD::BR
, DL
, MVT::Other
, N1
, N3
);
2927 return N1
; // Never-taken branch
2930 case ISD::VECTOR_SHUFFLE
:
2931 llvm_unreachable("should use getVectorShuffle constructor!");
2933 case ISD::BIT_CONVERT
:
2934 // Fold bit_convert nodes from a type to themselves.
2935 if (N1
.getValueType() == VT
)
2940 // Memoize node if it doesn't produce a flag.
2942 SDVTList VTs
= getVTList(VT
);
2943 if (VT
!= MVT::Flag
) {
2944 SDValue Ops
[] = { N1
, N2
, N3
};
2945 FoldingSetNodeID ID
;
2946 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
2948 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2949 return SDValue(E
, 0);
2950 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
2951 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
2952 CSEMap
.InsertNode(N
, IP
);
2954 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
2955 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
2957 AllNodes
.push_back(N
);
2961 return SDValue(N
, 0);
2964 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2965 SDValue N1
, SDValue N2
, SDValue N3
,
2967 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
2968 return getNode(Opcode
, DL
, VT
, Ops
, 4);
2971 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2972 SDValue N1
, SDValue N2
, SDValue N3
,
2973 SDValue N4
, SDValue N5
) {
2974 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
2975 return getNode(Opcode
, DL
, VT
, Ops
, 5);
2978 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
2979 /// the incoming stack arguments to be loaded from the stack.
2980 SDValue
SelectionDAG::getStackArgumentTokenFactor(SDValue Chain
) {
2981 SmallVector
<SDValue
, 8> ArgChains
;
2983 // Include the original chain at the beginning of the list. When this is
2984 // used by target LowerCall hooks, this helps legalize find the
2985 // CALLSEQ_BEGIN node.
2986 ArgChains
.push_back(Chain
);
2988 // Add a chain value for each stack argument.
2989 for (SDNode::use_iterator U
= getEntryNode().getNode()->use_begin(),
2990 UE
= getEntryNode().getNode()->use_end(); U
!= UE
; ++U
)
2991 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
))
2992 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr()))
2993 if (FI
->getIndex() < 0)
2994 ArgChains
.push_back(SDValue(L
, 1));
2996 // Build a tokenfactor for all the chains.
2997 return getNode(ISD::TokenFactor
, Chain
.getDebugLoc(), MVT::Other
,
2998 &ArgChains
[0], ArgChains
.size());
3001 /// getMemsetValue - Vectorized representation of the memset value
3003 static SDValue
getMemsetValue(SDValue Value
, EVT VT
, SelectionDAG
&DAG
,
3005 unsigned NumBits
= VT
.isVector() ?
3006 VT
.getVectorElementType().getSizeInBits() : VT
.getSizeInBits();
3007 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Value
)) {
3008 APInt Val
= APInt(NumBits
, C
->getZExtValue() & 255);
3010 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
3011 Val
= (Val
<< Shift
) | Val
;
3015 return DAG
.getConstant(Val
, VT
);
3016 return DAG
.getConstantFP(APFloat(Val
), VT
);
3019 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3020 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Value
);
3022 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
3023 Value
= DAG
.getNode(ISD::OR
, dl
, VT
,
3024 DAG
.getNode(ISD::SHL
, dl
, VT
, Value
,
3025 DAG
.getConstant(Shift
,
3026 TLI
.getShiftAmountTy())),
3034 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3035 /// used when a memcpy is turned into a memset when the source is a constant
3037 static SDValue
getMemsetStringVal(EVT VT
, DebugLoc dl
, SelectionDAG
&DAG
,
3038 const TargetLowering
&TLI
,
3039 std::string
&Str
, unsigned Offset
) {
3040 // Handle vector with all elements zero.
3043 return DAG
.getConstant(0, VT
);
3044 unsigned NumElts
= VT
.getVectorNumElements();
3045 MVT EltVT
= (VT
.getVectorElementType() == MVT::f32
) ? MVT::i32
: MVT::i64
;
3046 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3048 EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
)));
3051 assert(!VT
.isVector() && "Can't handle vector type here!");
3052 unsigned NumBits
= VT
.getSizeInBits();
3053 unsigned MSB
= NumBits
/ 8;
3055 if (TLI
.isLittleEndian())
3056 Offset
= Offset
+ MSB
- 1;
3057 for (unsigned i
= 0; i
!= MSB
; ++i
) {
3058 Val
= (Val
<< 8) | (unsigned char)Str
[Offset
];
3059 Offset
+= TLI
.isLittleEndian() ? -1 : 1;
3061 return DAG
.getConstant(Val
, VT
);
3064 /// getMemBasePlusOffset - Returns base and offset node for the
3066 static SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
,
3067 SelectionDAG
&DAG
) {
3068 EVT VT
= Base
.getValueType();
3069 return DAG
.getNode(ISD::ADD
, Base
.getDebugLoc(),
3070 VT
, Base
, DAG
.getConstant(Offset
, VT
));
3073 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3075 static bool isMemSrcFromString(SDValue Src
, std::string
&Str
) {
3076 unsigned SrcDelta
= 0;
3077 GlobalAddressSDNode
*G
= NULL
;
3078 if (Src
.getOpcode() == ISD::GlobalAddress
)
3079 G
= cast
<GlobalAddressSDNode
>(Src
);
3080 else if (Src
.getOpcode() == ISD::ADD
&&
3081 Src
.getOperand(0).getOpcode() == ISD::GlobalAddress
&&
3082 Src
.getOperand(1).getOpcode() == ISD::Constant
) {
3083 G
= cast
<GlobalAddressSDNode
>(Src
.getOperand(0));
3084 SrcDelta
= cast
<ConstantSDNode
>(Src
.getOperand(1))->getZExtValue();
3089 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(G
->getGlobal());
3090 if (GV
&& GetConstantStringInfo(GV
, Str
, SrcDelta
, false))
3096 /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3097 /// to replace the memset / memcpy is below the threshold. It also returns the
3098 /// types of the sequence of memory ops to perform memset / memcpy.
3100 bool MeetsMaxMemopRequirement(std::vector
<EVT
> &MemOps
,
3101 SDValue Dst
, SDValue Src
,
3102 unsigned Limit
, uint64_t Size
, unsigned &Align
,
3103 std::string
&Str
, bool &isSrcStr
,
3105 const TargetLowering
&TLI
) {
3106 isSrcStr
= isMemSrcFromString(Src
, Str
);
3107 bool isSrcConst
= isa
<ConstantSDNode
>(Src
);
3108 bool AllowUnalign
= TLI
.allowsUnalignedMemoryAccesses();
3109 EVT VT
= TLI
.getOptimalMemOpType(Size
, Align
, isSrcConst
, isSrcStr
, DAG
);
3110 if (VT
!= MVT::iAny
) {
3111 unsigned NewAlign
= (unsigned)
3112 TLI
.getTargetData()->getABITypeAlignment(
3113 VT
.getTypeForEVT(*DAG
.getContext()));
3114 // If source is a string constant, this will require an unaligned load.
3115 if (NewAlign
> Align
&& (isSrcConst
|| AllowUnalign
)) {
3116 if (Dst
.getOpcode() != ISD::FrameIndex
) {
3117 // Can't change destination alignment. It requires a unaligned store.
3121 int FI
= cast
<FrameIndexSDNode
>(Dst
)->getIndex();
3122 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3123 if (MFI
->isFixedObjectIndex(FI
)) {
3124 // Can't change destination alignment. It requires a unaligned store.
3128 // Give the stack frame object a larger alignment if needed.
3129 if (MFI
->getObjectAlignment(FI
) < NewAlign
)
3130 MFI
->setObjectAlignment(FI
, NewAlign
);
3137 if (VT
== MVT::iAny
) {
3141 switch (Align
& 7) {
3142 case 0: VT
= MVT::i64
; break;
3143 case 4: VT
= MVT::i32
; break;
3144 case 2: VT
= MVT::i16
; break;
3145 default: VT
= MVT::i8
; break;
3150 while (!TLI
.isTypeLegal(LVT
))
3151 LVT
= (MVT::SimpleValueType
)(LVT
.SimpleTy
- 1);
3152 assert(LVT
.isInteger());
3158 unsigned NumMemOps
= 0;
3160 unsigned VTSize
= VT
.getSizeInBits() / 8;
3161 while (VTSize
> Size
) {
3162 // For now, only use non-vector load / store's for the left-over pieces.
3163 if (VT
.isVector()) {
3165 while (!TLI
.isTypeLegal(VT
))
3166 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
3167 VTSize
= VT
.getSizeInBits() / 8;
3169 // This can result in a type that is not legal on the target, e.g.
3170 // 1 or 2 bytes on PPC.
3171 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
3176 if (++NumMemOps
> Limit
)
3178 MemOps
.push_back(VT
);
3185 static SDValue
getMemcpyLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3186 SDValue Chain
, SDValue Dst
,
3187 SDValue Src
, uint64_t Size
,
3188 unsigned Align
, bool AlwaysInline
,
3189 const Value
*DstSV
, uint64_t DstSVOff
,
3190 const Value
*SrcSV
, uint64_t SrcSVOff
){
3191 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3193 // Expand memcpy to a series of load and store ops if the size operand falls
3194 // below a certain threshold.
3195 std::vector
<EVT
> MemOps
;
3196 uint64_t Limit
= -1ULL;
3198 Limit
= TLI
.getMaxStoresPerMemcpy();
3199 unsigned DstAlign
= Align
; // Destination alignment can change.
3202 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3203 Str
, CopyFromStr
, DAG
, TLI
))
3207 bool isZeroStr
= CopyFromStr
&& Str
.empty();
3208 SmallVector
<SDValue
, 8> OutChains
;
3209 unsigned NumMemOps
= MemOps
.size();
3210 uint64_t SrcOff
= 0, DstOff
= 0;
3211 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3213 unsigned VTSize
= VT
.getSizeInBits() / 8;
3214 SDValue Value
, Store
;
3216 if (CopyFromStr
&& (isZeroStr
|| !VT
.isVector())) {
3217 // It's unlikely a store of a vector immediate can be done in a single
3218 // instruction. It would require a load from a constantpool first.
3219 // We also handle store a vector with all zero's.
3220 // FIXME: Handle other cases where store of vector immediate is done in
3221 // a single instruction.
3222 Value
= getMemsetStringVal(VT
, dl
, DAG
, TLI
, Str
, SrcOff
);
3223 Store
= DAG
.getStore(Chain
, dl
, Value
,
3224 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3225 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3227 // The type might not be legal for the target. This should only happen
3228 // if the type is smaller than a legal type, as on PPC, so the right
3229 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
3230 // to Load/Store if NVT==VT.
3231 // FIXME does the case above also need this?
3232 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
3233 assert(NVT
.bitsGE(VT
));
3234 Value
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, NVT
, Chain
,
3235 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3236 SrcSV
, SrcSVOff
+ SrcOff
, VT
, false, Align
);
3237 Store
= DAG
.getTruncStore(Chain
, dl
, Value
,
3238 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3239 DstSV
, DstSVOff
+ DstOff
, VT
, false, DstAlign
);
3241 OutChains
.push_back(Store
);
3246 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3247 &OutChains
[0], OutChains
.size());
3250 static SDValue
getMemmoveLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3251 SDValue Chain
, SDValue Dst
,
3252 SDValue Src
, uint64_t Size
,
3253 unsigned Align
, bool AlwaysInline
,
3254 const Value
*DstSV
, uint64_t DstSVOff
,
3255 const Value
*SrcSV
, uint64_t SrcSVOff
){
3256 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3258 // Expand memmove to a series of load and store ops if the size operand falls
3259 // below a certain threshold.
3260 std::vector
<EVT
> MemOps
;
3261 uint64_t Limit
= -1ULL;
3263 Limit
= TLI
.getMaxStoresPerMemmove();
3264 unsigned DstAlign
= Align
; // Destination alignment can change.
3267 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3268 Str
, CopyFromStr
, DAG
, TLI
))
3271 uint64_t SrcOff
= 0, DstOff
= 0;
3273 SmallVector
<SDValue
, 8> LoadValues
;
3274 SmallVector
<SDValue
, 8> LoadChains
;
3275 SmallVector
<SDValue
, 8> OutChains
;
3276 unsigned NumMemOps
= MemOps
.size();
3277 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3279 unsigned VTSize
= VT
.getSizeInBits() / 8;
3280 SDValue Value
, Store
;
3282 Value
= DAG
.getLoad(VT
, dl
, Chain
,
3283 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3284 SrcSV
, SrcSVOff
+ SrcOff
, false, Align
);
3285 LoadValues
.push_back(Value
);
3286 LoadChains
.push_back(Value
.getValue(1));
3289 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3290 &LoadChains
[0], LoadChains
.size());
3292 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3294 unsigned VTSize
= VT
.getSizeInBits() / 8;
3295 SDValue Value
, Store
;
3297 Store
= DAG
.getStore(Chain
, dl
, LoadValues
[i
],
3298 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3299 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3300 OutChains
.push_back(Store
);
3304 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3305 &OutChains
[0], OutChains
.size());
3308 static SDValue
getMemsetStores(SelectionDAG
&DAG
, DebugLoc dl
,
3309 SDValue Chain
, SDValue Dst
,
3310 SDValue Src
, uint64_t Size
,
3312 const Value
*DstSV
, uint64_t DstSVOff
) {
3313 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3315 // Expand memset to a series of load/store ops if the size operand
3316 // falls below a certain threshold.
3317 std::vector
<EVT
> MemOps
;
3320 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, TLI
.getMaxStoresPerMemset(),
3321 Size
, Align
, Str
, CopyFromStr
, DAG
, TLI
))
3324 SmallVector
<SDValue
, 8> OutChains
;
3325 uint64_t DstOff
= 0;
3327 unsigned NumMemOps
= MemOps
.size();
3328 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3330 unsigned VTSize
= VT
.getSizeInBits() / 8;
3331 SDValue Value
= getMemsetValue(Src
, VT
, DAG
, dl
);
3332 SDValue Store
= DAG
.getStore(Chain
, dl
, Value
,
3333 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3334 DstSV
, DstSVOff
+ DstOff
);
3335 OutChains
.push_back(Store
);
3339 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3340 &OutChains
[0], OutChains
.size());
3343 SDValue
SelectionDAG::getMemcpy(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3344 SDValue Src
, SDValue Size
,
3345 unsigned Align
, bool AlwaysInline
,
3346 const Value
*DstSV
, uint64_t DstSVOff
,
3347 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3349 // Check to see if we should lower the memcpy to loads and stores first.
3350 // For cases within the target-specified limits, this is the best choice.
3351 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3353 // Memcpy with size zero? Just return the original chain.
3354 if (ConstantSize
->isNullValue())
3358 getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3359 ConstantSize
->getZExtValue(),
3360 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3361 if (Result
.getNode())
3365 // Then check to see if we should lower the memcpy with target-specific
3366 // code. If the target chooses to do this, this is the next best.
3368 TLI
.EmitTargetCodeForMemcpy(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3370 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3371 if (Result
.getNode())
3374 // If we really need inline code and the target declined to provide it,
3375 // use a (potentially long) sequence of loads and stores.
3377 assert(ConstantSize
&& "AlwaysInline requires a constant size!");
3378 return getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3379 ConstantSize
->getZExtValue(), Align
, true,
3380 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3383 // Emit a library call.
3384 TargetLowering::ArgListTy Args
;
3385 TargetLowering::ArgListEntry Entry
;
3386 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*getContext());
3387 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3388 Entry
.Node
= Src
; Args
.push_back(Entry
);
3389 Entry
.Node
= Size
; Args
.push_back(Entry
);
3390 // FIXME: pass in DebugLoc
3391 std::pair
<SDValue
,SDValue
> CallResult
=
3392 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3393 false, false, false, false, 0,
3394 TLI
.getLibcallCallingConv(RTLIB::MEMCPY
), false,
3395 /*isReturnValueUsed=*/false,
3396 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMCPY
),
3397 TLI
.getPointerTy()),
3399 return CallResult
.second
;
3402 SDValue
SelectionDAG::getMemmove(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3403 SDValue Src
, SDValue Size
,
3405 const Value
*DstSV
, uint64_t DstSVOff
,
3406 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3408 // Check to see if we should lower the memmove to loads and stores first.
3409 // For cases within the target-specified limits, this is the best choice.
3410 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3412 // Memmove with size zero? Just return the original chain.
3413 if (ConstantSize
->isNullValue())
3417 getMemmoveLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3418 ConstantSize
->getZExtValue(),
3419 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3420 if (Result
.getNode())
3424 // Then check to see if we should lower the memmove with target-specific
3425 // code. If the target chooses to do this, this is the next best.
3427 TLI
.EmitTargetCodeForMemmove(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3428 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3429 if (Result
.getNode())
3432 // Emit a library call.
3433 TargetLowering::ArgListTy Args
;
3434 TargetLowering::ArgListEntry Entry
;
3435 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*getContext());
3436 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3437 Entry
.Node
= Src
; Args
.push_back(Entry
);
3438 Entry
.Node
= Size
; Args
.push_back(Entry
);
3439 // FIXME: pass in DebugLoc
3440 std::pair
<SDValue
,SDValue
> CallResult
=
3441 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3442 false, false, false, false, 0,
3443 TLI
.getLibcallCallingConv(RTLIB::MEMMOVE
), false,
3444 /*isReturnValueUsed=*/false,
3445 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMMOVE
),
3446 TLI
.getPointerTy()),
3448 return CallResult
.second
;
3451 SDValue
SelectionDAG::getMemset(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3452 SDValue Src
, SDValue Size
,
3454 const Value
*DstSV
, uint64_t DstSVOff
) {
3456 // Check to see if we should lower the memset to stores first.
3457 // For cases within the target-specified limits, this is the best choice.
3458 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3460 // Memset with size zero? Just return the original chain.
3461 if (ConstantSize
->isNullValue())
3465 getMemsetStores(*this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(),
3466 Align
, DstSV
, DstSVOff
);
3467 if (Result
.getNode())
3471 // Then check to see if we should lower the memset with target-specific
3472 // code. If the target chooses to do this, this is the next best.
3474 TLI
.EmitTargetCodeForMemset(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3476 if (Result
.getNode())
3479 // Emit a library call.
3480 const Type
*IntPtrTy
= TLI
.getTargetData()->getIntPtrType(*getContext());
3481 TargetLowering::ArgListTy Args
;
3482 TargetLowering::ArgListEntry Entry
;
3483 Entry
.Node
= Dst
; Entry
.Ty
= IntPtrTy
;
3484 Args
.push_back(Entry
);
3485 // Extend or truncate the argument to be an i32 value for the call.
3486 if (Src
.getValueType().bitsGT(MVT::i32
))
3487 Src
= getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Src
);
3489 Src
= getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Src
);
3491 Entry
.Ty
= Type::getInt32Ty(*getContext());
3492 Entry
.isSExt
= true;
3493 Args
.push_back(Entry
);
3495 Entry
.Ty
= IntPtrTy
;
3496 Entry
.isSExt
= false;
3497 Args
.push_back(Entry
);
3498 // FIXME: pass in DebugLoc
3499 std::pair
<SDValue
,SDValue
> CallResult
=
3500 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3501 false, false, false, false, 0,
3502 TLI
.getLibcallCallingConv(RTLIB::MEMSET
), false,
3503 /*isReturnValueUsed=*/false,
3504 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMSET
),
3505 TLI
.getPointerTy()),
3507 return CallResult
.second
;
3510 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3512 SDValue Ptr
, SDValue Cmp
,
3513 SDValue Swp
, const Value
* PtrVal
,
3514 unsigned Alignment
) {
3515 assert(Opcode
== ISD::ATOMIC_CMP_SWAP
&& "Invalid Atomic Op");
3516 assert(Cmp
.getValueType() == Swp
.getValueType() && "Invalid Atomic Op Types");
3518 EVT VT
= Cmp
.getValueType();
3520 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3521 Alignment
= getEVTAlignment(MemVT
);
3523 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3524 FoldingSetNodeID ID
;
3525 ID
.AddInteger(MemVT
.getRawBits());
3526 SDValue Ops
[] = {Chain
, Ptr
, Cmp
, Swp
};
3527 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 4);
3529 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3530 return SDValue(E
, 0);
3531 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3532 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
,
3533 Chain
, Ptr
, Cmp
, Swp
, PtrVal
, Alignment
);
3534 CSEMap
.InsertNode(N
, IP
);
3535 AllNodes
.push_back(N
);
3536 return SDValue(N
, 0);
3539 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3541 SDValue Ptr
, SDValue Val
,
3542 const Value
* PtrVal
,
3543 unsigned Alignment
) {
3544 assert((Opcode
== ISD::ATOMIC_LOAD_ADD
||
3545 Opcode
== ISD::ATOMIC_LOAD_SUB
||
3546 Opcode
== ISD::ATOMIC_LOAD_AND
||
3547 Opcode
== ISD::ATOMIC_LOAD_OR
||
3548 Opcode
== ISD::ATOMIC_LOAD_XOR
||
3549 Opcode
== ISD::ATOMIC_LOAD_NAND
||
3550 Opcode
== ISD::ATOMIC_LOAD_MIN
||
3551 Opcode
== ISD::ATOMIC_LOAD_MAX
||
3552 Opcode
== ISD::ATOMIC_LOAD_UMIN
||
3553 Opcode
== ISD::ATOMIC_LOAD_UMAX
||
3554 Opcode
== ISD::ATOMIC_SWAP
) &&
3555 "Invalid Atomic Op");
3557 EVT VT
= Val
.getValueType();
3559 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3560 Alignment
= getEVTAlignment(MemVT
);
3562 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3563 FoldingSetNodeID ID
;
3564 ID
.AddInteger(MemVT
.getRawBits());
3565 SDValue Ops
[] = {Chain
, Ptr
, Val
};
3566 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
3568 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3569 return SDValue(E
, 0);
3570 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3571 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
,
3572 Chain
, Ptr
, Val
, PtrVal
, Alignment
);
3573 CSEMap
.InsertNode(N
, IP
);
3574 AllNodes
.push_back(N
);
3575 return SDValue(N
, 0);
3578 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3579 /// Allowed to return something different (and simpler) if Simplify is true.
3580 SDValue
SelectionDAG::getMergeValues(const SDValue
*Ops
, unsigned NumOps
,
3585 SmallVector
<EVT
, 4> VTs
;
3586 VTs
.reserve(NumOps
);
3587 for (unsigned i
= 0; i
< NumOps
; ++i
)
3588 VTs
.push_back(Ops
[i
].getValueType());
3589 return getNode(ISD::MERGE_VALUES
, dl
, getVTList(&VTs
[0], NumOps
),
3594 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
,
3595 const EVT
*VTs
, unsigned NumVTs
,
3596 const SDValue
*Ops
, unsigned NumOps
,
3597 EVT MemVT
, const Value
*srcValue
, int SVOff
,
3598 unsigned Align
, bool Vol
,
3599 bool ReadMem
, bool WriteMem
) {
3600 return getMemIntrinsicNode(Opcode
, dl
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
,
3601 MemVT
, srcValue
, SVOff
, Align
, Vol
,
3606 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
, SDVTList VTList
,
3607 const SDValue
*Ops
, unsigned NumOps
,
3608 EVT MemVT
, const Value
*srcValue
, int SVOff
,
3609 unsigned Align
, bool Vol
,
3610 bool ReadMem
, bool WriteMem
) {
3611 // Memoize the node unless it returns a flag.
3612 MemIntrinsicSDNode
*N
;
3613 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3614 FoldingSetNodeID ID
;
3615 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3617 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3618 return SDValue(E
, 0);
3620 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3621 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
,
3622 srcValue
, SVOff
, Align
, Vol
, ReadMem
, WriteMem
);
3623 CSEMap
.InsertNode(N
, IP
);
3625 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3626 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
,
3627 srcValue
, SVOff
, Align
, Vol
, ReadMem
, WriteMem
);
3629 AllNodes
.push_back(N
);
3630 return SDValue(N
, 0);
3634 SelectionDAG::getLoad(ISD::MemIndexedMode AM
, DebugLoc dl
,
3635 ISD::LoadExtType ExtType
, EVT VT
, SDValue Chain
,
3636 SDValue Ptr
, SDValue Offset
,
3637 const Value
*SV
, int SVOffset
, EVT EVT
,
3638 bool isVolatile
, unsigned Alignment
) {
3639 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3640 Alignment
= getEVTAlignment(VT
);
3643 ExtType
= ISD::NON_EXTLOAD
;
3644 } else if (ExtType
== ISD::NON_EXTLOAD
) {
3645 assert(VT
== EVT
&& "Non-extending load from different memory type!");
3649 assert(EVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
3650 "Invalid vector extload!");
3652 assert(EVT
.bitsLT(VT
) &&
3653 "Should only be an extending load, not truncating!");
3654 assert((ExtType
== ISD::EXTLOAD
|| VT
.isInteger()) &&
3655 "Cannot sign/zero extend a FP/Vector load!");
3656 assert(VT
.isInteger() == EVT
.isInteger() &&
3657 "Cannot convert from FP to Int or Int -> FP!");
3660 bool Indexed
= AM
!= ISD::UNINDEXED
;
3661 assert((Indexed
|| Offset
.getOpcode() == ISD::UNDEF
) &&
3662 "Unindexed load with an offset!");
3664 SDVTList VTs
= Indexed
?
3665 getVTList(VT
, Ptr
.getValueType(), MVT::Other
) : getVTList(VT
, MVT::Other
);
3666 SDValue Ops
[] = { Chain
, Ptr
, Offset
};
3667 FoldingSetNodeID ID
;
3668 AddNodeIDNode(ID
, ISD::LOAD
, VTs
, Ops
, 3);
3669 ID
.AddInteger(EVT
.getRawBits());
3670 ID
.AddInteger(encodeMemSDNodeFlags(ExtType
, AM
, isVolatile
, Alignment
));
3672 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3673 return SDValue(E
, 0);
3674 SDNode
*N
= NodeAllocator
.Allocate
<LoadSDNode
>();
3675 new (N
) LoadSDNode(Ops
, dl
, VTs
, AM
, ExtType
, EVT
, SV
, SVOffset
,
3676 Alignment
, isVolatile
);
3677 CSEMap
.InsertNode(N
, IP
);
3678 AllNodes
.push_back(N
);
3679 return SDValue(N
, 0);
3682 SDValue
SelectionDAG::getLoad(EVT VT
, DebugLoc dl
,
3683 SDValue Chain
, SDValue Ptr
,
3684 const Value
*SV
, int SVOffset
,
3685 bool isVolatile
, unsigned Alignment
) {
3686 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3687 return getLoad(ISD::UNINDEXED
, dl
, ISD::NON_EXTLOAD
, VT
, Chain
, Ptr
, Undef
,
3688 SV
, SVOffset
, VT
, isVolatile
, Alignment
);
3691 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, DebugLoc dl
, EVT VT
,
3692 SDValue Chain
, SDValue Ptr
,
3694 int SVOffset
, EVT EVT
,
3695 bool isVolatile
, unsigned Alignment
) {
3696 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3697 return getLoad(ISD::UNINDEXED
, dl
, ExtType
, VT
, Chain
, Ptr
, Undef
,
3698 SV
, SVOffset
, EVT
, isVolatile
, Alignment
);
3702 SelectionDAG::getIndexedLoad(SDValue OrigLoad
, DebugLoc dl
, SDValue Base
,
3703 SDValue Offset
, ISD::MemIndexedMode AM
) {
3704 LoadSDNode
*LD
= cast
<LoadSDNode
>(OrigLoad
);
3705 assert(LD
->getOffset().getOpcode() == ISD::UNDEF
&&
3706 "Load is already a indexed load!");
3707 return getLoad(AM
, dl
, LD
->getExtensionType(), OrigLoad
.getValueType(),
3708 LD
->getChain(), Base
, Offset
, LD
->getSrcValue(),
3709 LD
->getSrcValueOffset(), LD
->getMemoryVT(),
3710 LD
->isVolatile(), LD
->getAlignment());
3713 SDValue
SelectionDAG::getStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3714 SDValue Ptr
, const Value
*SV
, int SVOffset
,
3715 bool isVolatile
, unsigned Alignment
) {
3716 EVT VT
= Val
.getValueType();
3718 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3719 Alignment
= getEVTAlignment(VT
);
3721 SDVTList VTs
= getVTList(MVT::Other
);
3722 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3723 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3724 FoldingSetNodeID ID
;
3725 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3726 ID
.AddInteger(VT
.getRawBits());
3727 ID
.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED
,
3728 isVolatile
, Alignment
));
3730 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3731 return SDValue(E
, 0);
3732 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3733 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, false,
3734 VT
, SV
, SVOffset
, Alignment
, isVolatile
);
3735 CSEMap
.InsertNode(N
, IP
);
3736 AllNodes
.push_back(N
);
3737 return SDValue(N
, 0);
3740 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3741 SDValue Ptr
, const Value
*SV
,
3742 int SVOffset
, EVT SVT
,
3743 bool isVolatile
, unsigned Alignment
) {
3744 EVT VT
= Val
.getValueType();
3747 return getStore(Chain
, dl
, Val
, Ptr
, SV
, SVOffset
, isVolatile
, Alignment
);
3749 assert(VT
.bitsGT(SVT
) && "Not a truncation?");
3750 assert(VT
.isInteger() == SVT
.isInteger() &&
3751 "Can't do FP-INT conversion!");
3753 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3754 Alignment
= getEVTAlignment(VT
);
3756 SDVTList VTs
= getVTList(MVT::Other
);
3757 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3758 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3759 FoldingSetNodeID ID
;
3760 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3761 ID
.AddInteger(SVT
.getRawBits());
3762 ID
.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED
,
3763 isVolatile
, Alignment
));
3765 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3766 return SDValue(E
, 0);
3767 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3768 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, true,
3769 SVT
, SV
, SVOffset
, Alignment
, isVolatile
);
3770 CSEMap
.InsertNode(N
, IP
);
3771 AllNodes
.push_back(N
);
3772 return SDValue(N
, 0);
3776 SelectionDAG::getIndexedStore(SDValue OrigStore
, DebugLoc dl
, SDValue Base
,
3777 SDValue Offset
, ISD::MemIndexedMode AM
) {
3778 StoreSDNode
*ST
= cast
<StoreSDNode
>(OrigStore
);
3779 assert(ST
->getOffset().getOpcode() == ISD::UNDEF
&&
3780 "Store is already a indexed store!");
3781 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
3782 SDValue Ops
[] = { ST
->getChain(), ST
->getValue(), Base
, Offset
};
3783 FoldingSetNodeID ID
;
3784 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3785 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
3786 ID
.AddInteger(ST
->getRawSubclassData());
3788 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3789 return SDValue(E
, 0);
3790 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3791 new (N
) StoreSDNode(Ops
, dl
, VTs
, AM
,
3792 ST
->isTruncatingStore(), ST
->getMemoryVT(),
3793 ST
->getSrcValue(), ST
->getSrcValueOffset(),
3794 ST
->getAlignment(), ST
->isVolatile());
3795 CSEMap
.InsertNode(N
, IP
);
3796 AllNodes
.push_back(N
);
3797 return SDValue(N
, 0);
3800 SDValue
SelectionDAG::getVAArg(EVT VT
, DebugLoc dl
,
3801 SDValue Chain
, SDValue Ptr
,
3803 SDValue Ops
[] = { Chain
, Ptr
, SV
};
3804 return getNode(ISD::VAARG
, dl
, getVTList(VT
, MVT::Other
), Ops
, 3);
3807 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
3808 const SDUse
*Ops
, unsigned NumOps
) {
3810 case 0: return getNode(Opcode
, DL
, VT
);
3811 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
3812 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
3813 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
3817 // Copy from an SDUse array into an SDValue array for use with
3818 // the regular getNode logic.
3819 SmallVector
<SDValue
, 8> NewOps(Ops
, Ops
+ NumOps
);
3820 return getNode(Opcode
, DL
, VT
, &NewOps
[0], NumOps
);
3823 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
3824 const SDValue
*Ops
, unsigned NumOps
) {
3826 case 0: return getNode(Opcode
, DL
, VT
);
3827 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
3828 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
3829 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
3835 case ISD::SELECT_CC
: {
3836 assert(NumOps
== 5 && "SELECT_CC takes 5 operands!");
3837 assert(Ops
[0].getValueType() == Ops
[1].getValueType() &&
3838 "LHS and RHS of condition must have same type!");
3839 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
3840 "True and False arms of SelectCC must have same type!");
3841 assert(Ops
[2].getValueType() == VT
&&
3842 "select_cc node must be of same type as true and false value!");
3846 assert(NumOps
== 5 && "BR_CC takes 5 operands!");
3847 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
3848 "LHS/RHS of comparison should match types!");
3855 SDVTList VTs
= getVTList(VT
);
3857 if (VT
!= MVT::Flag
) {
3858 FoldingSetNodeID ID
;
3859 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, NumOps
);
3862 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3863 return SDValue(E
, 0);
3865 N
= NodeAllocator
.Allocate
<SDNode
>();
3866 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
3867 CSEMap
.InsertNode(N
, IP
);
3869 N
= NodeAllocator
.Allocate
<SDNode
>();
3870 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
3873 AllNodes
.push_back(N
);
3877 return SDValue(N
, 0);
3880 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
3881 const std::vector
<EVT
> &ResultTys
,
3882 const SDValue
*Ops
, unsigned NumOps
) {
3883 return getNode(Opcode
, DL
, getVTList(&ResultTys
[0], ResultTys
.size()),
3887 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
3888 const EVT
*VTs
, unsigned NumVTs
,
3889 const SDValue
*Ops
, unsigned NumOps
) {
3891 return getNode(Opcode
, DL
, VTs
[0], Ops
, NumOps
);
3892 return getNode(Opcode
, DL
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
);
3895 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3896 const SDValue
*Ops
, unsigned NumOps
) {
3897 if (VTList
.NumVTs
== 1)
3898 return getNode(Opcode
, DL
, VTList
.VTs
[0], Ops
, NumOps
);
3902 // FIXME: figure out how to safely handle things like
3903 // int foo(int x) { return 1 << (x & 255); }
3904 // int bar() { return foo(256); }
3905 case ISD::SRA_PARTS
:
3906 case ISD::SRL_PARTS
:
3907 case ISD::SHL_PARTS
:
3908 if (N3
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3909 cast
<VTSDNode
>(N3
.getOperand(1))->getVT() != MVT::i1
)
3910 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
3911 else if (N3
.getOpcode() == ISD::AND
)
3912 if (ConstantSDNode
*AndRHS
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(1))) {
3913 // If the and is only masking out bits that cannot effect the shift,
3914 // eliminate the and.
3915 unsigned NumBits
= VT
.getSizeInBits()*2;
3916 if ((AndRHS
->getValue() & (NumBits
-1)) == NumBits
-1)
3917 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
3923 // Memoize the node unless it returns a flag.
3925 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3926 FoldingSetNodeID ID
;
3927 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3929 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3930 return SDValue(E
, 0);
3932 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
3933 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
3934 } else if (NumOps
== 2) {
3935 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
3936 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
3937 } else if (NumOps
== 3) {
3938 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3939 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
3941 N
= NodeAllocator
.Allocate
<SDNode
>();
3942 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
3944 CSEMap
.InsertNode(N
, IP
);
3947 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
3948 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
3949 } else if (NumOps
== 2) {
3950 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
3951 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
3952 } else if (NumOps
== 3) {
3953 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3954 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
3956 N
= NodeAllocator
.Allocate
<SDNode
>();
3957 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
3960 AllNodes
.push_back(N
);
3964 return SDValue(N
, 0);
3967 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
) {
3968 return getNode(Opcode
, DL
, VTList
, 0, 0);
3971 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3973 SDValue Ops
[] = { N1
};
3974 return getNode(Opcode
, DL
, VTList
, Ops
, 1);
3977 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3978 SDValue N1
, SDValue N2
) {
3979 SDValue Ops
[] = { N1
, N2
};
3980 return getNode(Opcode
, DL
, VTList
, Ops
, 2);
3983 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3984 SDValue N1
, SDValue N2
, SDValue N3
) {
3985 SDValue Ops
[] = { N1
, N2
, N3
};
3986 return getNode(Opcode
, DL
, VTList
, Ops
, 3);
3989 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3990 SDValue N1
, SDValue N2
, SDValue N3
,
3992 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
3993 return getNode(Opcode
, DL
, VTList
, Ops
, 4);
3996 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3997 SDValue N1
, SDValue N2
, SDValue N3
,
3998 SDValue N4
, SDValue N5
) {
3999 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
4000 return getNode(Opcode
, DL
, VTList
, Ops
, 5);
4003 SDVTList
SelectionDAG::getVTList(EVT VT
) {
4004 return makeVTList(SDNode::getValueTypeList(VT
), 1);
4007 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
) {
4008 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4009 E
= VTList
.rend(); I
!= E
; ++I
)
4010 if (I
->NumVTs
== 2 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
)
4013 EVT
*Array
= Allocator
.Allocate
<EVT
>(2);
4016 SDVTList Result
= makeVTList(Array
, 2);
4017 VTList
.push_back(Result
);
4021 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
) {
4022 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4023 E
= VTList
.rend(); I
!= E
; ++I
)
4024 if (I
->NumVTs
== 3 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
4028 EVT
*Array
= Allocator
.Allocate
<EVT
>(3);
4032 SDVTList Result
= makeVTList(Array
, 3);
4033 VTList
.push_back(Result
);
4037 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
) {
4038 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4039 E
= VTList
.rend(); I
!= E
; ++I
)
4040 if (I
->NumVTs
== 4 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
4041 I
->VTs
[2] == VT3
&& I
->VTs
[3] == VT4
)
4044 EVT
*Array
= Allocator
.Allocate
<EVT
>(3);
4049 SDVTList Result
= makeVTList(Array
, 4);
4050 VTList
.push_back(Result
);
4054 SDVTList
SelectionDAG::getVTList(const EVT
*VTs
, unsigned NumVTs
) {
4056 case 0: llvm_unreachable("Cannot have nodes without results!");
4057 case 1: return getVTList(VTs
[0]);
4058 case 2: return getVTList(VTs
[0], VTs
[1]);
4059 case 3: return getVTList(VTs
[0], VTs
[1], VTs
[2]);
4063 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4064 E
= VTList
.rend(); I
!= E
; ++I
) {
4065 if (I
->NumVTs
!= NumVTs
|| VTs
[0] != I
->VTs
[0] || VTs
[1] != I
->VTs
[1])
4068 bool NoMatch
= false;
4069 for (unsigned i
= 2; i
!= NumVTs
; ++i
)
4070 if (VTs
[i
] != I
->VTs
[i
]) {
4078 EVT
*Array
= Allocator
.Allocate
<EVT
>(NumVTs
);
4079 std::copy(VTs
, VTs
+NumVTs
, Array
);
4080 SDVTList Result
= makeVTList(Array
, NumVTs
);
4081 VTList
.push_back(Result
);
4086 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4087 /// specified operands. If the resultant node already exists in the DAG,
4088 /// this does not modify the specified node, instead it returns the node that
4089 /// already exists. If the resultant node does not exist in the DAG, the
4090 /// input node is returned. As a degenerate case, if you specify the same
4091 /// input operands as the node already has, the input node is returned.
4092 SDValue
SelectionDAG::UpdateNodeOperands(SDValue InN
, SDValue Op
) {
4093 SDNode
*N
= InN
.getNode();
4094 assert(N
->getNumOperands() == 1 && "Update with wrong number of operands");
4096 // Check to see if there is no change.
4097 if (Op
== N
->getOperand(0)) return InN
;
4099 // See if the modified node already exists.
4100 void *InsertPos
= 0;
4101 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op
, InsertPos
))
4102 return SDValue(Existing
, InN
.getResNo());
4104 // Nope it doesn't. Remove the node from its current place in the maps.
4106 if (!RemoveNodeFromCSEMaps(N
))
4109 // Now we update the operands.
4110 N
->OperandList
[0].set(Op
);
4112 // If this gets put into a CSE map, add it.
4113 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4117 SDValue
SelectionDAG::
4118 UpdateNodeOperands(SDValue InN
, SDValue Op1
, SDValue Op2
) {
4119 SDNode
*N
= InN
.getNode();
4120 assert(N
->getNumOperands() == 2 && "Update with wrong number of operands");
4122 // Check to see if there is no change.
4123 if (Op1
== N
->getOperand(0) && Op2
== N
->getOperand(1))
4124 return InN
; // No operands changed, just return the input node.
4126 // See if the modified node already exists.
4127 void *InsertPos
= 0;
4128 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op1
, Op2
, InsertPos
))
4129 return SDValue(Existing
, InN
.getResNo());
4131 // Nope it doesn't. Remove the node from its current place in the maps.
4133 if (!RemoveNodeFromCSEMaps(N
))
4136 // Now we update the operands.
4137 if (N
->OperandList
[0] != Op1
)
4138 N
->OperandList
[0].set(Op1
);
4139 if (N
->OperandList
[1] != Op2
)
4140 N
->OperandList
[1].set(Op2
);
4142 // If this gets put into a CSE map, add it.
4143 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4147 SDValue
SelectionDAG::
4148 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4149 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4150 return UpdateNodeOperands(N
, Ops
, 3);
4153 SDValue
SelectionDAG::
4154 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4155 SDValue Op3
, SDValue Op4
) {
4156 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
};
4157 return UpdateNodeOperands(N
, Ops
, 4);
4160 SDValue
SelectionDAG::
4161 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4162 SDValue Op3
, SDValue Op4
, SDValue Op5
) {
4163 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
, Op5
};
4164 return UpdateNodeOperands(N
, Ops
, 5);
4167 SDValue
SelectionDAG::
4168 UpdateNodeOperands(SDValue InN
, const SDValue
*Ops
, unsigned NumOps
) {
4169 SDNode
*N
= InN
.getNode();
4170 assert(N
->getNumOperands() == NumOps
&&
4171 "Update with wrong number of operands");
4173 // Check to see if there is no change.
4174 bool AnyChange
= false;
4175 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4176 if (Ops
[i
] != N
->getOperand(i
)) {
4182 // No operands changed, just return the input node.
4183 if (!AnyChange
) return InN
;
4185 // See if the modified node already exists.
4186 void *InsertPos
= 0;
4187 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Ops
, NumOps
, InsertPos
))
4188 return SDValue(Existing
, InN
.getResNo());
4190 // Nope it doesn't. Remove the node from its current place in the maps.
4192 if (!RemoveNodeFromCSEMaps(N
))
4195 // Now we update the operands.
4196 for (unsigned i
= 0; i
!= NumOps
; ++i
)
4197 if (N
->OperandList
[i
] != Ops
[i
])
4198 N
->OperandList
[i
].set(Ops
[i
]);
4200 // If this gets put into a CSE map, add it.
4201 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4205 /// DropOperands - Release the operands and set this node to have
4207 void SDNode::DropOperands() {
4208 // Unlike the code in MorphNodeTo that does this, we don't need to
4209 // watch for dead nodes here.
4210 for (op_iterator I
= op_begin(), E
= op_end(); I
!= E
; ) {
4216 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4219 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4221 SDVTList VTs
= getVTList(VT
);
4222 return SelectNodeTo(N
, MachineOpc
, VTs
, 0, 0);
4225 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4226 EVT VT
, SDValue Op1
) {
4227 SDVTList VTs
= getVTList(VT
);
4228 SDValue Ops
[] = { Op1
};
4229 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4232 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4233 EVT VT
, SDValue Op1
,
4235 SDVTList VTs
= getVTList(VT
);
4236 SDValue Ops
[] = { Op1
, Op2
};
4237 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4240 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4241 EVT VT
, SDValue Op1
,
4242 SDValue Op2
, SDValue Op3
) {
4243 SDVTList VTs
= getVTList(VT
);
4244 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4245 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4248 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4249 EVT VT
, const SDValue
*Ops
,
4251 SDVTList VTs
= getVTList(VT
);
4252 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4255 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4256 EVT VT1
, EVT VT2
, const SDValue
*Ops
,
4258 SDVTList VTs
= getVTList(VT1
, VT2
);
4259 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4262 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4264 SDVTList VTs
= getVTList(VT1
, VT2
);
4265 return SelectNodeTo(N
, MachineOpc
, VTs
, (SDValue
*)0, 0);
4268 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4269 EVT VT1
, EVT VT2
, EVT VT3
,
4270 const SDValue
*Ops
, unsigned NumOps
) {
4271 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4272 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4275 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4276 EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
,
4277 const SDValue
*Ops
, unsigned NumOps
) {
4278 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4279 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4282 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4285 SDVTList VTs
= getVTList(VT1
, VT2
);
4286 SDValue Ops
[] = { Op1
};
4287 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4290 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4292 SDValue Op1
, SDValue Op2
) {
4293 SDVTList VTs
= getVTList(VT1
, VT2
);
4294 SDValue Ops
[] = { Op1
, Op2
};
4295 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4298 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4300 SDValue Op1
, SDValue Op2
,
4302 SDVTList VTs
= getVTList(VT1
, VT2
);
4303 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4304 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4307 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4308 EVT VT1
, EVT VT2
, EVT VT3
,
4309 SDValue Op1
, SDValue Op2
,
4311 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4312 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4313 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4316 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4317 SDVTList VTs
, const SDValue
*Ops
,
4319 return MorphNodeTo(N
, ~MachineOpc
, VTs
, Ops
, NumOps
);
4322 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4324 SDVTList VTs
= getVTList(VT
);
4325 return MorphNodeTo(N
, Opc
, VTs
, 0, 0);
4328 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4329 EVT VT
, SDValue Op1
) {
4330 SDVTList VTs
= getVTList(VT
);
4331 SDValue Ops
[] = { Op1
};
4332 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4335 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4336 EVT VT
, SDValue Op1
,
4338 SDVTList VTs
= getVTList(VT
);
4339 SDValue Ops
[] = { Op1
, Op2
};
4340 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4343 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4344 EVT VT
, SDValue Op1
,
4345 SDValue Op2
, SDValue Op3
) {
4346 SDVTList VTs
= getVTList(VT
);
4347 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4348 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4351 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4352 EVT VT
, const SDValue
*Ops
,
4354 SDVTList VTs
= getVTList(VT
);
4355 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4358 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4359 EVT VT1
, EVT VT2
, const SDValue
*Ops
,
4361 SDVTList VTs
= getVTList(VT1
, VT2
);
4362 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4365 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4367 SDVTList VTs
= getVTList(VT1
, VT2
);
4368 return MorphNodeTo(N
, Opc
, VTs
, (SDValue
*)0, 0);
4371 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4372 EVT VT1
, EVT VT2
, EVT VT3
,
4373 const SDValue
*Ops
, unsigned NumOps
) {
4374 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4375 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4378 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4381 SDVTList VTs
= getVTList(VT1
, VT2
);
4382 SDValue Ops
[] = { Op1
};
4383 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4386 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4388 SDValue Op1
, SDValue Op2
) {
4389 SDVTList VTs
= getVTList(VT1
, VT2
);
4390 SDValue Ops
[] = { Op1
, Op2
};
4391 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4394 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4396 SDValue Op1
, SDValue Op2
,
4398 SDVTList VTs
= getVTList(VT1
, VT2
);
4399 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4400 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4403 /// MorphNodeTo - These *mutate* the specified node to have the specified
4404 /// return type, opcode, and operands.
4406 /// Note that MorphNodeTo returns the resultant node. If there is already a
4407 /// node of the specified opcode and operands, it returns that node instead of
4408 /// the current one. Note that the DebugLoc need not be the same.
4410 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4411 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4412 /// node, and because it doesn't require CSE recalculation for any of
4413 /// the node's users.
4415 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4416 SDVTList VTs
, const SDValue
*Ops
,
4418 // If an identical node already exists, use it.
4420 if (VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Flag
) {
4421 FoldingSetNodeID ID
;
4422 AddNodeIDNode(ID
, Opc
, VTs
, Ops
, NumOps
);
4423 if (SDNode
*ON
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4427 if (!RemoveNodeFromCSEMaps(N
))
4430 // Start the morphing.
4432 N
->ValueList
= VTs
.VTs
;
4433 N
->NumValues
= VTs
.NumVTs
;
4435 // Clear the operands list, updating used nodes to remove this from their
4436 // use list. Keep track of any operands that become dead as a result.
4437 SmallPtrSet
<SDNode
*, 16> DeadNodeSet
;
4438 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
4440 SDNode
*Used
= Use
.getNode();
4442 if (Used
->use_empty())
4443 DeadNodeSet
.insert(Used
);
4446 // If NumOps is larger than the # of operands we currently have, reallocate
4447 // the operand list.
4448 if (NumOps
> N
->NumOperands
) {
4449 if (N
->OperandsNeedDelete
)
4450 delete[] N
->OperandList
;
4452 if (N
->isMachineOpcode()) {
4453 // We're creating a final node that will live unmorphed for the
4454 // remainder of the current SelectionDAG iteration, so we can allocate
4455 // the operands directly out of a pool with no recycling metadata.
4456 N
->OperandList
= OperandAllocator
.Allocate
<SDUse
>(NumOps
);
4457 N
->OperandsNeedDelete
= false;
4459 N
->OperandList
= new SDUse
[NumOps
];
4460 N
->OperandsNeedDelete
= true;
4464 // Assign the new operands.
4465 N
->NumOperands
= NumOps
;
4466 for (unsigned i
= 0, e
= NumOps
; i
!= e
; ++i
) {
4467 N
->OperandList
[i
].setUser(N
);
4468 N
->OperandList
[i
].setInitial(Ops
[i
]);
4471 // Delete any nodes that are still dead after adding the uses for the
4473 SmallVector
<SDNode
*, 16> DeadNodes
;
4474 for (SmallPtrSet
<SDNode
*, 16>::iterator I
= DeadNodeSet
.begin(),
4475 E
= DeadNodeSet
.end(); I
!= E
; ++I
)
4476 if ((*I
)->use_empty())
4477 DeadNodes
.push_back(*I
);
4478 RemoveDeadNodes(DeadNodes
);
4481 CSEMap
.InsertNode(N
, IP
); // Memoize the new node.
4486 /// getTargetNode - These are used for target selectors to create a new node
4487 /// with specified return type(s), target opcode, and operands.
4489 /// Note that getTargetNode returns the resultant node. If there is already a
4490 /// node of the specified opcode and operands, it returns that node instead of
4491 /// the current one.
4492 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT
) {
4493 return getNode(~Opcode
, dl
, VT
).getNode();
4496 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4498 return getNode(~Opcode
, dl
, VT
, Op1
).getNode();
4501 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4502 SDValue Op1
, SDValue Op2
) {
4503 return getNode(~Opcode
, dl
, VT
, Op1
, Op2
).getNode();
4506 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4507 SDValue Op1
, SDValue Op2
,
4509 return getNode(~Opcode
, dl
, VT
, Op1
, Op2
, Op3
).getNode();
4512 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4513 const SDValue
*Ops
, unsigned NumOps
) {
4514 return getNode(~Opcode
, dl
, VT
, Ops
, NumOps
).getNode();
4517 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4519 SDVTList VTs
= getVTList(VT1
, VT2
);
4521 return getNode(~Opcode
, dl
, VTs
, &Op
, 0).getNode();
4524 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
,
4525 EVT VT2
, SDValue Op1
) {
4526 SDVTList VTs
= getVTList(VT1
, VT2
);
4527 return getNode(~Opcode
, dl
, VTs
, &Op1
, 1).getNode();
4530 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
,
4531 EVT VT2
, SDValue Op1
,
4533 SDVTList VTs
= getVTList(VT1
, VT2
);
4534 SDValue Ops
[] = { Op1
, Op2
};
4535 return getNode(~Opcode
, dl
, VTs
, Ops
, 2).getNode();
4538 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
,
4539 EVT VT2
, SDValue Op1
,
4540 SDValue Op2
, SDValue Op3
) {
4541 SDVTList VTs
= getVTList(VT1
, VT2
);
4542 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4543 return getNode(~Opcode
, dl
, VTs
, Ops
, 3).getNode();
4546 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4548 const SDValue
*Ops
, unsigned NumOps
) {
4549 SDVTList VTs
= getVTList(VT1
, VT2
);
4550 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4553 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4554 EVT VT1
, EVT VT2
, EVT VT3
,
4555 SDValue Op1
, SDValue Op2
) {
4556 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4557 SDValue Ops
[] = { Op1
, Op2
};
4558 return getNode(~Opcode
, dl
, VTs
, Ops
, 2).getNode();
4561 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4562 EVT VT1
, EVT VT2
, EVT VT3
,
4563 SDValue Op1
, SDValue Op2
,
4565 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4566 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4567 return getNode(~Opcode
, dl
, VTs
, Ops
, 3).getNode();
4570 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4571 EVT VT1
, EVT VT2
, EVT VT3
,
4572 const SDValue
*Ops
, unsigned NumOps
) {
4573 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4574 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4577 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
,
4578 EVT VT2
, EVT VT3
, EVT VT4
,
4579 const SDValue
*Ops
, unsigned NumOps
) {
4580 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4581 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4584 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4585 const std::vector
<EVT
> &ResultTys
,
4586 const SDValue
*Ops
, unsigned NumOps
) {
4587 return getNode(~Opcode
, dl
, ResultTys
, Ops
, NumOps
).getNode();
4590 /// getNodeIfExists - Get the specified node if it's already available, or
4591 /// else return NULL.
4592 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
4593 const SDValue
*Ops
, unsigned NumOps
) {
4594 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
4595 FoldingSetNodeID ID
;
4596 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
4598 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4604 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4605 /// This can cause recursive merging of nodes in the DAG.
4607 /// This version assumes From has a single result value.
4609 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN
, SDValue To
,
4610 DAGUpdateListener
*UpdateListener
) {
4611 SDNode
*From
= FromN
.getNode();
4612 assert(From
->getNumValues() == 1 && FromN
.getResNo() == 0 &&
4613 "Cannot replace with this method!");
4614 assert(From
!= To
.getNode() && "Cannot replace uses of with self");
4616 // Iterate over all the existing uses of From. New uses will be added
4617 // to the beginning of the use list, which we avoid visiting.
4618 // This specifically avoids visiting uses of From that arise while the
4619 // replacement is happening, because any such uses would be the result
4620 // of CSE: If an existing node looks like From after one of its operands
4621 // is replaced by To, we don't want to replace of all its users with To
4622 // too. See PR3018 for more info.
4623 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4627 // This node is about to morph, remove its old self from the CSE maps.
4628 RemoveNodeFromCSEMaps(User
);
4630 // A user can appear in a use list multiple times, and when this
4631 // happens the uses are usually next to each other in the list.
4632 // To help reduce the number of CSE recomputations, process all
4633 // the uses of this user that we can find this way.
4635 SDUse
&Use
= UI
.getUse();
4638 } while (UI
!= UE
&& *UI
== User
);
4640 // Now that we have modified User, add it back to the CSE maps. If it
4641 // already exists there, recursively merge the results together.
4642 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4646 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4647 /// This can cause recursive merging of nodes in the DAG.
4649 /// This version assumes that for each value of From, there is a
4650 /// corresponding value in To in the same position with the same type.
4652 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
,
4653 DAGUpdateListener
*UpdateListener
) {
4655 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
4656 assert((!From
->hasAnyUseOfValue(i
) ||
4657 From
->getValueType(i
) == To
->getValueType(i
)) &&
4658 "Cannot use this version of ReplaceAllUsesWith!");
4661 // Handle the trivial case.
4665 // Iterate over just the existing users of From. See the comments in
4666 // the ReplaceAllUsesWith above.
4667 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4671 // This node is about to morph, remove its old self from the CSE maps.
4672 RemoveNodeFromCSEMaps(User
);
4674 // A user can appear in a use list multiple times, and when this
4675 // happens the uses are usually next to each other in the list.
4676 // To help reduce the number of CSE recomputations, process all
4677 // the uses of this user that we can find this way.
4679 SDUse
&Use
= UI
.getUse();
4682 } while (UI
!= UE
&& *UI
== User
);
4684 // Now that we have modified User, add it back to the CSE maps. If it
4685 // already exists there, recursively merge the results together.
4686 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4690 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4691 /// This can cause recursive merging of nodes in the DAG.
4693 /// This version can replace From with any result values. To must match the
4694 /// number and types of values returned by From.
4695 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
,
4697 DAGUpdateListener
*UpdateListener
) {
4698 if (From
->getNumValues() == 1) // Handle the simple case efficiently.
4699 return ReplaceAllUsesWith(SDValue(From
, 0), To
[0], UpdateListener
);
4701 // Iterate over just the existing users of From. See the comments in
4702 // the ReplaceAllUsesWith above.
4703 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4707 // This node is about to morph, remove its old self from the CSE maps.
4708 RemoveNodeFromCSEMaps(User
);
4710 // A user can appear in a use list multiple times, and when this
4711 // happens the uses are usually next to each other in the list.
4712 // To help reduce the number of CSE recomputations, process all
4713 // the uses of this user that we can find this way.
4715 SDUse
&Use
= UI
.getUse();
4716 const SDValue
&ToOp
= To
[Use
.getResNo()];
4719 } while (UI
!= UE
&& *UI
== User
);
4721 // Now that we have modified User, add it back to the CSE maps. If it
4722 // already exists there, recursively merge the results together.
4723 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4727 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4728 /// uses of other values produced by From.getNode() alone. The Deleted
4729 /// vector is handled the same way as for ReplaceAllUsesWith.
4730 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
,
4731 DAGUpdateListener
*UpdateListener
){
4732 // Handle the really simple, really trivial case efficiently.
4733 if (From
== To
) return;
4735 // Handle the simple, trivial, case efficiently.
4736 if (From
.getNode()->getNumValues() == 1) {
4737 ReplaceAllUsesWith(From
, To
, UpdateListener
);
4741 // Iterate over just the existing users of From. See the comments in
4742 // the ReplaceAllUsesWith above.
4743 SDNode::use_iterator UI
= From
.getNode()->use_begin(),
4744 UE
= From
.getNode()->use_end();
4747 bool UserRemovedFromCSEMaps
= false;
4749 // A user can appear in a use list multiple times, and when this
4750 // happens the uses are usually next to each other in the list.
4751 // To help reduce the number of CSE recomputations, process all
4752 // the uses of this user that we can find this way.
4754 SDUse
&Use
= UI
.getUse();
4756 // Skip uses of different values from the same node.
4757 if (Use
.getResNo() != From
.getResNo()) {
4762 // If this node hasn't been modified yet, it's still in the CSE maps,
4763 // so remove its old self from the CSE maps.
4764 if (!UserRemovedFromCSEMaps
) {
4765 RemoveNodeFromCSEMaps(User
);
4766 UserRemovedFromCSEMaps
= true;
4771 } while (UI
!= UE
&& *UI
== User
);
4773 // We are iterating over all uses of the From node, so if a use
4774 // doesn't use the specific value, no changes are made.
4775 if (!UserRemovedFromCSEMaps
)
4778 // Now that we have modified User, add it back to the CSE maps. If it
4779 // already exists there, recursively merge the results together.
4780 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4785 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4786 /// to record information about a use.
4793 /// operator< - Sort Memos by User.
4794 bool operator<(const UseMemo
&L
, const UseMemo
&R
) {
4795 return (intptr_t)L
.User
< (intptr_t)R
.User
;
4799 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4800 /// uses of other values produced by From.getNode() alone. The same value
4801 /// may appear in both the From and To list. The Deleted vector is
4802 /// handled the same way as for ReplaceAllUsesWith.
4803 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue
*From
,
4806 DAGUpdateListener
*UpdateListener
){
4807 // Handle the simple, trivial case efficiently.
4809 return ReplaceAllUsesOfValueWith(*From
, *To
, UpdateListener
);
4811 // Read up all the uses and make records of them. This helps
4812 // processing new uses that are introduced during the
4813 // replacement process.
4814 SmallVector
<UseMemo
, 4> Uses
;
4815 for (unsigned i
= 0; i
!= Num
; ++i
) {
4816 unsigned FromResNo
= From
[i
].getResNo();
4817 SDNode
*FromNode
= From
[i
].getNode();
4818 for (SDNode::use_iterator UI
= FromNode
->use_begin(),
4819 E
= FromNode
->use_end(); UI
!= E
; ++UI
) {
4820 SDUse
&Use
= UI
.getUse();
4821 if (Use
.getResNo() == FromResNo
) {
4822 UseMemo Memo
= { *UI
, i
, &Use
};
4823 Uses
.push_back(Memo
);
4828 // Sort the uses, so that all the uses from a given User are together.
4829 std::sort(Uses
.begin(), Uses
.end());
4831 for (unsigned UseIndex
= 0, UseIndexEnd
= Uses
.size();
4832 UseIndex
!= UseIndexEnd
; ) {
4833 // We know that this user uses some value of From. If it is the right
4834 // value, update it.
4835 SDNode
*User
= Uses
[UseIndex
].User
;
4837 // This node is about to morph, remove its old self from the CSE maps.
4838 RemoveNodeFromCSEMaps(User
);
4840 // The Uses array is sorted, so all the uses for a given User
4841 // are next to each other in the list.
4842 // To help reduce the number of CSE recomputations, process all
4843 // the uses of this user that we can find this way.
4845 unsigned i
= Uses
[UseIndex
].Index
;
4846 SDUse
&Use
= *Uses
[UseIndex
].Use
;
4850 } while (UseIndex
!= UseIndexEnd
&& Uses
[UseIndex
].User
== User
);
4852 // Now that we have modified User, add it back to the CSE maps. If it
4853 // already exists there, recursively merge the results together.
4854 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4858 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4859 /// based on their topological order. It returns the maximum id and a vector
4860 /// of the SDNodes* in assigned order by reference.
4861 unsigned SelectionDAG::AssignTopologicalOrder() {
4863 unsigned DAGSize
= 0;
4865 // SortedPos tracks the progress of the algorithm. Nodes before it are
4866 // sorted, nodes after it are unsorted. When the algorithm completes
4867 // it is at the end of the list.
4868 allnodes_iterator SortedPos
= allnodes_begin();
4870 // Visit all the nodes. Move nodes with no operands to the front of
4871 // the list immediately. Annotate nodes that do have operands with their
4872 // operand count. Before we do this, the Node Id fields of the nodes
4873 // may contain arbitrary values. After, the Node Id fields for nodes
4874 // before SortedPos will contain the topological sort index, and the
4875 // Node Id fields for nodes At SortedPos and after will contain the
4876 // count of outstanding operands.
4877 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ) {
4879 unsigned Degree
= N
->getNumOperands();
4881 // A node with no uses, add it to the result array immediately.
4882 N
->setNodeId(DAGSize
++);
4883 allnodes_iterator Q
= N
;
4885 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(Q
));
4888 // Temporarily use the Node Id as scratch space for the degree count.
4889 N
->setNodeId(Degree
);
4893 // Visit all the nodes. As we iterate, moves nodes into sorted order,
4894 // such that by the time the end is reached all nodes will be sorted.
4895 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ++I
) {
4897 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
4900 unsigned Degree
= P
->getNodeId();
4903 // All of P's operands are sorted, so P may sorted now.
4904 P
->setNodeId(DAGSize
++);
4906 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(P
));
4909 // Update P's outstanding operand count.
4910 P
->setNodeId(Degree
);
4915 assert(SortedPos
== AllNodes
.end() &&
4916 "Topological sort incomplete!");
4917 assert(AllNodes
.front().getOpcode() == ISD::EntryToken
&&
4918 "First node in topological sort is not the entry token!");
4919 assert(AllNodes
.front().getNodeId() == 0 &&
4920 "First node in topological sort has non-zero id!");
4921 assert(AllNodes
.front().getNumOperands() == 0 &&
4922 "First node in topological sort has operands!");
4923 assert(AllNodes
.back().getNodeId() == (int)DAGSize
-1 &&
4924 "Last node in topologic sort has unexpected id!");
4925 assert(AllNodes
.back().use_empty() &&
4926 "Last node in topologic sort has users!");
4927 assert(DAGSize
== allnodes_size() && "Node count mismatch!");
4933 //===----------------------------------------------------------------------===//
4935 //===----------------------------------------------------------------------===//
4937 HandleSDNode::~HandleSDNode() {
4941 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc
, const GlobalValue
*GA
,
4942 EVT VT
, int64_t o
, unsigned char TF
)
4943 : SDNode(Opc
, DebugLoc::getUnknownLoc(), getSDVTList(VT
)),
4944 Offset(o
), TargetFlags(TF
) {
4945 TheGlobal
= const_cast<GlobalValue
*>(GA
);
4948 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, EVT memvt
,
4949 const Value
*srcValue
, int SVO
,
4950 unsigned alignment
, bool vol
)
4951 : SDNode(Opc
, dl
, VTs
), MemoryVT(memvt
), SrcValue(srcValue
), SVOffset(SVO
) {
4952 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, vol
, alignment
);
4953 assert(isPowerOf2_32(alignment
) && "Alignment is not a power of 2!");
4954 assert(getAlignment() == alignment
&& "Alignment representation error!");
4955 assert(isVolatile() == vol
&& "Volatile representation error!");
4958 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
,
4960 unsigned NumOps
, EVT memvt
, const Value
*srcValue
,
4961 int SVO
, unsigned alignment
, bool vol
)
4962 : SDNode(Opc
, dl
, VTs
, Ops
, NumOps
),
4963 MemoryVT(memvt
), SrcValue(srcValue
), SVOffset(SVO
) {
4964 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, vol
, alignment
);
4965 assert(isPowerOf2_32(alignment
) && "Alignment is not a power of 2!");
4966 assert(getAlignment() == alignment
&& "Alignment representation error!");
4967 assert(isVolatile() == vol
&& "Volatile representation error!");
4970 /// getMemOperand - Return a MachineMemOperand object describing the memory
4971 /// reference performed by this memory reference.
4972 MachineMemOperand
MemSDNode::getMemOperand() const {
4974 if (isa
<LoadSDNode
>(this))
4975 Flags
= MachineMemOperand::MOLoad
;
4976 else if (isa
<StoreSDNode
>(this))
4977 Flags
= MachineMemOperand::MOStore
;
4978 else if (isa
<AtomicSDNode
>(this)) {
4979 Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4982 const MemIntrinsicSDNode
* MemIntrinNode
= dyn_cast
<MemIntrinsicSDNode
>(this);
4983 assert(MemIntrinNode
&& "Unknown MemSDNode opcode!");
4984 if (MemIntrinNode
->readMem()) Flags
|= MachineMemOperand::MOLoad
;
4985 if (MemIntrinNode
->writeMem()) Flags
|= MachineMemOperand::MOStore
;
4988 int Size
= (getMemoryVT().getSizeInBits() + 7) >> 3;
4989 if (isVolatile()) Flags
|= MachineMemOperand::MOVolatile
;
4991 // Check if the memory reference references a frame index
4992 const FrameIndexSDNode
*FI
=
4993 dyn_cast
<const FrameIndexSDNode
>(getBasePtr().getNode());
4994 if (!getSrcValue() && FI
)
4995 return MachineMemOperand(PseudoSourceValue::getFixedStack(FI
->getIndex()),
4996 Flags
, 0, Size
, getAlignment());
4998 return MachineMemOperand(getSrcValue(), Flags
, getSrcValueOffset(),
4999 Size
, getAlignment());
5002 /// Profile - Gather unique data for the node.
5004 void SDNode::Profile(FoldingSetNodeID
&ID
) const {
5005 AddNodeIDNode(ID
, this);
5008 static ManagedStatic
<std::set
<EVT
, EVT::compareRawBits
> > EVTs
;
5009 static EVT VTs
[MVT::LAST_VALUETYPE
];
5010 static ManagedStatic
<sys::SmartMutex
<true> > VTMutex
;
5012 /// getValueTypeList - Return a pointer to the specified value type.
5014 const EVT
*SDNode::getValueTypeList(EVT VT
) {
5015 sys::SmartScopedLock
<true> Lock(*VTMutex
);
5016 if (VT
.isExtended()) {
5017 return &(*EVTs
->insert(VT
).first
);
5019 VTs
[VT
.getSimpleVT().SimpleTy
] = VT
;
5020 return &VTs
[VT
.getSimpleVT().SimpleTy
];
5024 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5025 /// indicated value. This method ignores uses of other values defined by this
5027 bool SDNode::hasNUsesOfValue(unsigned NUses
, unsigned Value
) const {
5028 assert(Value
< getNumValues() && "Bad value!");
5030 // TODO: Only iterate over uses of a given value of the node
5031 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
5032 if (UI
.getUse().getResNo() == Value
) {
5039 // Found exactly the right number of uses?
5044 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5045 /// value. This method ignores uses of other values defined by this operation.
5046 bool SDNode::hasAnyUseOfValue(unsigned Value
) const {
5047 assert(Value
< getNumValues() && "Bad value!");
5049 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
)
5050 if (UI
.getUse().getResNo() == Value
)
5057 /// isOnlyUserOf - Return true if this node is the only use of N.
5059 bool SDNode::isOnlyUserOf(SDNode
*N
) const {
5061 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
5072 /// isOperand - Return true if this node is an operand of N.
5074 bool SDValue::isOperandOf(SDNode
*N
) const {
5075 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5076 if (*this == N
->getOperand(i
))
5081 bool SDNode::isOperandOf(SDNode
*N
) const {
5082 for (unsigned i
= 0, e
= N
->NumOperands
; i
!= e
; ++i
)
5083 if (this == N
->OperandList
[i
].getNode())
5088 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5089 /// be a chain) reaches the specified operand without crossing any
5090 /// side-effecting instructions. In practice, this looks through token
5091 /// factors and non-volatile loads. In order to remain efficient, this only
5092 /// looks a couple of nodes in, it does not do an exhaustive search.
5093 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest
,
5094 unsigned Depth
) const {
5095 if (*this == Dest
) return true;
5097 // Don't search too deeply, we just want to be able to see through
5098 // TokenFactor's etc.
5099 if (Depth
== 0) return false;
5101 // If this is a token factor, all inputs to the TF happen in parallel. If any
5102 // of the operands of the TF reach dest, then we can do the xform.
5103 if (getOpcode() == ISD::TokenFactor
) {
5104 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
5105 if (getOperand(i
).reachesChainWithoutSideEffects(Dest
, Depth
-1))
5110 // Loads don't have side effects, look through them.
5111 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(*this)) {
5112 if (!Ld
->isVolatile())
5113 return Ld
->getChain().reachesChainWithoutSideEffects(Dest
, Depth
-1);
5119 static void findPredecessor(SDNode
*N
, const SDNode
*P
, bool &found
,
5120 SmallPtrSet
<SDNode
*, 32> &Visited
) {
5121 if (found
|| !Visited
.insert(N
))
5124 for (unsigned i
= 0, e
= N
->getNumOperands(); !found
&& i
!= e
; ++i
) {
5125 SDNode
*Op
= N
->getOperand(i
).getNode();
5130 findPredecessor(Op
, P
, found
, Visited
);
5134 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
5135 /// is either an operand of N or it can be reached by recursively traversing
5136 /// up the operands.
5137 /// NOTE: this is an expensive method. Use it carefully.
5138 bool SDNode::isPredecessorOf(SDNode
*N
) const {
5139 SmallPtrSet
<SDNode
*, 32> Visited
;
5141 findPredecessor(N
, this, found
, Visited
);
5145 uint64_t SDNode::getConstantOperandVal(unsigned Num
) const {
5146 assert(Num
< NumOperands
&& "Invalid child # of SDNode!");
5147 return cast
<ConstantSDNode
>(OperandList
[Num
])->getZExtValue();
5150 std::string
SDNode::getOperationName(const SelectionDAG
*G
) const {
5151 switch (getOpcode()) {
5153 if (getOpcode() < ISD::BUILTIN_OP_END
)
5154 return "<<Unknown DAG Node>>";
5155 if (isMachineOpcode()) {
5157 if (const TargetInstrInfo
*TII
= G
->getTarget().getInstrInfo())
5158 if (getMachineOpcode() < TII
->getNumOpcodes())
5159 return TII
->get(getMachineOpcode()).getName();
5160 return "<<Unknown Machine Node>>";
5163 const TargetLowering
&TLI
= G
->getTargetLoweringInfo();
5164 const char *Name
= TLI
.getTargetNodeName(getOpcode());
5165 if (Name
) return Name
;
5166 return "<<Unknown Target Node>>";
5168 return "<<Unknown Node>>";
5171 case ISD::DELETED_NODE
:
5172 return "<<Deleted Node!>>";
5174 case ISD::PREFETCH
: return "Prefetch";
5175 case ISD::MEMBARRIER
: return "MemBarrier";
5176 case ISD::ATOMIC_CMP_SWAP
: return "AtomicCmpSwap";
5177 case ISD::ATOMIC_SWAP
: return "AtomicSwap";
5178 case ISD::ATOMIC_LOAD_ADD
: return "AtomicLoadAdd";
5179 case ISD::ATOMIC_LOAD_SUB
: return "AtomicLoadSub";
5180 case ISD::ATOMIC_LOAD_AND
: return "AtomicLoadAnd";
5181 case ISD::ATOMIC_LOAD_OR
: return "AtomicLoadOr";
5182 case ISD::ATOMIC_LOAD_XOR
: return "AtomicLoadXor";
5183 case ISD::ATOMIC_LOAD_NAND
: return "AtomicLoadNand";
5184 case ISD::ATOMIC_LOAD_MIN
: return "AtomicLoadMin";
5185 case ISD::ATOMIC_LOAD_MAX
: return "AtomicLoadMax";
5186 case ISD::ATOMIC_LOAD_UMIN
: return "AtomicLoadUMin";
5187 case ISD::ATOMIC_LOAD_UMAX
: return "AtomicLoadUMax";
5188 case ISD::PCMARKER
: return "PCMarker";
5189 case ISD::READCYCLECOUNTER
: return "ReadCycleCounter";
5190 case ISD::SRCVALUE
: return "SrcValue";
5191 case ISD::MEMOPERAND
: return "MemOperand";
5192 case ISD::EntryToken
: return "EntryToken";
5193 case ISD::TokenFactor
: return "TokenFactor";
5194 case ISD::AssertSext
: return "AssertSext";
5195 case ISD::AssertZext
: return "AssertZext";
5197 case ISD::BasicBlock
: return "BasicBlock";
5198 case ISD::VALUETYPE
: return "ValueType";
5199 case ISD::Register
: return "Register";
5201 case ISD::Constant
: return "Constant";
5202 case ISD::ConstantFP
: return "ConstantFP";
5203 case ISD::GlobalAddress
: return "GlobalAddress";
5204 case ISD::GlobalTLSAddress
: return "GlobalTLSAddress";
5205 case ISD::FrameIndex
: return "FrameIndex";
5206 case ISD::JumpTable
: return "JumpTable";
5207 case ISD::GLOBAL_OFFSET_TABLE
: return "GLOBAL_OFFSET_TABLE";
5208 case ISD::RETURNADDR
: return "RETURNADDR";
5209 case ISD::FRAMEADDR
: return "FRAMEADDR";
5210 case ISD::FRAME_TO_ARGS_OFFSET
: return "FRAME_TO_ARGS_OFFSET";
5211 case ISD::EXCEPTIONADDR
: return "EXCEPTIONADDR";
5212 case ISD::LSDAADDR
: return "LSDAADDR";
5213 case ISD::EHSELECTION
: return "EHSELECTION";
5214 case ISD::EH_RETURN
: return "EH_RETURN";
5215 case ISD::ConstantPool
: return "ConstantPool";
5216 case ISD::ExternalSymbol
: return "ExternalSymbol";
5217 case ISD::INTRINSIC_WO_CHAIN
: {
5218 unsigned IID
= cast
<ConstantSDNode
>(getOperand(0))->getZExtValue();
5219 return Intrinsic::getName((Intrinsic::ID
)IID
);
5221 case ISD::INTRINSIC_VOID
:
5222 case ISD::INTRINSIC_W_CHAIN
: {
5223 unsigned IID
= cast
<ConstantSDNode
>(getOperand(1))->getZExtValue();
5224 return Intrinsic::getName((Intrinsic::ID
)IID
);
5227 case ISD::BUILD_VECTOR
: return "BUILD_VECTOR";
5228 case ISD::TargetConstant
: return "TargetConstant";
5229 case ISD::TargetConstantFP
:return "TargetConstantFP";
5230 case ISD::TargetGlobalAddress
: return "TargetGlobalAddress";
5231 case ISD::TargetGlobalTLSAddress
: return "TargetGlobalTLSAddress";
5232 case ISD::TargetFrameIndex
: return "TargetFrameIndex";
5233 case ISD::TargetJumpTable
: return "TargetJumpTable";
5234 case ISD::TargetConstantPool
: return "TargetConstantPool";
5235 case ISD::TargetExternalSymbol
: return "TargetExternalSymbol";
5237 case ISD::CopyToReg
: return "CopyToReg";
5238 case ISD::CopyFromReg
: return "CopyFromReg";
5239 case ISD::UNDEF
: return "undef";
5240 case ISD::MERGE_VALUES
: return "merge_values";
5241 case ISD::INLINEASM
: return "inlineasm";
5242 case ISD::DBG_LABEL
: return "dbg_label";
5243 case ISD::EH_LABEL
: return "eh_label";
5244 case ISD::DECLARE
: return "declare";
5245 case ISD::HANDLENODE
: return "handlenode";
5248 case ISD::FABS
: return "fabs";
5249 case ISD::FNEG
: return "fneg";
5250 case ISD::FSQRT
: return "fsqrt";
5251 case ISD::FSIN
: return "fsin";
5252 case ISD::FCOS
: return "fcos";
5253 case ISD::FPOWI
: return "fpowi";
5254 case ISD::FPOW
: return "fpow";
5255 case ISD::FTRUNC
: return "ftrunc";
5256 case ISD::FFLOOR
: return "ffloor";
5257 case ISD::FCEIL
: return "fceil";
5258 case ISD::FRINT
: return "frint";
5259 case ISD::FNEARBYINT
: return "fnearbyint";
5262 case ISD::ADD
: return "add";
5263 case ISD::SUB
: return "sub";
5264 case ISD::MUL
: return "mul";
5265 case ISD::MULHU
: return "mulhu";
5266 case ISD::MULHS
: return "mulhs";
5267 case ISD::SDIV
: return "sdiv";
5268 case ISD::UDIV
: return "udiv";
5269 case ISD::SREM
: return "srem";
5270 case ISD::UREM
: return "urem";
5271 case ISD::SMUL_LOHI
: return "smul_lohi";
5272 case ISD::UMUL_LOHI
: return "umul_lohi";
5273 case ISD::SDIVREM
: return "sdivrem";
5274 case ISD::UDIVREM
: return "udivrem";
5275 case ISD::AND
: return "and";
5276 case ISD::OR
: return "or";
5277 case ISD::XOR
: return "xor";
5278 case ISD::SHL
: return "shl";
5279 case ISD::SRA
: return "sra";
5280 case ISD::SRL
: return "srl";
5281 case ISD::ROTL
: return "rotl";
5282 case ISD::ROTR
: return "rotr";
5283 case ISD::FADD
: return "fadd";
5284 case ISD::FSUB
: return "fsub";
5285 case ISD::FMUL
: return "fmul";
5286 case ISD::FDIV
: return "fdiv";
5287 case ISD::FREM
: return "frem";
5288 case ISD::FCOPYSIGN
: return "fcopysign";
5289 case ISD::FGETSIGN
: return "fgetsign";
5291 case ISD::SETCC
: return "setcc";
5292 case ISD::VSETCC
: return "vsetcc";
5293 case ISD::SELECT
: return "select";
5294 case ISD::SELECT_CC
: return "select_cc";
5295 case ISD::INSERT_VECTOR_ELT
: return "insert_vector_elt";
5296 case ISD::EXTRACT_VECTOR_ELT
: return "extract_vector_elt";
5297 case ISD::CONCAT_VECTORS
: return "concat_vectors";
5298 case ISD::EXTRACT_SUBVECTOR
: return "extract_subvector";
5299 case ISD::SCALAR_TO_VECTOR
: return "scalar_to_vector";
5300 case ISD::VECTOR_SHUFFLE
: return "vector_shuffle";
5301 case ISD::CARRY_FALSE
: return "carry_false";
5302 case ISD::ADDC
: return "addc";
5303 case ISD::ADDE
: return "adde";
5304 case ISD::SADDO
: return "saddo";
5305 case ISD::UADDO
: return "uaddo";
5306 case ISD::SSUBO
: return "ssubo";
5307 case ISD::USUBO
: return "usubo";
5308 case ISD::SMULO
: return "smulo";
5309 case ISD::UMULO
: return "umulo";
5310 case ISD::SUBC
: return "subc";
5311 case ISD::SUBE
: return "sube";
5312 case ISD::SHL_PARTS
: return "shl_parts";
5313 case ISD::SRA_PARTS
: return "sra_parts";
5314 case ISD::SRL_PARTS
: return "srl_parts";
5316 // Conversion operators.
5317 case ISD::SIGN_EXTEND
: return "sign_extend";
5318 case ISD::ZERO_EXTEND
: return "zero_extend";
5319 case ISD::ANY_EXTEND
: return "any_extend";
5320 case ISD::SIGN_EXTEND_INREG
: return "sign_extend_inreg";
5321 case ISD::TRUNCATE
: return "truncate";
5322 case ISD::FP_ROUND
: return "fp_round";
5323 case ISD::FLT_ROUNDS_
: return "flt_rounds";
5324 case ISD::FP_ROUND_INREG
: return "fp_round_inreg";
5325 case ISD::FP_EXTEND
: return "fp_extend";
5327 case ISD::SINT_TO_FP
: return "sint_to_fp";
5328 case ISD::UINT_TO_FP
: return "uint_to_fp";
5329 case ISD::FP_TO_SINT
: return "fp_to_sint";
5330 case ISD::FP_TO_UINT
: return "fp_to_uint";
5331 case ISD::BIT_CONVERT
: return "bit_convert";
5333 case ISD::CONVERT_RNDSAT
: {
5334 switch (cast
<CvtRndSatSDNode
>(this)->getCvtCode()) {
5335 default: llvm_unreachable("Unknown cvt code!");
5336 case ISD::CVT_FF
: return "cvt_ff";
5337 case ISD::CVT_FS
: return "cvt_fs";
5338 case ISD::CVT_FU
: return "cvt_fu";
5339 case ISD::CVT_SF
: return "cvt_sf";
5340 case ISD::CVT_UF
: return "cvt_uf";
5341 case ISD::CVT_SS
: return "cvt_ss";
5342 case ISD::CVT_SU
: return "cvt_su";
5343 case ISD::CVT_US
: return "cvt_us";
5344 case ISD::CVT_UU
: return "cvt_uu";
5348 // Control flow instructions
5349 case ISD::BR
: return "br";
5350 case ISD::BRIND
: return "brind";
5351 case ISD::BR_JT
: return "br_jt";
5352 case ISD::BRCOND
: return "brcond";
5353 case ISD::BR_CC
: return "br_cc";
5354 case ISD::CALLSEQ_START
: return "callseq_start";
5355 case ISD::CALLSEQ_END
: return "callseq_end";
5358 case ISD::LOAD
: return "load";
5359 case ISD::STORE
: return "store";
5360 case ISD::VAARG
: return "vaarg";
5361 case ISD::VACOPY
: return "vacopy";
5362 case ISD::VAEND
: return "vaend";
5363 case ISD::VASTART
: return "vastart";
5364 case ISD::DYNAMIC_STACKALLOC
: return "dynamic_stackalloc";
5365 case ISD::EXTRACT_ELEMENT
: return "extract_element";
5366 case ISD::BUILD_PAIR
: return "build_pair";
5367 case ISD::STACKSAVE
: return "stacksave";
5368 case ISD::STACKRESTORE
: return "stackrestore";
5369 case ISD::TRAP
: return "trap";
5372 case ISD::BSWAP
: return "bswap";
5373 case ISD::CTPOP
: return "ctpop";
5374 case ISD::CTTZ
: return "cttz";
5375 case ISD::CTLZ
: return "ctlz";
5378 case ISD::DBG_STOPPOINT
: return "dbg_stoppoint";
5379 case ISD::DEBUG_LOC
: return "debug_loc";
5382 case ISD::TRAMPOLINE
: return "trampoline";
5385 switch (cast
<CondCodeSDNode
>(this)->get()) {
5386 default: llvm_unreachable("Unknown setcc condition!");
5387 case ISD::SETOEQ
: return "setoeq";
5388 case ISD::SETOGT
: return "setogt";
5389 case ISD::SETOGE
: return "setoge";
5390 case ISD::SETOLT
: return "setolt";
5391 case ISD::SETOLE
: return "setole";
5392 case ISD::SETONE
: return "setone";
5394 case ISD::SETO
: return "seto";
5395 case ISD::SETUO
: return "setuo";
5396 case ISD::SETUEQ
: return "setue";
5397 case ISD::SETUGT
: return "setugt";
5398 case ISD::SETUGE
: return "setuge";
5399 case ISD::SETULT
: return "setult";
5400 case ISD::SETULE
: return "setule";
5401 case ISD::SETUNE
: return "setune";
5403 case ISD::SETEQ
: return "seteq";
5404 case ISD::SETGT
: return "setgt";
5405 case ISD::SETGE
: return "setge";
5406 case ISD::SETLT
: return "setlt";
5407 case ISD::SETLE
: return "setle";
5408 case ISD::SETNE
: return "setne";
5413 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM
) {
5422 return "<post-inc>";
5424 return "<post-dec>";
5428 std::string
ISD::ArgFlagsTy::getArgFlagsString() {
5429 std::string S
= "< ";
5443 if (getByValAlign())
5444 S
+= "byval-align:" + utostr(getByValAlign()) + " ";
5446 S
+= "orig-align:" + utostr(getOrigAlign()) + " ";
5448 S
+= "byval-size:" + utostr(getByValSize()) + " ";
5452 void SDNode::dump() const { dump(0); }
5453 void SDNode::dump(const SelectionDAG
*G
) const {
5457 void SDNode::print_types(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5458 OS
<< (void*)this << ": ";
5460 for (unsigned i
= 0, e
= getNumValues(); i
!= e
; ++i
) {
5462 if (getValueType(i
) == MVT::Other
)
5465 OS
<< getValueType(i
).getEVTString();
5467 OS
<< " = " << getOperationName(G
);
5470 void SDNode::print_details(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5471 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE
) {
5472 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(this);
5474 for (unsigned i
= 0, e
= ValueList
[0].getVectorNumElements(); i
!= e
; ++i
) {
5475 int Idx
= SVN
->getMaskElt(i
);
5485 if (const ConstantSDNode
*CSDN
= dyn_cast
<ConstantSDNode
>(this)) {
5486 OS
<< '<' << CSDN
->getAPIntValue() << '>';
5487 } else if (const ConstantFPSDNode
*CSDN
= dyn_cast
<ConstantFPSDNode
>(this)) {
5488 if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEsingle
)
5489 OS
<< '<' << CSDN
->getValueAPF().convertToFloat() << '>';
5490 else if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
)
5491 OS
<< '<' << CSDN
->getValueAPF().convertToDouble() << '>';
5494 CSDN
->getValueAPF().bitcastToAPInt().dump();
5497 } else if (const GlobalAddressSDNode
*GADN
=
5498 dyn_cast
<GlobalAddressSDNode
>(this)) {
5499 int64_t offset
= GADN
->getOffset();
5501 WriteAsOperand(OS
, GADN
->getGlobal());
5504 OS
<< " + " << offset
;
5506 OS
<< " " << offset
;
5507 if (unsigned int TF
= GADN
->getTargetFlags())
5508 OS
<< " [TF=" << TF
<< ']';
5509 } else if (const FrameIndexSDNode
*FIDN
= dyn_cast
<FrameIndexSDNode
>(this)) {
5510 OS
<< "<" << FIDN
->getIndex() << ">";
5511 } else if (const JumpTableSDNode
*JTDN
= dyn_cast
<JumpTableSDNode
>(this)) {
5512 OS
<< "<" << JTDN
->getIndex() << ">";
5513 if (unsigned int TF
= JTDN
->getTargetFlags())
5514 OS
<< " [TF=" << TF
<< ']';
5515 } else if (const ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(this)){
5516 int offset
= CP
->getOffset();
5517 if (CP
->isMachineConstantPoolEntry())
5518 OS
<< "<" << *CP
->getMachineCPVal() << ">";
5520 OS
<< "<" << *CP
->getConstVal() << ">";
5522 OS
<< " + " << offset
;
5524 OS
<< " " << offset
;
5525 if (unsigned int TF
= CP
->getTargetFlags())
5526 OS
<< " [TF=" << TF
<< ']';
5527 } else if (const BasicBlockSDNode
*BBDN
= dyn_cast
<BasicBlockSDNode
>(this)) {
5529 const Value
*LBB
= (const Value
*)BBDN
->getBasicBlock()->getBasicBlock();
5531 OS
<< LBB
->getName() << " ";
5532 OS
<< (const void*)BBDN
->getBasicBlock() << ">";
5533 } else if (const RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(this)) {
5534 if (G
&& R
->getReg() &&
5535 TargetRegisterInfo::isPhysicalRegister(R
->getReg())) {
5536 OS
<< " " << G
->getTarget().getRegisterInfo()->getName(R
->getReg());
5538 OS
<< " #" << R
->getReg();
5540 } else if (const ExternalSymbolSDNode
*ES
=
5541 dyn_cast
<ExternalSymbolSDNode
>(this)) {
5542 OS
<< "'" << ES
->getSymbol() << "'";
5543 if (unsigned int TF
= ES
->getTargetFlags())
5544 OS
<< " [TF=" << TF
<< ']';
5545 } else if (const SrcValueSDNode
*M
= dyn_cast
<SrcValueSDNode
>(this)) {
5547 OS
<< "<" << M
->getValue() << ">";
5550 } else if (const MemOperandSDNode
*M
= dyn_cast
<MemOperandSDNode
>(this)) {
5551 if (M
->MO
.getValue())
5552 OS
<< "<" << M
->MO
.getValue() << ":" << M
->MO
.getOffset() << ">";
5554 OS
<< "<null:" << M
->MO
.getOffset() << ">";
5555 } else if (const VTSDNode
*N
= dyn_cast
<VTSDNode
>(this)) {
5556 OS
<< ":" << N
->getVT().getEVTString();
5558 else if (const LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(this)) {
5559 const Value
*SrcValue
= LD
->getSrcValue();
5560 int SrcOffset
= LD
->getSrcValueOffset();
5566 OS
<< ":" << SrcOffset
<< ">";
5569 switch (LD
->getExtensionType()) {
5570 default: doExt
= false; break;
5571 case ISD::EXTLOAD
: OS
<< " <anyext "; break;
5572 case ISD::SEXTLOAD
: OS
<< " <sext "; break;
5573 case ISD::ZEXTLOAD
: OS
<< " <zext "; break;
5576 OS
<< LD
->getMemoryVT().getEVTString() << ">";
5578 const char *AM
= getIndexedModeName(LD
->getAddressingMode());
5581 if (LD
->isVolatile())
5582 OS
<< " <volatile>";
5583 OS
<< " alignment=" << LD
->getAlignment();
5584 } else if (const StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(this)) {
5585 const Value
*SrcValue
= ST
->getSrcValue();
5586 int SrcOffset
= ST
->getSrcValueOffset();
5592 OS
<< ":" << SrcOffset
<< ">";
5594 if (ST
->isTruncatingStore())
5595 OS
<< " <trunc " << ST
->getMemoryVT().getEVTString() << ">";
5597 const char *AM
= getIndexedModeName(ST
->getAddressingMode());
5600 if (ST
->isVolatile())
5601 OS
<< " <volatile>";
5602 OS
<< " alignment=" << ST
->getAlignment();
5603 } else if (const AtomicSDNode
* AT
= dyn_cast
<AtomicSDNode
>(this)) {
5604 const Value
*SrcValue
= AT
->getSrcValue();
5605 int SrcOffset
= AT
->getSrcValueOffset();
5611 OS
<< ":" << SrcOffset
<< ">";
5612 if (AT
->isVolatile())
5613 OS
<< " <volatile>";
5614 OS
<< " alignment=" << AT
->getAlignment();
5618 void SDNode::print(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5621 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
5623 OS
<< (void*)getOperand(i
).getNode();
5624 if (unsigned RN
= getOperand(i
).getResNo())
5627 print_details(OS
, G
);
5630 static void DumpNodes(const SDNode
*N
, unsigned indent
, const SelectionDAG
*G
) {
5631 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5632 if (N
->getOperand(i
).getNode()->hasOneUse())
5633 DumpNodes(N
->getOperand(i
).getNode(), indent
+2, G
);
5635 cerr
<< "\n" << std::string(indent
+2, ' ')
5636 << (void*)N
->getOperand(i
).getNode() << ": <multiple use>";
5639 cerr
<< "\n" << std::string(indent
, ' ');
5643 void SelectionDAG::dump() const {
5644 cerr
<< "SelectionDAG has " << AllNodes
.size() << " nodes:";
5646 for (allnodes_const_iterator I
= allnodes_begin(), E
= allnodes_end();
5648 const SDNode
*N
= I
;
5649 if (!N
->hasOneUse() && N
!= getRoot().getNode())
5650 DumpNodes(N
, 2, this);
5653 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5658 void SDNode::printr(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5660 print_details(OS
, G
);
5663 typedef SmallPtrSet
<const SDNode
*, 128> VisitedSDNodeSet
;
5664 static void DumpNodesr(raw_ostream
&OS
, const SDNode
*N
, unsigned indent
,
5665 const SelectionDAG
*G
, VisitedSDNodeSet
&once
) {
5666 if (!once
.insert(N
)) // If we've been here before, return now.
5668 // Dump the current SDNode, but don't end the line yet.
5669 OS
<< std::string(indent
, ' ');
5671 // Having printed this SDNode, walk the children:
5672 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5673 const SDNode
*child
= N
->getOperand(i
).getNode();
5676 if (child
->getNumOperands() == 0) {
5677 // This child has no grandchildren; print it inline right here.
5678 child
->printr(OS
, G
);
5680 } else { // Just the address. FIXME: also print the child's opcode
5682 if (unsigned RN
= N
->getOperand(i
).getResNo())
5687 // Dump children that have grandchildren on their own line(s).
5688 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5689 const SDNode
*child
= N
->getOperand(i
).getNode();
5690 DumpNodesr(OS
, child
, indent
+2, G
, once
);
5694 void SDNode::dumpr() const {
5695 VisitedSDNodeSet once
;
5696 DumpNodesr(errs(), this, 0, 0, once
);
5700 // getAddressSpace - Return the address space this GlobalAddress belongs to.
5701 unsigned GlobalAddressSDNode::getAddressSpace() const {
5702 return getGlobal()->getType()->getAddressSpace();
5706 const Type
*ConstantPoolSDNode::getType() const {
5707 if (isMachineConstantPoolEntry())
5708 return Val
.MachineCPVal
->getType();
5709 return Val
.ConstVal
->getType();
5712 bool BuildVectorSDNode::isConstantSplat(APInt
&SplatValue
,
5714 unsigned &SplatBitSize
,
5716 unsigned MinSplatBits
) {
5717 EVT VT
= getValueType(0);
5718 assert(VT
.isVector() && "Expected a vector type");
5719 unsigned sz
= VT
.getSizeInBits();
5720 if (MinSplatBits
> sz
)
5723 SplatValue
= APInt(sz
, 0);
5724 SplatUndef
= APInt(sz
, 0);
5726 // Get the bits. Bits with undefined values (when the corresponding element
5727 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5728 // in SplatValue. If any of the values are not constant, give up and return
5730 unsigned int nOps
= getNumOperands();
5731 assert(nOps
> 0 && "isConstantSplat has 0-size build vector");
5732 unsigned EltBitSize
= VT
.getVectorElementType().getSizeInBits();
5733 for (unsigned i
= 0; i
< nOps
; ++i
) {
5734 SDValue OpVal
= getOperand(i
);
5735 unsigned BitPos
= i
* EltBitSize
;
5737 if (OpVal
.getOpcode() == ISD::UNDEF
)
5738 SplatUndef
|= APInt::getBitsSet(sz
, BitPos
, BitPos
+EltBitSize
);
5739 else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
))
5740 SplatValue
|= (APInt(CN
->getAPIntValue()).zextOrTrunc(EltBitSize
).
5741 zextOrTrunc(sz
) << BitPos
);
5742 else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
))
5743 SplatValue
|= CN
->getValueAPF().bitcastToAPInt().zextOrTrunc(sz
) <<BitPos
;
5748 // The build_vector is all constants or undefs. Find the smallest element
5749 // size that splats the vector.
5751 HasAnyUndefs
= (SplatUndef
!= 0);
5754 unsigned HalfSize
= sz
/ 2;
5755 APInt HighValue
= APInt(SplatValue
).lshr(HalfSize
).trunc(HalfSize
);
5756 APInt LowValue
= APInt(SplatValue
).trunc(HalfSize
);
5757 APInt HighUndef
= APInt(SplatUndef
).lshr(HalfSize
).trunc(HalfSize
);
5758 APInt LowUndef
= APInt(SplatUndef
).trunc(HalfSize
);
5760 // If the two halves do not match (ignoring undef bits), stop here.
5761 if ((HighValue
& ~LowUndef
) != (LowValue
& ~HighUndef
) ||
5762 MinSplatBits
> HalfSize
)
5765 SplatValue
= HighValue
| LowValue
;
5766 SplatUndef
= HighUndef
& LowUndef
;
5775 bool ShuffleVectorSDNode::isSplatMask(const int *Mask
, EVT VT
) {
5776 // Find the first non-undef value in the shuffle mask.
5778 for (i
= 0, e
= VT
.getVectorNumElements(); i
!= e
&& Mask
[i
] < 0; ++i
)
5781 assert(i
!= e
&& "VECTOR_SHUFFLE node with all undef indices!");
5783 // Make sure all remaining elements are either undef or the same as the first
5785 for (int Idx
= Mask
[i
]; i
!= e
; ++i
)
5786 if (Mask
[i
] >= 0 && Mask
[i
] != Idx
)