1 //===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "SelectionDAGBuild.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Constants.h"
20 #include "llvm/Constants.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Function.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/InlineAsm.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Intrinsics.h"
28 #include "llvm/IntrinsicInst.h"
29 #include "llvm/Module.h"
30 #include "llvm/CodeGen/FastISel.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/GCMetadata.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineModuleInfo.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/PseudoSourceValue.h"
40 #include "llvm/CodeGen/SelectionDAG.h"
41 #include "llvm/CodeGen/DwarfWriter.h"
42 #include "llvm/Analysis/DebugInfo.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Target/TargetFrameInfo.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetIntrinsicInfo.h"
48 #include "llvm/Target/TargetLowering.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
59 /// LimitFloatPrecision - Generate low-precision inline sequences for
60 /// some float libcalls (6, 8 or 12 bits).
61 static unsigned LimitFloatPrecision
;
63 static cl::opt
<unsigned, true>
64 LimitFPPrecision("limit-float-precision",
65 cl::desc("Generate low-precision inline sequences "
66 "for some float libcalls"),
67 cl::location(LimitFloatPrecision
),
70 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
71 /// of insertvalue or extractvalue indices that identify a member, return
72 /// the linearized index of the start of the member.
74 static unsigned ComputeLinearIndex(const TargetLowering
&TLI
, const Type
*Ty
,
75 const unsigned *Indices
,
76 const unsigned *IndicesEnd
,
77 unsigned CurIndex
= 0) {
78 // Base case: We're done.
79 if (Indices
&& Indices
== IndicesEnd
)
82 // Given a struct type, recursively traverse the elements.
83 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
84 for (StructType::element_iterator EB
= STy
->element_begin(),
86 EE
= STy
->element_end();
88 if (Indices
&& *Indices
== unsigned(EI
- EB
))
89 return ComputeLinearIndex(TLI
, *EI
, Indices
+1, IndicesEnd
, CurIndex
);
90 CurIndex
= ComputeLinearIndex(TLI
, *EI
, 0, 0, CurIndex
);
94 // Given an array type, recursively traverse the elements.
95 else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
96 const Type
*EltTy
= ATy
->getElementType();
97 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
) {
98 if (Indices
&& *Indices
== i
)
99 return ComputeLinearIndex(TLI
, EltTy
, Indices
+1, IndicesEnd
, CurIndex
);
100 CurIndex
= ComputeLinearIndex(TLI
, EltTy
, 0, 0, CurIndex
);
104 // We haven't found the type we're looking for, so keep searching.
108 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
109 /// EVTs that represent all the individual underlying
110 /// non-aggregate types that comprise it.
112 /// If Offsets is non-null, it points to a vector to be filled in
113 /// with the in-memory offsets of each of the individual values.
115 static void ComputeValueVTs(const TargetLowering
&TLI
, const Type
*Ty
,
116 SmallVectorImpl
<EVT
> &ValueVTs
,
117 SmallVectorImpl
<uint64_t> *Offsets
= 0,
118 uint64_t StartingOffset
= 0) {
119 // Given a struct type, recursively traverse the elements.
120 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
121 const StructLayout
*SL
= TLI
.getTargetData()->getStructLayout(STy
);
122 for (StructType::element_iterator EB
= STy
->element_begin(),
124 EE
= STy
->element_end();
126 ComputeValueVTs(TLI
, *EI
, ValueVTs
, Offsets
,
127 StartingOffset
+ SL
->getElementOffset(EI
- EB
));
130 // Given an array type, recursively traverse the elements.
131 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
132 const Type
*EltTy
= ATy
->getElementType();
133 uint64_t EltSize
= TLI
.getTargetData()->getTypeAllocSize(EltTy
);
134 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
)
135 ComputeValueVTs(TLI
, EltTy
, ValueVTs
, Offsets
,
136 StartingOffset
+ i
* EltSize
);
139 // Interpret void as zero return values.
140 if (Ty
== Type::getVoidTy(Ty
->getContext()))
142 // Base case: we can get an EVT for this LLVM IR type.
143 ValueVTs
.push_back(TLI
.getValueType(Ty
));
145 Offsets
->push_back(StartingOffset
);
149 /// RegsForValue - This struct represents the registers (physical or virtual)
150 /// that a particular set of values is assigned, and the type information about
151 /// the value. The most common situation is to represent one value at a time,
152 /// but struct or array values are handled element-wise as multiple values.
153 /// The splitting of aggregates is performed recursively, so that we never
154 /// have aggregate-typed registers. The values at this point do not necessarily
155 /// have legal types, so each value may require one or more registers of some
158 struct VISIBILITY_HIDDEN RegsForValue
{
159 /// TLI - The TargetLowering object.
161 const TargetLowering
*TLI
;
163 /// ValueVTs - The value types of the values, which may not be legal, and
164 /// may need be promoted or synthesized from one or more registers.
166 SmallVector
<EVT
, 4> ValueVTs
;
168 /// RegVTs - The value types of the registers. This is the same size as
169 /// ValueVTs and it records, for each value, what the type of the assigned
170 /// register or registers are. (Individual values are never synthesized
171 /// from more than one type of register.)
173 /// With virtual registers, the contents of RegVTs is redundant with TLI's
174 /// getRegisterType member function, however when with physical registers
175 /// it is necessary to have a separate record of the types.
177 SmallVector
<EVT
, 4> RegVTs
;
179 /// Regs - This list holds the registers assigned to the values.
180 /// Each legal or promoted value requires one register, and each
181 /// expanded value requires multiple registers.
183 SmallVector
<unsigned, 4> Regs
;
185 RegsForValue() : TLI(0) {}
187 RegsForValue(const TargetLowering
&tli
,
188 const SmallVector
<unsigned, 4> ®s
,
189 EVT regvt
, EVT valuevt
)
190 : TLI(&tli
), ValueVTs(1, valuevt
), RegVTs(1, regvt
), Regs(regs
) {}
191 RegsForValue(const TargetLowering
&tli
,
192 const SmallVector
<unsigned, 4> ®s
,
193 const SmallVector
<EVT
, 4> ®vts
,
194 const SmallVector
<EVT
, 4> &valuevts
)
195 : TLI(&tli
), ValueVTs(valuevts
), RegVTs(regvts
), Regs(regs
) {}
196 RegsForValue(LLVMContext
&Context
, const TargetLowering
&tli
,
197 unsigned Reg
, const Type
*Ty
) : TLI(&tli
) {
198 ComputeValueVTs(tli
, Ty
, ValueVTs
);
200 for (unsigned Value
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
201 EVT ValueVT
= ValueVTs
[Value
];
202 unsigned NumRegs
= TLI
->getNumRegisters(Context
, ValueVT
);
203 EVT RegisterVT
= TLI
->getRegisterType(Context
, ValueVT
);
204 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
205 Regs
.push_back(Reg
+ i
);
206 RegVTs
.push_back(RegisterVT
);
211 /// append - Add the specified values to this one.
212 void append(const RegsForValue
&RHS
) {
214 ValueVTs
.append(RHS
.ValueVTs
.begin(), RHS
.ValueVTs
.end());
215 RegVTs
.append(RHS
.RegVTs
.begin(), RHS
.RegVTs
.end());
216 Regs
.append(RHS
.Regs
.begin(), RHS
.Regs
.end());
220 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
221 /// this value and returns the result as a ValueVTs value. This uses
222 /// Chain/Flag as the input and updates them for the output Chain/Flag.
223 /// If the Flag pointer is NULL, no flag is used.
224 SDValue
getCopyFromRegs(SelectionDAG
&DAG
, DebugLoc dl
,
225 SDValue
&Chain
, SDValue
*Flag
) const;
227 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
228 /// specified value into the registers specified by this object. This uses
229 /// Chain/Flag as the input and updates them for the output Chain/Flag.
230 /// If the Flag pointer is NULL, no flag is used.
231 void getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
, DebugLoc dl
,
232 SDValue
&Chain
, SDValue
*Flag
) const;
234 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
235 /// operand list. This adds the code marker, matching input operand index
236 /// (if applicable), and includes the number of values added into it.
237 void AddInlineAsmOperands(unsigned Code
,
238 bool HasMatching
, unsigned MatchingIdx
,
239 SelectionDAG
&DAG
, std::vector
<SDValue
> &Ops
) const;
243 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
244 /// PHI nodes or outside of the basic block that defines it, or used by a
245 /// switch or atomic instruction, which may expand to multiple basic blocks.
246 static bool isUsedOutsideOfDefiningBlock(Instruction
*I
) {
247 if (isa
<PHINode
>(I
)) return true;
248 BasicBlock
*BB
= I
->getParent();
249 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
; ++UI
)
250 if (cast
<Instruction
>(*UI
)->getParent() != BB
|| isa
<PHINode
>(*UI
))
255 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
256 /// entry block, return true. This includes arguments used by switches, since
257 /// the switch may expand into multiple basic blocks.
258 static bool isOnlyUsedInEntryBlock(Argument
*A
, bool EnableFastISel
) {
259 // With FastISel active, we may be splitting blocks, so force creation
260 // of virtual registers for all non-dead arguments.
261 // Don't force virtual registers for byval arguments though, because
262 // fast-isel can't handle those in all cases.
263 if (EnableFastISel
&& !A
->hasByValAttr())
264 return A
->use_empty();
266 BasicBlock
*Entry
= A
->getParent()->begin();
267 for (Value::use_iterator UI
= A
->use_begin(), E
= A
->use_end(); UI
!= E
; ++UI
)
268 if (cast
<Instruction
>(*UI
)->getParent() != Entry
|| isa
<SwitchInst
>(*UI
))
269 return false; // Use not in entry block.
273 FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering
&tli
)
277 void FunctionLoweringInfo::set(Function
&fn
, MachineFunction
&mf
,
279 bool EnableFastISel
) {
282 RegInfo
= &MF
->getRegInfo();
284 // Create a vreg for each argument register that is not dead and is used
285 // outside of the entry block for the function.
286 for (Function::arg_iterator AI
= Fn
->arg_begin(), E
= Fn
->arg_end();
288 if (!isOnlyUsedInEntryBlock(AI
, EnableFastISel
))
289 InitializeRegForValue(AI
);
291 // Initialize the mapping of values to registers. This is only set up for
292 // instruction values that are used outside of the block that defines
294 Function::iterator BB
= Fn
->begin(), EB
= Fn
->end();
295 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
296 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
))
297 if (ConstantInt
*CUI
= dyn_cast
<ConstantInt
>(AI
->getArraySize())) {
298 const Type
*Ty
= AI
->getAllocatedType();
299 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(Ty
);
301 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
),
304 TySize
*= CUI
->getZExtValue(); // Get total allocated size.
305 if (TySize
== 0) TySize
= 1; // Don't create zero-sized stack objects.
306 StaticAllocaMap
[AI
] =
307 MF
->getFrameInfo()->CreateStackObject(TySize
, Align
);
310 for (; BB
!= EB
; ++BB
)
311 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
312 if (!I
->use_empty() && isUsedOutsideOfDefiningBlock(I
))
313 if (!isa
<AllocaInst
>(I
) ||
314 !StaticAllocaMap
.count(cast
<AllocaInst
>(I
)))
315 InitializeRegForValue(I
);
317 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
318 // also creates the initial PHI MachineInstrs, though none of the input
319 // operands are populated.
320 for (BB
= Fn
->begin(), EB
= Fn
->end(); BB
!= EB
; ++BB
) {
321 MachineBasicBlock
*MBB
= mf
.CreateMachineBasicBlock(BB
);
325 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
329 for (BasicBlock::iterator
330 I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
331 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
332 if (Function
*F
= CI
->getCalledFunction()) {
333 switch (F
->getIntrinsicID()) {
335 case Intrinsic::dbg_stoppoint
: {
336 DbgStopPointInst
*SPI
= cast
<DbgStopPointInst
>(I
);
337 if (isValidDebugInfoIntrinsic(*SPI
, CodeGenOpt::Default
))
338 DL
= ExtractDebugLocation(*SPI
, MF
->getDebugLocInfo());
341 case Intrinsic::dbg_func_start
: {
342 DbgFuncStartInst
*FSI
= cast
<DbgFuncStartInst
>(I
);
343 if (isValidDebugInfoIntrinsic(*FSI
, CodeGenOpt::Default
))
344 DL
= ExtractDebugLocation(*FSI
, MF
->getDebugLocInfo());
351 PN
= dyn_cast
<PHINode
>(I
);
352 if (!PN
|| PN
->use_empty()) continue;
354 unsigned PHIReg
= ValueMap
[PN
];
355 assert(PHIReg
&& "PHI node does not have an assigned virtual register!");
357 SmallVector
<EVT
, 4> ValueVTs
;
358 ComputeValueVTs(TLI
, PN
->getType(), ValueVTs
);
359 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
360 EVT VT
= ValueVTs
[vti
];
361 unsigned NumRegisters
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
362 const TargetInstrInfo
*TII
= MF
->getTarget().getInstrInfo();
363 for (unsigned i
= 0; i
!= NumRegisters
; ++i
)
364 BuildMI(MBB
, DL
, TII
->get(TargetInstrInfo::PHI
), PHIReg
+ i
);
365 PHIReg
+= NumRegisters
;
371 unsigned FunctionLoweringInfo::MakeReg(EVT VT
) {
372 return RegInfo
->createVirtualRegister(TLI
.getRegClassFor(VT
));
375 /// CreateRegForValue - Allocate the appropriate number of virtual registers of
376 /// the correctly promoted or expanded types. Assign these registers
377 /// consecutive vreg numbers and return the first assigned number.
379 /// In the case that the given value has struct or array type, this function
380 /// will assign registers for each member or element.
382 unsigned FunctionLoweringInfo::CreateRegForValue(const Value
*V
) {
383 SmallVector
<EVT
, 4> ValueVTs
;
384 ComputeValueVTs(TLI
, V
->getType(), ValueVTs
);
386 unsigned FirstReg
= 0;
387 for (unsigned Value
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
388 EVT ValueVT
= ValueVTs
[Value
];
389 EVT RegisterVT
= TLI
.getRegisterType(V
->getContext(), ValueVT
);
391 unsigned NumRegs
= TLI
.getNumRegisters(V
->getContext(), ValueVT
);
392 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
393 unsigned R
= MakeReg(RegisterVT
);
394 if (!FirstReg
) FirstReg
= R
;
400 /// getCopyFromParts - Create a value that contains the specified legal parts
401 /// combined into the value they represent. If the parts combine to a type
402 /// larger then ValueVT then AssertOp can be used to specify whether the extra
403 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
404 /// (ISD::AssertSext).
405 static SDValue
getCopyFromParts(SelectionDAG
&DAG
, DebugLoc dl
,
406 const SDValue
*Parts
,
407 unsigned NumParts
, EVT PartVT
, EVT ValueVT
,
408 ISD::NodeType AssertOp
= ISD::DELETED_NODE
) {
409 assert(NumParts
> 0 && "No parts to assemble!");
410 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
411 SDValue Val
= Parts
[0];
414 // Assemble the value from multiple parts.
415 if (!ValueVT
.isVector() && ValueVT
.isInteger()) {
416 unsigned PartBits
= PartVT
.getSizeInBits();
417 unsigned ValueBits
= ValueVT
.getSizeInBits();
419 // Assemble the power of 2 part.
420 unsigned RoundParts
= NumParts
& (NumParts
- 1) ?
421 1 << Log2_32(NumParts
) : NumParts
;
422 unsigned RoundBits
= PartBits
* RoundParts
;
423 EVT RoundVT
= RoundBits
== ValueBits
?
424 ValueVT
: EVT::getIntegerVT(*DAG
.getContext(), RoundBits
);
427 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundBits
/2);
429 if (RoundParts
> 2) {
430 Lo
= getCopyFromParts(DAG
, dl
, Parts
, RoundParts
/2, PartVT
, HalfVT
);
431 Hi
= getCopyFromParts(DAG
, dl
, Parts
+RoundParts
/2, RoundParts
/2,
434 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, HalfVT
, Parts
[0]);
435 Hi
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, HalfVT
, Parts
[1]);
437 if (TLI
.isBigEndian())
439 Val
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, RoundVT
, Lo
, Hi
);
441 if (RoundParts
< NumParts
) {
442 // Assemble the trailing non-power-of-2 part.
443 unsigned OddParts
= NumParts
- RoundParts
;
444 EVT OddVT
= EVT::getIntegerVT(*DAG
.getContext(), OddParts
* PartBits
);
445 Hi
= getCopyFromParts(DAG
, dl
,
446 Parts
+RoundParts
, OddParts
, PartVT
, OddVT
);
448 // Combine the round and odd parts.
450 if (TLI
.isBigEndian())
452 EVT TotalVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
453 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, TotalVT
, Hi
);
454 Hi
= DAG
.getNode(ISD::SHL
, dl
, TotalVT
, Hi
,
455 DAG
.getConstant(Lo
.getValueType().getSizeInBits(),
456 TLI
.getPointerTy()));
457 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, TotalVT
, Lo
);
458 Val
= DAG
.getNode(ISD::OR
, dl
, TotalVT
, Lo
, Hi
);
460 } else if (ValueVT
.isVector()) {
461 // Handle a multi-element vector.
462 EVT IntermediateVT
, RegisterVT
;
463 unsigned NumIntermediates
;
465 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
466 NumIntermediates
, RegisterVT
);
467 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
468 NumParts
= NumRegs
; // Silence a compiler warning.
469 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
470 assert(RegisterVT
== Parts
[0].getValueType() &&
471 "Part type doesn't match part!");
473 // Assemble the parts into intermediate operands.
474 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
475 if (NumIntermediates
== NumParts
) {
476 // If the register was not expanded, truncate or copy the value,
478 for (unsigned i
= 0; i
!= NumParts
; ++i
)
479 Ops
[i
] = getCopyFromParts(DAG
, dl
, &Parts
[i
], 1,
480 PartVT
, IntermediateVT
);
481 } else if (NumParts
> 0) {
482 // If the intermediate type was expanded, build the intermediate operands
484 assert(NumParts
% NumIntermediates
== 0 &&
485 "Must expand into a divisible number of parts!");
486 unsigned Factor
= NumParts
/ NumIntermediates
;
487 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
488 Ops
[i
] = getCopyFromParts(DAG
, dl
, &Parts
[i
* Factor
], Factor
,
489 PartVT
, IntermediateVT
);
492 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
494 Val
= DAG
.getNode(IntermediateVT
.isVector() ?
495 ISD::CONCAT_VECTORS
: ISD::BUILD_VECTOR
, dl
,
496 ValueVT
, &Ops
[0], NumIntermediates
);
497 } else if (PartVT
.isFloatingPoint()) {
498 // FP split into multiple FP parts (for ppcf128)
499 assert(ValueVT
== EVT(MVT::ppcf128
) && PartVT
== EVT(MVT::f64
) &&
502 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, EVT(MVT::f64
), Parts
[0]);
503 Hi
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, EVT(MVT::f64
), Parts
[1]);
504 if (TLI
.isBigEndian())
506 Val
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, ValueVT
, Lo
, Hi
);
508 // FP split into integer parts (soft fp)
509 assert(ValueVT
.isFloatingPoint() && PartVT
.isInteger() &&
510 !PartVT
.isVector() && "Unexpected split");
511 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
512 Val
= getCopyFromParts(DAG
, dl
, Parts
, NumParts
, PartVT
, IntVT
);
516 // There is now one part, held in Val. Correct it to match ValueVT.
517 PartVT
= Val
.getValueType();
519 if (PartVT
== ValueVT
)
522 if (PartVT
.isVector()) {
523 assert(ValueVT
.isVector() && "Unknown vector conversion!");
524 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ValueVT
, Val
);
527 if (ValueVT
.isVector()) {
528 assert(ValueVT
.getVectorElementType() == PartVT
&&
529 ValueVT
.getVectorNumElements() == 1 &&
530 "Only trivial scalar-to-vector conversions should get here!");
531 return DAG
.getNode(ISD::BUILD_VECTOR
, dl
, ValueVT
, Val
);
534 if (PartVT
.isInteger() &&
535 ValueVT
.isInteger()) {
536 if (ValueVT
.bitsLT(PartVT
)) {
537 // For a truncate, see if we have any information to
538 // indicate whether the truncated bits will always be
539 // zero or sign-extension.
540 if (AssertOp
!= ISD::DELETED_NODE
)
541 Val
= DAG
.getNode(AssertOp
, dl
, PartVT
, Val
,
542 DAG
.getValueType(ValueVT
));
543 return DAG
.getNode(ISD::TRUNCATE
, dl
, ValueVT
, Val
);
545 return DAG
.getNode(ISD::ANY_EXTEND
, dl
, ValueVT
, Val
);
549 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
550 if (ValueVT
.bitsLT(Val
.getValueType()))
551 // FP_ROUND's are always exact here.
552 return DAG
.getNode(ISD::FP_ROUND
, dl
, ValueVT
, Val
,
553 DAG
.getIntPtrConstant(1));
554 return DAG
.getNode(ISD::FP_EXTEND
, dl
, ValueVT
, Val
);
557 if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits())
558 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ValueVT
, Val
);
560 llvm_unreachable("Unknown mismatch!");
564 /// getCopyToParts - Create a series of nodes that contain the specified value
565 /// split into legal parts. If the parts contain more bits than Val, then, for
566 /// integers, ExtendKind can be used to specify how to generate the extra bits.
567 static void getCopyToParts(SelectionDAG
&DAG
, DebugLoc dl
, SDValue Val
,
568 SDValue
*Parts
, unsigned NumParts
, EVT PartVT
,
569 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
) {
570 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
571 EVT PtrVT
= TLI
.getPointerTy();
572 EVT ValueVT
= Val
.getValueType();
573 unsigned PartBits
= PartVT
.getSizeInBits();
574 unsigned OrigNumParts
= NumParts
;
575 assert(TLI
.isTypeLegal(PartVT
) && "Copying to an illegal type!");
580 if (!ValueVT
.isVector()) {
581 if (PartVT
== ValueVT
) {
582 assert(NumParts
== 1 && "No-op copy with multiple parts!");
587 if (NumParts
* PartBits
> ValueVT
.getSizeInBits()) {
588 // If the parts cover more bits than the value has, promote the value.
589 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
590 assert(NumParts
== 1 && "Do not know what to promote to!");
591 Val
= DAG
.getNode(ISD::FP_EXTEND
, dl
, PartVT
, Val
);
592 } else if (PartVT
.isInteger() && ValueVT
.isInteger()) {
593 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
594 Val
= DAG
.getNode(ExtendKind
, dl
, ValueVT
, Val
);
596 llvm_unreachable("Unknown mismatch!");
598 } else if (PartBits
== ValueVT
.getSizeInBits()) {
599 // Different types of the same size.
600 assert(NumParts
== 1 && PartVT
!= ValueVT
);
601 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PartVT
, Val
);
602 } else if (NumParts
* PartBits
< ValueVT
.getSizeInBits()) {
603 // If the parts cover less bits than value has, truncate the value.
604 if (PartVT
.isInteger() && ValueVT
.isInteger()) {
605 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
606 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, ValueVT
, Val
);
608 llvm_unreachable("Unknown mismatch!");
612 // The value may have changed - recompute ValueVT.
613 ValueVT
= Val
.getValueType();
614 assert(NumParts
* PartBits
== ValueVT
.getSizeInBits() &&
615 "Failed to tile the value with PartVT!");
618 assert(PartVT
== ValueVT
&& "Type conversion failed!");
623 // Expand the value into multiple parts.
624 if (NumParts
& (NumParts
- 1)) {
625 // The number of parts is not a power of 2. Split off and copy the tail.
626 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
627 "Do not know what to expand to!");
628 unsigned RoundParts
= 1 << Log2_32(NumParts
);
629 unsigned RoundBits
= RoundParts
* PartBits
;
630 unsigned OddParts
= NumParts
- RoundParts
;
631 SDValue OddVal
= DAG
.getNode(ISD::SRL
, dl
, ValueVT
, Val
,
632 DAG
.getConstant(RoundBits
,
633 TLI
.getPointerTy()));
634 getCopyToParts(DAG
, dl
, OddVal
, Parts
+ RoundParts
, OddParts
, PartVT
);
635 if (TLI
.isBigEndian())
636 // The odd parts were reversed by getCopyToParts - unreverse them.
637 std::reverse(Parts
+ RoundParts
, Parts
+ NumParts
);
638 NumParts
= RoundParts
;
639 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
640 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, ValueVT
, Val
);
643 // The number of parts is a power of 2. Repeatedly bisect the value using
645 Parts
[0] = DAG
.getNode(ISD::BIT_CONVERT
, dl
,
646 EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits()),
648 for (unsigned StepSize
= NumParts
; StepSize
> 1; StepSize
/= 2) {
649 for (unsigned i
= 0; i
< NumParts
; i
+= StepSize
) {
650 unsigned ThisBits
= StepSize
* PartBits
/ 2;
651 EVT ThisVT
= EVT::getIntegerVT(*DAG
.getContext(), ThisBits
);
652 SDValue
&Part0
= Parts
[i
];
653 SDValue
&Part1
= Parts
[i
+StepSize
/2];
655 Part1
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
657 DAG
.getConstant(1, PtrVT
));
658 Part0
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
660 DAG
.getConstant(0, PtrVT
));
662 if (ThisBits
== PartBits
&& ThisVT
!= PartVT
) {
663 Part0
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
665 Part1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
671 if (TLI
.isBigEndian())
672 std::reverse(Parts
, Parts
+ OrigNumParts
);
679 if (PartVT
!= ValueVT
) {
680 if (PartVT
.isVector()) {
681 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PartVT
, Val
);
683 assert(ValueVT
.getVectorElementType() == PartVT
&&
684 ValueVT
.getVectorNumElements() == 1 &&
685 "Only trivial vector-to-scalar conversions should get here!");
686 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
688 DAG
.getConstant(0, PtrVT
));
696 // Handle a multi-element vector.
697 EVT IntermediateVT
, RegisterVT
;
698 unsigned NumIntermediates
;
699 unsigned NumRegs
= TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
,
700 IntermediateVT
, NumIntermediates
, RegisterVT
);
701 unsigned NumElements
= ValueVT
.getVectorNumElements();
703 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
704 NumParts
= NumRegs
; // Silence a compiler warning.
705 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
707 // Split the vector into intermediate operands.
708 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
709 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
710 if (IntermediateVT
.isVector())
711 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
,
713 DAG
.getConstant(i
* (NumElements
/ NumIntermediates
),
716 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
718 DAG
.getConstant(i
, PtrVT
));
720 // Split the intermediate operands into legal parts.
721 if (NumParts
== NumIntermediates
) {
722 // If the register was not expanded, promote or copy the value,
724 for (unsigned i
= 0; i
!= NumParts
; ++i
)
725 getCopyToParts(DAG
, dl
, Ops
[i
], &Parts
[i
], 1, PartVT
);
726 } else if (NumParts
> 0) {
727 // If the intermediate type was expanded, split each the value into
729 assert(NumParts
% NumIntermediates
== 0 &&
730 "Must expand into a divisible number of parts!");
731 unsigned Factor
= NumParts
/ NumIntermediates
;
732 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
733 getCopyToParts(DAG
, dl
, Ops
[i
], &Parts
[i
* Factor
], Factor
, PartVT
);
738 void SelectionDAGLowering::init(GCFunctionInfo
*gfi
, AliasAnalysis
&aa
) {
741 TD
= DAG
.getTarget().getTargetData();
744 /// clear - Clear out the curret SelectionDAG and the associated
745 /// state and prepare this SelectionDAGLowering object to be used
746 /// for a new block. This doesn't clear out information about
747 /// additional blocks that are needed to complete switch lowering
748 /// or PHI node updating; that information is cleared out as it is
750 void SelectionDAGLowering::clear() {
752 PendingLoads
.clear();
753 PendingExports
.clear();
755 CurDebugLoc
= DebugLoc::getUnknownLoc();
759 /// getRoot - Return the current virtual root of the Selection DAG,
760 /// flushing any PendingLoad items. This must be done before emitting
761 /// a store or any other node that may need to be ordered after any
762 /// prior load instructions.
764 SDValue
SelectionDAGLowering::getRoot() {
765 if (PendingLoads
.empty())
766 return DAG
.getRoot();
768 if (PendingLoads
.size() == 1) {
769 SDValue Root
= PendingLoads
[0];
771 PendingLoads
.clear();
775 // Otherwise, we have to make a token factor node.
776 SDValue Root
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
777 &PendingLoads
[0], PendingLoads
.size());
778 PendingLoads
.clear();
783 /// getControlRoot - Similar to getRoot, but instead of flushing all the
784 /// PendingLoad items, flush all the PendingExports items. It is necessary
785 /// to do this before emitting a terminator instruction.
787 SDValue
SelectionDAGLowering::getControlRoot() {
788 SDValue Root
= DAG
.getRoot();
790 if (PendingExports
.empty())
793 // Turn all of the CopyToReg chains into one factored node.
794 if (Root
.getOpcode() != ISD::EntryToken
) {
795 unsigned i
= 0, e
= PendingExports
.size();
796 for (; i
!= e
; ++i
) {
797 assert(PendingExports
[i
].getNode()->getNumOperands() > 1);
798 if (PendingExports
[i
].getNode()->getOperand(0) == Root
)
799 break; // Don't add the root if we already indirectly depend on it.
803 PendingExports
.push_back(Root
);
806 Root
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
808 PendingExports
.size());
809 PendingExports
.clear();
814 void SelectionDAGLowering::visit(Instruction
&I
) {
815 visit(I
.getOpcode(), I
);
818 void SelectionDAGLowering::visit(unsigned Opcode
, User
&I
) {
819 // Note: this doesn't use InstVisitor, because it has to work with
820 // ConstantExpr's in addition to instructions.
822 default: llvm_unreachable("Unknown instruction type encountered!");
823 // Build the switch statement using the Instruction.def file.
824 #define HANDLE_INST(NUM, OPCODE, CLASS) \
825 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
826 #include "llvm/Instruction.def"
830 SDValue
SelectionDAGLowering::getValue(const Value
*V
) {
831 SDValue
&N
= NodeMap
[V
];
832 if (N
.getNode()) return N
;
834 if (Constant
*C
= const_cast<Constant
*>(dyn_cast
<Constant
>(V
))) {
835 EVT VT
= TLI
.getValueType(V
->getType(), true);
837 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
838 return N
= DAG
.getConstant(*CI
, VT
);
840 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
841 return N
= DAG
.getGlobalAddress(GV
, VT
);
843 if (isa
<ConstantPointerNull
>(C
))
844 return N
= DAG
.getConstant(0, TLI
.getPointerTy());
846 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
847 return N
= DAG
.getConstantFP(*CFP
, VT
);
849 if (isa
<UndefValue
>(C
) && !V
->getType()->isAggregateType())
850 return N
= DAG
.getUNDEF(VT
);
852 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
853 visit(CE
->getOpcode(), *CE
);
854 SDValue N1
= NodeMap
[V
];
855 assert(N1
.getNode() && "visit didn't populate the ValueMap!");
859 if (isa
<ConstantStruct
>(C
) || isa
<ConstantArray
>(C
)) {
860 SmallVector
<SDValue
, 4> Constants
;
861 for (User::const_op_iterator OI
= C
->op_begin(), OE
= C
->op_end();
863 SDNode
*Val
= getValue(*OI
).getNode();
864 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
865 Constants
.push_back(SDValue(Val
, i
));
867 return DAG
.getMergeValues(&Constants
[0], Constants
.size(),
871 if (isa
<StructType
>(C
->getType()) || isa
<ArrayType
>(C
->getType())) {
872 assert((isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
)) &&
873 "Unknown struct or array constant!");
875 SmallVector
<EVT
, 4> ValueVTs
;
876 ComputeValueVTs(TLI
, C
->getType(), ValueVTs
);
877 unsigned NumElts
= ValueVTs
.size();
879 return SDValue(); // empty struct
880 SmallVector
<SDValue
, 4> Constants(NumElts
);
881 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
882 EVT EltVT
= ValueVTs
[i
];
883 if (isa
<UndefValue
>(C
))
884 Constants
[i
] = DAG
.getUNDEF(EltVT
);
885 else if (EltVT
.isFloatingPoint())
886 Constants
[i
] = DAG
.getConstantFP(0, EltVT
);
888 Constants
[i
] = DAG
.getConstant(0, EltVT
);
890 return DAG
.getMergeValues(&Constants
[0], NumElts
, getCurDebugLoc());
893 const VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
894 unsigned NumElements
= VecTy
->getNumElements();
896 // Now that we know the number and type of the elements, get that number of
897 // elements into the Ops array based on what kind of constant it is.
898 SmallVector
<SDValue
, 16> Ops
;
899 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(C
)) {
900 for (unsigned i
= 0; i
!= NumElements
; ++i
)
901 Ops
.push_back(getValue(CP
->getOperand(i
)));
903 assert(isa
<ConstantAggregateZero
>(C
) && "Unknown vector constant!");
904 EVT EltVT
= TLI
.getValueType(VecTy
->getElementType());
907 if (EltVT
.isFloatingPoint())
908 Op
= DAG
.getConstantFP(0, EltVT
);
910 Op
= DAG
.getConstant(0, EltVT
);
911 Ops
.assign(NumElements
, Op
);
914 // Create a BUILD_VECTOR node.
915 return NodeMap
[V
] = DAG
.getNode(ISD::BUILD_VECTOR
, getCurDebugLoc(),
916 VT
, &Ops
[0], Ops
.size());
919 // If this is a static alloca, generate it as the frameindex instead of
921 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
922 DenseMap
<const AllocaInst
*, int>::iterator SI
=
923 FuncInfo
.StaticAllocaMap
.find(AI
);
924 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
925 return DAG
.getFrameIndex(SI
->second
, TLI
.getPointerTy());
928 unsigned InReg
= FuncInfo
.ValueMap
[V
];
929 assert(InReg
&& "Value not in map!");
931 RegsForValue
RFV(*DAG
.getContext(), TLI
, InReg
, V
->getType());
932 SDValue Chain
= DAG
.getEntryNode();
933 return RFV
.getCopyFromRegs(DAG
, getCurDebugLoc(), Chain
, NULL
);
937 void SelectionDAGLowering::visitRet(ReturnInst
&I
) {
938 SDValue Chain
= getControlRoot();
939 SmallVector
<ISD::OutputArg
, 8> Outs
;
940 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
941 SmallVector
<EVT
, 4> ValueVTs
;
942 ComputeValueVTs(TLI
, I
.getOperand(i
)->getType(), ValueVTs
);
943 unsigned NumValues
= ValueVTs
.size();
944 if (NumValues
== 0) continue;
946 SDValue RetOp
= getValue(I
.getOperand(i
));
947 for (unsigned j
= 0, f
= NumValues
; j
!= f
; ++j
) {
948 EVT VT
= ValueVTs
[j
];
950 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
952 const Function
*F
= I
.getParent()->getParent();
953 if (F
->paramHasAttr(0, Attribute::SExt
))
954 ExtendKind
= ISD::SIGN_EXTEND
;
955 else if (F
->paramHasAttr(0, Attribute::ZExt
))
956 ExtendKind
= ISD::ZERO_EXTEND
;
958 // FIXME: C calling convention requires the return type to be promoted to
959 // at least 32-bit. But this is not necessary for non-C calling
960 // conventions. The frontend should mark functions whose return values
961 // require promoting with signext or zeroext attributes.
962 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger()) {
963 EVT MinVT
= TLI
.getRegisterType(*DAG
.getContext(), MVT::i32
);
964 if (VT
.bitsLT(MinVT
))
968 unsigned NumParts
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
969 EVT PartVT
= TLI
.getRegisterType(*DAG
.getContext(), VT
);
970 SmallVector
<SDValue
, 4> Parts(NumParts
);
971 getCopyToParts(DAG
, getCurDebugLoc(),
972 SDValue(RetOp
.getNode(), RetOp
.getResNo() + j
),
973 &Parts
[0], NumParts
, PartVT
, ExtendKind
);
975 // 'inreg' on function refers to return value
976 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
977 if (F
->paramHasAttr(0, Attribute::InReg
))
980 // Propagate extension type if any
981 if (F
->paramHasAttr(0, Attribute::SExt
))
983 else if (F
->paramHasAttr(0, Attribute::ZExt
))
986 for (unsigned i
= 0; i
< NumParts
; ++i
)
987 Outs
.push_back(ISD::OutputArg(Flags
, Parts
[i
], /*isfixed=*/true));
991 bool isVarArg
= DAG
.getMachineFunction().getFunction()->isVarArg();
992 unsigned CallConv
= DAG
.getMachineFunction().getFunction()->getCallingConv();
993 Chain
= TLI
.LowerReturn(Chain
, CallConv
, isVarArg
,
994 Outs
, getCurDebugLoc(), DAG
);
996 // Verify that the target's LowerReturn behaved as expected.
997 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
998 "LowerReturn didn't return a valid chain!");
1000 // Update the DAG with the new chain value resulting from return lowering.
1004 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1005 /// created for it, emit nodes to copy the value into the virtual
1007 void SelectionDAGLowering::CopyToExportRegsIfNeeded(Value
*V
) {
1008 if (!V
->use_empty()) {
1009 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
1010 if (VMI
!= FuncInfo
.ValueMap
.end())
1011 CopyValueToVirtualRegister(V
, VMI
->second
);
1015 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1016 /// the current basic block, add it to ValueMap now so that we'll get a
1018 void SelectionDAGLowering::ExportFromCurrentBlock(Value
*V
) {
1019 // No need to export constants.
1020 if (!isa
<Instruction
>(V
) && !isa
<Argument
>(V
)) return;
1022 // Already exported?
1023 if (FuncInfo
.isExportedInst(V
)) return;
1025 unsigned Reg
= FuncInfo
.InitializeRegForValue(V
);
1026 CopyValueToVirtualRegister(V
, Reg
);
1029 bool SelectionDAGLowering::isExportableFromCurrentBlock(Value
*V
,
1030 const BasicBlock
*FromBB
) {
1031 // The operands of the setcc have to be in this block. We don't know
1032 // how to export them from some other block.
1033 if (Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
1034 // Can export from current BB.
1035 if (VI
->getParent() == FromBB
)
1038 // Is already exported, noop.
1039 return FuncInfo
.isExportedInst(V
);
1042 // If this is an argument, we can export it if the BB is the entry block or
1043 // if it is already exported.
1044 if (isa
<Argument
>(V
)) {
1045 if (FromBB
== &FromBB
->getParent()->getEntryBlock())
1048 // Otherwise, can only export this if it is already exported.
1049 return FuncInfo
.isExportedInst(V
);
1052 // Otherwise, constants can always be exported.
1056 static bool InBlock(const Value
*V
, const BasicBlock
*BB
) {
1057 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
1058 return I
->getParent() == BB
;
1062 /// getFCmpCondCode - Return the ISD condition code corresponding to
1063 /// the given LLVM IR floating-point condition code. This includes
1064 /// consideration of global floating-point math flags.
1066 static ISD::CondCode
getFCmpCondCode(FCmpInst::Predicate Pred
) {
1067 ISD::CondCode FPC
, FOC
;
1069 case FCmpInst::FCMP_FALSE
: FOC
= FPC
= ISD::SETFALSE
; break;
1070 case FCmpInst::FCMP_OEQ
: FOC
= ISD::SETEQ
; FPC
= ISD::SETOEQ
; break;
1071 case FCmpInst::FCMP_OGT
: FOC
= ISD::SETGT
; FPC
= ISD::SETOGT
; break;
1072 case FCmpInst::FCMP_OGE
: FOC
= ISD::SETGE
; FPC
= ISD::SETOGE
; break;
1073 case FCmpInst::FCMP_OLT
: FOC
= ISD::SETLT
; FPC
= ISD::SETOLT
; break;
1074 case FCmpInst::FCMP_OLE
: FOC
= ISD::SETLE
; FPC
= ISD::SETOLE
; break;
1075 case FCmpInst::FCMP_ONE
: FOC
= ISD::SETNE
; FPC
= ISD::SETONE
; break;
1076 case FCmpInst::FCMP_ORD
: FOC
= FPC
= ISD::SETO
; break;
1077 case FCmpInst::FCMP_UNO
: FOC
= FPC
= ISD::SETUO
; break;
1078 case FCmpInst::FCMP_UEQ
: FOC
= ISD::SETEQ
; FPC
= ISD::SETUEQ
; break;
1079 case FCmpInst::FCMP_UGT
: FOC
= ISD::SETGT
; FPC
= ISD::SETUGT
; break;
1080 case FCmpInst::FCMP_UGE
: FOC
= ISD::SETGE
; FPC
= ISD::SETUGE
; break;
1081 case FCmpInst::FCMP_ULT
: FOC
= ISD::SETLT
; FPC
= ISD::SETULT
; break;
1082 case FCmpInst::FCMP_ULE
: FOC
= ISD::SETLE
; FPC
= ISD::SETULE
; break;
1083 case FCmpInst::FCMP_UNE
: FOC
= ISD::SETNE
; FPC
= ISD::SETUNE
; break;
1084 case FCmpInst::FCMP_TRUE
: FOC
= FPC
= ISD::SETTRUE
; break;
1086 llvm_unreachable("Invalid FCmp predicate opcode!");
1087 FOC
= FPC
= ISD::SETFALSE
;
1090 if (FiniteOnlyFPMath())
1096 /// getICmpCondCode - Return the ISD condition code corresponding to
1097 /// the given LLVM IR integer condition code.
1099 static ISD::CondCode
getICmpCondCode(ICmpInst::Predicate Pred
) {
1101 case ICmpInst::ICMP_EQ
: return ISD::SETEQ
;
1102 case ICmpInst::ICMP_NE
: return ISD::SETNE
;
1103 case ICmpInst::ICMP_SLE
: return ISD::SETLE
;
1104 case ICmpInst::ICMP_ULE
: return ISD::SETULE
;
1105 case ICmpInst::ICMP_SGE
: return ISD::SETGE
;
1106 case ICmpInst::ICMP_UGE
: return ISD::SETUGE
;
1107 case ICmpInst::ICMP_SLT
: return ISD::SETLT
;
1108 case ICmpInst::ICMP_ULT
: return ISD::SETULT
;
1109 case ICmpInst::ICMP_SGT
: return ISD::SETGT
;
1110 case ICmpInst::ICMP_UGT
: return ISD::SETUGT
;
1112 llvm_unreachable("Invalid ICmp predicate opcode!");
1117 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1118 /// This function emits a branch and is used at the leaves of an OR or an
1119 /// AND operator tree.
1122 SelectionDAGLowering::EmitBranchForMergedCondition(Value
*Cond
,
1123 MachineBasicBlock
*TBB
,
1124 MachineBasicBlock
*FBB
,
1125 MachineBasicBlock
*CurBB
) {
1126 const BasicBlock
*BB
= CurBB
->getBasicBlock();
1128 // If the leaf of the tree is a comparison, merge the condition into
1130 if (CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
1131 // The operands of the cmp have to be in this block. We don't know
1132 // how to export them from some other block. If this is the first block
1133 // of the sequence, no exporting is needed.
1134 if (CurBB
== CurMBB
||
1135 (isExportableFromCurrentBlock(BOp
->getOperand(0), BB
) &&
1136 isExportableFromCurrentBlock(BOp
->getOperand(1), BB
))) {
1137 ISD::CondCode Condition
;
1138 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
1139 Condition
= getICmpCondCode(IC
->getPredicate());
1140 } else if (FCmpInst
*FC
= dyn_cast
<FCmpInst
>(Cond
)) {
1141 Condition
= getFCmpCondCode(FC
->getPredicate());
1143 Condition
= ISD::SETEQ
; // silence warning.
1144 llvm_unreachable("Unknown compare instruction");
1147 CaseBlock
CB(Condition
, BOp
->getOperand(0),
1148 BOp
->getOperand(1), NULL
, TBB
, FBB
, CurBB
);
1149 SwitchCases
.push_back(CB
);
1154 // Create a CaseBlock record representing this branch.
1155 CaseBlock
CB(ISD::SETEQ
, Cond
, ConstantInt::getTrue(*DAG
.getContext()),
1156 NULL
, TBB
, FBB
, CurBB
);
1157 SwitchCases
.push_back(CB
);
1160 /// FindMergedConditions - If Cond is an expression like
1161 void SelectionDAGLowering::FindMergedConditions(Value
*Cond
,
1162 MachineBasicBlock
*TBB
,
1163 MachineBasicBlock
*FBB
,
1164 MachineBasicBlock
*CurBB
,
1166 // If this node is not part of the or/and tree, emit it as a branch.
1167 Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
1168 if (!BOp
|| !(isa
<BinaryOperator
>(BOp
) || isa
<CmpInst
>(BOp
)) ||
1169 (unsigned)BOp
->getOpcode() != Opc
|| !BOp
->hasOneUse() ||
1170 BOp
->getParent() != CurBB
->getBasicBlock() ||
1171 !InBlock(BOp
->getOperand(0), CurBB
->getBasicBlock()) ||
1172 !InBlock(BOp
->getOperand(1), CurBB
->getBasicBlock())) {
1173 EmitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
);
1177 // Create TmpBB after CurBB.
1178 MachineFunction::iterator BBI
= CurBB
;
1179 MachineFunction
&MF
= DAG
.getMachineFunction();
1180 MachineBasicBlock
*TmpBB
= MF
.CreateMachineBasicBlock(CurBB
->getBasicBlock());
1181 CurBB
->getParent()->insert(++BBI
, TmpBB
);
1183 if (Opc
== Instruction::Or
) {
1184 // Codegen X | Y as:
1192 // Emit the LHS condition.
1193 FindMergedConditions(BOp
->getOperand(0), TBB
, TmpBB
, CurBB
, Opc
);
1195 // Emit the RHS condition into TmpBB.
1196 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, Opc
);
1198 assert(Opc
== Instruction::And
&& "Unknown merge op!");
1199 // Codegen X & Y as:
1206 // This requires creation of TmpBB after CurBB.
1208 // Emit the LHS condition.
1209 FindMergedConditions(BOp
->getOperand(0), TmpBB
, FBB
, CurBB
, Opc
);
1211 // Emit the RHS condition into TmpBB.
1212 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, Opc
);
1216 /// If the set of cases should be emitted as a series of branches, return true.
1217 /// If we should emit this as a bunch of and/or'd together conditions, return
1220 SelectionDAGLowering::ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
){
1221 if (Cases
.size() != 2) return true;
1223 // If this is two comparisons of the same values or'd or and'd together, they
1224 // will get folded into a single comparison, so don't emit two blocks.
1225 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
1226 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
1227 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
1228 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
1235 void SelectionDAGLowering::visitBr(BranchInst
&I
) {
1236 // Update machine-CFG edges.
1237 MachineBasicBlock
*Succ0MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
1239 // Figure out which block is immediately after the current one.
1240 MachineBasicBlock
*NextBlock
= 0;
1241 MachineFunction::iterator BBI
= CurMBB
;
1242 if (++BBI
!= FuncInfo
.MF
->end())
1245 if (I
.isUnconditional()) {
1246 // Update machine-CFG edges.
1247 CurMBB
->addSuccessor(Succ0MBB
);
1249 // If this is not a fall-through branch, emit the branch.
1250 if (Succ0MBB
!= NextBlock
)
1251 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
1252 MVT::Other
, getControlRoot(),
1253 DAG
.getBasicBlock(Succ0MBB
)));
1257 // If this condition is one of the special cases we handle, do special stuff
1259 Value
*CondVal
= I
.getCondition();
1260 MachineBasicBlock
*Succ1MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
1262 // If this is a series of conditions that are or'd or and'd together, emit
1263 // this as a sequence of branches instead of setcc's with and/or operations.
1264 // For example, instead of something like:
1277 if (BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(CondVal
)) {
1278 if (BOp
->hasOneUse() &&
1279 (BOp
->getOpcode() == Instruction::And
||
1280 BOp
->getOpcode() == Instruction::Or
)) {
1281 FindMergedConditions(BOp
, Succ0MBB
, Succ1MBB
, CurMBB
, BOp
->getOpcode());
1282 // If the compares in later blocks need to use values not currently
1283 // exported from this block, export them now. This block should always
1284 // be the first entry.
1285 assert(SwitchCases
[0].ThisBB
== CurMBB
&& "Unexpected lowering!");
1287 // Allow some cases to be rejected.
1288 if (ShouldEmitAsBranches(SwitchCases
)) {
1289 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
) {
1290 ExportFromCurrentBlock(SwitchCases
[i
].CmpLHS
);
1291 ExportFromCurrentBlock(SwitchCases
[i
].CmpRHS
);
1294 // Emit the branch for this block.
1295 visitSwitchCase(SwitchCases
[0]);
1296 SwitchCases
.erase(SwitchCases
.begin());
1300 // Okay, we decided not to do this, remove any inserted MBB's and clear
1302 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
)
1303 FuncInfo
.MF
->erase(SwitchCases
[i
].ThisBB
);
1305 SwitchCases
.clear();
1309 // Create a CaseBlock record representing this branch.
1310 CaseBlock
CB(ISD::SETEQ
, CondVal
, ConstantInt::getTrue(*DAG
.getContext()),
1311 NULL
, Succ0MBB
, Succ1MBB
, CurMBB
);
1312 // Use visitSwitchCase to actually insert the fast branch sequence for this
1314 visitSwitchCase(CB
);
1317 /// visitSwitchCase - Emits the necessary code to represent a single node in
1318 /// the binary search tree resulting from lowering a switch instruction.
1319 void SelectionDAGLowering::visitSwitchCase(CaseBlock
&CB
) {
1321 SDValue CondLHS
= getValue(CB
.CmpLHS
);
1322 DebugLoc dl
= getCurDebugLoc();
1324 // Build the setcc now.
1325 if (CB
.CmpMHS
== NULL
) {
1326 // Fold "(X == true)" to X and "(X == false)" to !X to
1327 // handle common cases produced by branch lowering.
1328 if (CB
.CmpRHS
== ConstantInt::getTrue(*DAG
.getContext()) &&
1329 CB
.CC
== ISD::SETEQ
)
1331 else if (CB
.CmpRHS
== ConstantInt::getFalse(*DAG
.getContext()) &&
1332 CB
.CC
== ISD::SETEQ
) {
1333 SDValue True
= DAG
.getConstant(1, CondLHS
.getValueType());
1334 Cond
= DAG
.getNode(ISD::XOR
, dl
, CondLHS
.getValueType(), CondLHS
, True
);
1336 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CondLHS
, getValue(CB
.CmpRHS
), CB
.CC
);
1338 assert(CB
.CC
== ISD::SETLE
&& "Can handle only LE ranges now");
1340 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
1341 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
1343 SDValue CmpOp
= getValue(CB
.CmpMHS
);
1344 EVT VT
= CmpOp
.getValueType();
1346 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
1347 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CmpOp
, DAG
.getConstant(High
, VT
),
1350 SDValue SUB
= DAG
.getNode(ISD::SUB
, dl
,
1351 VT
, CmpOp
, DAG
.getConstant(Low
, VT
));
1352 Cond
= DAG
.getSetCC(dl
, MVT::i1
, SUB
,
1353 DAG
.getConstant(High
-Low
, VT
), ISD::SETULE
);
1357 // Update successor info
1358 CurMBB
->addSuccessor(CB
.TrueBB
);
1359 CurMBB
->addSuccessor(CB
.FalseBB
);
1361 // Set NextBlock to be the MBB immediately after the current one, if any.
1362 // This is used to avoid emitting unnecessary branches to the next block.
1363 MachineBasicBlock
*NextBlock
= 0;
1364 MachineFunction::iterator BBI
= CurMBB
;
1365 if (++BBI
!= FuncInfo
.MF
->end())
1368 // If the lhs block is the next block, invert the condition so that we can
1369 // fall through to the lhs instead of the rhs block.
1370 if (CB
.TrueBB
== NextBlock
) {
1371 std::swap(CB
.TrueBB
, CB
.FalseBB
);
1372 SDValue True
= DAG
.getConstant(1, Cond
.getValueType());
1373 Cond
= DAG
.getNode(ISD::XOR
, dl
, Cond
.getValueType(), Cond
, True
);
1375 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
1376 MVT::Other
, getControlRoot(), Cond
,
1377 DAG
.getBasicBlock(CB
.TrueBB
));
1379 // If the branch was constant folded, fix up the CFG.
1380 if (BrCond
.getOpcode() == ISD::BR
) {
1381 CurMBB
->removeSuccessor(CB
.FalseBB
);
1382 DAG
.setRoot(BrCond
);
1384 // Otherwise, go ahead and insert the false branch.
1385 if (BrCond
== getControlRoot())
1386 CurMBB
->removeSuccessor(CB
.TrueBB
);
1388 if (CB
.FalseBB
== NextBlock
)
1389 DAG
.setRoot(BrCond
);
1391 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
1392 DAG
.getBasicBlock(CB
.FalseBB
)));
1396 /// visitJumpTable - Emit JumpTable node in the current MBB
1397 void SelectionDAGLowering::visitJumpTable(JumpTable
&JT
) {
1398 // Emit the code for the jump table
1399 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
1400 EVT PTy
= TLI
.getPointerTy();
1401 SDValue Index
= DAG
.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1403 SDValue Table
= DAG
.getJumpTable(JT
.JTI
, PTy
);
1404 DAG
.setRoot(DAG
.getNode(ISD::BR_JT
, getCurDebugLoc(),
1405 MVT::Other
, Index
.getValue(1),
1409 /// visitJumpTableHeader - This function emits necessary code to produce index
1410 /// in the JumpTable from switch case.
1411 void SelectionDAGLowering::visitJumpTableHeader(JumpTable
&JT
,
1412 JumpTableHeader
&JTH
) {
1413 // Subtract the lowest switch case value from the value being switched on and
1414 // conditional branch to default mbb if the result is greater than the
1415 // difference between smallest and largest cases.
1416 SDValue SwitchOp
= getValue(JTH
.SValue
);
1417 EVT VT
= SwitchOp
.getValueType();
1418 SDValue SUB
= DAG
.getNode(ISD::SUB
, getCurDebugLoc(), VT
, SwitchOp
,
1419 DAG
.getConstant(JTH
.First
, VT
));
1421 // The SDNode we just created, which holds the value being switched on minus
1422 // the the smallest case value, needs to be copied to a virtual register so it
1423 // can be used as an index into the jump table in a subsequent basic block.
1424 // This value may be smaller or larger than the target's pointer type, and
1425 // therefore require extension or truncating.
1426 if (VT
.bitsGT(TLI
.getPointerTy()))
1427 SwitchOp
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
1428 TLI
.getPointerTy(), SUB
);
1430 SwitchOp
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
1431 TLI
.getPointerTy(), SUB
);
1433 unsigned JumpTableReg
= FuncInfo
.MakeReg(TLI
.getPointerTy());
1434 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1435 JumpTableReg
, SwitchOp
);
1436 JT
.Reg
= JumpTableReg
;
1438 // Emit the range check for the jump table, and branch to the default block
1439 // for the switch statement if the value being switched on exceeds the largest
1440 // case in the switch.
1441 SDValue CMP
= DAG
.getSetCC(getCurDebugLoc(),
1442 TLI
.getSetCCResultType(SUB
.getValueType()), SUB
,
1443 DAG
.getConstant(JTH
.Last
-JTH
.First
,VT
),
1446 // Set NextBlock to be the MBB immediately after the current one, if any.
1447 // This is used to avoid emitting unnecessary branches to the next block.
1448 MachineBasicBlock
*NextBlock
= 0;
1449 MachineFunction::iterator BBI
= CurMBB
;
1450 if (++BBI
!= FuncInfo
.MF
->end())
1453 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1454 MVT::Other
, CopyTo
, CMP
,
1455 DAG
.getBasicBlock(JT
.Default
));
1457 if (JT
.MBB
== NextBlock
)
1458 DAG
.setRoot(BrCond
);
1460 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, BrCond
,
1461 DAG
.getBasicBlock(JT
.MBB
)));
1464 /// visitBitTestHeader - This function emits necessary code to produce value
1465 /// suitable for "bit tests"
1466 void SelectionDAGLowering::visitBitTestHeader(BitTestBlock
&B
) {
1467 // Subtract the minimum value
1468 SDValue SwitchOp
= getValue(B
.SValue
);
1469 EVT VT
= SwitchOp
.getValueType();
1470 SDValue SUB
= DAG
.getNode(ISD::SUB
, getCurDebugLoc(), VT
, SwitchOp
,
1471 DAG
.getConstant(B
.First
, VT
));
1474 SDValue RangeCmp
= DAG
.getSetCC(getCurDebugLoc(),
1475 TLI
.getSetCCResultType(SUB
.getValueType()),
1476 SUB
, DAG
.getConstant(B
.Range
, VT
),
1480 if (VT
.bitsGT(TLI
.getPointerTy()))
1481 ShiftOp
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
1482 TLI
.getPointerTy(), SUB
);
1484 ShiftOp
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
1485 TLI
.getPointerTy(), SUB
);
1487 B
.Reg
= FuncInfo
.MakeReg(TLI
.getPointerTy());
1488 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1491 // Set NextBlock to be the MBB immediately after the current one, if any.
1492 // This is used to avoid emitting unnecessary branches to the next block.
1493 MachineBasicBlock
*NextBlock
= 0;
1494 MachineFunction::iterator BBI
= CurMBB
;
1495 if (++BBI
!= FuncInfo
.MF
->end())
1498 MachineBasicBlock
* MBB
= B
.Cases
[0].ThisBB
;
1500 CurMBB
->addSuccessor(B
.Default
);
1501 CurMBB
->addSuccessor(MBB
);
1503 SDValue BrRange
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1504 MVT::Other
, CopyTo
, RangeCmp
,
1505 DAG
.getBasicBlock(B
.Default
));
1507 if (MBB
== NextBlock
)
1508 DAG
.setRoot(BrRange
);
1510 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, CopyTo
,
1511 DAG
.getBasicBlock(MBB
)));
1514 /// visitBitTestCase - this function produces one "bit test"
1515 void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock
* NextMBB
,
1518 // Make desired shift
1519 SDValue ShiftOp
= DAG
.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg
,
1520 TLI
.getPointerTy());
1521 SDValue SwitchVal
= DAG
.getNode(ISD::SHL
, getCurDebugLoc(),
1523 DAG
.getConstant(1, TLI
.getPointerTy()),
1526 // Emit bit tests and jumps
1527 SDValue AndOp
= DAG
.getNode(ISD::AND
, getCurDebugLoc(),
1528 TLI
.getPointerTy(), SwitchVal
,
1529 DAG
.getConstant(B
.Mask
, TLI
.getPointerTy()));
1530 SDValue AndCmp
= DAG
.getSetCC(getCurDebugLoc(),
1531 TLI
.getSetCCResultType(AndOp
.getValueType()),
1532 AndOp
, DAG
.getConstant(0, TLI
.getPointerTy()),
1535 CurMBB
->addSuccessor(B
.TargetBB
);
1536 CurMBB
->addSuccessor(NextMBB
);
1538 SDValue BrAnd
= DAG
.getNode(ISD::BRCOND
, getCurDebugLoc(),
1539 MVT::Other
, getControlRoot(),
1540 AndCmp
, DAG
.getBasicBlock(B
.TargetBB
));
1542 // Set NextBlock to be the MBB immediately after the current one, if any.
1543 // This is used to avoid emitting unnecessary branches to the next block.
1544 MachineBasicBlock
*NextBlock
= 0;
1545 MachineFunction::iterator BBI
= CurMBB
;
1546 if (++BBI
!= FuncInfo
.MF
->end())
1549 if (NextMBB
== NextBlock
)
1552 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(), MVT::Other
, BrAnd
,
1553 DAG
.getBasicBlock(NextMBB
)));
1556 void SelectionDAGLowering::visitInvoke(InvokeInst
&I
) {
1557 // Retrieve successors.
1558 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
1559 MachineBasicBlock
*LandingPad
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
1561 const Value
*Callee(I
.getCalledValue());
1562 if (isa
<InlineAsm
>(Callee
))
1565 LowerCallTo(&I
, getValue(Callee
), false, LandingPad
);
1567 // If the value of the invoke is used outside of its defining block, make it
1568 // available as a virtual register.
1569 CopyToExportRegsIfNeeded(&I
);
1571 // Update successor info
1572 CurMBB
->addSuccessor(Return
);
1573 CurMBB
->addSuccessor(LandingPad
);
1575 // Drop into normal successor.
1576 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
1577 MVT::Other
, getControlRoot(),
1578 DAG
.getBasicBlock(Return
)));
1581 void SelectionDAGLowering::visitUnwind(UnwindInst
&I
) {
1584 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1585 /// small case ranges).
1586 bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec
& CR
,
1587 CaseRecVector
& WorkList
,
1589 MachineBasicBlock
* Default
) {
1590 Case
& BackCase
= *(CR
.Range
.second
-1);
1592 // Size is the number of Cases represented by this range.
1593 size_t Size
= CR
.Range
.second
- CR
.Range
.first
;
1597 // Get the MachineFunction which holds the current MBB. This is used when
1598 // inserting any additional MBBs necessary to represent the switch.
1599 MachineFunction
*CurMF
= FuncInfo
.MF
;
1601 // Figure out which block is immediately after the current one.
1602 MachineBasicBlock
*NextBlock
= 0;
1603 MachineFunction::iterator BBI
= CR
.CaseBB
;
1605 if (++BBI
!= FuncInfo
.MF
->end())
1608 // TODO: If any two of the cases has the same destination, and if one value
1609 // is the same as the other, but has one bit unset that the other has set,
1610 // use bit manipulation to do two compares at once. For example:
1611 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1613 // Rearrange the case blocks so that the last one falls through if possible.
1614 if (NextBlock
&& Default
!= NextBlock
&& BackCase
.BB
!= NextBlock
) {
1615 // The last case block won't fall through into 'NextBlock' if we emit the
1616 // branches in this order. See if rearranging a case value would help.
1617 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
-1; I
!= E
; ++I
) {
1618 if (I
->BB
== NextBlock
) {
1619 std::swap(*I
, BackCase
);
1625 // Create a CaseBlock record representing a conditional branch to
1626 // the Case's target mbb if the value being switched on SV is equal
1628 MachineBasicBlock
*CurBlock
= CR
.CaseBB
;
1629 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!= E
; ++I
) {
1630 MachineBasicBlock
*FallThrough
;
1632 FallThrough
= CurMF
->CreateMachineBasicBlock(CurBlock
->getBasicBlock());
1633 CurMF
->insert(BBI
, FallThrough
);
1635 // Put SV in a virtual register to make it available from the new blocks.
1636 ExportFromCurrentBlock(SV
);
1638 // If the last case doesn't match, go to the default block.
1639 FallThrough
= Default
;
1642 Value
*RHS
, *LHS
, *MHS
;
1644 if (I
->High
== I
->Low
) {
1645 // This is just small small case range :) containing exactly 1 case
1647 LHS
= SV
; RHS
= I
->High
; MHS
= NULL
;
1650 LHS
= I
->Low
; MHS
= SV
; RHS
= I
->High
;
1652 CaseBlock
CB(CC
, LHS
, RHS
, MHS
, I
->BB
, FallThrough
, CurBlock
);
1654 // If emitting the first comparison, just call visitSwitchCase to emit the
1655 // code into the current block. Otherwise, push the CaseBlock onto the
1656 // vector to be later processed by SDISel, and insert the node's MBB
1657 // before the next MBB.
1658 if (CurBlock
== CurMBB
)
1659 visitSwitchCase(CB
);
1661 SwitchCases
.push_back(CB
);
1663 CurBlock
= FallThrough
;
1669 static inline bool areJTsAllowed(const TargetLowering
&TLI
) {
1670 return !DisableJumpTables
&&
1671 (TLI
.isOperationLegalOrCustom(ISD::BR_JT
, MVT::Other
) ||
1672 TLI
.isOperationLegalOrCustom(ISD::BRIND
, MVT::Other
));
1675 static APInt
ComputeRange(const APInt
&First
, const APInt
&Last
) {
1676 APInt
LastExt(Last
), FirstExt(First
);
1677 uint32_t BitWidth
= std::max(Last
.getBitWidth(), First
.getBitWidth()) + 1;
1678 LastExt
.sext(BitWidth
); FirstExt
.sext(BitWidth
);
1679 return (LastExt
- FirstExt
+ 1ULL);
1682 /// handleJTSwitchCase - Emit jumptable for current switch case range
1683 bool SelectionDAGLowering::handleJTSwitchCase(CaseRec
& CR
,
1684 CaseRecVector
& WorkList
,
1686 MachineBasicBlock
* Default
) {
1687 Case
& FrontCase
= *CR
.Range
.first
;
1688 Case
& BackCase
= *(CR
.Range
.second
-1);
1690 const APInt
& First
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1691 const APInt
& Last
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1694 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1698 if (!areJTsAllowed(TLI
) || TSize
<= 3)
1701 APInt Range
= ComputeRange(First
, Last
);
1702 double Density
= (double)TSize
/ Range
.roundToDouble();
1706 DEBUG(errs() << "Lowering jump table\n"
1707 << "First entry: " << First
<< ". Last entry: " << Last
<< '\n'
1708 << "Range: " << Range
1709 << "Size: " << TSize
<< ". Density: " << Density
<< "\n\n");
1711 // Get the MachineFunction which holds the current MBB. This is used when
1712 // inserting any additional MBBs necessary to represent the switch.
1713 MachineFunction
*CurMF
= FuncInfo
.MF
;
1715 // Figure out which block is immediately after the current one.
1716 MachineBasicBlock
*NextBlock
= 0;
1717 MachineFunction::iterator BBI
= CR
.CaseBB
;
1719 if (++BBI
!= FuncInfo
.MF
->end())
1722 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
1724 // Create a new basic block to hold the code for loading the address
1725 // of the jump table, and jumping to it. Update successor information;
1726 // we will either branch to the default case for the switch, or the jump
1728 MachineBasicBlock
*JumpTableBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1729 CurMF
->insert(BBI
, JumpTableBB
);
1730 CR
.CaseBB
->addSuccessor(Default
);
1731 CR
.CaseBB
->addSuccessor(JumpTableBB
);
1733 // Build a vector of destination BBs, corresponding to each target
1734 // of the jump table. If the value of the jump table slot corresponds to
1735 // a case statement, push the case's BB onto the vector, otherwise, push
1737 std::vector
<MachineBasicBlock
*> DestBBs
;
1739 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!= E
; ++TEI
) {
1740 const APInt
& Low
= cast
<ConstantInt
>(I
->Low
)->getValue();
1741 const APInt
& High
= cast
<ConstantInt
>(I
->High
)->getValue();
1743 if (Low
.sle(TEI
) && TEI
.sle(High
)) {
1744 DestBBs
.push_back(I
->BB
);
1748 DestBBs
.push_back(Default
);
1752 // Update successor info. Add one edge to each unique successor.
1753 BitVector
SuccsHandled(CR
.CaseBB
->getParent()->getNumBlockIDs());
1754 for (std::vector
<MachineBasicBlock
*>::iterator I
= DestBBs
.begin(),
1755 E
= DestBBs
.end(); I
!= E
; ++I
) {
1756 if (!SuccsHandled
[(*I
)->getNumber()]) {
1757 SuccsHandled
[(*I
)->getNumber()] = true;
1758 JumpTableBB
->addSuccessor(*I
);
1762 // Create a jump table index for this jump table, or return an existing
1764 unsigned JTI
= CurMF
->getJumpTableInfo()->getJumpTableIndex(DestBBs
);
1766 // Set the jump table information so that we can codegen it as a second
1767 // MachineBasicBlock
1768 JumpTable
JT(-1U, JTI
, JumpTableBB
, Default
);
1769 JumpTableHeader
JTH(First
, Last
, SV
, CR
.CaseBB
, (CR
.CaseBB
== CurMBB
));
1770 if (CR
.CaseBB
== CurMBB
)
1771 visitJumpTableHeader(JT
, JTH
);
1773 JTCases
.push_back(JumpTableBlock(JTH
, JT
));
1778 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1780 bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec
& CR
,
1781 CaseRecVector
& WorkList
,
1783 MachineBasicBlock
* Default
) {
1784 // Get the MachineFunction which holds the current MBB. This is used when
1785 // inserting any additional MBBs necessary to represent the switch.
1786 MachineFunction
*CurMF
= FuncInfo
.MF
;
1788 // Figure out which block is immediately after the current one.
1789 MachineBasicBlock
*NextBlock
= 0;
1790 MachineFunction::iterator BBI
= CR
.CaseBB
;
1792 if (++BBI
!= FuncInfo
.MF
->end())
1795 Case
& FrontCase
= *CR
.Range
.first
;
1796 Case
& BackCase
= *(CR
.Range
.second
-1);
1797 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
1799 // Size is the number of Cases represented by this range.
1800 unsigned Size
= CR
.Range
.second
- CR
.Range
.first
;
1802 const APInt
& First
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1803 const APInt
& Last
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1805 CaseItr Pivot
= CR
.Range
.first
+ Size
/2;
1807 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1808 // (heuristically) allow us to emit JumpTable's later.
1810 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1814 size_t LSize
= FrontCase
.size();
1815 size_t RSize
= TSize
-LSize
;
1816 DEBUG(errs() << "Selecting best pivot: \n"
1817 << "First: " << First
<< ", Last: " << Last
<<'\n'
1818 << "LSize: " << LSize
<< ", RSize: " << RSize
<< '\n');
1819 for (CaseItr I
= CR
.Range
.first
, J
=I
+1, E
= CR
.Range
.second
;
1821 const APInt
& LEnd
= cast
<ConstantInt
>(I
->High
)->getValue();
1822 const APInt
& RBegin
= cast
<ConstantInt
>(J
->Low
)->getValue();
1823 APInt Range
= ComputeRange(LEnd
, RBegin
);
1824 assert((Range
- 2ULL).isNonNegative() &&
1825 "Invalid case distance");
1826 double LDensity
= (double)LSize
/ (LEnd
- First
+ 1ULL).roundToDouble();
1827 double RDensity
= (double)RSize
/ (Last
- RBegin
+ 1ULL).roundToDouble();
1828 double Metric
= Range
.logBase2()*(LDensity
+RDensity
);
1829 // Should always split in some non-trivial place
1830 DEBUG(errs() <<"=>Step\n"
1831 << "LEnd: " << LEnd
<< ", RBegin: " << RBegin
<< '\n'
1832 << "LDensity: " << LDensity
1833 << ", RDensity: " << RDensity
<< '\n'
1834 << "Metric: " << Metric
<< '\n');
1835 if (FMetric
< Metric
) {
1838 DEBUG(errs() << "Current metric set to: " << FMetric
<< '\n');
1844 if (areJTsAllowed(TLI
)) {
1845 // If our case is dense we *really* should handle it earlier!
1846 assert((FMetric
> 0) && "Should handle dense range earlier!");
1848 Pivot
= CR
.Range
.first
+ Size
/2;
1851 CaseRange
LHSR(CR
.Range
.first
, Pivot
);
1852 CaseRange
RHSR(Pivot
, CR
.Range
.second
);
1853 Constant
*C
= Pivot
->Low
;
1854 MachineBasicBlock
*FalseBB
= 0, *TrueBB
= 0;
1856 // We know that we branch to the LHS if the Value being switched on is
1857 // less than the Pivot value, C. We use this to optimize our binary
1858 // tree a bit, by recognizing that if SV is greater than or equal to the
1859 // LHS's Case Value, and that Case Value is exactly one less than the
1860 // Pivot's Value, then we can branch directly to the LHS's Target,
1861 // rather than creating a leaf node for it.
1862 if ((LHSR
.second
- LHSR
.first
) == 1 &&
1863 LHSR
.first
->High
== CR
.GE
&&
1864 cast
<ConstantInt
>(C
)->getValue() ==
1865 (cast
<ConstantInt
>(CR
.GE
)->getValue() + 1LL)) {
1866 TrueBB
= LHSR
.first
->BB
;
1868 TrueBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1869 CurMF
->insert(BBI
, TrueBB
);
1870 WorkList
.push_back(CaseRec(TrueBB
, C
, CR
.GE
, LHSR
));
1872 // Put SV in a virtual register to make it available from the new blocks.
1873 ExportFromCurrentBlock(SV
);
1876 // Similar to the optimization above, if the Value being switched on is
1877 // known to be less than the Constant CR.LT, and the current Case Value
1878 // is CR.LT - 1, then we can branch directly to the target block for
1879 // the current Case Value, rather than emitting a RHS leaf node for it.
1880 if ((RHSR
.second
- RHSR
.first
) == 1 && CR
.LT
&&
1881 cast
<ConstantInt
>(RHSR
.first
->Low
)->getValue() ==
1882 (cast
<ConstantInt
>(CR
.LT
)->getValue() - 1LL)) {
1883 FalseBB
= RHSR
.first
->BB
;
1885 FalseBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
1886 CurMF
->insert(BBI
, FalseBB
);
1887 WorkList
.push_back(CaseRec(FalseBB
,CR
.LT
,C
,RHSR
));
1889 // Put SV in a virtual register to make it available from the new blocks.
1890 ExportFromCurrentBlock(SV
);
1893 // Create a CaseBlock record representing a conditional branch to
1894 // the LHS node if the value being switched on SV is less than C.
1895 // Otherwise, branch to LHS.
1896 CaseBlock
CB(ISD::SETLT
, SV
, C
, NULL
, TrueBB
, FalseBB
, CR
.CaseBB
);
1898 if (CR
.CaseBB
== CurMBB
)
1899 visitSwitchCase(CB
);
1901 SwitchCases
.push_back(CB
);
1906 /// handleBitTestsSwitchCase - if current case range has few destination and
1907 /// range span less, than machine word bitwidth, encode case range into series
1908 /// of masks and emit bit tests with these masks.
1909 bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec
& CR
,
1910 CaseRecVector
& WorkList
,
1912 MachineBasicBlock
* Default
){
1913 EVT PTy
= TLI
.getPointerTy();
1914 unsigned IntPtrBits
= PTy
.getSizeInBits();
1916 Case
& FrontCase
= *CR
.Range
.first
;
1917 Case
& BackCase
= *(CR
.Range
.second
-1);
1919 // Get the MachineFunction which holds the current MBB. This is used when
1920 // inserting any additional MBBs necessary to represent the switch.
1921 MachineFunction
*CurMF
= FuncInfo
.MF
;
1923 // If target does not have legal shift left, do not emit bit tests at all.
1924 if (!TLI
.isOperationLegal(ISD::SHL
, TLI
.getPointerTy()))
1928 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
;
1930 // Single case counts one, case range - two.
1931 numCmps
+= (I
->Low
== I
->High
? 1 : 2);
1934 // Count unique destinations
1935 SmallSet
<MachineBasicBlock
*, 4> Dests
;
1936 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!=E
; ++I
) {
1937 Dests
.insert(I
->BB
);
1938 if (Dests
.size() > 3)
1939 // Don't bother the code below, if there are too much unique destinations
1942 DEBUG(errs() << "Total number of unique destinations: " << Dests
.size() << '\n'
1943 << "Total number of comparisons: " << numCmps
<< '\n');
1945 // Compute span of values.
1946 const APInt
& minValue
= cast
<ConstantInt
>(FrontCase
.Low
)->getValue();
1947 const APInt
& maxValue
= cast
<ConstantInt
>(BackCase
.High
)->getValue();
1948 APInt cmpRange
= maxValue
- minValue
;
1950 DEBUG(errs() << "Compare range: " << cmpRange
<< '\n'
1951 << "Low bound: " << minValue
<< '\n'
1952 << "High bound: " << maxValue
<< '\n');
1954 if (cmpRange
.uge(APInt(cmpRange
.getBitWidth(), IntPtrBits
)) ||
1955 (!(Dests
.size() == 1 && numCmps
>= 3) &&
1956 !(Dests
.size() == 2 && numCmps
>= 5) &&
1957 !(Dests
.size() >= 3 && numCmps
>= 6)))
1960 DEBUG(errs() << "Emitting bit tests\n");
1961 APInt lowBound
= APInt::getNullValue(cmpRange
.getBitWidth());
1963 // Optimize the case where all the case values fit in a
1964 // word without having to subtract minValue. In this case,
1965 // we can optimize away the subtraction.
1966 if (minValue
.isNonNegative() &&
1967 maxValue
.slt(APInt(maxValue
.getBitWidth(), IntPtrBits
))) {
1968 cmpRange
= maxValue
;
1970 lowBound
= minValue
;
1973 CaseBitsVector CasesBits
;
1974 unsigned i
, count
= 0;
1976 for (CaseItr I
= CR
.Range
.first
, E
= CR
.Range
.second
; I
!=E
; ++I
) {
1977 MachineBasicBlock
* Dest
= I
->BB
;
1978 for (i
= 0; i
< count
; ++i
)
1979 if (Dest
== CasesBits
[i
].BB
)
1983 assert((count
< 3) && "Too much destinations to test!");
1984 CasesBits
.push_back(CaseBits(0, Dest
, 0));
1988 const APInt
& lowValue
= cast
<ConstantInt
>(I
->Low
)->getValue();
1989 const APInt
& highValue
= cast
<ConstantInt
>(I
->High
)->getValue();
1991 uint64_t lo
= (lowValue
- lowBound
).getZExtValue();
1992 uint64_t hi
= (highValue
- lowBound
).getZExtValue();
1994 for (uint64_t j
= lo
; j
<= hi
; j
++) {
1995 CasesBits
[i
].Mask
|= 1ULL << j
;
1996 CasesBits
[i
].Bits
++;
2000 std::sort(CasesBits
.begin(), CasesBits
.end(), CaseBitsCmp());
2004 // Figure out which block is immediately after the current one.
2005 MachineFunction::iterator BBI
= CR
.CaseBB
;
2008 const BasicBlock
*LLVMBB
= CR
.CaseBB
->getBasicBlock();
2010 DEBUG(errs() << "Cases:\n");
2011 for (unsigned i
= 0, e
= CasesBits
.size(); i
!=e
; ++i
) {
2012 DEBUG(errs() << "Mask: " << CasesBits
[i
].Mask
2013 << ", Bits: " << CasesBits
[i
].Bits
2014 << ", BB: " << CasesBits
[i
].BB
<< '\n');
2016 MachineBasicBlock
*CaseBB
= CurMF
->CreateMachineBasicBlock(LLVMBB
);
2017 CurMF
->insert(BBI
, CaseBB
);
2018 BTC
.push_back(BitTestCase(CasesBits
[i
].Mask
,
2022 // Put SV in a virtual register to make it available from the new blocks.
2023 ExportFromCurrentBlock(SV
);
2026 BitTestBlock
BTB(lowBound
, cmpRange
, SV
,
2027 -1U, (CR
.CaseBB
== CurMBB
),
2028 CR
.CaseBB
, Default
, BTC
);
2030 if (CR
.CaseBB
== CurMBB
)
2031 visitBitTestHeader(BTB
);
2033 BitTestCases
.push_back(BTB
);
2039 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2040 size_t SelectionDAGLowering::Clusterify(CaseVector
& Cases
,
2041 const SwitchInst
& SI
) {
2044 // Start with "simple" cases
2045 for (size_t i
= 1; i
< SI
.getNumSuccessors(); ++i
) {
2046 MachineBasicBlock
*SMBB
= FuncInfo
.MBBMap
[SI
.getSuccessor(i
)];
2047 Cases
.push_back(Case(SI
.getSuccessorValue(i
),
2048 SI
.getSuccessorValue(i
),
2051 std::sort(Cases
.begin(), Cases
.end(), CaseCmp());
2053 // Merge case into clusters
2054 if (Cases
.size() >= 2)
2055 // Must recompute end() each iteration because it may be
2056 // invalidated by erase if we hold on to it
2057 for (CaseItr I
= Cases
.begin(), J
= ++(Cases
.begin()); J
!= Cases
.end(); ) {
2058 const APInt
& nextValue
= cast
<ConstantInt
>(J
->Low
)->getValue();
2059 const APInt
& currentValue
= cast
<ConstantInt
>(I
->High
)->getValue();
2060 MachineBasicBlock
* nextBB
= J
->BB
;
2061 MachineBasicBlock
* currentBB
= I
->BB
;
2063 // If the two neighboring cases go to the same destination, merge them
2064 // into a single case.
2065 if ((nextValue
- currentValue
== 1) && (currentBB
== nextBB
)) {
2073 for (CaseItr I
=Cases
.begin(), E
=Cases
.end(); I
!=E
; ++I
, ++numCmps
) {
2074 if (I
->Low
!= I
->High
)
2075 // A range counts double, since it requires two compares.
2082 void SelectionDAGLowering::visitSwitch(SwitchInst
&SI
) {
2083 // Figure out which block is immediately after the current one.
2084 MachineBasicBlock
*NextBlock
= 0;
2086 MachineBasicBlock
*Default
= FuncInfo
.MBBMap
[SI
.getDefaultDest()];
2088 // If there is only the default destination, branch to it if it is not the
2089 // next basic block. Otherwise, just fall through.
2090 if (SI
.getNumOperands() == 2) {
2091 // Update machine-CFG edges.
2093 // If this is not a fall-through branch, emit the branch.
2094 CurMBB
->addSuccessor(Default
);
2095 if (Default
!= NextBlock
)
2096 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurDebugLoc(),
2097 MVT::Other
, getControlRoot(),
2098 DAG
.getBasicBlock(Default
)));
2102 // If there are any non-default case statements, create a vector of Cases
2103 // representing each one, and sort the vector so that we can efficiently
2104 // create a binary search tree from them.
2106 size_t numCmps
= Clusterify(Cases
, SI
);
2107 DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases
.size()
2108 << ". Total compares: " << numCmps
<< '\n');
2111 // Get the Value to be switched on and default basic blocks, which will be
2112 // inserted into CaseBlock records, representing basic blocks in the binary
2114 Value
*SV
= SI
.getOperand(0);
2116 // Push the initial CaseRec onto the worklist
2117 CaseRecVector WorkList
;
2118 WorkList
.push_back(CaseRec(CurMBB
,0,0,CaseRange(Cases
.begin(),Cases
.end())));
2120 while (!WorkList
.empty()) {
2121 // Grab a record representing a case range to process off the worklist
2122 CaseRec CR
= WorkList
.back();
2123 WorkList
.pop_back();
2125 if (handleBitTestsSwitchCase(CR
, WorkList
, SV
, Default
))
2128 // If the range has few cases (two or less) emit a series of specific
2130 if (handleSmallSwitchRange(CR
, WorkList
, SV
, Default
))
2133 // If the switch has more than 5 blocks, and at least 40% dense, and the
2134 // target supports indirect branches, then emit a jump table rather than
2135 // lowering the switch to a binary tree of conditional branches.
2136 if (handleJTSwitchCase(CR
, WorkList
, SV
, Default
))
2139 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2140 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2141 handleBTSplitSwitchCase(CR
, WorkList
, SV
, Default
);
2146 void SelectionDAGLowering::visitFSub(User
&I
) {
2147 // -0.0 - X --> fneg
2148 const Type
*Ty
= I
.getType();
2149 if (isa
<VectorType
>(Ty
)) {
2150 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(I
.getOperand(0))) {
2151 const VectorType
*DestTy
= cast
<VectorType
>(I
.getType());
2152 const Type
*ElTy
= DestTy
->getElementType();
2153 unsigned VL
= DestTy
->getNumElements();
2154 std::vector
<Constant
*> NZ(VL
, ConstantFP::getNegativeZero(ElTy
));
2155 Constant
*CNZ
= ConstantVector::get(&NZ
[0], NZ
.size());
2157 SDValue Op2
= getValue(I
.getOperand(1));
2158 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurDebugLoc(),
2159 Op2
.getValueType(), Op2
));
2164 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(I
.getOperand(0)))
2165 if (CFP
->isExactlyValue(ConstantFP::getNegativeZero(Ty
)->getValueAPF())) {
2166 SDValue Op2
= getValue(I
.getOperand(1));
2167 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurDebugLoc(),
2168 Op2
.getValueType(), Op2
));
2172 visitBinary(I
, ISD::FSUB
);
2175 void SelectionDAGLowering::visitBinary(User
&I
, unsigned OpCode
) {
2176 SDValue Op1
= getValue(I
.getOperand(0));
2177 SDValue Op2
= getValue(I
.getOperand(1));
2179 setValue(&I
, DAG
.getNode(OpCode
, getCurDebugLoc(),
2180 Op1
.getValueType(), Op1
, Op2
));
2183 void SelectionDAGLowering::visitShift(User
&I
, unsigned Opcode
) {
2184 SDValue Op1
= getValue(I
.getOperand(0));
2185 SDValue Op2
= getValue(I
.getOperand(1));
2186 if (!isa
<VectorType
>(I
.getType()) &&
2187 Op2
.getValueType() != TLI
.getShiftAmountTy()) {
2188 // If the operand is smaller than the shift count type, promote it.
2189 EVT PTy
= TLI
.getPointerTy();
2190 EVT STy
= TLI
.getShiftAmountTy();
2191 if (STy
.bitsGT(Op2
.getValueType()))
2192 Op2
= DAG
.getNode(ISD::ANY_EXTEND
, getCurDebugLoc(),
2193 TLI
.getShiftAmountTy(), Op2
);
2194 // If the operand is larger than the shift count type but the shift
2195 // count type has enough bits to represent any shift value, truncate
2196 // it now. This is a common case and it exposes the truncate to
2197 // optimization early.
2198 else if (STy
.getSizeInBits() >=
2199 Log2_32_Ceil(Op2
.getValueType().getSizeInBits()))
2200 Op2
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2201 TLI
.getShiftAmountTy(), Op2
);
2202 // Otherwise we'll need to temporarily settle for some other
2203 // convenient type; type legalization will make adjustments as
2205 else if (PTy
.bitsLT(Op2
.getValueType()))
2206 Op2
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2207 TLI
.getPointerTy(), Op2
);
2208 else if (PTy
.bitsGT(Op2
.getValueType()))
2209 Op2
= DAG
.getNode(ISD::ANY_EXTEND
, getCurDebugLoc(),
2210 TLI
.getPointerTy(), Op2
);
2213 setValue(&I
, DAG
.getNode(Opcode
, getCurDebugLoc(),
2214 Op1
.getValueType(), Op1
, Op2
));
2217 void SelectionDAGLowering::visitICmp(User
&I
) {
2218 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
2219 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(&I
))
2220 predicate
= IC
->getPredicate();
2221 else if (ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
2222 predicate
= ICmpInst::Predicate(IC
->getPredicate());
2223 SDValue Op1
= getValue(I
.getOperand(0));
2224 SDValue Op2
= getValue(I
.getOperand(1));
2225 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
2227 EVT DestVT
= TLI
.getValueType(I
.getType());
2228 setValue(&I
, DAG
.getSetCC(getCurDebugLoc(), DestVT
, Op1
, Op2
, Opcode
));
2231 void SelectionDAGLowering::visitFCmp(User
&I
) {
2232 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
2233 if (FCmpInst
*FC
= dyn_cast
<FCmpInst
>(&I
))
2234 predicate
= FC
->getPredicate();
2235 else if (ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
2236 predicate
= FCmpInst::Predicate(FC
->getPredicate());
2237 SDValue Op1
= getValue(I
.getOperand(0));
2238 SDValue Op2
= getValue(I
.getOperand(1));
2239 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
2240 EVT DestVT
= TLI
.getValueType(I
.getType());
2241 setValue(&I
, DAG
.getSetCC(getCurDebugLoc(), DestVT
, Op1
, Op2
, Condition
));
2244 void SelectionDAGLowering::visitSelect(User
&I
) {
2245 SmallVector
<EVT
, 4> ValueVTs
;
2246 ComputeValueVTs(TLI
, I
.getType(), ValueVTs
);
2247 unsigned NumValues
= ValueVTs
.size();
2248 if (NumValues
!= 0) {
2249 SmallVector
<SDValue
, 4> Values(NumValues
);
2250 SDValue Cond
= getValue(I
.getOperand(0));
2251 SDValue TrueVal
= getValue(I
.getOperand(1));
2252 SDValue FalseVal
= getValue(I
.getOperand(2));
2254 for (unsigned i
= 0; i
!= NumValues
; ++i
)
2255 Values
[i
] = DAG
.getNode(ISD::SELECT
, getCurDebugLoc(),
2256 TrueVal
.getValueType(), Cond
,
2257 SDValue(TrueVal
.getNode(), TrueVal
.getResNo() + i
),
2258 SDValue(FalseVal
.getNode(), FalseVal
.getResNo() + i
));
2260 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2261 DAG
.getVTList(&ValueVTs
[0], NumValues
),
2262 &Values
[0], NumValues
));
2267 void SelectionDAGLowering::visitTrunc(User
&I
) {
2268 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2269 SDValue N
= getValue(I
.getOperand(0));
2270 EVT DestVT
= TLI
.getValueType(I
.getType());
2271 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), DestVT
, N
));
2274 void SelectionDAGLowering::visitZExt(User
&I
) {
2275 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2276 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2277 SDValue N
= getValue(I
.getOperand(0));
2278 EVT DestVT
= TLI
.getValueType(I
.getType());
2279 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2282 void SelectionDAGLowering::visitSExt(User
&I
) {
2283 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2284 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2285 SDValue N
= getValue(I
.getOperand(0));
2286 EVT DestVT
= TLI
.getValueType(I
.getType());
2287 setValue(&I
, DAG
.getNode(ISD::SIGN_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2290 void SelectionDAGLowering::visitFPTrunc(User
&I
) {
2291 // FPTrunc is never a no-op cast, no need to check
2292 SDValue N
= getValue(I
.getOperand(0));
2293 EVT DestVT
= TLI
.getValueType(I
.getType());
2294 setValue(&I
, DAG
.getNode(ISD::FP_ROUND
, getCurDebugLoc(),
2295 DestVT
, N
, DAG
.getIntPtrConstant(0)));
2298 void SelectionDAGLowering::visitFPExt(User
&I
){
2299 // FPTrunc is never a no-op cast, no need to check
2300 SDValue N
= getValue(I
.getOperand(0));
2301 EVT DestVT
= TLI
.getValueType(I
.getType());
2302 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, getCurDebugLoc(), DestVT
, N
));
2305 void SelectionDAGLowering::visitFPToUI(User
&I
) {
2306 // FPToUI is never a no-op cast, no need to check
2307 SDValue N
= getValue(I
.getOperand(0));
2308 EVT DestVT
= TLI
.getValueType(I
.getType());
2309 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT
, getCurDebugLoc(), DestVT
, N
));
2312 void SelectionDAGLowering::visitFPToSI(User
&I
) {
2313 // FPToSI is never a no-op cast, no need to check
2314 SDValue N
= getValue(I
.getOperand(0));
2315 EVT DestVT
= TLI
.getValueType(I
.getType());
2316 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT
, getCurDebugLoc(), DestVT
, N
));
2319 void SelectionDAGLowering::visitUIToFP(User
&I
) {
2320 // UIToFP is never a no-op cast, no need to check
2321 SDValue N
= getValue(I
.getOperand(0));
2322 EVT DestVT
= TLI
.getValueType(I
.getType());
2323 setValue(&I
, DAG
.getNode(ISD::UINT_TO_FP
, getCurDebugLoc(), DestVT
, N
));
2326 void SelectionDAGLowering::visitSIToFP(User
&I
){
2327 // SIToFP is never a no-op cast, no need to check
2328 SDValue N
= getValue(I
.getOperand(0));
2329 EVT DestVT
= TLI
.getValueType(I
.getType());
2330 setValue(&I
, DAG
.getNode(ISD::SINT_TO_FP
, getCurDebugLoc(), DestVT
, N
));
2333 void SelectionDAGLowering::visitPtrToInt(User
&I
) {
2334 // What to do depends on the size of the integer and the size of the pointer.
2335 // We can either truncate, zero extend, or no-op, accordingly.
2336 SDValue N
= getValue(I
.getOperand(0));
2337 EVT SrcVT
= N
.getValueType();
2338 EVT DestVT
= TLI
.getValueType(I
.getType());
2340 if (DestVT
.bitsLT(SrcVT
))
2341 Result
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), DestVT
, N
);
2343 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2344 Result
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(), DestVT
, N
);
2345 setValue(&I
, Result
);
2348 void SelectionDAGLowering::visitIntToPtr(User
&I
) {
2349 // What to do depends on the size of the integer and the size of the pointer.
2350 // We can either truncate, zero extend, or no-op, accordingly.
2351 SDValue N
= getValue(I
.getOperand(0));
2352 EVT SrcVT
= N
.getValueType();
2353 EVT DestVT
= TLI
.getValueType(I
.getType());
2354 if (DestVT
.bitsLT(SrcVT
))
2355 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), DestVT
, N
));
2357 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2358 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2362 void SelectionDAGLowering::visitBitCast(User
&I
) {
2363 SDValue N
= getValue(I
.getOperand(0));
2364 EVT DestVT
= TLI
.getValueType(I
.getType());
2366 // BitCast assures us that source and destination are the same size so this
2367 // is either a BIT_CONVERT or a no-op.
2368 if (DestVT
!= N
.getValueType())
2369 setValue(&I
, DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
2370 DestVT
, N
)); // convert types
2372 setValue(&I
, N
); // noop cast.
2375 void SelectionDAGLowering::visitInsertElement(User
&I
) {
2376 SDValue InVec
= getValue(I
.getOperand(0));
2377 SDValue InVal
= getValue(I
.getOperand(1));
2378 SDValue InIdx
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2380 getValue(I
.getOperand(2)));
2382 setValue(&I
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, getCurDebugLoc(),
2383 TLI
.getValueType(I
.getType()),
2384 InVec
, InVal
, InIdx
));
2387 void SelectionDAGLowering::visitExtractElement(User
&I
) {
2388 SDValue InVec
= getValue(I
.getOperand(0));
2389 SDValue InIdx
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2391 getValue(I
.getOperand(1)));
2392 setValue(&I
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2393 TLI
.getValueType(I
.getType()), InVec
, InIdx
));
2397 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2398 // from SIndx and increasing to the element length (undefs are allowed).
2399 static bool SequentialMask(SmallVectorImpl
<int> &Mask
, unsigned SIndx
) {
2400 unsigned MaskNumElts
= Mask
.size();
2401 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
)
2402 if ((Mask
[i
] >= 0) && (Mask
[i
] != (int)(i
+ SIndx
)))
2407 void SelectionDAGLowering::visitShuffleVector(User
&I
) {
2408 SmallVector
<int, 8> Mask
;
2409 SDValue Src1
= getValue(I
.getOperand(0));
2410 SDValue Src2
= getValue(I
.getOperand(1));
2412 // Convert the ConstantVector mask operand into an array of ints, with -1
2413 // representing undef values.
2414 SmallVector
<Constant
*, 8> MaskElts
;
2415 cast
<Constant
>(I
.getOperand(2))->getVectorElements(*DAG
.getContext(),
2417 unsigned MaskNumElts
= MaskElts
.size();
2418 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2419 if (isa
<UndefValue
>(MaskElts
[i
]))
2422 Mask
.push_back(cast
<ConstantInt
>(MaskElts
[i
])->getSExtValue());
2425 EVT VT
= TLI
.getValueType(I
.getType());
2426 EVT SrcVT
= Src1
.getValueType();
2427 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
2429 if (SrcNumElts
== MaskNumElts
) {
2430 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2435 // Normalize the shuffle vector since mask and vector length don't match.
2436 if (SrcNumElts
< MaskNumElts
&& MaskNumElts
% SrcNumElts
== 0) {
2437 // Mask is longer than the source vectors and is a multiple of the source
2438 // vectors. We can use concatenate vector to make the mask and vectors
2440 if (SrcNumElts
*2 == MaskNumElts
&& SequentialMask(Mask
, 0)) {
2441 // The shuffle is concatenating two vectors together.
2442 setValue(&I
, DAG
.getNode(ISD::CONCAT_VECTORS
, getCurDebugLoc(),
2447 // Pad both vectors with undefs to make them the same length as the mask.
2448 unsigned NumConcat
= MaskNumElts
/ SrcNumElts
;
2449 bool Src1U
= Src1
.getOpcode() == ISD::UNDEF
;
2450 bool Src2U
= Src2
.getOpcode() == ISD::UNDEF
;
2451 SDValue UndefVal
= DAG
.getUNDEF(SrcVT
);
2453 SmallVector
<SDValue
, 8> MOps1(NumConcat
, UndefVal
);
2454 SmallVector
<SDValue
, 8> MOps2(NumConcat
, UndefVal
);
2458 Src1
= Src1U
? DAG
.getUNDEF(VT
) : DAG
.getNode(ISD::CONCAT_VECTORS
,
2459 getCurDebugLoc(), VT
,
2460 &MOps1
[0], NumConcat
);
2461 Src2
= Src2U
? DAG
.getUNDEF(VT
) : DAG
.getNode(ISD::CONCAT_VECTORS
,
2462 getCurDebugLoc(), VT
,
2463 &MOps2
[0], NumConcat
);
2465 // Readjust mask for new input vector length.
2466 SmallVector
<int, 8> MappedOps
;
2467 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2469 if (Idx
< (int)SrcNumElts
)
2470 MappedOps
.push_back(Idx
);
2472 MappedOps
.push_back(Idx
+ MaskNumElts
- SrcNumElts
);
2474 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2479 if (SrcNumElts
> MaskNumElts
) {
2480 // Analyze the access pattern of the vector to see if we can extract
2481 // two subvectors and do the shuffle. The analysis is done by calculating
2482 // the range of elements the mask access on both vectors.
2483 int MinRange
[2] = { SrcNumElts
+1, SrcNumElts
+1};
2484 int MaxRange
[2] = {-1, -1};
2486 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2492 if (Idx
>= (int)SrcNumElts
) {
2496 if (Idx
> MaxRange
[Input
])
2497 MaxRange
[Input
] = Idx
;
2498 if (Idx
< MinRange
[Input
])
2499 MinRange
[Input
] = Idx
;
2502 // Check if the access is smaller than the vector size and can we find
2503 // a reasonable extract index.
2504 int RangeUse
[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract.
2505 int StartIdx
[2]; // StartIdx to extract from
2506 for (int Input
=0; Input
< 2; ++Input
) {
2507 if (MinRange
[Input
] == (int)(SrcNumElts
+1) && MaxRange
[Input
] == -1) {
2508 RangeUse
[Input
] = 0; // Unused
2509 StartIdx
[Input
] = 0;
2510 } else if (MaxRange
[Input
] - MinRange
[Input
] < (int)MaskNumElts
) {
2511 // Fits within range but we should see if we can find a good
2512 // start index that is a multiple of the mask length.
2513 if (MaxRange
[Input
] < (int)MaskNumElts
) {
2514 RangeUse
[Input
] = 1; // Extract from beginning of the vector
2515 StartIdx
[Input
] = 0;
2517 StartIdx
[Input
] = (MinRange
[Input
]/MaskNumElts
)*MaskNumElts
;
2518 if (MaxRange
[Input
] - StartIdx
[Input
] < (int)MaskNumElts
&&
2519 StartIdx
[Input
] + MaskNumElts
< SrcNumElts
)
2520 RangeUse
[Input
] = 1; // Extract from a multiple of the mask length.
2525 if (RangeUse
[0] == 0 && RangeUse
[0] == 0) {
2526 setValue(&I
, DAG
.getUNDEF(VT
)); // Vectors are not used.
2529 else if (RangeUse
[0] < 2 && RangeUse
[1] < 2) {
2530 // Extract appropriate subvector and generate a vector shuffle
2531 for (int Input
=0; Input
< 2; ++Input
) {
2532 SDValue
& Src
= Input
== 0 ? Src1
: Src2
;
2533 if (RangeUse
[Input
] == 0) {
2534 Src
= DAG
.getUNDEF(VT
);
2536 Src
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, getCurDebugLoc(), VT
,
2537 Src
, DAG
.getIntPtrConstant(StartIdx
[Input
]));
2540 // Calculate new mask.
2541 SmallVector
<int, 8> MappedOps
;
2542 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2545 MappedOps
.push_back(Idx
);
2546 else if (Idx
< (int)SrcNumElts
)
2547 MappedOps
.push_back(Idx
- StartIdx
[0]);
2549 MappedOps
.push_back(Idx
- SrcNumElts
- StartIdx
[1] + MaskNumElts
);
2551 setValue(&I
, DAG
.getVectorShuffle(VT
, getCurDebugLoc(), Src1
, Src2
,
2557 // We can't use either concat vectors or extract subvectors so fall back to
2558 // replacing the shuffle with extract and build vector.
2559 // to insert and build vector.
2560 EVT EltVT
= VT
.getVectorElementType();
2561 EVT PtrVT
= TLI
.getPointerTy();
2562 SmallVector
<SDValue
,8> Ops
;
2563 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
2565 Ops
.push_back(DAG
.getUNDEF(EltVT
));
2568 if (Idx
< (int)SrcNumElts
)
2569 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2570 EltVT
, Src1
, DAG
.getConstant(Idx
, PtrVT
)));
2572 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurDebugLoc(),
2574 DAG
.getConstant(Idx
- SrcNumElts
, PtrVT
)));
2577 setValue(&I
, DAG
.getNode(ISD::BUILD_VECTOR
, getCurDebugLoc(),
2578 VT
, &Ops
[0], Ops
.size()));
2581 void SelectionDAGLowering::visitInsertValue(InsertValueInst
&I
) {
2582 const Value
*Op0
= I
.getOperand(0);
2583 const Value
*Op1
= I
.getOperand(1);
2584 const Type
*AggTy
= I
.getType();
2585 const Type
*ValTy
= Op1
->getType();
2586 bool IntoUndef
= isa
<UndefValue
>(Op0
);
2587 bool FromUndef
= isa
<UndefValue
>(Op1
);
2589 unsigned LinearIndex
= ComputeLinearIndex(TLI
, AggTy
,
2590 I
.idx_begin(), I
.idx_end());
2592 SmallVector
<EVT
, 4> AggValueVTs
;
2593 ComputeValueVTs(TLI
, AggTy
, AggValueVTs
);
2594 SmallVector
<EVT
, 4> ValValueVTs
;
2595 ComputeValueVTs(TLI
, ValTy
, ValValueVTs
);
2597 unsigned NumAggValues
= AggValueVTs
.size();
2598 unsigned NumValValues
= ValValueVTs
.size();
2599 SmallVector
<SDValue
, 4> Values(NumAggValues
);
2601 SDValue Agg
= getValue(Op0
);
2602 SDValue Val
= getValue(Op1
);
2604 // Copy the beginning value(s) from the original aggregate.
2605 for (; i
!= LinearIndex
; ++i
)
2606 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2607 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2608 // Copy values from the inserted value(s).
2609 for (; i
!= LinearIndex
+ NumValValues
; ++i
)
2610 Values
[i
] = FromUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2611 SDValue(Val
.getNode(), Val
.getResNo() + i
- LinearIndex
);
2612 // Copy remaining value(s) from the original aggregate.
2613 for (; i
!= NumAggValues
; ++i
)
2614 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
2615 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2617 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2618 DAG
.getVTList(&AggValueVTs
[0], NumAggValues
),
2619 &Values
[0], NumAggValues
));
2622 void SelectionDAGLowering::visitExtractValue(ExtractValueInst
&I
) {
2623 const Value
*Op0
= I
.getOperand(0);
2624 const Type
*AggTy
= Op0
->getType();
2625 const Type
*ValTy
= I
.getType();
2626 bool OutOfUndef
= isa
<UndefValue
>(Op0
);
2628 unsigned LinearIndex
= ComputeLinearIndex(TLI
, AggTy
,
2629 I
.idx_begin(), I
.idx_end());
2631 SmallVector
<EVT
, 4> ValValueVTs
;
2632 ComputeValueVTs(TLI
, ValTy
, ValValueVTs
);
2634 unsigned NumValValues
= ValValueVTs
.size();
2635 SmallVector
<SDValue
, 4> Values(NumValValues
);
2637 SDValue Agg
= getValue(Op0
);
2638 // Copy out the selected value(s).
2639 for (unsigned i
= LinearIndex
; i
!= LinearIndex
+ NumValValues
; ++i
)
2640 Values
[i
- LinearIndex
] =
2642 DAG
.getUNDEF(Agg
.getNode()->getValueType(Agg
.getResNo() + i
)) :
2643 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
2645 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2646 DAG
.getVTList(&ValValueVTs
[0], NumValValues
),
2647 &Values
[0], NumValValues
));
2651 void SelectionDAGLowering::visitGetElementPtr(User
&I
) {
2652 SDValue N
= getValue(I
.getOperand(0));
2653 const Type
*Ty
= I
.getOperand(0)->getType();
2655 for (GetElementPtrInst::op_iterator OI
= I
.op_begin()+1, E
= I
.op_end();
2658 if (const StructType
*StTy
= dyn_cast
<StructType
>(Ty
)) {
2659 unsigned Field
= cast
<ConstantInt
>(Idx
)->getZExtValue();
2662 uint64_t Offset
= TD
->getStructLayout(StTy
)->getElementOffset(Field
);
2663 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), N
.getValueType(), N
,
2664 DAG
.getIntPtrConstant(Offset
));
2666 Ty
= StTy
->getElementType(Field
);
2668 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
2670 // If this is a constant subscript, handle it quickly.
2671 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
)) {
2672 if (CI
->getZExtValue() == 0) continue;
2674 TD
->getTypeAllocSize(Ty
)*cast
<ConstantInt
>(CI
)->getSExtValue();
2676 EVT PTy
= TLI
.getPointerTy();
2677 unsigned PtrBits
= PTy
.getSizeInBits();
2679 OffsVal
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2681 DAG
.getConstant(Offs
, MVT::i64
));
2683 OffsVal
= DAG
.getIntPtrConstant(Offs
);
2684 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(), N
.getValueType(), N
,
2689 // N = N + Idx * ElementSize;
2690 uint64_t ElementSize
= TD
->getTypeAllocSize(Ty
);
2691 SDValue IdxN
= getValue(Idx
);
2693 // If the index is smaller or larger than intptr_t, truncate or extend
2695 if (IdxN
.getValueType().bitsLT(N
.getValueType()))
2696 IdxN
= DAG
.getNode(ISD::SIGN_EXTEND
, getCurDebugLoc(),
2697 N
.getValueType(), IdxN
);
2698 else if (IdxN
.getValueType().bitsGT(N
.getValueType()))
2699 IdxN
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2700 N
.getValueType(), IdxN
);
2702 // If this is a multiply by a power of two, turn it into a shl
2703 // immediately. This is a very common case.
2704 if (ElementSize
!= 1) {
2705 if (isPowerOf2_64(ElementSize
)) {
2706 unsigned Amt
= Log2_64(ElementSize
);
2707 IdxN
= DAG
.getNode(ISD::SHL
, getCurDebugLoc(),
2708 N
.getValueType(), IdxN
,
2709 DAG
.getConstant(Amt
, TLI
.getPointerTy()));
2711 SDValue Scale
= DAG
.getIntPtrConstant(ElementSize
);
2712 IdxN
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(),
2713 N
.getValueType(), IdxN
, Scale
);
2717 N
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2718 N
.getValueType(), N
, IdxN
);
2724 void SelectionDAGLowering::visitAlloca(AllocaInst
&I
) {
2725 // If this is a fixed sized alloca in the entry block of the function,
2726 // allocate it statically on the stack.
2727 if (FuncInfo
.StaticAllocaMap
.count(&I
))
2728 return; // getValue will auto-populate this.
2730 const Type
*Ty
= I
.getAllocatedType();
2731 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(Ty
);
2733 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
),
2736 SDValue AllocSize
= getValue(I
.getArraySize());
2738 AllocSize
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(), AllocSize
.getValueType(),
2740 DAG
.getConstant(TySize
, AllocSize
.getValueType()));
2744 EVT IntPtr
= TLI
.getPointerTy();
2745 if (IntPtr
.bitsLT(AllocSize
.getValueType()))
2746 AllocSize
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(),
2748 else if (IntPtr
.bitsGT(AllocSize
.getValueType()))
2749 AllocSize
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(),
2752 // Handle alignment. If the requested alignment is less than or equal to
2753 // the stack alignment, ignore it. If the size is greater than or equal to
2754 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2755 unsigned StackAlign
=
2756 TLI
.getTargetMachine().getFrameInfo()->getStackAlignment();
2757 if (Align
<= StackAlign
)
2760 // Round the size of the allocation up to the stack alignment size
2761 // by add SA-1 to the size.
2762 AllocSize
= DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2763 AllocSize
.getValueType(), AllocSize
,
2764 DAG
.getIntPtrConstant(StackAlign
-1));
2765 // Mask out the low bits for alignment purposes.
2766 AllocSize
= DAG
.getNode(ISD::AND
, getCurDebugLoc(),
2767 AllocSize
.getValueType(), AllocSize
,
2768 DAG
.getIntPtrConstant(~(uint64_t)(StackAlign
-1)));
2770 SDValue Ops
[] = { getRoot(), AllocSize
, DAG
.getIntPtrConstant(Align
) };
2771 SDVTList VTs
= DAG
.getVTList(AllocSize
.getValueType(), MVT::Other
);
2772 SDValue DSA
= DAG
.getNode(ISD::DYNAMIC_STACKALLOC
, getCurDebugLoc(),
2775 DAG
.setRoot(DSA
.getValue(1));
2777 // Inform the Frame Information that we have just allocated a variable-sized
2779 FuncInfo
.MF
->getFrameInfo()->CreateVariableSizedObject();
2782 void SelectionDAGLowering::visitLoad(LoadInst
&I
) {
2783 const Value
*SV
= I
.getOperand(0);
2784 SDValue Ptr
= getValue(SV
);
2786 const Type
*Ty
= I
.getType();
2787 bool isVolatile
= I
.isVolatile();
2788 unsigned Alignment
= I
.getAlignment();
2790 SmallVector
<EVT
, 4> ValueVTs
;
2791 SmallVector
<uint64_t, 4> Offsets
;
2792 ComputeValueVTs(TLI
, Ty
, ValueVTs
, &Offsets
);
2793 unsigned NumValues
= ValueVTs
.size();
2798 bool ConstantMemory
= false;
2800 // Serialize volatile loads with other side effects.
2802 else if (AA
->pointsToConstantMemory(SV
)) {
2803 // Do not serialize (non-volatile) loads of constant memory with anything.
2804 Root
= DAG
.getEntryNode();
2805 ConstantMemory
= true;
2807 // Do not serialize non-volatile loads against each other.
2808 Root
= DAG
.getRoot();
2811 SmallVector
<SDValue
, 4> Values(NumValues
);
2812 SmallVector
<SDValue
, 4> Chains(NumValues
);
2813 EVT PtrVT
= Ptr
.getValueType();
2814 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
2815 SDValue L
= DAG
.getLoad(ValueVTs
[i
], getCurDebugLoc(), Root
,
2816 DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2818 DAG
.getConstant(Offsets
[i
], PtrVT
)),
2820 isVolatile
, Alignment
);
2822 Chains
[i
] = L
.getValue(1);
2825 if (!ConstantMemory
) {
2826 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
2828 &Chains
[0], NumValues
);
2832 PendingLoads
.push_back(Chain
);
2835 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurDebugLoc(),
2836 DAG
.getVTList(&ValueVTs
[0], NumValues
),
2837 &Values
[0], NumValues
));
2841 void SelectionDAGLowering::visitStore(StoreInst
&I
) {
2842 Value
*SrcV
= I
.getOperand(0);
2843 Value
*PtrV
= I
.getOperand(1);
2845 SmallVector
<EVT
, 4> ValueVTs
;
2846 SmallVector
<uint64_t, 4> Offsets
;
2847 ComputeValueVTs(TLI
, SrcV
->getType(), ValueVTs
, &Offsets
);
2848 unsigned NumValues
= ValueVTs
.size();
2852 // Get the lowered operands. Note that we do this after
2853 // checking if NumResults is zero, because with zero results
2854 // the operands won't have values in the map.
2855 SDValue Src
= getValue(SrcV
);
2856 SDValue Ptr
= getValue(PtrV
);
2858 SDValue Root
= getRoot();
2859 SmallVector
<SDValue
, 4> Chains(NumValues
);
2860 EVT PtrVT
= Ptr
.getValueType();
2861 bool isVolatile
= I
.isVolatile();
2862 unsigned Alignment
= I
.getAlignment();
2863 for (unsigned i
= 0; i
!= NumValues
; ++i
)
2864 Chains
[i
] = DAG
.getStore(Root
, getCurDebugLoc(),
2865 SDValue(Src
.getNode(), Src
.getResNo() + i
),
2866 DAG
.getNode(ISD::ADD
, getCurDebugLoc(),
2868 DAG
.getConstant(Offsets
[i
], PtrVT
)),
2870 isVolatile
, Alignment
);
2872 DAG
.setRoot(DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(),
2873 MVT::Other
, &Chains
[0], NumValues
));
2876 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2878 void SelectionDAGLowering::visitTargetIntrinsic(CallInst
&I
,
2879 unsigned Intrinsic
) {
2880 bool HasChain
= !I
.doesNotAccessMemory();
2881 bool OnlyLoad
= HasChain
&& I
.onlyReadsMemory();
2883 // Build the operand list.
2884 SmallVector
<SDValue
, 8> Ops
;
2885 if (HasChain
) { // If this intrinsic has side-effects, chainify it.
2887 // We don't need to serialize loads against other loads.
2888 Ops
.push_back(DAG
.getRoot());
2890 Ops
.push_back(getRoot());
2894 // Info is set by getTgtMemInstrinsic
2895 TargetLowering::IntrinsicInfo Info
;
2896 bool IsTgtIntrinsic
= TLI
.getTgtMemIntrinsic(Info
, I
, Intrinsic
);
2898 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2899 if (!IsTgtIntrinsic
)
2900 Ops
.push_back(DAG
.getConstant(Intrinsic
, TLI
.getPointerTy()));
2902 // Add all operands of the call to the operand list.
2903 for (unsigned i
= 1, e
= I
.getNumOperands(); i
!= e
; ++i
) {
2904 SDValue Op
= getValue(I
.getOperand(i
));
2905 assert(TLI
.isTypeLegal(Op
.getValueType()) &&
2906 "Intrinsic uses a non-legal type?");
2910 SmallVector
<EVT
, 4> ValueVTs
;
2911 ComputeValueVTs(TLI
, I
.getType(), ValueVTs
);
2913 for (unsigned Val
= 0, E
= ValueVTs
.size(); Val
!= E
; ++Val
) {
2914 assert(TLI
.isTypeLegal(ValueVTs
[Val
]) &&
2915 "Intrinsic uses a non-legal type?");
2919 ValueVTs
.push_back(MVT::Other
);
2921 SDVTList VTs
= DAG
.getVTList(ValueVTs
.data(), ValueVTs
.size());
2925 if (IsTgtIntrinsic
) {
2926 // This is target intrinsic that touches memory
2927 Result
= DAG
.getMemIntrinsicNode(Info
.opc
, getCurDebugLoc(),
2928 VTs
, &Ops
[0], Ops
.size(),
2929 Info
.memVT
, Info
.ptrVal
, Info
.offset
,
2930 Info
.align
, Info
.vol
,
2931 Info
.readMem
, Info
.writeMem
);
2934 Result
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, getCurDebugLoc(),
2935 VTs
, &Ops
[0], Ops
.size());
2936 else if (I
.getType() != Type::getVoidTy(*DAG
.getContext()))
2937 Result
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, getCurDebugLoc(),
2938 VTs
, &Ops
[0], Ops
.size());
2940 Result
= DAG
.getNode(ISD::INTRINSIC_VOID
, getCurDebugLoc(),
2941 VTs
, &Ops
[0], Ops
.size());
2944 SDValue Chain
= Result
.getValue(Result
.getNode()->getNumValues()-1);
2946 PendingLoads
.push_back(Chain
);
2950 if (I
.getType() != Type::getVoidTy(*DAG
.getContext())) {
2951 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(I
.getType())) {
2952 EVT VT
= TLI
.getValueType(PTy
);
2953 Result
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(), VT
, Result
);
2955 setValue(&I
, Result
);
2959 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2960 static GlobalVariable
*ExtractTypeInfo(Value
*V
) {
2961 V
= V
->stripPointerCasts();
2962 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
);
2963 assert ((GV
|| isa
<ConstantPointerNull
>(V
)) &&
2964 "TypeInfo must be a global variable or NULL");
2970 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
2971 /// call, and add them to the specified machine basic block.
2972 void AddCatchInfo(CallInst
&I
, MachineModuleInfo
*MMI
,
2973 MachineBasicBlock
*MBB
) {
2974 // Inform the MachineModuleInfo of the personality for this landing pad.
2975 ConstantExpr
*CE
= cast
<ConstantExpr
>(I
.getOperand(2));
2976 assert(CE
->getOpcode() == Instruction::BitCast
&&
2977 isa
<Function
>(CE
->getOperand(0)) &&
2978 "Personality should be a function");
2979 MMI
->addPersonality(MBB
, cast
<Function
>(CE
->getOperand(0)));
2981 // Gather all the type infos for this landing pad and pass them along to
2982 // MachineModuleInfo.
2983 std::vector
<GlobalVariable
*> TyInfo
;
2984 unsigned N
= I
.getNumOperands();
2986 for (unsigned i
= N
- 1; i
> 2; --i
) {
2987 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getOperand(i
))) {
2988 unsigned FilterLength
= CI
->getZExtValue();
2989 unsigned FirstCatch
= i
+ FilterLength
+ !FilterLength
;
2990 assert (FirstCatch
<= N
&& "Invalid filter length");
2992 if (FirstCatch
< N
) {
2993 TyInfo
.reserve(N
- FirstCatch
);
2994 for (unsigned j
= FirstCatch
; j
< N
; ++j
)
2995 TyInfo
.push_back(ExtractTypeInfo(I
.getOperand(j
)));
2996 MMI
->addCatchTypeInfo(MBB
, TyInfo
);
3000 if (!FilterLength
) {
3002 MMI
->addCleanup(MBB
);
3005 TyInfo
.reserve(FilterLength
- 1);
3006 for (unsigned j
= i
+ 1; j
< FirstCatch
; ++j
)
3007 TyInfo
.push_back(ExtractTypeInfo(I
.getOperand(j
)));
3008 MMI
->addFilterTypeInfo(MBB
, TyInfo
);
3017 TyInfo
.reserve(N
- 3);
3018 for (unsigned j
= 3; j
< N
; ++j
)
3019 TyInfo
.push_back(ExtractTypeInfo(I
.getOperand(j
)));
3020 MMI
->addCatchTypeInfo(MBB
, TyInfo
);
3026 /// GetSignificand - Get the significand and build it into a floating-point
3027 /// number with exponent of 1:
3029 /// Op = (Op & 0x007fffff) | 0x3f800000;
3031 /// where Op is the hexidecimal representation of floating point value.
3033 GetSignificand(SelectionDAG
&DAG
, SDValue Op
, DebugLoc dl
) {
3034 SDValue t1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
3035 DAG
.getConstant(0x007fffff, MVT::i32
));
3036 SDValue t2
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, t1
,
3037 DAG
.getConstant(0x3f800000, MVT::i32
));
3038 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t2
);
3041 /// GetExponent - Get the exponent:
3043 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3045 /// where Op is the hexidecimal representation of floating point value.
3047 GetExponent(SelectionDAG
&DAG
, SDValue Op
, const TargetLowering
&TLI
,
3049 SDValue t0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
3050 DAG
.getConstant(0x7f800000, MVT::i32
));
3051 SDValue t1
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, t0
,
3052 DAG
.getConstant(23, TLI
.getPointerTy()));
3053 SDValue t2
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, t1
,
3054 DAG
.getConstant(127, MVT::i32
));
3055 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, t2
);
3058 /// getF32Constant - Get 32-bit floating point constant.
3060 getF32Constant(SelectionDAG
&DAG
, unsigned Flt
) {
3061 return DAG
.getConstantFP(APFloat(APInt(32, Flt
)), MVT::f32
);
3064 /// Inlined utility function to implement binary input atomic intrinsics for
3065 /// visitIntrinsicCall: I is a call instruction
3066 /// Op is the associated NodeType for I
3068 SelectionDAGLowering::implVisitBinaryAtomic(CallInst
& I
, ISD::NodeType Op
) {
3069 SDValue Root
= getRoot();
3071 DAG
.getAtomic(Op
, getCurDebugLoc(),
3072 getValue(I
.getOperand(2)).getValueType().getSimpleVT(),
3074 getValue(I
.getOperand(1)),
3075 getValue(I
.getOperand(2)),
3078 DAG
.setRoot(L
.getValue(1));
3082 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3084 SelectionDAGLowering::implVisitAluOverflow(CallInst
&I
, ISD::NodeType Op
) {
3085 SDValue Op1
= getValue(I
.getOperand(1));
3086 SDValue Op2
= getValue(I
.getOperand(2));
3088 SDVTList VTs
= DAG
.getVTList(Op1
.getValueType(), MVT::i1
);
3089 SDValue Result
= DAG
.getNode(Op
, getCurDebugLoc(), VTs
, Op1
, Op2
);
3091 setValue(&I
, Result
);
3095 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3096 /// limited-precision mode.
3098 SelectionDAGLowering::visitExp(CallInst
&I
) {
3100 DebugLoc dl
= getCurDebugLoc();
3102 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3103 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3104 SDValue Op
= getValue(I
.getOperand(1));
3106 // Put the exponent in the right bit position for later addition to the
3109 // #define LOG2OFe 1.4426950f
3110 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3111 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
3112 getF32Constant(DAG
, 0x3fb8aa3b));
3113 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
3115 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3116 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3117 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
3119 // IntegerPartOfX <<= 23;
3120 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3121 DAG
.getConstant(23, TLI
.getPointerTy()));
3123 if (LimitFloatPrecision
<= 6) {
3124 // For floating-point precision of 6:
3126 // TwoToFractionalPartOfX =
3128 // (0.735607626f + 0.252464424f * x) * x;
3130 // error 0.0144103317, which is 6 bits
3131 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3132 getF32Constant(DAG
, 0x3e814304));
3133 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3134 getF32Constant(DAG
, 0x3f3c50c8));
3135 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3136 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3137 getF32Constant(DAG
, 0x3f7f5e7e));
3138 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,MVT::i32
, t5
);
3140 // Add the exponent into the result in integer domain.
3141 SDValue t6
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3142 TwoToFracPartOfX
, IntegerPartOfX
);
3144 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t6
);
3145 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3146 // For floating-point precision of 12:
3148 // TwoToFractionalPartOfX =
3151 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3153 // 0.000107046256 error, which is 13 to 14 bits
3154 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3155 getF32Constant(DAG
, 0x3da235e3));
3156 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3157 getF32Constant(DAG
, 0x3e65b8f3));
3158 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3159 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3160 getF32Constant(DAG
, 0x3f324b07));
3161 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3162 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3163 getF32Constant(DAG
, 0x3f7ff8fd));
3164 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,MVT::i32
, t7
);
3166 // Add the exponent into the result in integer domain.
3167 SDValue t8
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3168 TwoToFracPartOfX
, IntegerPartOfX
);
3170 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t8
);
3171 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3172 // For floating-point precision of 18:
3174 // TwoToFractionalPartOfX =
3178 // (0.554906021e-1f +
3179 // (0.961591928e-2f +
3180 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3182 // error 2.47208000*10^(-7), which is better than 18 bits
3183 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3184 getF32Constant(DAG
, 0x3924b03e));
3185 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3186 getF32Constant(DAG
, 0x3ab24b87));
3187 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3188 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3189 getF32Constant(DAG
, 0x3c1d8c17));
3190 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3191 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3192 getF32Constant(DAG
, 0x3d634a1d));
3193 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3194 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3195 getF32Constant(DAG
, 0x3e75fe14));
3196 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3197 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3198 getF32Constant(DAG
, 0x3f317234));
3199 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3200 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3201 getF32Constant(DAG
, 0x3f800000));
3202 SDValue TwoToFracPartOfX
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3205 // Add the exponent into the result in integer domain.
3206 SDValue t14
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3207 TwoToFracPartOfX
, IntegerPartOfX
);
3209 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, t14
);
3212 // No special expansion.
3213 result
= DAG
.getNode(ISD::FEXP
, dl
,
3214 getValue(I
.getOperand(1)).getValueType(),
3215 getValue(I
.getOperand(1)));
3218 setValue(&I
, result
);
3221 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3222 /// limited-precision mode.
3224 SelectionDAGLowering::visitLog(CallInst
&I
) {
3226 DebugLoc dl
= getCurDebugLoc();
3228 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3229 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3230 SDValue Op
= getValue(I
.getOperand(1));
3231 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3233 // Scale the exponent by log(2) [0.69314718f].
3234 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
3235 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
3236 getF32Constant(DAG
, 0x3f317218));
3238 // Get the significand and build it into a floating-point number with
3240 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3242 if (LimitFloatPrecision
<= 6) {
3243 // For floating-point precision of 6:
3247 // (1.4034025f - 0.23903021f * x) * x;
3249 // error 0.0034276066, which is better than 8 bits
3250 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3251 getF32Constant(DAG
, 0xbe74c456));
3252 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3253 getF32Constant(DAG
, 0x3fb3a2b1));
3254 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3255 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3256 getF32Constant(DAG
, 0x3f949a29));
3258 result
= DAG
.getNode(ISD::FADD
, dl
,
3259 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3260 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3261 // For floating-point precision of 12:
3267 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3269 // error 0.000061011436, which is 14 bits
3270 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3271 getF32Constant(DAG
, 0xbd67b6d6));
3272 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3273 getF32Constant(DAG
, 0x3ee4f4b8));
3274 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3275 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3276 getF32Constant(DAG
, 0x3fbc278b));
3277 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3278 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3279 getF32Constant(DAG
, 0x40348e95));
3280 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3281 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3282 getF32Constant(DAG
, 0x3fdef31a));
3284 result
= DAG
.getNode(ISD::FADD
, dl
,
3285 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3286 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3287 // For floating-point precision of 18:
3295 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3297 // error 0.0000023660568, which is better than 18 bits
3298 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3299 getF32Constant(DAG
, 0xbc91e5ac));
3300 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3301 getF32Constant(DAG
, 0x3e4350aa));
3302 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3303 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3304 getF32Constant(DAG
, 0x3f60d3e3));
3305 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3306 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3307 getF32Constant(DAG
, 0x4011cdf0));
3308 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3309 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3310 getF32Constant(DAG
, 0x406cfd1c));
3311 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3312 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3313 getF32Constant(DAG
, 0x408797cb));
3314 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3315 SDValue LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
3316 getF32Constant(DAG
, 0x4006dcab));
3318 result
= DAG
.getNode(ISD::FADD
, dl
,
3319 MVT::f32
, LogOfExponent
, LogOfMantissa
);
3322 // No special expansion.
3323 result
= DAG
.getNode(ISD::FLOG
, dl
,
3324 getValue(I
.getOperand(1)).getValueType(),
3325 getValue(I
.getOperand(1)));
3328 setValue(&I
, result
);
3331 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3332 /// limited-precision mode.
3334 SelectionDAGLowering::visitLog2(CallInst
&I
) {
3336 DebugLoc dl
= getCurDebugLoc();
3338 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3339 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3340 SDValue Op
= getValue(I
.getOperand(1));
3341 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3343 // Get the exponent.
3344 SDValue LogOfExponent
= GetExponent(DAG
, Op1
, TLI
, dl
);
3346 // Get the significand and build it into a floating-point number with
3348 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3350 // Different possible minimax approximations of significand in
3351 // floating-point for various degrees of accuracy over [1,2].
3352 if (LimitFloatPrecision
<= 6) {
3353 // For floating-point precision of 6:
3355 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3357 // error 0.0049451742, which is more than 7 bits
3358 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3359 getF32Constant(DAG
, 0xbeb08fe0));
3360 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3361 getF32Constant(DAG
, 0x40019463));
3362 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3363 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3364 getF32Constant(DAG
, 0x3fd6633d));
3366 result
= DAG
.getNode(ISD::FADD
, dl
,
3367 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3368 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3369 // For floating-point precision of 12:
3375 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3377 // error 0.0000876136000, which is better than 13 bits
3378 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3379 getF32Constant(DAG
, 0xbda7262e));
3380 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3381 getF32Constant(DAG
, 0x3f25280b));
3382 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3383 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3384 getF32Constant(DAG
, 0x4007b923));
3385 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3386 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3387 getF32Constant(DAG
, 0x40823e2f));
3388 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3389 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3390 getF32Constant(DAG
, 0x4020d29c));
3392 result
= DAG
.getNode(ISD::FADD
, dl
,
3393 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3394 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3395 // For floating-point precision of 18:
3404 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3406 // error 0.0000018516, which is better than 18 bits
3407 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3408 getF32Constant(DAG
, 0xbcd2769e));
3409 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3410 getF32Constant(DAG
, 0x3e8ce0b9));
3411 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3412 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3413 getF32Constant(DAG
, 0x3fa22ae7));
3414 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3415 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3416 getF32Constant(DAG
, 0x40525723));
3417 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3418 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
3419 getF32Constant(DAG
, 0x40aaf200));
3420 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3421 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3422 getF32Constant(DAG
, 0x40c39dad));
3423 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3424 SDValue Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
3425 getF32Constant(DAG
, 0x4042902c));
3427 result
= DAG
.getNode(ISD::FADD
, dl
,
3428 MVT::f32
, LogOfExponent
, Log2ofMantissa
);
3431 // No special expansion.
3432 result
= DAG
.getNode(ISD::FLOG2
, dl
,
3433 getValue(I
.getOperand(1)).getValueType(),
3434 getValue(I
.getOperand(1)));
3437 setValue(&I
, result
);
3440 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3441 /// limited-precision mode.
3443 SelectionDAGLowering::visitLog10(CallInst
&I
) {
3445 DebugLoc dl
= getCurDebugLoc();
3447 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3448 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3449 SDValue Op
= getValue(I
.getOperand(1));
3450 SDValue Op1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Op
);
3452 // Scale the exponent by log10(2) [0.30102999f].
3453 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
3454 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
3455 getF32Constant(DAG
, 0x3e9a209a));
3457 // Get the significand and build it into a floating-point number with
3459 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
3461 if (LimitFloatPrecision
<= 6) {
3462 // For floating-point precision of 6:
3464 // Log10ofMantissa =
3466 // (0.60948995f - 0.10380950f * x) * x;
3468 // error 0.0014886165, which is 6 bits
3469 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3470 getF32Constant(DAG
, 0xbdd49a13));
3471 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
3472 getF32Constant(DAG
, 0x3f1c0789));
3473 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3474 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
3475 getF32Constant(DAG
, 0x3f011300));
3477 result
= DAG
.getNode(ISD::FADD
, dl
,
3478 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3479 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3480 // For floating-point precision of 12:
3482 // Log10ofMantissa =
3485 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3487 // error 0.00019228036, which is better than 12 bits
3488 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3489 getF32Constant(DAG
, 0x3d431f31));
3490 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
3491 getF32Constant(DAG
, 0x3ea21fb2));
3492 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3493 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3494 getF32Constant(DAG
, 0x3f6ae232));
3495 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3496 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
3497 getF32Constant(DAG
, 0x3f25f7c3));
3499 result
= DAG
.getNode(ISD::FADD
, dl
,
3500 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3501 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3502 // For floating-point precision of 18:
3504 // Log10ofMantissa =
3509 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3511 // error 0.0000037995730, which is better than 18 bits
3512 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3513 getF32Constant(DAG
, 0x3c5d51ce));
3514 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
3515 getF32Constant(DAG
, 0x3e00685a));
3516 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
3517 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3518 getF32Constant(DAG
, 0x3efb6798));
3519 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3520 SDValue t5
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
3521 getF32Constant(DAG
, 0x3f88d192));
3522 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3523 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3524 getF32Constant(DAG
, 0x3fc4316c));
3525 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3526 SDValue Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t8
,
3527 getF32Constant(DAG
, 0x3f57ce70));
3529 result
= DAG
.getNode(ISD::FADD
, dl
,
3530 MVT::f32
, LogOfExponent
, Log10ofMantissa
);
3533 // No special expansion.
3534 result
= DAG
.getNode(ISD::FLOG10
, dl
,
3535 getValue(I
.getOperand(1)).getValueType(),
3536 getValue(I
.getOperand(1)));
3539 setValue(&I
, result
);
3542 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3543 /// limited-precision mode.
3545 SelectionDAGLowering::visitExp2(CallInst
&I
) {
3547 DebugLoc dl
= getCurDebugLoc();
3549 if (getValue(I
.getOperand(1)).getValueType() == MVT::f32
&&
3550 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3551 SDValue Op
= getValue(I
.getOperand(1));
3553 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, Op
);
3555 // FractionalPartOfX = x - (float)IntegerPartOfX;
3556 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3557 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, Op
, t1
);
3559 // IntegerPartOfX <<= 23;
3560 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3561 DAG
.getConstant(23, TLI
.getPointerTy()));
3563 if (LimitFloatPrecision
<= 6) {
3564 // For floating-point precision of 6:
3566 // TwoToFractionalPartOfX =
3568 // (0.735607626f + 0.252464424f * x) * x;
3570 // error 0.0144103317, which is 6 bits
3571 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3572 getF32Constant(DAG
, 0x3e814304));
3573 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3574 getF32Constant(DAG
, 0x3f3c50c8));
3575 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3576 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3577 getF32Constant(DAG
, 0x3f7f5e7e));
3578 SDValue t6
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t5
);
3579 SDValue TwoToFractionalPartOfX
=
3580 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t6
, IntegerPartOfX
);
3582 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3583 MVT::f32
, TwoToFractionalPartOfX
);
3584 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3585 // For floating-point precision of 12:
3587 // TwoToFractionalPartOfX =
3590 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3592 // error 0.000107046256, which is 13 to 14 bits
3593 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3594 getF32Constant(DAG
, 0x3da235e3));
3595 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3596 getF32Constant(DAG
, 0x3e65b8f3));
3597 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3598 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3599 getF32Constant(DAG
, 0x3f324b07));
3600 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3601 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3602 getF32Constant(DAG
, 0x3f7ff8fd));
3603 SDValue t8
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t7
);
3604 SDValue TwoToFractionalPartOfX
=
3605 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t8
, IntegerPartOfX
);
3607 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3608 MVT::f32
, TwoToFractionalPartOfX
);
3609 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3610 // For floating-point precision of 18:
3612 // TwoToFractionalPartOfX =
3616 // (0.554906021e-1f +
3617 // (0.961591928e-2f +
3618 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3619 // error 2.47208000*10^(-7), which is better than 18 bits
3620 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3621 getF32Constant(DAG
, 0x3924b03e));
3622 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3623 getF32Constant(DAG
, 0x3ab24b87));
3624 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3625 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3626 getF32Constant(DAG
, 0x3c1d8c17));
3627 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3628 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3629 getF32Constant(DAG
, 0x3d634a1d));
3630 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3631 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3632 getF32Constant(DAG
, 0x3e75fe14));
3633 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3634 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3635 getF32Constant(DAG
, 0x3f317234));
3636 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3637 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3638 getF32Constant(DAG
, 0x3f800000));
3639 SDValue t14
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t13
);
3640 SDValue TwoToFractionalPartOfX
=
3641 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t14
, IntegerPartOfX
);
3643 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3644 MVT::f32
, TwoToFractionalPartOfX
);
3647 // No special expansion.
3648 result
= DAG
.getNode(ISD::FEXP2
, dl
,
3649 getValue(I
.getOperand(1)).getValueType(),
3650 getValue(I
.getOperand(1)));
3653 setValue(&I
, result
);
3656 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3657 /// limited-precision mode with x == 10.0f.
3659 SelectionDAGLowering::visitPow(CallInst
&I
) {
3661 Value
*Val
= I
.getOperand(1);
3662 DebugLoc dl
= getCurDebugLoc();
3663 bool IsExp10
= false;
3665 if (getValue(Val
).getValueType() == MVT::f32
&&
3666 getValue(I
.getOperand(2)).getValueType() == MVT::f32
&&
3667 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3668 if (Constant
*C
= const_cast<Constant
*>(dyn_cast
<Constant
>(Val
))) {
3669 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
3671 IsExp10
= CFP
->getValueAPF().bitwiseIsEqual(Ten
);
3676 if (IsExp10
&& LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
3677 SDValue Op
= getValue(I
.getOperand(2));
3679 // Put the exponent in the right bit position for later addition to the
3682 // #define LOG2OF10 3.3219281f
3683 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
3684 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
3685 getF32Constant(DAG
, 0x40549a78));
3686 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
3688 // FractionalPartOfX = x - (float)IntegerPartOfX;
3689 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
3690 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
3692 // IntegerPartOfX <<= 23;
3693 IntegerPartOfX
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
3694 DAG
.getConstant(23, TLI
.getPointerTy()));
3696 if (LimitFloatPrecision
<= 6) {
3697 // For floating-point precision of 6:
3699 // twoToFractionalPartOfX =
3701 // (0.735607626f + 0.252464424f * x) * x;
3703 // error 0.0144103317, which is 6 bits
3704 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3705 getF32Constant(DAG
, 0x3e814304));
3706 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3707 getF32Constant(DAG
, 0x3f3c50c8));
3708 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3709 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3710 getF32Constant(DAG
, 0x3f7f5e7e));
3711 SDValue t6
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t5
);
3712 SDValue TwoToFractionalPartOfX
=
3713 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t6
, IntegerPartOfX
);
3715 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3716 MVT::f32
, TwoToFractionalPartOfX
);
3717 } else if (LimitFloatPrecision
> 6 && LimitFloatPrecision
<= 12) {
3718 // For floating-point precision of 12:
3720 // TwoToFractionalPartOfX =
3723 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3725 // error 0.000107046256, which is 13 to 14 bits
3726 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3727 getF32Constant(DAG
, 0x3da235e3));
3728 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3729 getF32Constant(DAG
, 0x3e65b8f3));
3730 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3731 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3732 getF32Constant(DAG
, 0x3f324b07));
3733 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3734 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3735 getF32Constant(DAG
, 0x3f7ff8fd));
3736 SDValue t8
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t7
);
3737 SDValue TwoToFractionalPartOfX
=
3738 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t8
, IntegerPartOfX
);
3740 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3741 MVT::f32
, TwoToFractionalPartOfX
);
3742 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3743 // For floating-point precision of 18:
3745 // TwoToFractionalPartOfX =
3749 // (0.554906021e-1f +
3750 // (0.961591928e-2f +
3751 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3752 // error 2.47208000*10^(-7), which is better than 18 bits
3753 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
3754 getF32Constant(DAG
, 0x3924b03e));
3755 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
3756 getF32Constant(DAG
, 0x3ab24b87));
3757 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
3758 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
3759 getF32Constant(DAG
, 0x3c1d8c17));
3760 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
3761 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
3762 getF32Constant(DAG
, 0x3d634a1d));
3763 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
3764 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
3765 getF32Constant(DAG
, 0x3e75fe14));
3766 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
3767 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
3768 getF32Constant(DAG
, 0x3f317234));
3769 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
3770 SDValue t13
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
3771 getF32Constant(DAG
, 0x3f800000));
3772 SDValue t14
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, t13
);
3773 SDValue TwoToFractionalPartOfX
=
3774 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t14
, IntegerPartOfX
);
3776 result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3777 MVT::f32
, TwoToFractionalPartOfX
);
3780 // No special expansion.
3781 result
= DAG
.getNode(ISD::FPOW
, dl
,
3782 getValue(I
.getOperand(1)).getValueType(),
3783 getValue(I
.getOperand(1)),
3784 getValue(I
.getOperand(2)));
3787 setValue(&I
, result
);
3790 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
3791 /// we want to emit this as a call to a named external function, return the name
3792 /// otherwise lower it and return null.
3794 SelectionDAGLowering::visitIntrinsicCall(CallInst
&I
, unsigned Intrinsic
) {
3795 DebugLoc dl
= getCurDebugLoc();
3796 switch (Intrinsic
) {
3798 // By default, turn this into a target intrinsic node.
3799 visitTargetIntrinsic(I
, Intrinsic
);
3801 case Intrinsic::vastart
: visitVAStart(I
); return 0;
3802 case Intrinsic::vaend
: visitVAEnd(I
); return 0;
3803 case Intrinsic::vacopy
: visitVACopy(I
); return 0;
3804 case Intrinsic::returnaddress
:
3805 setValue(&I
, DAG
.getNode(ISD::RETURNADDR
, dl
, TLI
.getPointerTy(),
3806 getValue(I
.getOperand(1))));
3808 case Intrinsic::frameaddress
:
3809 setValue(&I
, DAG
.getNode(ISD::FRAMEADDR
, dl
, TLI
.getPointerTy(),
3810 getValue(I
.getOperand(1))));
3812 case Intrinsic::setjmp
:
3813 return "_setjmp"+!TLI
.usesUnderscoreSetJmp();
3815 case Intrinsic::longjmp
:
3816 return "_longjmp"+!TLI
.usesUnderscoreLongJmp();
3818 case Intrinsic::memcpy
: {
3819 SDValue Op1
= getValue(I
.getOperand(1));
3820 SDValue Op2
= getValue(I
.getOperand(2));
3821 SDValue Op3
= getValue(I
.getOperand(3));
3822 unsigned Align
= cast
<ConstantInt
>(I
.getOperand(4))->getZExtValue();
3823 DAG
.setRoot(DAG
.getMemcpy(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, false,
3824 I
.getOperand(1), 0, I
.getOperand(2), 0));
3827 case Intrinsic::memset
: {
3828 SDValue Op1
= getValue(I
.getOperand(1));
3829 SDValue Op2
= getValue(I
.getOperand(2));
3830 SDValue Op3
= getValue(I
.getOperand(3));
3831 unsigned Align
= cast
<ConstantInt
>(I
.getOperand(4))->getZExtValue();
3832 DAG
.setRoot(DAG
.getMemset(getRoot(), dl
, Op1
, Op2
, Op3
, Align
,
3833 I
.getOperand(1), 0));
3836 case Intrinsic::memmove
: {
3837 SDValue Op1
= getValue(I
.getOperand(1));
3838 SDValue Op2
= getValue(I
.getOperand(2));
3839 SDValue Op3
= getValue(I
.getOperand(3));
3840 unsigned Align
= cast
<ConstantInt
>(I
.getOperand(4))->getZExtValue();
3842 // If the source and destination are known to not be aliases, we can
3843 // lower memmove as memcpy.
3844 uint64_t Size
= -1ULL;
3845 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op3
))
3846 Size
= C
->getZExtValue();
3847 if (AA
->alias(I
.getOperand(1), Size
, I
.getOperand(2), Size
) ==
3848 AliasAnalysis::NoAlias
) {
3849 DAG
.setRoot(DAG
.getMemcpy(getRoot(), dl
, Op1
, Op2
, Op3
, Align
, false,
3850 I
.getOperand(1), 0, I
.getOperand(2), 0));
3854 DAG
.setRoot(DAG
.getMemmove(getRoot(), dl
, Op1
, Op2
, Op3
, Align
,
3855 I
.getOperand(1), 0, I
.getOperand(2), 0));
3858 case Intrinsic::dbg_stoppoint
: {
3859 DbgStopPointInst
&SPI
= cast
<DbgStopPointInst
>(I
);
3860 if (isValidDebugInfoIntrinsic(SPI
, CodeGenOpt::Default
)) {
3861 MachineFunction
&MF
= DAG
.getMachineFunction();
3862 DebugLoc Loc
= ExtractDebugLocation(SPI
, MF
.getDebugLocInfo());
3863 setCurDebugLoc(Loc
);
3865 if (OptLevel
== CodeGenOpt::None
)
3866 DAG
.setRoot(DAG
.getDbgStopPoint(Loc
, getRoot(),
3873 case Intrinsic::dbg_region_start
: {
3874 DwarfWriter
*DW
= DAG
.getDwarfWriter();
3875 DbgRegionStartInst
&RSI
= cast
<DbgRegionStartInst
>(I
);
3876 if (isValidDebugInfoIntrinsic(RSI
, OptLevel
) && DW
3877 && DW
->ShouldEmitDwarfDebug()) {
3879 DW
->RecordRegionStart(cast
<GlobalVariable
>(RSI
.getContext()));
3880 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
3881 getRoot(), LabelID
));
3885 case Intrinsic::dbg_region_end
: {
3886 DwarfWriter
*DW
= DAG
.getDwarfWriter();
3887 DbgRegionEndInst
&REI
= cast
<DbgRegionEndInst
>(I
);
3889 if (!isValidDebugInfoIntrinsic(REI
, OptLevel
) || !DW
3890 || !DW
->ShouldEmitDwarfDebug())
3893 MachineFunction
&MF
= DAG
.getMachineFunction();
3894 DISubprogram
Subprogram(cast
<GlobalVariable
>(REI
.getContext()));
3896 if (isInlinedFnEnd(REI
, MF
.getFunction())) {
3897 // This is end of inlined function. Debugging information for inlined
3898 // function is not handled yet (only supported by FastISel).
3899 if (OptLevel
== CodeGenOpt::None
) {
3900 unsigned ID
= DW
->RecordInlinedFnEnd(Subprogram
);
3902 // Returned ID is 0 if this is unbalanced "end of inlined
3903 // scope". This could happen if optimizer eats dbg intrinsics or
3904 // "beginning of inlined scope" is not recoginized due to missing
3905 // location info. In such cases, do ignore this region.end.
3906 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
3913 DW
->RecordRegionEnd(cast
<GlobalVariable
>(REI
.getContext()));
3914 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
3915 getRoot(), LabelID
));
3918 case Intrinsic::dbg_func_start
: {
3919 DwarfWriter
*DW
= DAG
.getDwarfWriter();
3920 DbgFuncStartInst
&FSI
= cast
<DbgFuncStartInst
>(I
);
3921 if (!isValidDebugInfoIntrinsic(FSI
, CodeGenOpt::None
))
3924 MachineFunction
&MF
= DAG
.getMachineFunction();
3925 // This is a beginning of an inlined function.
3926 if (isInlinedFnStart(FSI
, MF
.getFunction())) {
3927 if (OptLevel
!= CodeGenOpt::None
)
3928 // FIXME: Debugging informaation for inlined function is only
3929 // supported at CodeGenOpt::Node.
3932 DebugLoc PrevLoc
= CurDebugLoc
;
3933 // If llvm.dbg.func.start is seen in a new block before any
3934 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
3935 // FIXME : Why DebugLoc is reset at the beginning of each block ?
3936 if (PrevLoc
.isUnknown())
3939 // Record the source line.
3940 setCurDebugLoc(ExtractDebugLocation(FSI
, MF
.getDebugLocInfo()));
3942 if (!DW
|| !DW
->ShouldEmitDwarfDebug())
3944 DebugLocTuple PrevLocTpl
= MF
.getDebugLocTuple(PrevLoc
);
3945 DISubprogram
SP(cast
<GlobalVariable
>(FSI
.getSubprogram()));
3946 DICompileUnit
CU(PrevLocTpl
.CompileUnit
);
3947 unsigned LabelID
= DW
->RecordInlinedFnStart(SP
, CU
,
3950 DAG
.setRoot(DAG
.getLabel(ISD::DBG_LABEL
, getCurDebugLoc(),
3951 getRoot(), LabelID
));
3955 // This is a beginning of a new function.
3956 MF
.setDefaultDebugLoc(ExtractDebugLocation(FSI
, MF
.getDebugLocInfo()));
3958 if (!DW
|| !DW
->ShouldEmitDwarfDebug())
3960 // llvm.dbg.func_start also defines beginning of function scope.
3961 DW
->RecordRegionStart(cast
<GlobalVariable
>(FSI
.getSubprogram()));
3964 case Intrinsic::dbg_declare
: {
3965 if (OptLevel
!= CodeGenOpt::None
)
3966 // FIXME: Variable debug info is not supported here.
3969 DbgDeclareInst
&DI
= cast
<DbgDeclareInst
>(I
);
3970 if (!isValidDebugInfoIntrinsic(DI
, CodeGenOpt::None
))
3973 Value
*Variable
= DI
.getVariable();
3974 DAG
.setRoot(DAG
.getNode(ISD::DECLARE
, dl
, MVT::Other
, getRoot(),
3975 getValue(DI
.getAddress()), getValue(Variable
)));
3978 case Intrinsic::eh_exception
: {
3979 // Insert the EXCEPTIONADDR instruction.
3980 assert(CurMBB
->isLandingPad() &&"Call to eh.exception not in landing pad!");
3981 SDVTList VTs
= DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
);
3983 Ops
[0] = DAG
.getRoot();
3984 SDValue Op
= DAG
.getNode(ISD::EXCEPTIONADDR
, dl
, VTs
, Ops
, 1);
3986 DAG
.setRoot(Op
.getValue(1));
3990 case Intrinsic::eh_selector_i32
:
3991 case Intrinsic::eh_selector_i64
: {
3992 MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo();
3993 EVT VT
= (Intrinsic
== Intrinsic::eh_selector_i32
? MVT::i32
: MVT::i64
);
3996 if (CurMBB
->isLandingPad())
3997 AddCatchInfo(I
, MMI
, CurMBB
);
4000 FuncInfo
.CatchInfoLost
.insert(&I
);
4002 // FIXME: Mark exception selector register as live in. Hack for PR1508.
4003 unsigned Reg
= TLI
.getExceptionSelectorRegister();
4004 if (Reg
) CurMBB
->addLiveIn(Reg
);
4007 // Insert the EHSELECTION instruction.
4008 SDVTList VTs
= DAG
.getVTList(VT
, MVT::Other
);
4010 Ops
[0] = getValue(I
.getOperand(1));
4012 SDValue Op
= DAG
.getNode(ISD::EHSELECTION
, dl
, VTs
, Ops
, 2);
4014 DAG
.setRoot(Op
.getValue(1));
4016 setValue(&I
, DAG
.getConstant(0, VT
));
4022 case Intrinsic::eh_typeid_for_i32
:
4023 case Intrinsic::eh_typeid_for_i64
: {
4024 MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo();
4025 EVT VT
= (Intrinsic
== Intrinsic::eh_typeid_for_i32
?
4026 MVT::i32
: MVT::i64
);
4029 // Find the type id for the given typeinfo.
4030 GlobalVariable
*GV
= ExtractTypeInfo(I
.getOperand(1));
4032 unsigned TypeID
= MMI
->getTypeIDFor(GV
);
4033 setValue(&I
, DAG
.getConstant(TypeID
, VT
));
4035 // Return something different to eh_selector.
4036 setValue(&I
, DAG
.getConstant(1, VT
));
4042 case Intrinsic::eh_return_i32
:
4043 case Intrinsic::eh_return_i64
:
4044 if (MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo()) {
4045 MMI
->setCallsEHReturn(true);
4046 DAG
.setRoot(DAG
.getNode(ISD::EH_RETURN
, dl
,
4049 getValue(I
.getOperand(1)),
4050 getValue(I
.getOperand(2))));
4052 setValue(&I
, DAG
.getConstant(0, TLI
.getPointerTy()));
4056 case Intrinsic::eh_unwind_init
:
4057 if (MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo()) {
4058 MMI
->setCallsUnwindInit(true);
4063 case Intrinsic::eh_dwarf_cfa
: {
4064 EVT VT
= getValue(I
.getOperand(1)).getValueType();
4066 if (VT
.bitsGT(TLI
.getPointerTy()))
4067 CfaArg
= DAG
.getNode(ISD::TRUNCATE
, dl
,
4068 TLI
.getPointerTy(), getValue(I
.getOperand(1)));
4070 CfaArg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
,
4071 TLI
.getPointerTy(), getValue(I
.getOperand(1)));
4073 SDValue Offset
= DAG
.getNode(ISD::ADD
, dl
,
4075 DAG
.getNode(ISD::FRAME_TO_ARGS_OFFSET
, dl
,
4076 TLI
.getPointerTy()),
4078 setValue(&I
, DAG
.getNode(ISD::ADD
, dl
,
4080 DAG
.getNode(ISD::FRAMEADDR
, dl
,
4083 TLI
.getPointerTy())),
4087 case Intrinsic::eh_sjlj_callsite
: {
4088 MachineFunction
&MF
= DAG
.getMachineFunction();
4089 MF
.setCallSiteIndex(cast
<ConstantSDNode
>(getValue(I
.getOperand(1)))->getZExtValue());
4092 case Intrinsic::convertff
:
4093 case Intrinsic::convertfsi
:
4094 case Intrinsic::convertfui
:
4095 case Intrinsic::convertsif
:
4096 case Intrinsic::convertuif
:
4097 case Intrinsic::convertss
:
4098 case Intrinsic::convertsu
:
4099 case Intrinsic::convertus
:
4100 case Intrinsic::convertuu
: {
4101 ISD::CvtCode Code
= ISD::CVT_INVALID
;
4102 switch (Intrinsic
) {
4103 case Intrinsic::convertff
: Code
= ISD::CVT_FF
; break;
4104 case Intrinsic::convertfsi
: Code
= ISD::CVT_FS
; break;
4105 case Intrinsic::convertfui
: Code
= ISD::CVT_FU
; break;
4106 case Intrinsic::convertsif
: Code
= ISD::CVT_SF
; break;
4107 case Intrinsic::convertuif
: Code
= ISD::CVT_UF
; break;
4108 case Intrinsic::convertss
: Code
= ISD::CVT_SS
; break;
4109 case Intrinsic::convertsu
: Code
= ISD::CVT_SU
; break;
4110 case Intrinsic::convertus
: Code
= ISD::CVT_US
; break;
4111 case Intrinsic::convertuu
: Code
= ISD::CVT_UU
; break;
4113 EVT DestVT
= TLI
.getValueType(I
.getType());
4114 Value
* Op1
= I
.getOperand(1);
4115 setValue(&I
, DAG
.getConvertRndSat(DestVT
, getCurDebugLoc(), getValue(Op1
),
4116 DAG
.getValueType(DestVT
),
4117 DAG
.getValueType(getValue(Op1
).getValueType()),
4118 getValue(I
.getOperand(2)),
4119 getValue(I
.getOperand(3)),
4124 case Intrinsic::sqrt
:
4125 setValue(&I
, DAG
.getNode(ISD::FSQRT
, dl
,
4126 getValue(I
.getOperand(1)).getValueType(),
4127 getValue(I
.getOperand(1))));
4129 case Intrinsic::powi
:
4130 setValue(&I
, DAG
.getNode(ISD::FPOWI
, dl
,
4131 getValue(I
.getOperand(1)).getValueType(),
4132 getValue(I
.getOperand(1)),
4133 getValue(I
.getOperand(2))));
4135 case Intrinsic::sin
:
4136 setValue(&I
, DAG
.getNode(ISD::FSIN
, dl
,
4137 getValue(I
.getOperand(1)).getValueType(),
4138 getValue(I
.getOperand(1))));
4140 case Intrinsic::cos
:
4141 setValue(&I
, DAG
.getNode(ISD::FCOS
, dl
,
4142 getValue(I
.getOperand(1)).getValueType(),
4143 getValue(I
.getOperand(1))));
4145 case Intrinsic::log
:
4148 case Intrinsic::log2
:
4151 case Intrinsic::log10
:
4154 case Intrinsic::exp
:
4157 case Intrinsic::exp2
:
4160 case Intrinsic::pow
:
4163 case Intrinsic::pcmarker
: {
4164 SDValue Tmp
= getValue(I
.getOperand(1));
4165 DAG
.setRoot(DAG
.getNode(ISD::PCMARKER
, dl
, MVT::Other
, getRoot(), Tmp
));
4168 case Intrinsic::readcyclecounter
: {
4169 SDValue Op
= getRoot();
4170 SDValue Tmp
= DAG
.getNode(ISD::READCYCLECOUNTER
, dl
,
4171 DAG
.getVTList(MVT::i64
, MVT::Other
),
4174 DAG
.setRoot(Tmp
.getValue(1));
4177 case Intrinsic::bswap
:
4178 setValue(&I
, DAG
.getNode(ISD::BSWAP
, dl
,
4179 getValue(I
.getOperand(1)).getValueType(),
4180 getValue(I
.getOperand(1))));
4182 case Intrinsic::cttz
: {
4183 SDValue Arg
= getValue(I
.getOperand(1));
4184 EVT Ty
= Arg
.getValueType();
4185 SDValue result
= DAG
.getNode(ISD::CTTZ
, dl
, Ty
, Arg
);
4186 setValue(&I
, result
);
4189 case Intrinsic::ctlz
: {
4190 SDValue Arg
= getValue(I
.getOperand(1));
4191 EVT Ty
= Arg
.getValueType();
4192 SDValue result
= DAG
.getNode(ISD::CTLZ
, dl
, Ty
, Arg
);
4193 setValue(&I
, result
);
4196 case Intrinsic::ctpop
: {
4197 SDValue Arg
= getValue(I
.getOperand(1));
4198 EVT Ty
= Arg
.getValueType();
4199 SDValue result
= DAG
.getNode(ISD::CTPOP
, dl
, Ty
, Arg
);
4200 setValue(&I
, result
);
4203 case Intrinsic::stacksave
: {
4204 SDValue Op
= getRoot();
4205 SDValue Tmp
= DAG
.getNode(ISD::STACKSAVE
, dl
,
4206 DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
), &Op
, 1);
4208 DAG
.setRoot(Tmp
.getValue(1));
4211 case Intrinsic::stackrestore
: {
4212 SDValue Tmp
= getValue(I
.getOperand(1));
4213 DAG
.setRoot(DAG
.getNode(ISD::STACKRESTORE
, dl
, MVT::Other
, getRoot(), Tmp
));
4216 case Intrinsic::stackprotector
: {
4217 // Emit code into the DAG to store the stack guard onto the stack.
4218 MachineFunction
&MF
= DAG
.getMachineFunction();
4219 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
4220 EVT PtrTy
= TLI
.getPointerTy();
4222 SDValue Src
= getValue(I
.getOperand(1)); // The guard's value.
4223 AllocaInst
*Slot
= cast
<AllocaInst
>(I
.getOperand(2));
4225 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
4226 MFI
->setStackProtectorIndex(FI
);
4228 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4230 // Store the stack protector onto the stack.
4231 SDValue Result
= DAG
.getStore(getRoot(), getCurDebugLoc(), Src
, FIN
,
4232 PseudoSourceValue::getFixedStack(FI
),
4234 setValue(&I
, Result
);
4235 DAG
.setRoot(Result
);
4238 case Intrinsic::var_annotation
:
4239 // Discard annotate attributes
4242 case Intrinsic::init_trampoline
: {
4243 const Function
*F
= cast
<Function
>(I
.getOperand(2)->stripPointerCasts());
4247 Ops
[1] = getValue(I
.getOperand(1));
4248 Ops
[2] = getValue(I
.getOperand(2));
4249 Ops
[3] = getValue(I
.getOperand(3));
4250 Ops
[4] = DAG
.getSrcValue(I
.getOperand(1));
4251 Ops
[5] = DAG
.getSrcValue(F
);
4253 SDValue Tmp
= DAG
.getNode(ISD::TRAMPOLINE
, dl
,
4254 DAG
.getVTList(TLI
.getPointerTy(), MVT::Other
),
4258 DAG
.setRoot(Tmp
.getValue(1));
4262 case Intrinsic::gcroot
:
4264 Value
*Alloca
= I
.getOperand(1);
4265 Constant
*TypeMap
= cast
<Constant
>(I
.getOperand(2));
4267 FrameIndexSDNode
*FI
= cast
<FrameIndexSDNode
>(getValue(Alloca
).getNode());
4268 GFI
->addStackRoot(FI
->getIndex(), TypeMap
);
4272 case Intrinsic::gcread
:
4273 case Intrinsic::gcwrite
:
4274 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4277 case Intrinsic::flt_rounds
: {
4278 setValue(&I
, DAG
.getNode(ISD::FLT_ROUNDS_
, dl
, MVT::i32
));
4282 case Intrinsic::trap
: {
4283 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, dl
,MVT::Other
, getRoot()));
4287 case Intrinsic::uadd_with_overflow
:
4288 return implVisitAluOverflow(I
, ISD::UADDO
);
4289 case Intrinsic::sadd_with_overflow
:
4290 return implVisitAluOverflow(I
, ISD::SADDO
);
4291 case Intrinsic::usub_with_overflow
:
4292 return implVisitAluOverflow(I
, ISD::USUBO
);
4293 case Intrinsic::ssub_with_overflow
:
4294 return implVisitAluOverflow(I
, ISD::SSUBO
);
4295 case Intrinsic::umul_with_overflow
:
4296 return implVisitAluOverflow(I
, ISD::UMULO
);
4297 case Intrinsic::smul_with_overflow
:
4298 return implVisitAluOverflow(I
, ISD::SMULO
);
4300 case Intrinsic::prefetch
: {
4303 Ops
[1] = getValue(I
.getOperand(1));
4304 Ops
[2] = getValue(I
.getOperand(2));
4305 Ops
[3] = getValue(I
.getOperand(3));
4306 DAG
.setRoot(DAG
.getNode(ISD::PREFETCH
, dl
, MVT::Other
, &Ops
[0], 4));
4310 case Intrinsic::memory_barrier
: {
4313 for (int x
= 1; x
< 6; ++x
)
4314 Ops
[x
] = getValue(I
.getOperand(x
));
4316 DAG
.setRoot(DAG
.getNode(ISD::MEMBARRIER
, dl
, MVT::Other
, &Ops
[0], 6));
4319 case Intrinsic::atomic_cmp_swap
: {
4320 SDValue Root
= getRoot();
4322 DAG
.getAtomic(ISD::ATOMIC_CMP_SWAP
, getCurDebugLoc(),
4323 getValue(I
.getOperand(2)).getValueType().getSimpleVT(),
4325 getValue(I
.getOperand(1)),
4326 getValue(I
.getOperand(2)),
4327 getValue(I
.getOperand(3)),
4330 DAG
.setRoot(L
.getValue(1));
4333 case Intrinsic::atomic_load_add
:
4334 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_ADD
);
4335 case Intrinsic::atomic_load_sub
:
4336 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_SUB
);
4337 case Intrinsic::atomic_load_or
:
4338 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_OR
);
4339 case Intrinsic::atomic_load_xor
:
4340 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_XOR
);
4341 case Intrinsic::atomic_load_and
:
4342 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_AND
);
4343 case Intrinsic::atomic_load_nand
:
4344 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_NAND
);
4345 case Intrinsic::atomic_load_max
:
4346 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_MAX
);
4347 case Intrinsic::atomic_load_min
:
4348 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_MIN
);
4349 case Intrinsic::atomic_load_umin
:
4350 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_UMIN
);
4351 case Intrinsic::atomic_load_umax
:
4352 return implVisitBinaryAtomic(I
, ISD::ATOMIC_LOAD_UMAX
);
4353 case Intrinsic::atomic_swap
:
4354 return implVisitBinaryAtomic(I
, ISD::ATOMIC_SWAP
);
4358 /// Test if the given instruction is in a position to be optimized
4359 /// with a tail-call. This roughly means that it's in a block with
4360 /// a return and there's nothing that needs to be scheduled
4361 /// between it and the return.
4363 /// This function only tests target-independent requirements.
4364 /// For target-dependent requirements, a target should override
4365 /// TargetLowering::IsEligibleForTailCallOptimization.
4368 isInTailCallPosition(const Instruction
*I
, Attributes RetAttr
,
4369 const TargetLowering
&TLI
) {
4370 const BasicBlock
*ExitBB
= I
->getParent();
4371 const TerminatorInst
*Term
= ExitBB
->getTerminator();
4372 const ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(Term
);
4373 const Function
*F
= ExitBB
->getParent();
4375 // The block must end in a return statement or an unreachable.
4376 if (!Ret
&& !isa
<UnreachableInst
>(Term
)) return false;
4378 // If I will have a chain, make sure no other instruction that will have a
4379 // chain interposes between I and the return.
4380 if (I
->mayHaveSideEffects() || I
->mayReadFromMemory() ||
4381 !I
->isSafeToSpeculativelyExecute())
4382 for (BasicBlock::const_iterator BBI
= prior(prior(ExitBB
->end())); ;
4386 if (BBI
->mayHaveSideEffects() || BBI
->mayReadFromMemory() ||
4387 !BBI
->isSafeToSpeculativelyExecute())
4391 // If the block ends with a void return or unreachable, it doesn't matter
4392 // what the call's return type is.
4393 if (!Ret
|| Ret
->getNumOperands() == 0) return true;
4395 // Conservatively require the attributes of the call to match those of
4397 if (F
->getAttributes().getRetAttributes() != RetAttr
)
4400 // Otherwise, make sure the unmodified return value of I is the return value.
4401 for (const Instruction
*U
= dyn_cast
<Instruction
>(Ret
->getOperand(0)); ;
4402 U
= dyn_cast
<Instruction
>(U
->getOperand(0))) {
4405 if (!U
->hasOneUse())
4409 // Check for a truly no-op truncate.
4410 if (isa
<TruncInst
>(U
) &&
4411 TLI
.isTruncateFree(U
->getOperand(0)->getType(), U
->getType()))
4413 // Check for a truly no-op bitcast.
4414 if (isa
<BitCastInst
>(U
) &&
4415 (U
->getOperand(0)->getType() == U
->getType() ||
4416 (isa
<PointerType
>(U
->getOperand(0)->getType()) &&
4417 isa
<PointerType
>(U
->getType()))))
4419 // Otherwise it's not a true no-op.
4426 void SelectionDAGLowering::LowerCallTo(CallSite CS
, SDValue Callee
,
4428 MachineBasicBlock
*LandingPad
) {
4429 const PointerType
*PT
= cast
<PointerType
>(CS
.getCalledValue()->getType());
4430 const FunctionType
*FTy
= cast
<FunctionType
>(PT
->getElementType());
4431 MachineModuleInfo
*MMI
= DAG
.getMachineModuleInfo();
4432 unsigned BeginLabel
= 0, EndLabel
= 0;
4434 TargetLowering::ArgListTy Args
;
4435 TargetLowering::ArgListEntry Entry
;
4436 Args
.reserve(CS
.arg_size());
4438 for (CallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
4440 SDValue ArgNode
= getValue(*i
);
4441 Entry
.Node
= ArgNode
; Entry
.Ty
= (*i
)->getType();
4443 unsigned attrInd
= i
- CS
.arg_begin() + 1;
4444 Entry
.isSExt
= CS
.paramHasAttr(attrInd
, Attribute::SExt
);
4445 Entry
.isZExt
= CS
.paramHasAttr(attrInd
, Attribute::ZExt
);
4446 Entry
.isInReg
= CS
.paramHasAttr(attrInd
, Attribute::InReg
);
4447 Entry
.isSRet
= CS
.paramHasAttr(attrInd
, Attribute::StructRet
);
4448 Entry
.isNest
= CS
.paramHasAttr(attrInd
, Attribute::Nest
);
4449 Entry
.isByVal
= CS
.paramHasAttr(attrInd
, Attribute::ByVal
);
4450 Entry
.Alignment
= CS
.getParamAlignment(attrInd
);
4451 Args
.push_back(Entry
);
4454 if (LandingPad
&& MMI
) {
4455 MachineFunction
&MF
= DAG
.getMachineFunction();
4456 // Insert a label before the invoke call to mark the try range. This can be
4457 // used to detect deletion of the invoke via the MachineModuleInfo.
4458 BeginLabel
= MMI
->NextLabelID();
4460 // Map this landing pad to the current call site entry
4461 MF
.setLandingPadCallSiteIndex(LandingPad
, MF
.getCallSiteIndex());
4463 // Both PendingLoads and PendingExports must be flushed here;
4464 // this call might not return.
4466 DAG
.setRoot(DAG
.getLabel(ISD::EH_LABEL
, getCurDebugLoc(),
4467 getControlRoot(), BeginLabel
));
4470 // Check if target-independent constraints permit a tail call here.
4471 // Target-dependent constraints are checked within TLI.LowerCallTo.
4473 !isInTailCallPosition(CS
.getInstruction(),
4474 CS
.getAttributes().getRetAttributes(),
4478 std::pair
<SDValue
,SDValue
> Result
=
4479 TLI
.LowerCallTo(getRoot(), CS
.getType(),
4480 CS
.paramHasAttr(0, Attribute::SExt
),
4481 CS
.paramHasAttr(0, Attribute::ZExt
), FTy
->isVarArg(),
4482 CS
.paramHasAttr(0, Attribute::InReg
), FTy
->getNumParams(),
4483 CS
.getCallingConv(),
4485 !CS
.getInstruction()->use_empty(),
4486 Callee
, Args
, DAG
, getCurDebugLoc());
4487 assert((isTailCall
|| Result
.second
.getNode()) &&
4488 "Non-null chain expected with non-tail call!");
4489 assert((Result
.second
.getNode() || !Result
.first
.getNode()) &&
4490 "Null value expected with tail call!");
4491 if (Result
.first
.getNode())
4492 setValue(CS
.getInstruction(), Result
.first
);
4493 // As a special case, a null chain means that a tail call has
4494 // been emitted and the DAG root is already updated.
4495 if (Result
.second
.getNode())
4496 DAG
.setRoot(Result
.second
);
4500 if (LandingPad
&& MMI
) {
4501 // Insert a label at the end of the invoke call to mark the try range. This
4502 // can be used to detect deletion of the invoke via the MachineModuleInfo.
4503 EndLabel
= MMI
->NextLabelID();
4504 DAG
.setRoot(DAG
.getLabel(ISD::EH_LABEL
, getCurDebugLoc(),
4505 getRoot(), EndLabel
));
4507 // Inform MachineModuleInfo of range.
4508 MMI
->addInvoke(LandingPad
, BeginLabel
, EndLabel
);
4513 void SelectionDAGLowering::visitCall(CallInst
&I
) {
4514 const char *RenameFn
= 0;
4515 if (Function
*F
= I
.getCalledFunction()) {
4516 if (F
->isDeclaration()) {
4517 const TargetIntrinsicInfo
*II
= TLI
.getTargetMachine().getIntrinsicInfo();
4519 if (unsigned IID
= II
->getIntrinsicID(F
)) {
4520 RenameFn
= visitIntrinsicCall(I
, IID
);
4525 if (unsigned IID
= F
->getIntrinsicID()) {
4526 RenameFn
= visitIntrinsicCall(I
, IID
);
4532 // Check for well-known libc/libm calls. If the function is internal, it
4533 // can't be a library call.
4534 if (!F
->hasLocalLinkage() && F
->hasName()) {
4535 StringRef Name
= F
->getName();
4536 if (Name
== "copysign" || Name
== "copysignf") {
4537 if (I
.getNumOperands() == 3 && // Basic sanity checks.
4538 I
.getOperand(1)->getType()->isFloatingPoint() &&
4539 I
.getType() == I
.getOperand(1)->getType() &&
4540 I
.getType() == I
.getOperand(2)->getType()) {
4541 SDValue LHS
= getValue(I
.getOperand(1));
4542 SDValue RHS
= getValue(I
.getOperand(2));
4543 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, getCurDebugLoc(),
4544 LHS
.getValueType(), LHS
, RHS
));
4547 } else if (Name
== "fabs" || Name
== "fabsf" || Name
== "fabsl") {
4548 if (I
.getNumOperands() == 2 && // Basic sanity checks.
4549 I
.getOperand(1)->getType()->isFloatingPoint() &&
4550 I
.getType() == I
.getOperand(1)->getType()) {
4551 SDValue Tmp
= getValue(I
.getOperand(1));
4552 setValue(&I
, DAG
.getNode(ISD::FABS
, getCurDebugLoc(),
4553 Tmp
.getValueType(), Tmp
));
4556 } else if (Name
== "sin" || Name
== "sinf" || Name
== "sinl") {
4557 if (I
.getNumOperands() == 2 && // Basic sanity checks.
4558 I
.getOperand(1)->getType()->isFloatingPoint() &&
4559 I
.getType() == I
.getOperand(1)->getType()) {
4560 SDValue Tmp
= getValue(I
.getOperand(1));
4561 setValue(&I
, DAG
.getNode(ISD::FSIN
, getCurDebugLoc(),
4562 Tmp
.getValueType(), Tmp
));
4565 } else if (Name
== "cos" || Name
== "cosf" || Name
== "cosl") {
4566 if (I
.getNumOperands() == 2 && // Basic sanity checks.
4567 I
.getOperand(1)->getType()->isFloatingPoint() &&
4568 I
.getType() == I
.getOperand(1)->getType()) {
4569 SDValue Tmp
= getValue(I
.getOperand(1));
4570 setValue(&I
, DAG
.getNode(ISD::FCOS
, getCurDebugLoc(),
4571 Tmp
.getValueType(), Tmp
));
4576 } else if (isa
<InlineAsm
>(I
.getOperand(0))) {
4583 Callee
= getValue(I
.getOperand(0));
4585 Callee
= DAG
.getExternalSymbol(RenameFn
, TLI
.getPointerTy());
4587 // Check if we can potentially perform a tail call. More detailed
4588 // checking is be done within LowerCallTo, after more information
4589 // about the call is known.
4590 bool isTailCall
= PerformTailCallOpt
&& I
.isTailCall();
4592 LowerCallTo(&I
, Callee
, isTailCall
);
4596 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4597 /// this value and returns the result as a ValueVT value. This uses
4598 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4599 /// If the Flag pointer is NULL, no flag is used.
4600 SDValue
RegsForValue::getCopyFromRegs(SelectionDAG
&DAG
, DebugLoc dl
,
4602 SDValue
*Flag
) const {
4603 // Assemble the legal parts into the final values.
4604 SmallVector
<SDValue
, 4> Values(ValueVTs
.size());
4605 SmallVector
<SDValue
, 8> Parts
;
4606 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
4607 // Copy the legal parts from the registers.
4608 EVT ValueVT
= ValueVTs
[Value
];
4609 unsigned NumRegs
= TLI
->getNumRegisters(*DAG
.getContext(), ValueVT
);
4610 EVT RegisterVT
= RegVTs
[Value
];
4612 Parts
.resize(NumRegs
);
4613 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
4616 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
);
4618 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
, *Flag
);
4619 *Flag
= P
.getValue(2);
4621 Chain
= P
.getValue(1);
4623 // If the source register was virtual and if we know something about it,
4624 // add an assert node.
4625 if (TargetRegisterInfo::isVirtualRegister(Regs
[Part
+i
]) &&
4626 RegisterVT
.isInteger() && !RegisterVT
.isVector()) {
4627 unsigned SlotNo
= Regs
[Part
+i
]-TargetRegisterInfo::FirstVirtualRegister
;
4628 FunctionLoweringInfo
&FLI
= DAG
.getFunctionLoweringInfo();
4629 if (FLI
.LiveOutRegInfo
.size() > SlotNo
) {
4630 FunctionLoweringInfo::LiveOutInfo
&LOI
= FLI
.LiveOutRegInfo
[SlotNo
];
4632 unsigned RegSize
= RegisterVT
.getSizeInBits();
4633 unsigned NumSignBits
= LOI
.NumSignBits
;
4634 unsigned NumZeroBits
= LOI
.KnownZero
.countLeadingOnes();
4636 // FIXME: We capture more information than the dag can represent. For
4637 // now, just use the tightest assertzext/assertsext possible.
4639 EVT
FromVT(MVT::Other
);
4640 if (NumSignBits
== RegSize
)
4641 isSExt
= true, FromVT
= MVT::i1
; // ASSERT SEXT 1
4642 else if (NumZeroBits
>= RegSize
-1)
4643 isSExt
= false, FromVT
= MVT::i1
; // ASSERT ZEXT 1
4644 else if (NumSignBits
> RegSize
-8)
4645 isSExt
= true, FromVT
= MVT::i8
; // ASSERT SEXT 8
4646 else if (NumZeroBits
>= RegSize
-8)
4647 isSExt
= false, FromVT
= MVT::i8
; // ASSERT ZEXT 8
4648 else if (NumSignBits
> RegSize
-16)
4649 isSExt
= true, FromVT
= MVT::i16
; // ASSERT SEXT 16
4650 else if (NumZeroBits
>= RegSize
-16)
4651 isSExt
= false, FromVT
= MVT::i16
; // ASSERT ZEXT 16
4652 else if (NumSignBits
> RegSize
-32)
4653 isSExt
= true, FromVT
= MVT::i32
; // ASSERT SEXT 32
4654 else if (NumZeroBits
>= RegSize
-32)
4655 isSExt
= false, FromVT
= MVT::i32
; // ASSERT ZEXT 32
4657 if (FromVT
!= MVT::Other
) {
4658 P
= DAG
.getNode(isSExt
? ISD::AssertSext
: ISD::AssertZext
, dl
,
4659 RegisterVT
, P
, DAG
.getValueType(FromVT
));
4668 Values
[Value
] = getCopyFromParts(DAG
, dl
, Parts
.begin(),
4669 NumRegs
, RegisterVT
, ValueVT
);
4674 return DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4675 DAG
.getVTList(&ValueVTs
[0], ValueVTs
.size()),
4676 &Values
[0], ValueVTs
.size());
4679 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4680 /// specified value into the registers specified by this object. This uses
4681 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4682 /// If the Flag pointer is NULL, no flag is used.
4683 void RegsForValue::getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
, DebugLoc dl
,
4684 SDValue
&Chain
, SDValue
*Flag
) const {
4685 // Get the list of the values's legal parts.
4686 unsigned NumRegs
= Regs
.size();
4687 SmallVector
<SDValue
, 8> Parts(NumRegs
);
4688 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
4689 EVT ValueVT
= ValueVTs
[Value
];
4690 unsigned NumParts
= TLI
->getNumRegisters(*DAG
.getContext(), ValueVT
);
4691 EVT RegisterVT
= RegVTs
[Value
];
4693 getCopyToParts(DAG
, dl
, Val
.getValue(Val
.getResNo() + Value
),
4694 &Parts
[Part
], NumParts
, RegisterVT
);
4698 // Copy the parts into the registers.
4699 SmallVector
<SDValue
, 8> Chains(NumRegs
);
4700 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
4703 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
]);
4705 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
], *Flag
);
4706 *Flag
= Part
.getValue(1);
4708 Chains
[i
] = Part
.getValue(0);
4711 if (NumRegs
== 1 || Flag
)
4712 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4713 // flagged to it. That is the CopyToReg nodes and the user are considered
4714 // a single scheduling unit. If we create a TokenFactor and return it as
4715 // chain, then the TokenFactor is both a predecessor (operand) of the
4716 // user as well as a successor (the TF operands are flagged to the user).
4717 // c1, f1 = CopyToReg
4718 // c2, f2 = CopyToReg
4719 // c3 = TokenFactor c1, c2
4722 Chain
= Chains
[NumRegs
-1];
4724 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, &Chains
[0], NumRegs
);
4727 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
4728 /// operand list. This adds the code marker and includes the number of
4729 /// values added into it.
4730 void RegsForValue::AddInlineAsmOperands(unsigned Code
,
4731 bool HasMatching
,unsigned MatchingIdx
,
4733 std::vector
<SDValue
> &Ops
) const {
4734 EVT IntPtrTy
= DAG
.getTargetLoweringInfo().getPointerTy();
4735 assert(Regs
.size() < (1 << 13) && "Too many inline asm outputs!");
4736 unsigned Flag
= Code
| (Regs
.size() << 3);
4738 Flag
|= 0x80000000 | (MatchingIdx
<< 16);
4739 Ops
.push_back(DAG
.getTargetConstant(Flag
, IntPtrTy
));
4740 for (unsigned Value
= 0, Reg
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
4741 unsigned NumRegs
= TLI
->getNumRegisters(*DAG
.getContext(), ValueVTs
[Value
]);
4742 EVT RegisterVT
= RegVTs
[Value
];
4743 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
4744 assert(Reg
< Regs
.size() && "Mismatch in # registers expected");
4745 Ops
.push_back(DAG
.getRegister(Regs
[Reg
++], RegisterVT
));
4750 /// isAllocatableRegister - If the specified register is safe to allocate,
4751 /// i.e. it isn't a stack pointer or some other special register, return the
4752 /// register class for the register. Otherwise, return null.
4753 static const TargetRegisterClass
*
4754 isAllocatableRegister(unsigned Reg
, MachineFunction
&MF
,
4755 const TargetLowering
&TLI
,
4756 const TargetRegisterInfo
*TRI
) {
4757 EVT FoundVT
= MVT::Other
;
4758 const TargetRegisterClass
*FoundRC
= 0;
4759 for (TargetRegisterInfo::regclass_iterator RCI
= TRI
->regclass_begin(),
4760 E
= TRI
->regclass_end(); RCI
!= E
; ++RCI
) {
4761 EVT ThisVT
= MVT::Other
;
4763 const TargetRegisterClass
*RC
= *RCI
;
4764 // If none of the the value types for this register class are valid, we
4765 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4766 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
4768 if (TLI
.isTypeLegal(*I
)) {
4769 // If we have already found this register in a different register class,
4770 // choose the one with the largest VT specified. For example, on
4771 // PowerPC, we favor f64 register classes over f32.
4772 if (FoundVT
== MVT::Other
|| FoundVT
.bitsLT(*I
)) {
4779 if (ThisVT
== MVT::Other
) continue;
4781 // NOTE: This isn't ideal. In particular, this might allocate the
4782 // frame pointer in functions that need it (due to them not being taken
4783 // out of allocation, because a variable sized allocation hasn't been seen
4784 // yet). This is a slight code pessimization, but should still work.
4785 for (TargetRegisterClass::iterator I
= RC
->allocation_order_begin(MF
),
4786 E
= RC
->allocation_order_end(MF
); I
!= E
; ++I
)
4788 // We found a matching register class. Keep looking at others in case
4789 // we find one with larger registers that this physreg is also in.
4800 /// AsmOperandInfo - This contains information for each constraint that we are
4802 class VISIBILITY_HIDDEN SDISelAsmOperandInfo
:
4803 public TargetLowering::AsmOperandInfo
{
4805 /// CallOperand - If this is the result output operand or a clobber
4806 /// this is null, otherwise it is the incoming operand to the CallInst.
4807 /// This gets modified as the asm is processed.
4808 SDValue CallOperand
;
4810 /// AssignedRegs - If this is a register or register class operand, this
4811 /// contains the set of register corresponding to the operand.
4812 RegsForValue AssignedRegs
;
4814 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo
&info
)
4815 : TargetLowering::AsmOperandInfo(info
), CallOperand(0,0) {
4818 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4819 /// busy in OutputRegs/InputRegs.
4820 void MarkAllocatedRegs(bool isOutReg
, bool isInReg
,
4821 std::set
<unsigned> &OutputRegs
,
4822 std::set
<unsigned> &InputRegs
,
4823 const TargetRegisterInfo
&TRI
) const {
4825 for (unsigned i
= 0, e
= AssignedRegs
.Regs
.size(); i
!= e
; ++i
)
4826 MarkRegAndAliases(AssignedRegs
.Regs
[i
], OutputRegs
, TRI
);
4829 for (unsigned i
= 0, e
= AssignedRegs
.Regs
.size(); i
!= e
; ++i
)
4830 MarkRegAndAliases(AssignedRegs
.Regs
[i
], InputRegs
, TRI
);
4834 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4835 /// corresponds to. If there is no Value* for this operand, it returns
4837 EVT
getCallOperandValEVT(LLVMContext
&Context
,
4838 const TargetLowering
&TLI
,
4839 const TargetData
*TD
) const {
4840 if (CallOperandVal
== 0) return MVT::Other
;
4842 if (isa
<BasicBlock
>(CallOperandVal
))
4843 return TLI
.getPointerTy();
4845 const llvm::Type
*OpTy
= CallOperandVal
->getType();
4847 // If this is an indirect operand, the operand is a pointer to the
4850 OpTy
= cast
<PointerType
>(OpTy
)->getElementType();
4852 // If OpTy is not a single value, it may be a struct/union that we
4853 // can tile with integers.
4854 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
4855 unsigned BitSize
= TD
->getTypeSizeInBits(OpTy
);
4864 OpTy
= IntegerType::get(Context
, BitSize
);
4869 return TLI
.getValueType(OpTy
, true);
4873 /// MarkRegAndAliases - Mark the specified register and all aliases in the
4875 static void MarkRegAndAliases(unsigned Reg
, std::set
<unsigned> &Regs
,
4876 const TargetRegisterInfo
&TRI
) {
4877 assert(TargetRegisterInfo::isPhysicalRegister(Reg
) && "Isn't a physreg");
4879 if (const unsigned *Aliases
= TRI
.getAliasSet(Reg
))
4880 for (; *Aliases
; ++Aliases
)
4881 Regs
.insert(*Aliases
);
4884 } // end llvm namespace.
4887 /// GetRegistersForValue - Assign registers (virtual or physical) for the
4888 /// specified operand. We prefer to assign virtual registers, to allow the
4889 /// register allocator handle the assignment process. However, if the asm uses
4890 /// features that we can't model on machineinstrs, we have SDISel do the
4891 /// allocation. This produces generally horrible, but correct, code.
4893 /// OpInfo describes the operand.
4894 /// Input and OutputRegs are the set of already allocated physical registers.
4896 void SelectionDAGLowering::
4897 GetRegistersForValue(SDISelAsmOperandInfo
&OpInfo
,
4898 std::set
<unsigned> &OutputRegs
,
4899 std::set
<unsigned> &InputRegs
) {
4900 LLVMContext
&Context
= FuncInfo
.Fn
->getContext();
4902 // Compute whether this value requires an input register, an output register,
4904 bool isOutReg
= false;
4905 bool isInReg
= false;
4906 switch (OpInfo
.Type
) {
4907 case InlineAsm::isOutput
:
4910 // If there is an input constraint that matches this, we need to reserve
4911 // the input register so no other inputs allocate to it.
4912 isInReg
= OpInfo
.hasMatchingInput();
4914 case InlineAsm::isInput
:
4918 case InlineAsm::isClobber
:
4925 MachineFunction
&MF
= DAG
.getMachineFunction();
4926 SmallVector
<unsigned, 4> Regs
;
4928 // If this is a constraint for a single physreg, or a constraint for a
4929 // register class, find it.
4930 std::pair
<unsigned, const TargetRegisterClass
*> PhysReg
=
4931 TLI
.getRegForInlineAsmConstraint(OpInfo
.ConstraintCode
,
4932 OpInfo
.ConstraintVT
);
4934 unsigned NumRegs
= 1;
4935 if (OpInfo
.ConstraintVT
!= MVT::Other
) {
4936 // If this is a FP input in an integer register (or visa versa) insert a bit
4937 // cast of the input value. More generally, handle any case where the input
4938 // value disagrees with the register class we plan to stick this in.
4939 if (OpInfo
.Type
== InlineAsm::isInput
&&
4940 PhysReg
.second
&& !PhysReg
.second
->hasType(OpInfo
.ConstraintVT
)) {
4941 // Try to convert to the first EVT that the reg class contains. If the
4942 // types are identical size, use a bitcast to convert (e.g. two differing
4944 EVT RegVT
= *PhysReg
.second
->vt_begin();
4945 if (RegVT
.getSizeInBits() == OpInfo
.ConstraintVT
.getSizeInBits()) {
4946 OpInfo
.CallOperand
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
4947 RegVT
, OpInfo
.CallOperand
);
4948 OpInfo
.ConstraintVT
= RegVT
;
4949 } else if (RegVT
.isInteger() && OpInfo
.ConstraintVT
.isFloatingPoint()) {
4950 // If the input is a FP value and we want it in FP registers, do a
4951 // bitcast to the corresponding integer type. This turns an f64 value
4952 // into i64, which can be passed with two i32 values on a 32-bit
4954 RegVT
= EVT::getIntegerVT(Context
,
4955 OpInfo
.ConstraintVT
.getSizeInBits());
4956 OpInfo
.CallOperand
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
4957 RegVT
, OpInfo
.CallOperand
);
4958 OpInfo
.ConstraintVT
= RegVT
;
4962 NumRegs
= TLI
.getNumRegisters(Context
, OpInfo
.ConstraintVT
);
4966 EVT ValueVT
= OpInfo
.ConstraintVT
;
4968 // If this is a constraint for a specific physical register, like {r17},
4970 if (unsigned AssignedReg
= PhysReg
.first
) {
4971 const TargetRegisterClass
*RC
= PhysReg
.second
;
4972 if (OpInfo
.ConstraintVT
== MVT::Other
)
4973 ValueVT
= *RC
->vt_begin();
4975 // Get the actual register value type. This is important, because the user
4976 // may have asked for (e.g.) the AX register in i32 type. We need to
4977 // remember that AX is actually i16 to get the right extension.
4978 RegVT
= *RC
->vt_begin();
4980 // This is a explicit reference to a physical register.
4981 Regs
.push_back(AssignedReg
);
4983 // If this is an expanded reference, add the rest of the regs to Regs.
4985 TargetRegisterClass::iterator I
= RC
->begin();
4986 for (; *I
!= AssignedReg
; ++I
)
4987 assert(I
!= RC
->end() && "Didn't find reg!");
4989 // Already added the first reg.
4991 for (; NumRegs
; --NumRegs
, ++I
) {
4992 assert(I
!= RC
->end() && "Ran out of registers to allocate!");
4996 OpInfo
.AssignedRegs
= RegsForValue(TLI
, Regs
, RegVT
, ValueVT
);
4997 const TargetRegisterInfo
*TRI
= DAG
.getTarget().getRegisterInfo();
4998 OpInfo
.MarkAllocatedRegs(isOutReg
, isInReg
, OutputRegs
, InputRegs
, *TRI
);
5002 // Otherwise, if this was a reference to an LLVM register class, create vregs
5003 // for this reference.
5004 if (const TargetRegisterClass
*RC
= PhysReg
.second
) {
5005 RegVT
= *RC
->vt_begin();
5006 if (OpInfo
.ConstraintVT
== MVT::Other
)
5009 // Create the appropriate number of virtual registers.
5010 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5011 for (; NumRegs
; --NumRegs
)
5012 Regs
.push_back(RegInfo
.createVirtualRegister(RC
));
5014 OpInfo
.AssignedRegs
= RegsForValue(TLI
, Regs
, RegVT
, ValueVT
);
5018 // This is a reference to a register class that doesn't directly correspond
5019 // to an LLVM register class. Allocate NumRegs consecutive, available,
5020 // registers from the class.
5021 std::vector
<unsigned> RegClassRegs
5022 = TLI
.getRegClassForInlineAsmConstraint(OpInfo
.ConstraintCode
,
5023 OpInfo
.ConstraintVT
);
5025 const TargetRegisterInfo
*TRI
= DAG
.getTarget().getRegisterInfo();
5026 unsigned NumAllocated
= 0;
5027 for (unsigned i
= 0, e
= RegClassRegs
.size(); i
!= e
; ++i
) {
5028 unsigned Reg
= RegClassRegs
[i
];
5029 // See if this register is available.
5030 if ((isOutReg
&& OutputRegs
.count(Reg
)) || // Already used.
5031 (isInReg
&& InputRegs
.count(Reg
))) { // Already used.
5032 // Make sure we find consecutive registers.
5037 // Check to see if this register is allocatable (i.e. don't give out the
5039 const TargetRegisterClass
*RC
= isAllocatableRegister(Reg
, MF
, TLI
, TRI
);
5040 if (!RC
) { // Couldn't allocate this register.
5041 // Reset NumAllocated to make sure we return consecutive registers.
5046 // Okay, this register is good, we can use it.
5049 // If we allocated enough consecutive registers, succeed.
5050 if (NumAllocated
== NumRegs
) {
5051 unsigned RegStart
= (i
-NumAllocated
)+1;
5052 unsigned RegEnd
= i
+1;
5053 // Mark all of the allocated registers used.
5054 for (unsigned i
= RegStart
; i
!= RegEnd
; ++i
)
5055 Regs
.push_back(RegClassRegs
[i
]);
5057 OpInfo
.AssignedRegs
= RegsForValue(TLI
, Regs
, *RC
->vt_begin(),
5058 OpInfo
.ConstraintVT
);
5059 OpInfo
.MarkAllocatedRegs(isOutReg
, isInReg
, OutputRegs
, InputRegs
, *TRI
);
5064 // Otherwise, we couldn't allocate enough registers for this.
5067 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5068 /// processed uses a memory 'm' constraint.
5070 hasInlineAsmMemConstraint(std::vector
<InlineAsm::ConstraintInfo
> &CInfos
,
5071 const TargetLowering
&TLI
) {
5072 for (unsigned i
= 0, e
= CInfos
.size(); i
!= e
; ++i
) {
5073 InlineAsm::ConstraintInfo
&CI
= CInfos
[i
];
5074 for (unsigned j
= 0, ee
= CI
.Codes
.size(); j
!= ee
; ++j
) {
5075 TargetLowering::ConstraintType CType
= TLI
.getConstraintType(CI
.Codes
[j
]);
5076 if (CType
== TargetLowering::C_Memory
)
5080 // Indirect operand accesses access memory.
5088 /// visitInlineAsm - Handle a call to an InlineAsm object.
5090 void SelectionDAGLowering::visitInlineAsm(CallSite CS
) {
5091 InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
5093 /// ConstraintOperands - Information about all of the constraints.
5094 std::vector
<SDISelAsmOperandInfo
> ConstraintOperands
;
5096 std::set
<unsigned> OutputRegs
, InputRegs
;
5098 // Do a prepass over the constraints, canonicalizing them, and building up the
5099 // ConstraintOperands list.
5100 std::vector
<InlineAsm::ConstraintInfo
>
5101 ConstraintInfos
= IA
->ParseConstraints();
5103 bool hasMemory
= hasInlineAsmMemConstraint(ConstraintInfos
, TLI
);
5105 SDValue Chain
, Flag
;
5107 // We won't need to flush pending loads if this asm doesn't touch
5108 // memory and is nonvolatile.
5109 if (hasMemory
|| IA
->hasSideEffects())
5112 Chain
= DAG
.getRoot();
5114 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
5115 unsigned ResNo
= 0; // ResNo - The result number of the next output.
5116 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
5117 ConstraintOperands
.push_back(SDISelAsmOperandInfo(ConstraintInfos
[i
]));
5118 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
5120 EVT OpVT
= MVT::Other
;
5122 // Compute the value type for each operand.
5123 switch (OpInfo
.Type
) {
5124 case InlineAsm::isOutput
:
5125 // Indirect outputs just consume an argument.
5126 if (OpInfo
.isIndirect
) {
5127 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
5131 // The return value of the call is this value. As such, there is no
5132 // corresponding argument.
5133 assert(CS
.getType() != Type::getVoidTy(*DAG
.getContext()) &&
5135 if (const StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
5136 OpVT
= TLI
.getValueType(STy
->getElementType(ResNo
));
5138 assert(ResNo
== 0 && "Asm only has one result!");
5139 OpVT
= TLI
.getValueType(CS
.getType());
5143 case InlineAsm::isInput
:
5144 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
5146 case InlineAsm::isClobber
:
5151 // If this is an input or an indirect output, process the call argument.
5152 // BasicBlocks are labels, currently appearing only in asm's.
5153 if (OpInfo
.CallOperandVal
) {
5154 // Strip bitcasts, if any. This mostly comes up for functions.
5155 OpInfo
.CallOperandVal
= OpInfo
.CallOperandVal
->stripPointerCasts();
5157 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(OpInfo
.CallOperandVal
)) {
5158 OpInfo
.CallOperand
= DAG
.getBasicBlock(FuncInfo
.MBBMap
[BB
]);
5160 OpInfo
.CallOperand
= getValue(OpInfo
.CallOperandVal
);
5163 OpVT
= OpInfo
.getCallOperandValEVT(*DAG
.getContext(), TLI
, TD
);
5166 OpInfo
.ConstraintVT
= OpVT
;
5169 // Second pass over the constraints: compute which constraint option to use
5170 // and assign registers to constraints that want a specific physreg.
5171 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
5172 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5174 // If this is an output operand with a matching input operand, look up the
5175 // matching input. If their types mismatch, e.g. one is an integer, the
5176 // other is floating point, or their sizes are different, flag it as an
5178 if (OpInfo
.hasMatchingInput()) {
5179 SDISelAsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
5180 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
5181 if ((OpInfo
.ConstraintVT
.isInteger() !=
5182 Input
.ConstraintVT
.isInteger()) ||
5183 (OpInfo
.ConstraintVT
.getSizeInBits() !=
5184 Input
.ConstraintVT
.getSizeInBits())) {
5185 llvm_report_error("Unsupported asm: input constraint"
5186 " with a matching output constraint of incompatible"
5189 Input
.ConstraintVT
= OpInfo
.ConstraintVT
;
5193 // Compute the constraint code and ConstraintType to use.
5194 TLI
.ComputeConstraintToUse(OpInfo
, OpInfo
.CallOperand
, hasMemory
, &DAG
);
5196 // If this is a memory input, and if the operand is not indirect, do what we
5197 // need to to provide an address for the memory input.
5198 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
5199 !OpInfo
.isIndirect
) {
5200 assert(OpInfo
.Type
== InlineAsm::isInput
&&
5201 "Can only indirectify direct input operands!");
5203 // Memory operands really want the address of the value. If we don't have
5204 // an indirect input, put it in the constpool if we can, otherwise spill
5205 // it to a stack slot.
5207 // If the operand is a float, integer, or vector constant, spill to a
5208 // constant pool entry to get its address.
5209 Value
*OpVal
= OpInfo
.CallOperandVal
;
5210 if (isa
<ConstantFP
>(OpVal
) || isa
<ConstantInt
>(OpVal
) ||
5211 isa
<ConstantVector
>(OpVal
)) {
5212 OpInfo
.CallOperand
= DAG
.getConstantPool(cast
<Constant
>(OpVal
),
5213 TLI
.getPointerTy());
5215 // Otherwise, create a stack slot and emit a store to it before the
5217 const Type
*Ty
= OpVal
->getType();
5218 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(Ty
);
5219 unsigned Align
= TLI
.getTargetData()->getPrefTypeAlignment(Ty
);
5220 MachineFunction
&MF
= DAG
.getMachineFunction();
5221 int SSFI
= MF
.getFrameInfo()->CreateStackObject(TySize
, Align
);
5222 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, TLI
.getPointerTy());
5223 Chain
= DAG
.getStore(Chain
, getCurDebugLoc(),
5224 OpInfo
.CallOperand
, StackSlot
, NULL
, 0);
5225 OpInfo
.CallOperand
= StackSlot
;
5228 // There is no longer a Value* corresponding to this operand.
5229 OpInfo
.CallOperandVal
= 0;
5230 // It is now an indirect operand.
5231 OpInfo
.isIndirect
= true;
5234 // If this constraint is for a specific register, allocate it before
5236 if (OpInfo
.ConstraintType
== TargetLowering::C_Register
)
5237 GetRegistersForValue(OpInfo
, OutputRegs
, InputRegs
);
5239 ConstraintInfos
.clear();
5242 // Second pass - Loop over all of the operands, assigning virtual or physregs
5243 // to register class operands.
5244 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5245 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5247 // C_Register operands have already been allocated, Other/Memory don't need
5249 if (OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
)
5250 GetRegistersForValue(OpInfo
, OutputRegs
, InputRegs
);
5253 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5254 std::vector
<SDValue
> AsmNodeOperands
;
5255 AsmNodeOperands
.push_back(SDValue()); // reserve space for input chain
5256 AsmNodeOperands
.push_back(
5257 DAG
.getTargetExternalSymbol(IA
->getAsmString().c_str(), MVT::Other
));
5260 // Loop over all of the inputs, copying the operand values into the
5261 // appropriate registers and processing the output regs.
5262 RegsForValue RetValRegs
;
5264 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5265 std::vector
<std::pair
<RegsForValue
, Value
*> > IndirectStoresToEmit
;
5267 for (unsigned i
= 0, e
= ConstraintOperands
.size(); i
!= e
; ++i
) {
5268 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
[i
];
5270 switch (OpInfo
.Type
) {
5271 case InlineAsm::isOutput
: {
5272 if (OpInfo
.ConstraintType
!= TargetLowering::C_RegisterClass
&&
5273 OpInfo
.ConstraintType
!= TargetLowering::C_Register
) {
5274 // Memory output, or 'other' output (e.g. 'X' constraint).
5275 assert(OpInfo
.isIndirect
&& "Memory output must be indirect operand");
5277 // Add information to the INLINEASM node to know about this output.
5278 unsigned ResOpType
= 4/*MEM*/ | (1<<3);
5279 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5280 TLI
.getPointerTy()));
5281 AsmNodeOperands
.push_back(OpInfo
.CallOperand
);
5285 // Otherwise, this is a register or register class output.
5287 // Copy the output from the appropriate register. Find a register that
5289 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
5290 llvm_report_error("Couldn't allocate output reg for"
5291 " constraint '" + OpInfo
.ConstraintCode
+ "'!");
5294 // If this is an indirect operand, store through the pointer after the
5296 if (OpInfo
.isIndirect
) {
5297 IndirectStoresToEmit
.push_back(std::make_pair(OpInfo
.AssignedRegs
,
5298 OpInfo
.CallOperandVal
));
5300 // This is the result value of the call.
5301 assert(CS
.getType() != Type::getVoidTy(*DAG
.getContext()) &&
5303 // Concatenate this output onto the outputs list.
5304 RetValRegs
.append(OpInfo
.AssignedRegs
);
5307 // Add information to the INLINEASM node to know that this register is
5309 OpInfo
.AssignedRegs
.AddInlineAsmOperands(OpInfo
.isEarlyClobber
?
5310 6 /* EARLYCLOBBER REGDEF */ :
5314 DAG
, AsmNodeOperands
);
5317 case InlineAsm::isInput
: {
5318 SDValue InOperandVal
= OpInfo
.CallOperand
;
5320 if (OpInfo
.isMatchingInputConstraint()) { // Matching constraint?
5321 // If this is required to match an output register we have already set,
5322 // just use its register.
5323 unsigned OperandNo
= OpInfo
.getMatchedOperand();
5325 // Scan until we find the definition we already emitted of this operand.
5326 // When we find it, create a RegsForValue operand.
5327 unsigned CurOp
= 2; // The first operand.
5328 for (; OperandNo
; --OperandNo
) {
5329 // Advance to the next operand.
5331 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
5332 assert(((OpFlag
& 7) == 2 /*REGDEF*/ ||
5333 (OpFlag
& 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
5334 (OpFlag
& 7) == 4 /*MEM*/) &&
5335 "Skipped past definitions?");
5336 CurOp
+= InlineAsm::getNumOperandRegisters(OpFlag
)+1;
5340 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
5341 if ((OpFlag
& 7) == 2 /*REGDEF*/
5342 || (OpFlag
& 7) == 6 /* EARLYCLOBBER REGDEF */) {
5343 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5344 if (OpInfo
.isIndirect
) {
5345 llvm_report_error("Don't know how to handle tied indirect "
5346 "register inputs yet!");
5348 RegsForValue MatchedRegs
;
5349 MatchedRegs
.TLI
= &TLI
;
5350 MatchedRegs
.ValueVTs
.push_back(InOperandVal
.getValueType());
5351 EVT RegVT
= AsmNodeOperands
[CurOp
+1].getValueType();
5352 MatchedRegs
.RegVTs
.push_back(RegVT
);
5353 MachineRegisterInfo
&RegInfo
= DAG
.getMachineFunction().getRegInfo();
5354 for (unsigned i
= 0, e
= InlineAsm::getNumOperandRegisters(OpFlag
);
5357 push_back(RegInfo
.createVirtualRegister(TLI
.getRegClassFor(RegVT
)));
5359 // Use the produced MatchedRegs object to
5360 MatchedRegs
.getCopyToRegs(InOperandVal
, DAG
, getCurDebugLoc(),
5362 MatchedRegs
.AddInlineAsmOperands(1 /*REGUSE*/,
5363 true, OpInfo
.getMatchedOperand(),
5364 DAG
, AsmNodeOperands
);
5367 assert(((OpFlag
& 7) == 4) && "Unknown matching constraint!");
5368 assert((InlineAsm::getNumOperandRegisters(OpFlag
)) == 1 &&
5369 "Unexpected number of operands");
5370 // Add information to the INLINEASM node to know about this input.
5371 // See InlineAsm.h isUseOperandTiedToDef.
5372 OpFlag
|= 0x80000000 | (OpInfo
.getMatchedOperand() << 16);
5373 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlag
,
5374 TLI
.getPointerTy()));
5375 AsmNodeOperands
.push_back(AsmNodeOperands
[CurOp
+1]);
5380 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
5381 assert(!OpInfo
.isIndirect
&&
5382 "Don't know how to handle indirect other inputs yet!");
5384 std::vector
<SDValue
> Ops
;
5385 TLI
.LowerAsmOperandForConstraint(InOperandVal
, OpInfo
.ConstraintCode
[0],
5386 hasMemory
, Ops
, DAG
);
5388 llvm_report_error("Invalid operand for inline asm"
5389 " constraint '" + OpInfo
.ConstraintCode
+ "'!");
5392 // Add information to the INLINEASM node to know about this input.
5393 unsigned ResOpType
= 3 /*IMM*/ | (Ops
.size() << 3);
5394 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5395 TLI
.getPointerTy()));
5396 AsmNodeOperands
.insert(AsmNodeOperands
.end(), Ops
.begin(), Ops
.end());
5398 } else if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
5399 assert(OpInfo
.isIndirect
&& "Operand must be indirect to be a mem!");
5400 assert(InOperandVal
.getValueType() == TLI
.getPointerTy() &&
5401 "Memory operands expect pointer values");
5403 // Add information to the INLINEASM node to know about this input.
5404 unsigned ResOpType
= 4/*MEM*/ | (1<<3);
5405 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
5406 TLI
.getPointerTy()));
5407 AsmNodeOperands
.push_back(InOperandVal
);
5411 assert((OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
||
5412 OpInfo
.ConstraintType
== TargetLowering::C_Register
) &&
5413 "Unknown constraint type!");
5414 assert(!OpInfo
.isIndirect
&&
5415 "Don't know how to handle indirect register inputs yet!");
5417 // Copy the input into the appropriate registers.
5418 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
5419 llvm_report_error("Couldn't allocate input reg for"
5420 " constraint '"+ OpInfo
.ConstraintCode
+"'!");
5423 OpInfo
.AssignedRegs
.getCopyToRegs(InOperandVal
, DAG
, getCurDebugLoc(),
5426 OpInfo
.AssignedRegs
.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
5427 DAG
, AsmNodeOperands
);
5430 case InlineAsm::isClobber
: {
5431 // Add the clobbered value to the operand list, so that the register
5432 // allocator is aware that the physreg got clobbered.
5433 if (!OpInfo
.AssignedRegs
.Regs
.empty())
5434 OpInfo
.AssignedRegs
.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5435 false, 0, DAG
,AsmNodeOperands
);
5441 // Finish up input operands.
5442 AsmNodeOperands
[0] = Chain
;
5443 if (Flag
.getNode()) AsmNodeOperands
.push_back(Flag
);
5445 Chain
= DAG
.getNode(ISD::INLINEASM
, getCurDebugLoc(),
5446 DAG
.getVTList(MVT::Other
, MVT::Flag
),
5447 &AsmNodeOperands
[0], AsmNodeOperands
.size());
5448 Flag
= Chain
.getValue(1);
5450 // If this asm returns a register value, copy the result from that register
5451 // and set it as the value of the call.
5452 if (!RetValRegs
.Regs
.empty()) {
5453 SDValue Val
= RetValRegs
.getCopyFromRegs(DAG
, getCurDebugLoc(),
5456 // FIXME: Why don't we do this for inline asms with MRVs?
5457 if (CS
.getType()->isSingleValueType() && CS
.getType()->isSized()) {
5458 EVT ResultType
= TLI
.getValueType(CS
.getType());
5460 // If any of the results of the inline asm is a vector, it may have the
5461 // wrong width/num elts. This can happen for register classes that can
5462 // contain multiple different value types. The preg or vreg allocated may
5463 // not have the same VT as was expected. Convert it to the right type
5464 // with bit_convert.
5465 if (ResultType
!= Val
.getValueType() && Val
.getValueType().isVector()) {
5466 Val
= DAG
.getNode(ISD::BIT_CONVERT
, getCurDebugLoc(),
5469 } else if (ResultType
!= Val
.getValueType() &&
5470 ResultType
.isInteger() && Val
.getValueType().isInteger()) {
5471 // If a result value was tied to an input value, the computed result may
5472 // have a wider width than the expected result. Extract the relevant
5474 Val
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), ResultType
, Val
);
5477 assert(ResultType
== Val
.getValueType() && "Asm result value mismatch!");
5480 setValue(CS
.getInstruction(), Val
);
5481 // Don't need to use this as a chain in this case.
5482 if (!IA
->hasSideEffects() && !hasMemory
&& IndirectStoresToEmit
.empty())
5486 std::vector
<std::pair
<SDValue
, Value
*> > StoresToEmit
;
5488 // Process indirect outputs, first output all of the flagged copies out of
5490 for (unsigned i
= 0, e
= IndirectStoresToEmit
.size(); i
!= e
; ++i
) {
5491 RegsForValue
&OutRegs
= IndirectStoresToEmit
[i
].first
;
5492 Value
*Ptr
= IndirectStoresToEmit
[i
].second
;
5493 SDValue OutVal
= OutRegs
.getCopyFromRegs(DAG
, getCurDebugLoc(),
5495 StoresToEmit
.push_back(std::make_pair(OutVal
, Ptr
));
5499 // Emit the non-flagged stores from the physregs.
5500 SmallVector
<SDValue
, 8> OutChains
;
5501 for (unsigned i
= 0, e
= StoresToEmit
.size(); i
!= e
; ++i
)
5502 OutChains
.push_back(DAG
.getStore(Chain
, getCurDebugLoc(),
5503 StoresToEmit
[i
].first
,
5504 getValue(StoresToEmit
[i
].second
),
5505 StoresToEmit
[i
].second
, 0));
5506 if (!OutChains
.empty())
5507 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurDebugLoc(), MVT::Other
,
5508 &OutChains
[0], OutChains
.size());
5513 void SelectionDAGLowering::visitMalloc(MallocInst
&I
) {
5514 SDValue Src
= getValue(I
.getOperand(0));
5516 // Scale up by the type size in the original i32 type width. Various
5517 // mid-level optimizers may make assumptions about demanded bits etc from the
5518 // i32-ness of the optimizer: we do not want to promote to i64 and then
5519 // multiply on 64-bit targets.
5520 // FIXME: Malloc inst should go away: PR715.
5521 uint64_t ElementSize
= TD
->getTypeAllocSize(I
.getType()->getElementType());
5522 if (ElementSize
!= 1) {
5523 // Src is always 32-bits, make sure the constant fits.
5524 assert(Src
.getValueType() == MVT::i32
);
5525 ElementSize
= (uint32_t)ElementSize
;
5526 Src
= DAG
.getNode(ISD::MUL
, getCurDebugLoc(), Src
.getValueType(),
5527 Src
, DAG
.getConstant(ElementSize
, Src
.getValueType()));
5530 EVT IntPtr
= TLI
.getPointerTy();
5532 if (IntPtr
.bitsLT(Src
.getValueType()))
5533 Src
= DAG
.getNode(ISD::TRUNCATE
, getCurDebugLoc(), IntPtr
, Src
);
5534 else if (IntPtr
.bitsGT(Src
.getValueType()))
5535 Src
= DAG
.getNode(ISD::ZERO_EXTEND
, getCurDebugLoc(), IntPtr
, Src
);
5537 TargetLowering::ArgListTy Args
;
5538 TargetLowering::ArgListEntry Entry
;
5540 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*DAG
.getContext());
5541 Args
.push_back(Entry
);
5543 bool isTailCall
= PerformTailCallOpt
&&
5544 isInTailCallPosition(&I
, Attribute::None
, TLI
);
5545 std::pair
<SDValue
,SDValue
> Result
=
5546 TLI
.LowerCallTo(getRoot(), I
.getType(), false, false, false, false,
5547 0, CallingConv::C
, isTailCall
,
5548 /*isReturnValueUsed=*/true,
5549 DAG
.getExternalSymbol("malloc", IntPtr
),
5550 Args
, DAG
, getCurDebugLoc());
5551 if (Result
.first
.getNode())
5552 setValue(&I
, Result
.first
); // Pointers always fit in registers
5553 if (Result
.second
.getNode())
5554 DAG
.setRoot(Result
.second
);
5557 void SelectionDAGLowering::visitFree(FreeInst
&I
) {
5558 TargetLowering::ArgListTy Args
;
5559 TargetLowering::ArgListEntry Entry
;
5560 Entry
.Node
= getValue(I
.getOperand(0));
5561 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*DAG
.getContext());
5562 Args
.push_back(Entry
);
5563 EVT IntPtr
= TLI
.getPointerTy();
5564 bool isTailCall
= PerformTailCallOpt
&&
5565 isInTailCallPosition(&I
, Attribute::None
, TLI
);
5566 std::pair
<SDValue
,SDValue
> Result
=
5567 TLI
.LowerCallTo(getRoot(), Type::getVoidTy(*DAG
.getContext()),
5568 false, false, false, false,
5569 0, CallingConv::C
, isTailCall
,
5570 /*isReturnValueUsed=*/true,
5571 DAG
.getExternalSymbol("free", IntPtr
), Args
, DAG
,
5573 if (Result
.second
.getNode())
5574 DAG
.setRoot(Result
.second
);
5577 void SelectionDAGLowering::visitVAStart(CallInst
&I
) {
5578 DAG
.setRoot(DAG
.getNode(ISD::VASTART
, getCurDebugLoc(),
5579 MVT::Other
, getRoot(),
5580 getValue(I
.getOperand(1)),
5581 DAG
.getSrcValue(I
.getOperand(1))));
5584 void SelectionDAGLowering::visitVAArg(VAArgInst
&I
) {
5585 SDValue V
= DAG
.getVAArg(TLI
.getValueType(I
.getType()), getCurDebugLoc(),
5586 getRoot(), getValue(I
.getOperand(0)),
5587 DAG
.getSrcValue(I
.getOperand(0)));
5589 DAG
.setRoot(V
.getValue(1));
5592 void SelectionDAGLowering::visitVAEnd(CallInst
&I
) {
5593 DAG
.setRoot(DAG
.getNode(ISD::VAEND
, getCurDebugLoc(),
5594 MVT::Other
, getRoot(),
5595 getValue(I
.getOperand(1)),
5596 DAG
.getSrcValue(I
.getOperand(1))));
5599 void SelectionDAGLowering::visitVACopy(CallInst
&I
) {
5600 DAG
.setRoot(DAG
.getNode(ISD::VACOPY
, getCurDebugLoc(),
5601 MVT::Other
, getRoot(),
5602 getValue(I
.getOperand(1)),
5603 getValue(I
.getOperand(2)),
5604 DAG
.getSrcValue(I
.getOperand(1)),
5605 DAG
.getSrcValue(I
.getOperand(2))));
5608 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5609 /// implementation, which just calls LowerCall.
5610 /// FIXME: When all targets are
5611 /// migrated to using LowerCall, this hook should be integrated into SDISel.
5612 std::pair
<SDValue
, SDValue
>
5613 TargetLowering::LowerCallTo(SDValue Chain
, const Type
*RetTy
,
5614 bool RetSExt
, bool RetZExt
, bool isVarArg
,
5615 bool isInreg
, unsigned NumFixedArgs
,
5616 unsigned CallConv
, bool isTailCall
,
5617 bool isReturnValueUsed
,
5619 ArgListTy
&Args
, SelectionDAG
&DAG
, DebugLoc dl
) {
5621 assert((!isTailCall
|| PerformTailCallOpt
) &&
5622 "isTailCall set when tail-call optimizations are disabled!");
5624 // Handle all of the outgoing arguments.
5625 SmallVector
<ISD::OutputArg
, 32> Outs
;
5626 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
5627 SmallVector
<EVT
, 4> ValueVTs
;
5628 ComputeValueVTs(*this, Args
[i
].Ty
, ValueVTs
);
5629 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
5630 Value
!= NumValues
; ++Value
) {
5631 EVT VT
= ValueVTs
[Value
];
5632 const Type
*ArgTy
= VT
.getTypeForEVT(RetTy
->getContext());
5633 SDValue Op
= SDValue(Args
[i
].Node
.getNode(),
5634 Args
[i
].Node
.getResNo() + Value
);
5635 ISD::ArgFlagsTy Flags
;
5636 unsigned OriginalAlignment
=
5637 getTargetData()->getABITypeAlignment(ArgTy
);
5643 if (Args
[i
].isInReg
)
5647 if (Args
[i
].isByVal
) {
5649 const PointerType
*Ty
= cast
<PointerType
>(Args
[i
].Ty
);
5650 const Type
*ElementTy
= Ty
->getElementType();
5651 unsigned FrameAlign
= getByValTypeAlignment(ElementTy
);
5652 unsigned FrameSize
= getTargetData()->getTypeAllocSize(ElementTy
);
5653 // For ByVal, alignment should come from FE. BE will guess if this
5654 // info is not there but there are cases it cannot get right.
5655 if (Args
[i
].Alignment
)
5656 FrameAlign
= Args
[i
].Alignment
;
5657 Flags
.setByValAlign(FrameAlign
);
5658 Flags
.setByValSize(FrameSize
);
5662 Flags
.setOrigAlign(OriginalAlignment
);
5664 EVT PartVT
= getRegisterType(RetTy
->getContext(), VT
);
5665 unsigned NumParts
= getNumRegisters(RetTy
->getContext(), VT
);
5666 SmallVector
<SDValue
, 4> Parts(NumParts
);
5667 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
5670 ExtendKind
= ISD::SIGN_EXTEND
;
5671 else if (Args
[i
].isZExt
)
5672 ExtendKind
= ISD::ZERO_EXTEND
;
5674 getCopyToParts(DAG
, dl
, Op
, &Parts
[0], NumParts
, PartVT
, ExtendKind
);
5676 for (unsigned j
= 0; j
!= NumParts
; ++j
) {
5677 // if it isn't first piece, alignment must be 1
5678 ISD::OutputArg
MyFlags(Flags
, Parts
[j
], i
< NumFixedArgs
);
5679 if (NumParts
> 1 && j
== 0)
5680 MyFlags
.Flags
.setSplit();
5682 MyFlags
.Flags
.setOrigAlign(1);
5684 Outs
.push_back(MyFlags
);
5689 // Handle the incoming return values from the call.
5690 SmallVector
<ISD::InputArg
, 32> Ins
;
5691 SmallVector
<EVT
, 4> RetTys
;
5692 ComputeValueVTs(*this, RetTy
, RetTys
);
5693 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
5695 EVT RegisterVT
= getRegisterType(RetTy
->getContext(), VT
);
5696 unsigned NumRegs
= getNumRegisters(RetTy
->getContext(), VT
);
5697 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
5698 ISD::InputArg MyFlags
;
5699 MyFlags
.VT
= RegisterVT
;
5700 MyFlags
.Used
= isReturnValueUsed
;
5702 MyFlags
.Flags
.setSExt();
5704 MyFlags
.Flags
.setZExt();
5706 MyFlags
.Flags
.setInReg();
5707 Ins
.push_back(MyFlags
);
5711 // Check if target-dependent constraints permit a tail call here.
5712 // Target-independent constraints should be checked by the caller.
5714 !IsEligibleForTailCallOptimization(Callee
, CallConv
, isVarArg
, Ins
, DAG
))
5717 SmallVector
<SDValue
, 4> InVals
;
5718 Chain
= LowerCall(Chain
, Callee
, CallConv
, isVarArg
, isTailCall
,
5719 Outs
, Ins
, dl
, DAG
, InVals
);
5721 // Verify that the target's LowerCall behaved as expected.
5722 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
5723 "LowerCall didn't return a valid chain!");
5724 assert((!isTailCall
|| InVals
.empty()) &&
5725 "LowerCall emitted a return value for a tail call!");
5726 assert((isTailCall
|| InVals
.size() == Ins
.size()) &&
5727 "LowerCall didn't emit the correct number of values!");
5728 DEBUG(for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
5729 assert(InVals
[i
].getNode() &&
5730 "LowerCall emitted a null value!");
5731 assert(Ins
[i
].VT
== InVals
[i
].getValueType() &&
5732 "LowerCall emitted a value with the wrong type!");
5735 // For a tail call, the return value is merely live-out and there aren't
5736 // any nodes in the DAG representing it. Return a special value to
5737 // indicate that a tail call has been emitted and no more Instructions
5738 // should be processed in the current block.
5741 return std::make_pair(SDValue(), SDValue());
5744 // Collect the legal value parts into potentially illegal values
5745 // that correspond to the original function's return values.
5746 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
5748 AssertOp
= ISD::AssertSext
;
5750 AssertOp
= ISD::AssertZext
;
5751 SmallVector
<SDValue
, 4> ReturnValues
;
5752 unsigned CurReg
= 0;
5753 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
5755 EVT RegisterVT
= getRegisterType(RetTy
->getContext(), VT
);
5756 unsigned NumRegs
= getNumRegisters(RetTy
->getContext(), VT
);
5758 SDValue ReturnValue
=
5759 getCopyFromParts(DAG
, dl
, &InVals
[CurReg
], NumRegs
, RegisterVT
, VT
,
5761 ReturnValues
.push_back(ReturnValue
);
5765 // For a function returning void, there is no return value. We can't create
5766 // such a node, so we just return a null return value in that case. In
5767 // that case, nothing will actualy look at the value.
5768 if (ReturnValues
.empty())
5769 return std::make_pair(SDValue(), Chain
);
5771 SDValue Res
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
5772 DAG
.getVTList(&RetTys
[0], RetTys
.size()),
5773 &ReturnValues
[0], ReturnValues
.size());
5775 return std::make_pair(Res
, Chain
);
5778 void TargetLowering::LowerOperationWrapper(SDNode
*N
,
5779 SmallVectorImpl
<SDValue
> &Results
,
5780 SelectionDAG
&DAG
) {
5781 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
5783 Results
.push_back(Res
);
5786 SDValue
TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) {
5787 llvm_unreachable("LowerOperation not implemented for this target!");
5792 void SelectionDAGLowering::CopyValueToVirtualRegister(Value
*V
, unsigned Reg
) {
5793 SDValue Op
= getValue(V
);
5794 assert((Op
.getOpcode() != ISD::CopyFromReg
||
5795 cast
<RegisterSDNode
>(Op
.getOperand(1))->getReg() != Reg
) &&
5796 "Copy from a reg to the same reg!");
5797 assert(!TargetRegisterInfo::isPhysicalRegister(Reg
) && "Is a physreg");
5799 RegsForValue
RFV(V
->getContext(), TLI
, Reg
, V
->getType());
5800 SDValue Chain
= DAG
.getEntryNode();
5801 RFV
.getCopyToRegs(Op
, DAG
, getCurDebugLoc(), Chain
, 0);
5802 PendingExports
.push_back(Chain
);
5805 #include "llvm/CodeGen/SelectionDAGISel.h"
5807 void SelectionDAGISel::
5808 LowerArguments(BasicBlock
*LLVMBB
) {
5809 // If this is the entry block, emit arguments.
5810 Function
&F
= *LLVMBB
->getParent();
5811 SelectionDAG
&DAG
= SDL
->DAG
;
5812 SDValue OldRoot
= DAG
.getRoot();
5813 DebugLoc dl
= SDL
->getCurDebugLoc();
5814 const TargetData
*TD
= TLI
.getTargetData();
5816 // Set up the incoming argument description vector.
5817 SmallVector
<ISD::InputArg
, 16> Ins
;
5819 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
5820 I
!= E
; ++I
, ++Idx
) {
5821 SmallVector
<EVT
, 4> ValueVTs
;
5822 ComputeValueVTs(TLI
, I
->getType(), ValueVTs
);
5823 bool isArgValueUsed
= !I
->use_empty();
5824 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
5825 Value
!= NumValues
; ++Value
) {
5826 EVT VT
= ValueVTs
[Value
];
5827 const Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
5828 ISD::ArgFlagsTy Flags
;
5829 unsigned OriginalAlignment
=
5830 TD
->getABITypeAlignment(ArgTy
);
5832 if (F
.paramHasAttr(Idx
, Attribute::ZExt
))
5834 if (F
.paramHasAttr(Idx
, Attribute::SExt
))
5836 if (F
.paramHasAttr(Idx
, Attribute::InReg
))
5838 if (F
.paramHasAttr(Idx
, Attribute::StructRet
))
5840 if (F
.paramHasAttr(Idx
, Attribute::ByVal
)) {
5842 const PointerType
*Ty
= cast
<PointerType
>(I
->getType());
5843 const Type
*ElementTy
= Ty
->getElementType();
5844 unsigned FrameAlign
= TLI
.getByValTypeAlignment(ElementTy
);
5845 unsigned FrameSize
= TD
->getTypeAllocSize(ElementTy
);
5846 // For ByVal, alignment should be passed from FE. BE will guess if
5847 // this info is not there but there are cases it cannot get right.
5848 if (F
.getParamAlignment(Idx
))
5849 FrameAlign
= F
.getParamAlignment(Idx
);
5850 Flags
.setByValAlign(FrameAlign
);
5851 Flags
.setByValSize(FrameSize
);
5853 if (F
.paramHasAttr(Idx
, Attribute::Nest
))
5855 Flags
.setOrigAlign(OriginalAlignment
);
5857 EVT RegisterVT
= TLI
.getRegisterType(*CurDAG
->getContext(), VT
);
5858 unsigned NumRegs
= TLI
.getNumRegisters(*CurDAG
->getContext(), VT
);
5859 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
5860 ISD::InputArg
MyFlags(Flags
, RegisterVT
, isArgValueUsed
);
5861 if (NumRegs
> 1 && i
== 0)
5862 MyFlags
.Flags
.setSplit();
5863 // if it isn't first piece, alignment must be 1
5865 MyFlags
.Flags
.setOrigAlign(1);
5866 Ins
.push_back(MyFlags
);
5871 // Call the target to set up the argument values.
5872 SmallVector
<SDValue
, 8> InVals
;
5873 SDValue NewRoot
= TLI
.LowerFormalArguments(DAG
.getRoot(), F
.getCallingConv(),
5877 // Verify that the target's LowerFormalArguments behaved as expected.
5878 assert(NewRoot
.getNode() && NewRoot
.getValueType() == MVT::Other
&&
5879 "LowerFormalArguments didn't return a valid chain!");
5880 assert(InVals
.size() == Ins
.size() &&
5881 "LowerFormalArguments didn't emit the correct number of values!");
5882 DEBUG(for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
5883 assert(InVals
[i
].getNode() &&
5884 "LowerFormalArguments emitted a null value!");
5885 assert(Ins
[i
].VT
== InVals
[i
].getValueType() &&
5886 "LowerFormalArguments emitted a value with the wrong type!");
5889 // Update the DAG with the new chain value resulting from argument lowering.
5890 DAG
.setRoot(NewRoot
);
5892 // Set up the argument values.
5895 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end(); I
!= E
;
5897 SmallVector
<SDValue
, 4> ArgValues
;
5898 SmallVector
<EVT
, 4> ValueVTs
;
5899 ComputeValueVTs(TLI
, I
->getType(), ValueVTs
);
5900 unsigned NumValues
= ValueVTs
.size();
5901 for (unsigned Value
= 0; Value
!= NumValues
; ++Value
) {
5902 EVT VT
= ValueVTs
[Value
];
5903 EVT PartVT
= TLI
.getRegisterType(*CurDAG
->getContext(), VT
);
5904 unsigned NumParts
= TLI
.getNumRegisters(*CurDAG
->getContext(), VT
);
5906 if (!I
->use_empty()) {
5907 ISD::NodeType AssertOp
= ISD::DELETED_NODE
;
5908 if (F
.paramHasAttr(Idx
, Attribute::SExt
))
5909 AssertOp
= ISD::AssertSext
;
5910 else if (F
.paramHasAttr(Idx
, Attribute::ZExt
))
5911 AssertOp
= ISD::AssertZext
;
5913 ArgValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[i
], NumParts
,
5914 PartVT
, VT
, AssertOp
));
5918 if (!I
->use_empty()) {
5919 SDL
->setValue(I
, DAG
.getMergeValues(&ArgValues
[0], NumValues
,
5920 SDL
->getCurDebugLoc()));
5921 // If this argument is live outside of the entry block, insert a copy from
5922 // whereever we got it to the vreg that other BB's will reference it as.
5923 SDL
->CopyToExportRegsIfNeeded(I
);
5926 assert(i
== InVals
.size() && "Argument register count mismatch!");
5928 // Finally, if the target has anything special to do, allow it to do so.
5929 // FIXME: this should insert code into the DAG!
5930 EmitFunctionEntryCode(F
, SDL
->DAG
.getMachineFunction());
5933 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
5934 /// ensure constants are generated when needed. Remember the virtual registers
5935 /// that need to be added to the Machine PHI nodes as input. We cannot just
5936 /// directly add them, because expansion might result in multiple MBB's for one
5937 /// BB. As such, the start of the BB might correspond to a different MBB than
5941 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock
*LLVMBB
) {
5942 TerminatorInst
*TI
= LLVMBB
->getTerminator();
5944 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
5946 // Check successor nodes' PHI nodes that expect a constant to be available
5948 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
5949 BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
5950 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
5951 MachineBasicBlock
*SuccMBB
= FuncInfo
->MBBMap
[SuccBB
];
5953 // If this terminator has multiple identical successors (common for
5954 // switches), only handle each succ once.
5955 if (!SuccsHandled
.insert(SuccMBB
)) continue;
5957 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
5960 // At this point we know that there is a 1-1 correspondence between LLVM PHI
5961 // nodes and Machine PHI nodes, but the incoming operands have not been
5963 for (BasicBlock::iterator I
= SuccBB
->begin();
5964 (PN
= dyn_cast
<PHINode
>(I
)); ++I
) {
5965 // Ignore dead phi's.
5966 if (PN
->use_empty()) continue;
5969 Value
*PHIOp
= PN
->getIncomingValueForBlock(LLVMBB
);
5971 if (Constant
*C
= dyn_cast
<Constant
>(PHIOp
)) {
5972 unsigned &RegOut
= SDL
->ConstantsOut
[C
];
5974 RegOut
= FuncInfo
->CreateRegForValue(C
);
5975 SDL
->CopyValueToVirtualRegister(C
, RegOut
);
5979 Reg
= FuncInfo
->ValueMap
[PHIOp
];
5981 assert(isa
<AllocaInst
>(PHIOp
) &&
5982 FuncInfo
->StaticAllocaMap
.count(cast
<AllocaInst
>(PHIOp
)) &&
5983 "Didn't codegen value into a register!??");
5984 Reg
= FuncInfo
->CreateRegForValue(PHIOp
);
5985 SDL
->CopyValueToVirtualRegister(PHIOp
, Reg
);
5989 // Remember that this register needs to added to the machine PHI node as
5990 // the input for this MBB.
5991 SmallVector
<EVT
, 4> ValueVTs
;
5992 ComputeValueVTs(TLI
, PN
->getType(), ValueVTs
);
5993 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
5994 EVT VT
= ValueVTs
[vti
];
5995 unsigned NumRegisters
= TLI
.getNumRegisters(*CurDAG
->getContext(), VT
);
5996 for (unsigned i
= 0, e
= NumRegisters
; i
!= e
; ++i
)
5997 SDL
->PHINodesToUpdate
.push_back(std::make_pair(MBBI
++, Reg
+i
));
5998 Reg
+= NumRegisters
;
6002 SDL
->ConstantsOut
.clear();
6005 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6006 /// supports legal types, and it emits MachineInstrs directly instead of
6007 /// creating SelectionDAG nodes.
6010 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock
*LLVMBB
,
6012 TerminatorInst
*TI
= LLVMBB
->getTerminator();
6014 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
6015 unsigned OrigNumPHINodesToUpdate
= SDL
->PHINodesToUpdate
.size();
6017 // Check successor nodes' PHI nodes that expect a constant to be available
6019 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
6020 BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
6021 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
6022 MachineBasicBlock
*SuccMBB
= FuncInfo
->MBBMap
[SuccBB
];
6024 // If this terminator has multiple identical successors (common for
6025 // switches), only handle each succ once.
6026 if (!SuccsHandled
.insert(SuccMBB
)) continue;
6028 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
6031 // At this point we know that there is a 1-1 correspondence between LLVM PHI
6032 // nodes and Machine PHI nodes, but the incoming operands have not been
6034 for (BasicBlock::iterator I
= SuccBB
->begin();
6035 (PN
= dyn_cast
<PHINode
>(I
)); ++I
) {
6036 // Ignore dead phi's.
6037 if (PN
->use_empty()) continue;
6039 // Only handle legal types. Two interesting things to note here. First,
6040 // by bailing out early, we may leave behind some dead instructions,
6041 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6042 // own moves. Second, this check is necessary becuase FastISel doesn't
6043 // use CreateRegForValue to create registers, so it always creates
6044 // exactly one register for each non-void instruction.
6045 EVT VT
= TLI
.getValueType(PN
->getType(), /*AllowUnknown=*/true);
6046 if (VT
== MVT::Other
|| !TLI
.isTypeLegal(VT
)) {
6049 VT
= TLI
.getTypeToTransformTo(*CurDAG
->getContext(), VT
);
6051 SDL
->PHINodesToUpdate
.resize(OrigNumPHINodesToUpdate
);
6056 Value
*PHIOp
= PN
->getIncomingValueForBlock(LLVMBB
);
6058 unsigned Reg
= F
->getRegForValue(PHIOp
);
6060 SDL
->PHINodesToUpdate
.resize(OrigNumPHINodesToUpdate
);
6063 SDL
->PHINodesToUpdate
.push_back(std::make_pair(MBBI
++, Reg
));