Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
blob87fc751c551191f64192aca5c2754a32ed9ad677
1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuild.h"
17 #include "llvm/CodeGen/SelectionDAGISel.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Constants.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/IntrinsicInst.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39 #include "llvm/CodeGen/SchedulerRegistry.h"
40 #include "llvm/CodeGen/SelectionDAG.h"
41 #include "llvm/CodeGen/DwarfWriter.h"
42 #include "llvm/Target/TargetRegisterInfo.h"
43 #include "llvm/Target/TargetData.h"
44 #include "llvm/Target/TargetFrameInfo.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/Timer.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <algorithm>
56 using namespace llvm;
58 static cl::opt<bool>
59 DisableLegalizeTypes("disable-legalize-types", cl::Hidden);
60 static cl::opt<bool>
61 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
62 cl::desc("Enable verbose messages in the \"fast\" "
63 "instruction selector"));
64 static cl::opt<bool>
65 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
66 cl::desc("Enable abort calls when \"fast\" instruction fails"));
67 static cl::opt<bool>
68 SchedLiveInCopies("schedule-livein-copies",
69 cl::desc("Schedule copies of livein registers"),
70 cl::init(false));
72 #ifndef NDEBUG
73 static cl::opt<bool>
74 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
75 cl::desc("Pop up a window to show dags before the first "
76 "dag combine pass"));
77 static cl::opt<bool>
78 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
79 cl::desc("Pop up a window to show dags before legalize types"));
80 static cl::opt<bool>
81 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
82 cl::desc("Pop up a window to show dags before legalize"));
83 static cl::opt<bool>
84 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
85 cl::desc("Pop up a window to show dags before the second "
86 "dag combine pass"));
87 static cl::opt<bool>
88 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
89 cl::desc("Pop up a window to show dags before the post legalize types"
90 " dag combine pass"));
91 static cl::opt<bool>
92 ViewISelDAGs("view-isel-dags", cl::Hidden,
93 cl::desc("Pop up a window to show isel dags as they are selected"));
94 static cl::opt<bool>
95 ViewSchedDAGs("view-sched-dags", cl::Hidden,
96 cl::desc("Pop up a window to show sched dags as they are processed"));
97 static cl::opt<bool>
98 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
99 cl::desc("Pop up a window to show SUnit dags after they are processed"));
100 #else
101 static const bool ViewDAGCombine1 = false,
102 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
103 ViewDAGCombine2 = false,
104 ViewDAGCombineLT = false,
105 ViewISelDAGs = false, ViewSchedDAGs = false,
106 ViewSUnitDAGs = false;
107 #endif
109 //===---------------------------------------------------------------------===//
111 /// RegisterScheduler class - Track the registration of instruction schedulers.
113 //===---------------------------------------------------------------------===//
114 MachinePassRegistry RegisterScheduler::Registry;
116 //===---------------------------------------------------------------------===//
118 /// ISHeuristic command line option for instruction schedulers.
120 //===---------------------------------------------------------------------===//
121 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
122 RegisterPassParser<RegisterScheduler> >
123 ISHeuristic("pre-RA-sched",
124 cl::init(&createDefaultScheduler),
125 cl::desc("Instruction schedulers available (before register"
126 " allocation):"));
128 static RegisterScheduler
129 defaultListDAGScheduler("default", "Best scheduler for the target",
130 createDefaultScheduler);
132 namespace llvm {
133 //===--------------------------------------------------------------------===//
134 /// createDefaultScheduler - This creates an instruction scheduler appropriate
135 /// for the target.
136 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
137 CodeGenOpt::Level OptLevel) {
138 const TargetLowering &TLI = IS->getTargetLowering();
140 if (OptLevel == CodeGenOpt::None)
141 return createFastDAGScheduler(IS, OptLevel);
142 if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
143 return createTDListDAGScheduler(IS, OptLevel);
144 assert(TLI.getSchedulingPreference() ==
145 TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
146 return createBURRListDAGScheduler(IS, OptLevel);
150 // EmitInstrWithCustomInserter - This method should be implemented by targets
151 // that mark instructions with the 'usesCustomDAGSchedInserter' flag. These
152 // instructions are special in various ways, which require special support to
153 // insert. The specified MachineInstr is created but not inserted into any
154 // basic blocks, and the scheduler passes ownership of it to this method.
155 MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
156 MachineBasicBlock *MBB) const {
157 #ifndef NDEBUG
158 cerr << "If a target marks an instruction with "
159 "'usesCustomDAGSchedInserter', it must implement "
160 "TargetLowering::EmitInstrWithCustomInserter!";
161 #endif
162 llvm_unreachable(0);
163 return 0;
166 /// EmitLiveInCopy - Emit a copy for a live in physical register. If the
167 /// physical register has only a single copy use, then coalesced the copy
168 /// if possible.
169 static void EmitLiveInCopy(MachineBasicBlock *MBB,
170 MachineBasicBlock::iterator &InsertPos,
171 unsigned VirtReg, unsigned PhysReg,
172 const TargetRegisterClass *RC,
173 DenseMap<MachineInstr*, unsigned> &CopyRegMap,
174 const MachineRegisterInfo &MRI,
175 const TargetRegisterInfo &TRI,
176 const TargetInstrInfo &TII) {
177 unsigned NumUses = 0;
178 MachineInstr *UseMI = NULL;
179 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
180 UE = MRI.use_end(); UI != UE; ++UI) {
181 UseMI = &*UI;
182 if (++NumUses > 1)
183 break;
186 // If the number of uses is not one, or the use is not a move instruction,
187 // don't coalesce. Also, only coalesce away a virtual register to virtual
188 // register copy.
189 bool Coalesced = false;
190 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
191 if (NumUses == 1 &&
192 TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
193 TargetRegisterInfo::isVirtualRegister(DstReg)) {
194 VirtReg = DstReg;
195 Coalesced = true;
198 // Now find an ideal location to insert the copy.
199 MachineBasicBlock::iterator Pos = InsertPos;
200 while (Pos != MBB->begin()) {
201 MachineInstr *PrevMI = prior(Pos);
202 DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
203 // copyRegToReg might emit multiple instructions to do a copy.
204 unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
205 if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
206 // This is what the BB looks like right now:
207 // r1024 = mov r0
208 // ...
209 // r1 = mov r1024
211 // We want to insert "r1025 = mov r1". Inserting this copy below the
212 // move to r1024 makes it impossible for that move to be coalesced.
214 // r1025 = mov r1
215 // r1024 = mov r0
216 // ...
217 // r1 = mov 1024
218 // r2 = mov 1025
219 break; // Woot! Found a good location.
220 --Pos;
223 bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
224 assert(Emitted && "Unable to issue a live-in copy instruction!\n");
225 (void) Emitted;
227 CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
228 if (Coalesced) {
229 if (&*InsertPos == UseMI) ++InsertPos;
230 MBB->erase(UseMI);
234 /// EmitLiveInCopies - If this is the first basic block in the function,
235 /// and if it has live ins that need to be copied into vregs, emit the
236 /// copies into the block.
237 static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
238 const MachineRegisterInfo &MRI,
239 const TargetRegisterInfo &TRI,
240 const TargetInstrInfo &TII) {
241 if (SchedLiveInCopies) {
242 // Emit the copies at a heuristically-determined location in the block.
243 DenseMap<MachineInstr*, unsigned> CopyRegMap;
244 MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
245 for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
246 E = MRI.livein_end(); LI != E; ++LI)
247 if (LI->second) {
248 const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
249 EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
250 RC, CopyRegMap, MRI, TRI, TII);
252 } else {
253 // Emit the copies into the top of the block.
254 for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
255 E = MRI.livein_end(); LI != E; ++LI)
256 if (LI->second) {
257 const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
258 bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
259 LI->second, LI->first, RC, RC);
260 assert(Emitted && "Unable to issue a live-in copy instruction!\n");
261 (void) Emitted;
266 //===----------------------------------------------------------------------===//
267 // SelectionDAGISel code
268 //===----------------------------------------------------------------------===//
270 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
271 MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
272 FuncInfo(new FunctionLoweringInfo(TLI)),
273 CurDAG(new SelectionDAG(TLI, *FuncInfo)),
274 SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo, OL)),
275 GFI(),
276 OptLevel(OL),
277 DAGSize(0)
280 SelectionDAGISel::~SelectionDAGISel() {
281 delete SDL;
282 delete CurDAG;
283 delete FuncInfo;
286 unsigned SelectionDAGISel::MakeReg(EVT VT) {
287 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
290 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
291 AU.addRequired<AliasAnalysis>();
292 AU.addPreserved<AliasAnalysis>();
293 AU.addRequired<GCModuleInfo>();
294 AU.addPreserved<GCModuleInfo>();
295 AU.addRequired<DwarfWriter>();
296 AU.addPreserved<DwarfWriter>();
297 MachineFunctionPass::getAnalysisUsage(AU);
300 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
301 Function &Fn = *mf.getFunction();
303 // Do some sanity-checking on the command-line options.
304 assert((!EnableFastISelVerbose || EnableFastISel) &&
305 "-fast-isel-verbose requires -fast-isel");
306 assert((!EnableFastISelAbort || EnableFastISel) &&
307 "-fast-isel-abort requires -fast-isel");
309 // Get alias analysis for load/store combining.
310 AA = &getAnalysis<AliasAnalysis>();
312 MF = &mf;
313 const TargetInstrInfo &TII = *TM.getInstrInfo();
314 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
316 if (Fn.hasGC())
317 GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
318 else
319 GFI = 0;
320 RegInfo = &MF->getRegInfo();
321 DEBUG(errs() << "\n\n\n=== " << Fn.getName() << "\n");
323 MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
324 DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
325 CurDAG->init(*MF, MMI, DW);
326 FuncInfo->set(Fn, *MF, *CurDAG, EnableFastISel);
327 SDL->init(GFI, *AA);
329 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
330 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
331 // Mark landing pad.
332 FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
334 SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
336 // If the first basic block in the function has live ins that need to be
337 // copied into vregs, emit the copies into the top of the block before
338 // emitting the code for the block.
339 EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
341 // Add function live-ins to entry block live-in set.
342 for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
343 E = RegInfo->livein_end(); I != E; ++I)
344 MF->begin()->addLiveIn(I->first);
346 #ifndef NDEBUG
347 assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
348 "Not all catch info was assigned to a landing pad!");
349 #endif
351 FuncInfo->clear();
353 return true;
356 static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
357 MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
358 for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
359 if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
360 // Apply the catch info to DestBB.
361 AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
362 #ifndef NDEBUG
363 if (!FLI.MBBMap[SrcBB]->isLandingPad())
364 FLI.CatchInfoFound.insert(EHSel);
365 #endif
369 void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
370 BasicBlock::iterator Begin,
371 BasicBlock::iterator End) {
372 SDL->setCurrentBasicBlock(BB);
374 // Lower all of the non-terminator instructions. If a call is emitted
375 // as a tail call, cease emitting nodes for this block.
376 for (BasicBlock::iterator I = Begin; I != End && !SDL->HasTailCall; ++I)
377 if (!isa<TerminatorInst>(I))
378 SDL->visit(*I);
380 if (!SDL->HasTailCall) {
381 // Ensure that all instructions which are used outside of their defining
382 // blocks are available as virtual registers. Invoke is handled elsewhere.
383 for (BasicBlock::iterator I = Begin; I != End; ++I)
384 if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
385 SDL->CopyToExportRegsIfNeeded(I);
387 // Handle PHI nodes in successor blocks.
388 if (End == LLVMBB->end()) {
389 HandlePHINodesInSuccessorBlocks(LLVMBB);
391 // Lower the terminator after the copies are emitted.
392 SDL->visit(*LLVMBB->getTerminator());
396 // Make sure the root of the DAG is up-to-date.
397 CurDAG->setRoot(SDL->getControlRoot());
399 // Final step, emit the lowered DAG as machine code.
400 CodeGenAndEmitDAG();
401 SDL->clear();
404 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
405 SmallPtrSet<SDNode*, 128> VisitedNodes;
406 SmallVector<SDNode*, 128> Worklist;
408 Worklist.push_back(CurDAG->getRoot().getNode());
410 APInt Mask;
411 APInt KnownZero;
412 APInt KnownOne;
414 while (!Worklist.empty()) {
415 SDNode *N = Worklist.back();
416 Worklist.pop_back();
418 // If we've already seen this node, ignore it.
419 if (!VisitedNodes.insert(N))
420 continue;
422 // Otherwise, add all chain operands to the worklist.
423 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
424 if (N->getOperand(i).getValueType() == MVT::Other)
425 Worklist.push_back(N->getOperand(i).getNode());
427 // If this is a CopyToReg with a vreg dest, process it.
428 if (N->getOpcode() != ISD::CopyToReg)
429 continue;
431 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
432 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
433 continue;
435 // Ignore non-scalar or non-integer values.
436 SDValue Src = N->getOperand(2);
437 EVT SrcVT = Src.getValueType();
438 if (!SrcVT.isInteger() || SrcVT.isVector())
439 continue;
441 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
442 Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
443 CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
445 // Only install this information if it tells us something.
446 if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
447 DestReg -= TargetRegisterInfo::FirstVirtualRegister;
448 if (DestReg >= FuncInfo->LiveOutRegInfo.size())
449 FuncInfo->LiveOutRegInfo.resize(DestReg+1);
450 FunctionLoweringInfo::LiveOutInfo &LOI =
451 FuncInfo->LiveOutRegInfo[DestReg];
452 LOI.NumSignBits = NumSignBits;
453 LOI.KnownOne = KnownOne;
454 LOI.KnownZero = KnownZero;
459 void SelectionDAGISel::CodeGenAndEmitDAG() {
460 std::string GroupName;
461 if (TimePassesIsEnabled)
462 GroupName = "Instruction Selection and Scheduling";
463 std::string BlockName;
464 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
465 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
466 ViewSUnitDAGs)
467 BlockName = MF->getFunction()->getNameStr() + ":" +
468 BB->getBasicBlock()->getNameStr();
470 DOUT << "Initial selection DAG:\n";
471 DEBUG(CurDAG->dump());
473 if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
475 // Run the DAG combiner in pre-legalize mode.
476 if (TimePassesIsEnabled) {
477 NamedRegionTimer T("DAG Combining 1", GroupName);
478 CurDAG->Combine(Unrestricted, *AA, OptLevel);
479 } else {
480 CurDAG->Combine(Unrestricted, *AA, OptLevel);
483 DOUT << "Optimized lowered selection DAG:\n";
484 DEBUG(CurDAG->dump());
486 // Second step, hack on the DAG until it only uses operations and types that
487 // the target supports.
488 if (!DisableLegalizeTypes) {
489 if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
490 BlockName);
492 bool Changed;
493 if (TimePassesIsEnabled) {
494 NamedRegionTimer T("Type Legalization", GroupName);
495 Changed = CurDAG->LegalizeTypes();
496 } else {
497 Changed = CurDAG->LegalizeTypes();
500 DOUT << "Type-legalized selection DAG:\n";
501 DEBUG(CurDAG->dump());
503 if (Changed) {
504 if (ViewDAGCombineLT)
505 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
507 // Run the DAG combiner in post-type-legalize mode.
508 if (TimePassesIsEnabled) {
509 NamedRegionTimer T("DAG Combining after legalize types", GroupName);
510 CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
511 } else {
512 CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
515 DOUT << "Optimized type-legalized selection DAG:\n";
516 DEBUG(CurDAG->dump());
519 if (TimePassesIsEnabled) {
520 NamedRegionTimer T("Vector Legalization", GroupName);
521 Changed = CurDAG->LegalizeVectors();
522 } else {
523 Changed = CurDAG->LegalizeVectors();
526 if (Changed) {
527 if (TimePassesIsEnabled) {
528 NamedRegionTimer T("Type Legalization 2", GroupName);
529 Changed = CurDAG->LegalizeTypes();
530 } else {
531 Changed = CurDAG->LegalizeTypes();
534 if (ViewDAGCombineLT)
535 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
537 // Run the DAG combiner in post-type-legalize mode.
538 if (TimePassesIsEnabled) {
539 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
540 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
541 } else {
542 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
545 DOUT << "Optimized vector-legalized selection DAG:\n";
546 DEBUG(CurDAG->dump());
550 if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
552 if (TimePassesIsEnabled) {
553 NamedRegionTimer T("DAG Legalization", GroupName);
554 CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
555 } else {
556 CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
559 DOUT << "Legalized selection DAG:\n";
560 DEBUG(CurDAG->dump());
562 if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
564 // Run the DAG combiner in post-legalize mode.
565 if (TimePassesIsEnabled) {
566 NamedRegionTimer T("DAG Combining 2", GroupName);
567 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
568 } else {
569 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
572 DOUT << "Optimized legalized selection DAG:\n";
573 DEBUG(CurDAG->dump());
575 if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
577 if (OptLevel != CodeGenOpt::None)
578 ComputeLiveOutVRegInfo();
580 // Third, instruction select all of the operations to machine code, adding the
581 // code to the MachineBasicBlock.
582 if (TimePassesIsEnabled) {
583 NamedRegionTimer T("Instruction Selection", GroupName);
584 InstructionSelect();
585 } else {
586 InstructionSelect();
589 DOUT << "Selected selection DAG:\n";
590 DEBUG(CurDAG->dump());
592 if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
594 // Schedule machine code.
595 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
596 if (TimePassesIsEnabled) {
597 NamedRegionTimer T("Instruction Scheduling", GroupName);
598 Scheduler->Run(CurDAG, BB, BB->end());
599 } else {
600 Scheduler->Run(CurDAG, BB, BB->end());
603 if (ViewSUnitDAGs) Scheduler->viewGraph();
605 // Emit machine code to BB. This can change 'BB' to the last block being
606 // inserted into.
607 if (TimePassesIsEnabled) {
608 NamedRegionTimer T("Instruction Creation", GroupName);
609 BB = Scheduler->EmitSchedule();
610 } else {
611 BB = Scheduler->EmitSchedule();
614 // Free the scheduler state.
615 if (TimePassesIsEnabled) {
616 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
617 delete Scheduler;
618 } else {
619 delete Scheduler;
622 DOUT << "Selected machine code:\n";
623 DEBUG(BB->dump());
626 void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
627 MachineFunction &MF,
628 MachineModuleInfo *MMI,
629 DwarfWriter *DW,
630 const TargetInstrInfo &TII) {
631 // Initialize the Fast-ISel state, if needed.
632 FastISel *FastIS = 0;
633 if (EnableFastISel)
634 FastIS = TLI.createFastISel(MF, MMI, DW,
635 FuncInfo->ValueMap,
636 FuncInfo->MBBMap,
637 FuncInfo->StaticAllocaMap
638 #ifndef NDEBUG
639 , FuncInfo->CatchInfoLost
640 #endif
643 // Iterate over all basic blocks in the function.
644 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
645 BasicBlock *LLVMBB = &*I;
646 BB = FuncInfo->MBBMap[LLVMBB];
648 BasicBlock::iterator const Begin = LLVMBB->begin();
649 BasicBlock::iterator const End = LLVMBB->end();
650 BasicBlock::iterator BI = Begin;
652 // Lower any arguments needed in this block if this is the entry block.
653 bool SuppressFastISel = false;
654 if (LLVMBB == &Fn.getEntryBlock()) {
655 LowerArguments(LLVMBB);
657 // If any of the arguments has the byval attribute, forgo
658 // fast-isel in the entry block.
659 if (FastIS) {
660 unsigned j = 1;
661 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
662 I != E; ++I, ++j)
663 if (Fn.paramHasAttr(j, Attribute::ByVal)) {
664 if (EnableFastISelVerbose || EnableFastISelAbort)
665 cerr << "FastISel skips entry block due to byval argument\n";
666 SuppressFastISel = true;
667 break;
672 if (MMI && BB->isLandingPad()) {
673 // Add a label to mark the beginning of the landing pad. Deletion of the
674 // landing pad can thus be detected via the MachineModuleInfo.
675 unsigned LabelID = MMI->addLandingPad(BB);
677 const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
678 BuildMI(BB, SDL->getCurDebugLoc(), II).addImm(LabelID);
680 // Mark exception register as live in.
681 unsigned Reg = TLI.getExceptionAddressRegister();
682 if (Reg) BB->addLiveIn(Reg);
684 // Mark exception selector register as live in.
685 Reg = TLI.getExceptionSelectorRegister();
686 if (Reg) BB->addLiveIn(Reg);
688 // FIXME: Hack around an exception handling flaw (PR1508): the personality
689 // function and list of typeids logically belong to the invoke (or, if you
690 // like, the basic block containing the invoke), and need to be associated
691 // with it in the dwarf exception handling tables. Currently however the
692 // information is provided by an intrinsic (eh.selector) that can be moved
693 // to unexpected places by the optimizers: if the unwind edge is critical,
694 // then breaking it can result in the intrinsics being in the successor of
695 // the landing pad, not the landing pad itself. This results in exceptions
696 // not being caught because no typeids are associated with the invoke.
697 // This may not be the only way things can go wrong, but it is the only way
698 // we try to work around for the moment.
699 BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
701 if (Br && Br->isUnconditional()) { // Critical edge?
702 BasicBlock::iterator I, E;
703 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
704 if (isa<EHSelectorInst>(I))
705 break;
707 if (I == E)
708 // No catch info found - try to extract some from the successor.
709 copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
713 // Before doing SelectionDAG ISel, see if FastISel has been requested.
714 if (FastIS && !SuppressFastISel) {
715 // Emit code for any incoming arguments. This must happen before
716 // beginning FastISel on the entry block.
717 if (LLVMBB == &Fn.getEntryBlock()) {
718 CurDAG->setRoot(SDL->getControlRoot());
719 CodeGenAndEmitDAG();
720 SDL->clear();
722 FastIS->startNewBlock(BB);
723 // Do FastISel on as many instructions as possible.
724 for (; BI != End; ++BI) {
725 // Just before the terminator instruction, insert instructions to
726 // feed PHI nodes in successor blocks.
727 if (isa<TerminatorInst>(BI))
728 if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
729 if (EnableFastISelVerbose || EnableFastISelAbort) {
730 cerr << "FastISel miss: ";
731 BI->dump();
733 assert(!EnableFastISelAbort &&
734 "FastISel didn't handle a PHI in a successor");
735 break;
738 // First try normal tablegen-generated "fast" selection.
739 if (FastIS->SelectInstruction(BI))
740 continue;
742 // Next, try calling the target to attempt to handle the instruction.
743 if (FastIS->TargetSelectInstruction(BI))
744 continue;
746 // Then handle certain instructions as single-LLVM-Instruction blocks.
747 if (isa<CallInst>(BI)) {
748 if (EnableFastISelVerbose || EnableFastISelAbort) {
749 cerr << "FastISel missed call: ";
750 BI->dump();
753 if (BI->getType() != Type::getVoidTy(*CurDAG->getContext())) {
754 unsigned &R = FuncInfo->ValueMap[BI];
755 if (!R)
756 R = FuncInfo->CreateRegForValue(BI);
759 SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
760 SelectBasicBlock(LLVMBB, BI, next(BI));
761 // If the instruction was codegen'd with multiple blocks,
762 // inform the FastISel object where to resume inserting.
763 FastIS->setCurrentBlock(BB);
764 continue;
767 // Otherwise, give up on FastISel for the rest of the block.
768 // For now, be a little lenient about non-branch terminators.
769 if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
770 if (EnableFastISelVerbose || EnableFastISelAbort) {
771 cerr << "FastISel miss: ";
772 BI->dump();
774 if (EnableFastISelAbort)
775 // The "fast" selector couldn't handle something and bailed.
776 // For the purpose of debugging, just abort.
777 llvm_unreachable("FastISel didn't select the entire block");
779 break;
783 // Run SelectionDAG instruction selection on the remainder of the block
784 // not handled by FastISel. If FastISel is not run, this is the entire
785 // block.
786 if (BI != End) {
787 // If FastISel is run and it has known DebugLoc then use it.
788 if (FastIS && !FastIS->getCurDebugLoc().isUnknown())
789 SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
790 SelectBasicBlock(LLVMBB, BI, End);
793 FinishBasicBlock();
796 delete FastIS;
799 void
800 SelectionDAGISel::FinishBasicBlock() {
802 DOUT << "Target-post-processed machine code:\n";
803 DEBUG(BB->dump());
805 DOUT << "Total amount of phi nodes to update: "
806 << SDL->PHINodesToUpdate.size() << "\n";
807 DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
808 DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
809 << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
811 // Next, now that we know what the last MBB the LLVM BB expanded is, update
812 // PHI nodes in successors.
813 if (SDL->SwitchCases.empty() &&
814 SDL->JTCases.empty() &&
815 SDL->BitTestCases.empty()) {
816 for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
817 MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
818 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
819 "This is not a machine PHI node that we are updating!");
820 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
821 false));
822 PHI->addOperand(MachineOperand::CreateMBB(BB));
824 SDL->PHINodesToUpdate.clear();
825 return;
828 for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
829 // Lower header first, if it wasn't already lowered
830 if (!SDL->BitTestCases[i].Emitted) {
831 // Set the current basic block to the mbb we wish to insert the code into
832 BB = SDL->BitTestCases[i].Parent;
833 SDL->setCurrentBasicBlock(BB);
834 // Emit the code
835 SDL->visitBitTestHeader(SDL->BitTestCases[i]);
836 CurDAG->setRoot(SDL->getRoot());
837 CodeGenAndEmitDAG();
838 SDL->clear();
841 for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
842 // Set the current basic block to the mbb we wish to insert the code into
843 BB = SDL->BitTestCases[i].Cases[j].ThisBB;
844 SDL->setCurrentBasicBlock(BB);
845 // Emit the code
846 if (j+1 != ej)
847 SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
848 SDL->BitTestCases[i].Reg,
849 SDL->BitTestCases[i].Cases[j]);
850 else
851 SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
852 SDL->BitTestCases[i].Reg,
853 SDL->BitTestCases[i].Cases[j]);
856 CurDAG->setRoot(SDL->getRoot());
857 CodeGenAndEmitDAG();
858 SDL->clear();
861 // Update PHI Nodes
862 for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
863 MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
864 MachineBasicBlock *PHIBB = PHI->getParent();
865 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
866 "This is not a machine PHI node that we are updating!");
867 // This is "default" BB. We have two jumps to it. From "header" BB and
868 // from last "case" BB.
869 if (PHIBB == SDL->BitTestCases[i].Default) {
870 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
871 false));
872 PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
873 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
874 false));
875 PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
876 back().ThisBB));
878 // One of "cases" BB.
879 for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
880 j != ej; ++j) {
881 MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
882 if (cBB->succ_end() !=
883 std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
884 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
885 false));
886 PHI->addOperand(MachineOperand::CreateMBB(cBB));
891 SDL->BitTestCases.clear();
893 // If the JumpTable record is filled in, then we need to emit a jump table.
894 // Updating the PHI nodes is tricky in this case, since we need to determine
895 // whether the PHI is a successor of the range check MBB or the jump table MBB
896 for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
897 // Lower header first, if it wasn't already lowered
898 if (!SDL->JTCases[i].first.Emitted) {
899 // Set the current basic block to the mbb we wish to insert the code into
900 BB = SDL->JTCases[i].first.HeaderBB;
901 SDL->setCurrentBasicBlock(BB);
902 // Emit the code
903 SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
904 CurDAG->setRoot(SDL->getRoot());
905 CodeGenAndEmitDAG();
906 SDL->clear();
909 // Set the current basic block to the mbb we wish to insert the code into
910 BB = SDL->JTCases[i].second.MBB;
911 SDL->setCurrentBasicBlock(BB);
912 // Emit the code
913 SDL->visitJumpTable(SDL->JTCases[i].second);
914 CurDAG->setRoot(SDL->getRoot());
915 CodeGenAndEmitDAG();
916 SDL->clear();
918 // Update PHI Nodes
919 for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
920 MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
921 MachineBasicBlock *PHIBB = PHI->getParent();
922 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
923 "This is not a machine PHI node that we are updating!");
924 // "default" BB. We can go there only from header BB.
925 if (PHIBB == SDL->JTCases[i].second.Default) {
926 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
927 false));
928 PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
930 // JT BB. Just iterate over successors here
931 if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
932 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
933 false));
934 PHI->addOperand(MachineOperand::CreateMBB(BB));
938 SDL->JTCases.clear();
940 // If the switch block involved a branch to one of the actual successors, we
941 // need to update PHI nodes in that block.
942 for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
943 MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
944 assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
945 "This is not a machine PHI node that we are updating!");
946 if (BB->isSuccessor(PHI->getParent())) {
947 PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
948 false));
949 PHI->addOperand(MachineOperand::CreateMBB(BB));
953 // If we generated any switch lowering information, build and codegen any
954 // additional DAGs necessary.
955 for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
956 // Set the current basic block to the mbb we wish to insert the code into
957 BB = SDL->SwitchCases[i].ThisBB;
958 SDL->setCurrentBasicBlock(BB);
960 // Emit the code
961 SDL->visitSwitchCase(SDL->SwitchCases[i]);
962 CurDAG->setRoot(SDL->getRoot());
963 CodeGenAndEmitDAG();
964 SDL->clear();
966 // Handle any PHI nodes in successors of this chunk, as if we were coming
967 // from the original BB before switch expansion. Note that PHI nodes can
968 // occur multiple times in PHINodesToUpdate. We have to be very careful to
969 // handle them the right number of times.
970 while ((BB = SDL->SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
971 for (MachineBasicBlock::iterator Phi = BB->begin();
972 Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
973 // This value for this PHI node is recorded in PHINodesToUpdate, get it.
974 for (unsigned pn = 0; ; ++pn) {
975 assert(pn != SDL->PHINodesToUpdate.size() &&
976 "Didn't find PHI entry!");
977 if (SDL->PHINodesToUpdate[pn].first == Phi) {
978 Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
979 second, false));
980 Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
981 break;
986 // Don't process RHS if same block as LHS.
987 if (BB == SDL->SwitchCases[i].FalseBB)
988 SDL->SwitchCases[i].FalseBB = 0;
990 // If we haven't handled the RHS, do so now. Otherwise, we're done.
991 SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
992 SDL->SwitchCases[i].FalseBB = 0;
994 assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
996 SDL->SwitchCases.clear();
998 SDL->PHINodesToUpdate.clear();
1002 /// Create the scheduler. If a specific scheduler was specified
1003 /// via the SchedulerRegistry, use it, otherwise select the
1004 /// one preferred by the target.
1006 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1007 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1009 if (!Ctor) {
1010 Ctor = ISHeuristic;
1011 RegisterScheduler::setDefault(Ctor);
1014 return Ctor(this, OptLevel);
1017 ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1018 return new ScheduleHazardRecognizer();
1021 //===----------------------------------------------------------------------===//
1022 // Helper functions used by the generated instruction selector.
1023 //===----------------------------------------------------------------------===//
1024 // Calls to these methods are generated by tblgen.
1026 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1027 /// the dag combiner simplified the 255, we still want to match. RHS is the
1028 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1029 /// specified in the .td file (e.g. 255).
1030 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1031 int64_t DesiredMaskS) const {
1032 const APInt &ActualMask = RHS->getAPIntValue();
1033 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1035 // If the actual mask exactly matches, success!
1036 if (ActualMask == DesiredMask)
1037 return true;
1039 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1040 if (ActualMask.intersects(~DesiredMask))
1041 return false;
1043 // Otherwise, the DAG Combiner may have proven that the value coming in is
1044 // either already zero or is not demanded. Check for known zero input bits.
1045 APInt NeededMask = DesiredMask & ~ActualMask;
1046 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1047 return true;
1049 // TODO: check to see if missing bits are just not demanded.
1051 // Otherwise, this pattern doesn't match.
1052 return false;
1055 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1056 /// the dag combiner simplified the 255, we still want to match. RHS is the
1057 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1058 /// specified in the .td file (e.g. 255).
1059 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1060 int64_t DesiredMaskS) const {
1061 const APInt &ActualMask = RHS->getAPIntValue();
1062 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1064 // If the actual mask exactly matches, success!
1065 if (ActualMask == DesiredMask)
1066 return true;
1068 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1069 if (ActualMask.intersects(~DesiredMask))
1070 return false;
1072 // Otherwise, the DAG Combiner may have proven that the value coming in is
1073 // either already zero or is not demanded. Check for known zero input bits.
1074 APInt NeededMask = DesiredMask & ~ActualMask;
1076 APInt KnownZero, KnownOne;
1077 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1079 // If all the missing bits in the or are already known to be set, match!
1080 if ((NeededMask & KnownOne) == NeededMask)
1081 return true;
1083 // TODO: check to see if missing bits are just not demanded.
1085 // Otherwise, this pattern doesn't match.
1086 return false;
1090 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1091 /// by tblgen. Others should not call it.
1092 void SelectionDAGISel::
1093 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1094 std::vector<SDValue> InOps;
1095 std::swap(InOps, Ops);
1097 Ops.push_back(InOps[0]); // input chain.
1098 Ops.push_back(InOps[1]); // input asm string.
1100 unsigned i = 2, e = InOps.size();
1101 if (InOps[e-1].getValueType() == MVT::Flag)
1102 --e; // Don't process a flag operand if it is here.
1104 while (i != e) {
1105 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1106 if ((Flags & 7) != 4 /*MEM*/) {
1107 // Just skip over this operand, copying the operands verbatim.
1108 Ops.insert(Ops.end(), InOps.begin()+i,
1109 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1110 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1111 } else {
1112 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1113 "Memory operand with multiple values?");
1114 // Otherwise, this is a memory operand. Ask the target to select it.
1115 std::vector<SDValue> SelOps;
1116 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1117 llvm_report_error("Could not match memory address. Inline asm"
1118 " failure!");
1121 // Add this to the output node.
1122 EVT IntPtrTy = TLI.getPointerTy();
1123 Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1124 IntPtrTy));
1125 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1126 i += 2;
1130 // Add the flag input back if present.
1131 if (e != InOps.size())
1132 Ops.push_back(InOps.back());
1135 /// findFlagUse - Return use of EVT::Flag value produced by the specified
1136 /// SDNode.
1138 static SDNode *findFlagUse(SDNode *N) {
1139 unsigned FlagResNo = N->getNumValues()-1;
1140 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1141 SDUse &Use = I.getUse();
1142 if (Use.getResNo() == FlagResNo)
1143 return Use.getUser();
1145 return NULL;
1148 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1149 /// This function recursively traverses up the operand chain, ignoring
1150 /// certain nodes.
1151 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1152 SDNode *Root,
1153 SmallPtrSet<SDNode*, 16> &Visited) {
1154 if (Use->getNodeId() < Def->getNodeId() ||
1155 !Visited.insert(Use))
1156 return false;
1158 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1159 SDNode *N = Use->getOperand(i).getNode();
1160 if (N == Def) {
1161 if (Use == ImmedUse || Use == Root)
1162 continue; // We are not looking for immediate use.
1163 assert(N != Root);
1164 return true;
1167 // Traverse up the operand chain.
1168 if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1169 return true;
1171 return false;
1174 /// isNonImmUse - Start searching from Root up the DAG to check is Def can
1175 /// be reached. Return true if that's the case. However, ignore direct uses
1176 /// by ImmedUse (which would be U in the example illustrated in
1177 /// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1178 /// case).
1179 /// FIXME: to be really generic, we should allow direct use by any node
1180 /// that is being folded. But realisticly since we only fold loads which
1181 /// have one non-chain use, we only need to watch out for load/op/store
1182 /// and load/op/cmp case where the root (store / cmp) may reach the load via
1183 /// its chain operand.
1184 static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1185 SmallPtrSet<SDNode*, 16> Visited;
1186 return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1189 /// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1190 /// U can be folded during instruction selection that starts at Root and
1191 /// folding N is profitable.
1192 bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1193 SDNode *Root) const {
1194 if (OptLevel == CodeGenOpt::None) return false;
1196 // If Root use can somehow reach N through a path that that doesn't contain
1197 // U then folding N would create a cycle. e.g. In the following
1198 // diagram, Root can reach N through X. If N is folded into into Root, then
1199 // X is both a predecessor and a successor of U.
1201 // [N*] //
1202 // ^ ^ //
1203 // / \ //
1204 // [U*] [X]? //
1205 // ^ ^ //
1206 // \ / //
1207 // \ / //
1208 // [Root*] //
1210 // * indicates nodes to be folded together.
1212 // If Root produces a flag, then it gets (even more) interesting. Since it
1213 // will be "glued" together with its flag use in the scheduler, we need to
1214 // check if it might reach N.
1216 // [N*] //
1217 // ^ ^ //
1218 // / \ //
1219 // [U*] [X]? //
1220 // ^ ^ //
1221 // \ \ //
1222 // \ | //
1223 // [Root*] | //
1224 // ^ | //
1225 // f | //
1226 // | / //
1227 // [Y] / //
1228 // ^ / //
1229 // f / //
1230 // | / //
1231 // [FU] //
1233 // If FU (flag use) indirectly reaches N (the load), and Root folds N
1234 // (call it Fold), then X is a predecessor of FU and a successor of
1235 // Fold. But since Fold and FU are flagged together, this will create
1236 // a cycle in the scheduling graph.
1238 EVT VT = Root->getValueType(Root->getNumValues()-1);
1239 while (VT == MVT::Flag) {
1240 SDNode *FU = findFlagUse(Root);
1241 if (FU == NULL)
1242 break;
1243 Root = FU;
1244 VT = Root->getValueType(Root->getNumValues()-1);
1247 return !isNonImmUse(Root, N, U);
1251 char SelectionDAGISel::ID = 0;