1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/Target/TargetAsmInfo.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/Target/TargetLoweringObjectFile.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/Target/TargetSubtarget.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
32 TLSModel::Model
getTLSModel(const GlobalValue
*GV
, Reloc::Model reloc
) {
33 bool isLocal
= GV
->hasLocalLinkage();
34 bool isDeclaration
= GV
->isDeclaration();
35 // FIXME: what should we do for protected and internal visibility?
36 // For variables, is internal different from hidden?
37 bool isHidden
= GV
->hasHiddenVisibility();
39 if (reloc
== Reloc::PIC_
) {
40 if (isLocal
|| isHidden
)
41 return TLSModel::LocalDynamic
;
43 return TLSModel::GeneralDynamic
;
45 if (!isDeclaration
|| isHidden
)
46 return TLSModel::LocalExec
;
48 return TLSModel::InitialExec
;
53 /// InitLibcallNames - Set default libcall names.
55 static void InitLibcallNames(const char **Names
) {
56 Names
[RTLIB::SHL_I16
] = "__ashlhi3";
57 Names
[RTLIB::SHL_I32
] = "__ashlsi3";
58 Names
[RTLIB::SHL_I64
] = "__ashldi3";
59 Names
[RTLIB::SHL_I128
] = "__ashlti3";
60 Names
[RTLIB::SRL_I16
] = "__lshrhi3";
61 Names
[RTLIB::SRL_I32
] = "__lshrsi3";
62 Names
[RTLIB::SRL_I64
] = "__lshrdi3";
63 Names
[RTLIB::SRL_I128
] = "__lshrti3";
64 Names
[RTLIB::SRA_I16
] = "__ashrhi3";
65 Names
[RTLIB::SRA_I32
] = "__ashrsi3";
66 Names
[RTLIB::SRA_I64
] = "__ashrdi3";
67 Names
[RTLIB::SRA_I128
] = "__ashrti3";
68 Names
[RTLIB::MUL_I16
] = "__mulhi3";
69 Names
[RTLIB::MUL_I32
] = "__mulsi3";
70 Names
[RTLIB::MUL_I64
] = "__muldi3";
71 Names
[RTLIB::MUL_I128
] = "__multi3";
72 Names
[RTLIB::SDIV_I16
] = "__divhi3";
73 Names
[RTLIB::SDIV_I32
] = "__divsi3";
74 Names
[RTLIB::SDIV_I64
] = "__divdi3";
75 Names
[RTLIB::SDIV_I128
] = "__divti3";
76 Names
[RTLIB::UDIV_I16
] = "__udivhi3";
77 Names
[RTLIB::UDIV_I32
] = "__udivsi3";
78 Names
[RTLIB::UDIV_I64
] = "__udivdi3";
79 Names
[RTLIB::UDIV_I128
] = "__udivti3";
80 Names
[RTLIB::SREM_I16
] = "__modhi3";
81 Names
[RTLIB::SREM_I32
] = "__modsi3";
82 Names
[RTLIB::SREM_I64
] = "__moddi3";
83 Names
[RTLIB::SREM_I128
] = "__modti3";
84 Names
[RTLIB::UREM_I16
] = "__umodhi3";
85 Names
[RTLIB::UREM_I32
] = "__umodsi3";
86 Names
[RTLIB::UREM_I64
] = "__umoddi3";
87 Names
[RTLIB::UREM_I128
] = "__umodti3";
88 Names
[RTLIB::NEG_I32
] = "__negsi2";
89 Names
[RTLIB::NEG_I64
] = "__negdi2";
90 Names
[RTLIB::ADD_F32
] = "__addsf3";
91 Names
[RTLIB::ADD_F64
] = "__adddf3";
92 Names
[RTLIB::ADD_F80
] = "__addxf3";
93 Names
[RTLIB::ADD_PPCF128
] = "__gcc_qadd";
94 Names
[RTLIB::SUB_F32
] = "__subsf3";
95 Names
[RTLIB::SUB_F64
] = "__subdf3";
96 Names
[RTLIB::SUB_F80
] = "__subxf3";
97 Names
[RTLIB::SUB_PPCF128
] = "__gcc_qsub";
98 Names
[RTLIB::MUL_F32
] = "__mulsf3";
99 Names
[RTLIB::MUL_F64
] = "__muldf3";
100 Names
[RTLIB::MUL_F80
] = "__mulxf3";
101 Names
[RTLIB::MUL_PPCF128
] = "__gcc_qmul";
102 Names
[RTLIB::DIV_F32
] = "__divsf3";
103 Names
[RTLIB::DIV_F64
] = "__divdf3";
104 Names
[RTLIB::DIV_F80
] = "__divxf3";
105 Names
[RTLIB::DIV_PPCF128
] = "__gcc_qdiv";
106 Names
[RTLIB::REM_F32
] = "fmodf";
107 Names
[RTLIB::REM_F64
] = "fmod";
108 Names
[RTLIB::REM_F80
] = "fmodl";
109 Names
[RTLIB::REM_PPCF128
] = "fmodl";
110 Names
[RTLIB::POWI_F32
] = "__powisf2";
111 Names
[RTLIB::POWI_F64
] = "__powidf2";
112 Names
[RTLIB::POWI_F80
] = "__powixf2";
113 Names
[RTLIB::POWI_PPCF128
] = "__powitf2";
114 Names
[RTLIB::SQRT_F32
] = "sqrtf";
115 Names
[RTLIB::SQRT_F64
] = "sqrt";
116 Names
[RTLIB::SQRT_F80
] = "sqrtl";
117 Names
[RTLIB::SQRT_PPCF128
] = "sqrtl";
118 Names
[RTLIB::LOG_F32
] = "logf";
119 Names
[RTLIB::LOG_F64
] = "log";
120 Names
[RTLIB::LOG_F80
] = "logl";
121 Names
[RTLIB::LOG_PPCF128
] = "logl";
122 Names
[RTLIB::LOG2_F32
] = "log2f";
123 Names
[RTLIB::LOG2_F64
] = "log2";
124 Names
[RTLIB::LOG2_F80
] = "log2l";
125 Names
[RTLIB::LOG2_PPCF128
] = "log2l";
126 Names
[RTLIB::LOG10_F32
] = "log10f";
127 Names
[RTLIB::LOG10_F64
] = "log10";
128 Names
[RTLIB::LOG10_F80
] = "log10l";
129 Names
[RTLIB::LOG10_PPCF128
] = "log10l";
130 Names
[RTLIB::EXP_F32
] = "expf";
131 Names
[RTLIB::EXP_F64
] = "exp";
132 Names
[RTLIB::EXP_F80
] = "expl";
133 Names
[RTLIB::EXP_PPCF128
] = "expl";
134 Names
[RTLIB::EXP2_F32
] = "exp2f";
135 Names
[RTLIB::EXP2_F64
] = "exp2";
136 Names
[RTLIB::EXP2_F80
] = "exp2l";
137 Names
[RTLIB::EXP2_PPCF128
] = "exp2l";
138 Names
[RTLIB::SIN_F32
] = "sinf";
139 Names
[RTLIB::SIN_F64
] = "sin";
140 Names
[RTLIB::SIN_F80
] = "sinl";
141 Names
[RTLIB::SIN_PPCF128
] = "sinl";
142 Names
[RTLIB::COS_F32
] = "cosf";
143 Names
[RTLIB::COS_F64
] = "cos";
144 Names
[RTLIB::COS_F80
] = "cosl";
145 Names
[RTLIB::COS_PPCF128
] = "cosl";
146 Names
[RTLIB::POW_F32
] = "powf";
147 Names
[RTLIB::POW_F64
] = "pow";
148 Names
[RTLIB::POW_F80
] = "powl";
149 Names
[RTLIB::POW_PPCF128
] = "powl";
150 Names
[RTLIB::CEIL_F32
] = "ceilf";
151 Names
[RTLIB::CEIL_F64
] = "ceil";
152 Names
[RTLIB::CEIL_F80
] = "ceill";
153 Names
[RTLIB::CEIL_PPCF128
] = "ceill";
154 Names
[RTLIB::TRUNC_F32
] = "truncf";
155 Names
[RTLIB::TRUNC_F64
] = "trunc";
156 Names
[RTLIB::TRUNC_F80
] = "truncl";
157 Names
[RTLIB::TRUNC_PPCF128
] = "truncl";
158 Names
[RTLIB::RINT_F32
] = "rintf";
159 Names
[RTLIB::RINT_F64
] = "rint";
160 Names
[RTLIB::RINT_F80
] = "rintl";
161 Names
[RTLIB::RINT_PPCF128
] = "rintl";
162 Names
[RTLIB::NEARBYINT_F32
] = "nearbyintf";
163 Names
[RTLIB::NEARBYINT_F64
] = "nearbyint";
164 Names
[RTLIB::NEARBYINT_F80
] = "nearbyintl";
165 Names
[RTLIB::NEARBYINT_PPCF128
] = "nearbyintl";
166 Names
[RTLIB::FLOOR_F32
] = "floorf";
167 Names
[RTLIB::FLOOR_F64
] = "floor";
168 Names
[RTLIB::FLOOR_F80
] = "floorl";
169 Names
[RTLIB::FLOOR_PPCF128
] = "floorl";
170 Names
[RTLIB::FPEXT_F32_F64
] = "__extendsfdf2";
171 Names
[RTLIB::FPROUND_F64_F32
] = "__truncdfsf2";
172 Names
[RTLIB::FPROUND_F80_F32
] = "__truncxfsf2";
173 Names
[RTLIB::FPROUND_PPCF128_F32
] = "__trunctfsf2";
174 Names
[RTLIB::FPROUND_F80_F64
] = "__truncxfdf2";
175 Names
[RTLIB::FPROUND_PPCF128_F64
] = "__trunctfdf2";
176 Names
[RTLIB::FPTOSINT_F32_I8
] = "__fixsfi8";
177 Names
[RTLIB::FPTOSINT_F32_I16
] = "__fixsfi16";
178 Names
[RTLIB::FPTOSINT_F32_I32
] = "__fixsfsi";
179 Names
[RTLIB::FPTOSINT_F32_I64
] = "__fixsfdi";
180 Names
[RTLIB::FPTOSINT_F32_I128
] = "__fixsfti";
181 Names
[RTLIB::FPTOSINT_F64_I32
] = "__fixdfsi";
182 Names
[RTLIB::FPTOSINT_F64_I64
] = "__fixdfdi";
183 Names
[RTLIB::FPTOSINT_F64_I128
] = "__fixdfti";
184 Names
[RTLIB::FPTOSINT_F80_I32
] = "__fixxfsi";
185 Names
[RTLIB::FPTOSINT_F80_I64
] = "__fixxfdi";
186 Names
[RTLIB::FPTOSINT_F80_I128
] = "__fixxfti";
187 Names
[RTLIB::FPTOSINT_PPCF128_I32
] = "__fixtfsi";
188 Names
[RTLIB::FPTOSINT_PPCF128_I64
] = "__fixtfdi";
189 Names
[RTLIB::FPTOSINT_PPCF128_I128
] = "__fixtfti";
190 Names
[RTLIB::FPTOUINT_F32_I8
] = "__fixunssfi8";
191 Names
[RTLIB::FPTOUINT_F32_I16
] = "__fixunssfi16";
192 Names
[RTLIB::FPTOUINT_F32_I32
] = "__fixunssfsi";
193 Names
[RTLIB::FPTOUINT_F32_I64
] = "__fixunssfdi";
194 Names
[RTLIB::FPTOUINT_F32_I128
] = "__fixunssfti";
195 Names
[RTLIB::FPTOUINT_F64_I32
] = "__fixunsdfsi";
196 Names
[RTLIB::FPTOUINT_F64_I64
] = "__fixunsdfdi";
197 Names
[RTLIB::FPTOUINT_F64_I128
] = "__fixunsdfti";
198 Names
[RTLIB::FPTOUINT_F80_I32
] = "__fixunsxfsi";
199 Names
[RTLIB::FPTOUINT_F80_I64
] = "__fixunsxfdi";
200 Names
[RTLIB::FPTOUINT_F80_I128
] = "__fixunsxfti";
201 Names
[RTLIB::FPTOUINT_PPCF128_I32
] = "__fixunstfsi";
202 Names
[RTLIB::FPTOUINT_PPCF128_I64
] = "__fixunstfdi";
203 Names
[RTLIB::FPTOUINT_PPCF128_I128
] = "__fixunstfti";
204 Names
[RTLIB::SINTTOFP_I32_F32
] = "__floatsisf";
205 Names
[RTLIB::SINTTOFP_I32_F64
] = "__floatsidf";
206 Names
[RTLIB::SINTTOFP_I32_F80
] = "__floatsixf";
207 Names
[RTLIB::SINTTOFP_I32_PPCF128
] = "__floatsitf";
208 Names
[RTLIB::SINTTOFP_I64_F32
] = "__floatdisf";
209 Names
[RTLIB::SINTTOFP_I64_F64
] = "__floatdidf";
210 Names
[RTLIB::SINTTOFP_I64_F80
] = "__floatdixf";
211 Names
[RTLIB::SINTTOFP_I64_PPCF128
] = "__floatditf";
212 Names
[RTLIB::SINTTOFP_I128_F32
] = "__floattisf";
213 Names
[RTLIB::SINTTOFP_I128_F64
] = "__floattidf";
214 Names
[RTLIB::SINTTOFP_I128_F80
] = "__floattixf";
215 Names
[RTLIB::SINTTOFP_I128_PPCF128
] = "__floattitf";
216 Names
[RTLIB::UINTTOFP_I32_F32
] = "__floatunsisf";
217 Names
[RTLIB::UINTTOFP_I32_F64
] = "__floatunsidf";
218 Names
[RTLIB::UINTTOFP_I32_F80
] = "__floatunsixf";
219 Names
[RTLIB::UINTTOFP_I32_PPCF128
] = "__floatunsitf";
220 Names
[RTLIB::UINTTOFP_I64_F32
] = "__floatundisf";
221 Names
[RTLIB::UINTTOFP_I64_F64
] = "__floatundidf";
222 Names
[RTLIB::UINTTOFP_I64_F80
] = "__floatundixf";
223 Names
[RTLIB::UINTTOFP_I64_PPCF128
] = "__floatunditf";
224 Names
[RTLIB::UINTTOFP_I128_F32
] = "__floatuntisf";
225 Names
[RTLIB::UINTTOFP_I128_F64
] = "__floatuntidf";
226 Names
[RTLIB::UINTTOFP_I128_F80
] = "__floatuntixf";
227 Names
[RTLIB::UINTTOFP_I128_PPCF128
] = "__floatuntitf";
228 Names
[RTLIB::OEQ_F32
] = "__eqsf2";
229 Names
[RTLIB::OEQ_F64
] = "__eqdf2";
230 Names
[RTLIB::UNE_F32
] = "__nesf2";
231 Names
[RTLIB::UNE_F64
] = "__nedf2";
232 Names
[RTLIB::OGE_F32
] = "__gesf2";
233 Names
[RTLIB::OGE_F64
] = "__gedf2";
234 Names
[RTLIB::OLT_F32
] = "__ltsf2";
235 Names
[RTLIB::OLT_F64
] = "__ltdf2";
236 Names
[RTLIB::OLE_F32
] = "__lesf2";
237 Names
[RTLIB::OLE_F64
] = "__ledf2";
238 Names
[RTLIB::OGT_F32
] = "__gtsf2";
239 Names
[RTLIB::OGT_F64
] = "__gtdf2";
240 Names
[RTLIB::UO_F32
] = "__unordsf2";
241 Names
[RTLIB::UO_F64
] = "__unorddf2";
242 Names
[RTLIB::O_F32
] = "__unordsf2";
243 Names
[RTLIB::O_F64
] = "__unorddf2";
244 Names
[RTLIB::MEMCPY
] = "memcpy";
245 Names
[RTLIB::MEMMOVE
] = "memmove";
246 Names
[RTLIB::MEMSET
] = "memset";
247 Names
[RTLIB::UNWIND_RESUME
] = "_Unwind_Resume";
250 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
252 static void InitLibcallCallingConvs(CallingConv::ID
*CCs
) {
253 for (int i
= 0; i
< RTLIB::UNKNOWN_LIBCALL
; ++i
) {
254 CCs
[i
] = CallingConv::C
;
258 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
259 /// UNKNOWN_LIBCALL if there is none.
260 RTLIB::Libcall
RTLIB::getFPEXT(EVT OpVT
, EVT RetVT
) {
261 if (OpVT
== MVT::f32
) {
262 if (RetVT
== MVT::f64
)
263 return FPEXT_F32_F64
;
265 return UNKNOWN_LIBCALL
;
268 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
269 /// UNKNOWN_LIBCALL if there is none.
270 RTLIB::Libcall
RTLIB::getFPROUND(EVT OpVT
, EVT RetVT
) {
271 if (RetVT
== MVT::f32
) {
272 if (OpVT
== MVT::f64
)
273 return FPROUND_F64_F32
;
274 if (OpVT
== MVT::f80
)
275 return FPROUND_F80_F32
;
276 if (OpVT
== MVT::ppcf128
)
277 return FPROUND_PPCF128_F32
;
278 } else if (RetVT
== MVT::f64
) {
279 if (OpVT
== MVT::f80
)
280 return FPROUND_F80_F64
;
281 if (OpVT
== MVT::ppcf128
)
282 return FPROUND_PPCF128_F64
;
284 return UNKNOWN_LIBCALL
;
287 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
288 /// UNKNOWN_LIBCALL if there is none.
289 RTLIB::Libcall
RTLIB::getFPTOSINT(EVT OpVT
, EVT RetVT
) {
290 if (OpVT
== MVT::f32
) {
291 if (RetVT
== MVT::i8
)
292 return FPTOSINT_F32_I8
;
293 if (RetVT
== MVT::i16
)
294 return FPTOSINT_F32_I16
;
295 if (RetVT
== MVT::i32
)
296 return FPTOSINT_F32_I32
;
297 if (RetVT
== MVT::i64
)
298 return FPTOSINT_F32_I64
;
299 if (RetVT
== MVT::i128
)
300 return FPTOSINT_F32_I128
;
301 } else if (OpVT
== MVT::f64
) {
302 if (RetVT
== MVT::i32
)
303 return FPTOSINT_F64_I32
;
304 if (RetVT
== MVT::i64
)
305 return FPTOSINT_F64_I64
;
306 if (RetVT
== MVT::i128
)
307 return FPTOSINT_F64_I128
;
308 } else if (OpVT
== MVT::f80
) {
309 if (RetVT
== MVT::i32
)
310 return FPTOSINT_F80_I32
;
311 if (RetVT
== MVT::i64
)
312 return FPTOSINT_F80_I64
;
313 if (RetVT
== MVT::i128
)
314 return FPTOSINT_F80_I128
;
315 } else if (OpVT
== MVT::ppcf128
) {
316 if (RetVT
== MVT::i32
)
317 return FPTOSINT_PPCF128_I32
;
318 if (RetVT
== MVT::i64
)
319 return FPTOSINT_PPCF128_I64
;
320 if (RetVT
== MVT::i128
)
321 return FPTOSINT_PPCF128_I128
;
323 return UNKNOWN_LIBCALL
;
326 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
327 /// UNKNOWN_LIBCALL if there is none.
328 RTLIB::Libcall
RTLIB::getFPTOUINT(EVT OpVT
, EVT RetVT
) {
329 if (OpVT
== MVT::f32
) {
330 if (RetVT
== MVT::i8
)
331 return FPTOUINT_F32_I8
;
332 if (RetVT
== MVT::i16
)
333 return FPTOUINT_F32_I16
;
334 if (RetVT
== MVT::i32
)
335 return FPTOUINT_F32_I32
;
336 if (RetVT
== MVT::i64
)
337 return FPTOUINT_F32_I64
;
338 if (RetVT
== MVT::i128
)
339 return FPTOUINT_F32_I128
;
340 } else if (OpVT
== MVT::f64
) {
341 if (RetVT
== MVT::i32
)
342 return FPTOUINT_F64_I32
;
343 if (RetVT
== MVT::i64
)
344 return FPTOUINT_F64_I64
;
345 if (RetVT
== MVT::i128
)
346 return FPTOUINT_F64_I128
;
347 } else if (OpVT
== MVT::f80
) {
348 if (RetVT
== MVT::i32
)
349 return FPTOUINT_F80_I32
;
350 if (RetVT
== MVT::i64
)
351 return FPTOUINT_F80_I64
;
352 if (RetVT
== MVT::i128
)
353 return FPTOUINT_F80_I128
;
354 } else if (OpVT
== MVT::ppcf128
) {
355 if (RetVT
== MVT::i32
)
356 return FPTOUINT_PPCF128_I32
;
357 if (RetVT
== MVT::i64
)
358 return FPTOUINT_PPCF128_I64
;
359 if (RetVT
== MVT::i128
)
360 return FPTOUINT_PPCF128_I128
;
362 return UNKNOWN_LIBCALL
;
365 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
366 /// UNKNOWN_LIBCALL if there is none.
367 RTLIB::Libcall
RTLIB::getSINTTOFP(EVT OpVT
, EVT RetVT
) {
368 if (OpVT
== MVT::i32
) {
369 if (RetVT
== MVT::f32
)
370 return SINTTOFP_I32_F32
;
371 else if (RetVT
== MVT::f64
)
372 return SINTTOFP_I32_F64
;
373 else if (RetVT
== MVT::f80
)
374 return SINTTOFP_I32_F80
;
375 else if (RetVT
== MVT::ppcf128
)
376 return SINTTOFP_I32_PPCF128
;
377 } else if (OpVT
== MVT::i64
) {
378 if (RetVT
== MVT::f32
)
379 return SINTTOFP_I64_F32
;
380 else if (RetVT
== MVT::f64
)
381 return SINTTOFP_I64_F64
;
382 else if (RetVT
== MVT::f80
)
383 return SINTTOFP_I64_F80
;
384 else if (RetVT
== MVT::ppcf128
)
385 return SINTTOFP_I64_PPCF128
;
386 } else if (OpVT
== MVT::i128
) {
387 if (RetVT
== MVT::f32
)
388 return SINTTOFP_I128_F32
;
389 else if (RetVT
== MVT::f64
)
390 return SINTTOFP_I128_F64
;
391 else if (RetVT
== MVT::f80
)
392 return SINTTOFP_I128_F80
;
393 else if (RetVT
== MVT::ppcf128
)
394 return SINTTOFP_I128_PPCF128
;
396 return UNKNOWN_LIBCALL
;
399 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
400 /// UNKNOWN_LIBCALL if there is none.
401 RTLIB::Libcall
RTLIB::getUINTTOFP(EVT OpVT
, EVT RetVT
) {
402 if (OpVT
== MVT::i32
) {
403 if (RetVT
== MVT::f32
)
404 return UINTTOFP_I32_F32
;
405 else if (RetVT
== MVT::f64
)
406 return UINTTOFP_I32_F64
;
407 else if (RetVT
== MVT::f80
)
408 return UINTTOFP_I32_F80
;
409 else if (RetVT
== MVT::ppcf128
)
410 return UINTTOFP_I32_PPCF128
;
411 } else if (OpVT
== MVT::i64
) {
412 if (RetVT
== MVT::f32
)
413 return UINTTOFP_I64_F32
;
414 else if (RetVT
== MVT::f64
)
415 return UINTTOFP_I64_F64
;
416 else if (RetVT
== MVT::f80
)
417 return UINTTOFP_I64_F80
;
418 else if (RetVT
== MVT::ppcf128
)
419 return UINTTOFP_I64_PPCF128
;
420 } else if (OpVT
== MVT::i128
) {
421 if (RetVT
== MVT::f32
)
422 return UINTTOFP_I128_F32
;
423 else if (RetVT
== MVT::f64
)
424 return UINTTOFP_I128_F64
;
425 else if (RetVT
== MVT::f80
)
426 return UINTTOFP_I128_F80
;
427 else if (RetVT
== MVT::ppcf128
)
428 return UINTTOFP_I128_PPCF128
;
430 return UNKNOWN_LIBCALL
;
433 /// InitCmpLibcallCCs - Set default comparison libcall CC.
435 static void InitCmpLibcallCCs(ISD::CondCode
*CCs
) {
436 memset(CCs
, ISD::SETCC_INVALID
, sizeof(ISD::CondCode
)*RTLIB::UNKNOWN_LIBCALL
);
437 CCs
[RTLIB::OEQ_F32
] = ISD::SETEQ
;
438 CCs
[RTLIB::OEQ_F64
] = ISD::SETEQ
;
439 CCs
[RTLIB::UNE_F32
] = ISD::SETNE
;
440 CCs
[RTLIB::UNE_F64
] = ISD::SETNE
;
441 CCs
[RTLIB::OGE_F32
] = ISD::SETGE
;
442 CCs
[RTLIB::OGE_F64
] = ISD::SETGE
;
443 CCs
[RTLIB::OLT_F32
] = ISD::SETLT
;
444 CCs
[RTLIB::OLT_F64
] = ISD::SETLT
;
445 CCs
[RTLIB::OLE_F32
] = ISD::SETLE
;
446 CCs
[RTLIB::OLE_F64
] = ISD::SETLE
;
447 CCs
[RTLIB::OGT_F32
] = ISD::SETGT
;
448 CCs
[RTLIB::OGT_F64
] = ISD::SETGT
;
449 CCs
[RTLIB::UO_F32
] = ISD::SETNE
;
450 CCs
[RTLIB::UO_F64
] = ISD::SETNE
;
451 CCs
[RTLIB::O_F32
] = ISD::SETEQ
;
452 CCs
[RTLIB::O_F64
] = ISD::SETEQ
;
455 /// NOTE: The constructor takes ownership of TLOF.
456 TargetLowering::TargetLowering(TargetMachine
&tm
,TargetLoweringObjectFile
*tlof
)
457 : TM(tm
), TD(TM
.getTargetData()), TLOF(*tlof
) {
458 // All operations default to being supported.
459 memset(OpActions
, 0, sizeof(OpActions
));
460 memset(LoadExtActions
, 0, sizeof(LoadExtActions
));
461 memset(TruncStoreActions
, 0, sizeof(TruncStoreActions
));
462 memset(IndexedModeActions
, 0, sizeof(IndexedModeActions
));
463 memset(ConvertActions
, 0, sizeof(ConvertActions
));
464 memset(CondCodeActions
, 0, sizeof(CondCodeActions
));
466 // Set default actions for various operations.
467 for (unsigned VT
= 0; VT
!= (unsigned)MVT::LAST_VALUETYPE
; ++VT
) {
468 // Default all indexed load / store to expand.
469 for (unsigned IM
= (unsigned)ISD::PRE_INC
;
470 IM
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++IM
) {
471 setIndexedLoadAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
472 setIndexedStoreAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
475 // These operations default to expand.
476 setOperationAction(ISD::FGETSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
477 setOperationAction(ISD::CONCAT_VECTORS
, (MVT::SimpleValueType
)VT
, Expand
);
480 // Most targets ignore the @llvm.prefetch intrinsic.
481 setOperationAction(ISD::PREFETCH
, MVT::Other
, Expand
);
483 // ConstantFP nodes default to expand. Targets can either change this to
484 // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
485 // to optimize expansions for certain constants.
486 setOperationAction(ISD::ConstantFP
, MVT::f32
, Expand
);
487 setOperationAction(ISD::ConstantFP
, MVT::f64
, Expand
);
488 setOperationAction(ISD::ConstantFP
, MVT::f80
, Expand
);
490 // These library functions default to expand.
491 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
492 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
493 setOperationAction(ISD::FLOG10
,MVT::f64
, Expand
);
494 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
495 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
496 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
497 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
498 setOperationAction(ISD::FLOG10
,MVT::f32
, Expand
);
499 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
500 setOperationAction(ISD::FEXP2
, MVT::f32
, Expand
);
502 // Default ISD::TRAP to expand (which turns it into abort).
503 setOperationAction(ISD::TRAP
, MVT::Other
, Expand
);
505 IsLittleEndian
= TD
->isLittleEndian();
506 UsesGlobalOffsetTable
= false;
507 ShiftAmountTy
= PointerTy
= MVT::getIntegerVT(8*TD
->getPointerSize());
508 memset(RegClassForVT
, 0,MVT::LAST_VALUETYPE
*sizeof(TargetRegisterClass
*));
509 memset(TargetDAGCombineArray
, 0, array_lengthof(TargetDAGCombineArray
));
510 maxStoresPerMemset
= maxStoresPerMemcpy
= maxStoresPerMemmove
= 8;
511 allowUnalignedMemoryAccesses
= false;
512 benefitFromCodePlacementOpt
= false;
513 UseUnderscoreSetJmp
= false;
514 UseUnderscoreLongJmp
= false;
515 SelectIsExpensive
= false;
516 IntDivIsCheap
= false;
517 Pow2DivIsCheap
= false;
518 StackPointerRegisterToSaveRestore
= 0;
519 ExceptionPointerRegister
= 0;
520 ExceptionSelectorRegister
= 0;
521 BooleanContents
= UndefinedBooleanContent
;
522 SchedPreferenceInfo
= SchedulingForLatency
;
524 JumpBufAlignment
= 0;
525 IfCvtBlockSizeLimit
= 2;
526 IfCvtDupBlockSizeLimit
= 0;
527 PrefLoopAlignment
= 0;
529 InitLibcallNames(LibcallRoutineNames
);
530 InitCmpLibcallCCs(CmpLibcallCCs
);
531 InitLibcallCallingConvs(LibcallCallingConvs
);
533 // Tell Legalize whether the assembler supports DEBUG_LOC.
534 const TargetAsmInfo
*TASM
= TM
.getTargetAsmInfo();
535 if (!TASM
|| !TASM
->hasDotLocAndDotFile())
536 setOperationAction(ISD::DEBUG_LOC
, MVT::Other
, Expand
);
539 TargetLowering::~TargetLowering() {
543 static unsigned getVectorTypeBreakdownMVT(MVT VT
, MVT
&IntermediateVT
,
544 unsigned &NumIntermediates
,
546 TargetLowering
* TLI
) {
547 // Figure out the right, legal destination reg to copy into.
548 unsigned NumElts
= VT
.getVectorNumElements();
549 MVT EltTy
= VT
.getVectorElementType();
551 unsigned NumVectorRegs
= 1;
553 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
554 // could break down into LHS/RHS like LegalizeDAG does.
555 if (!isPowerOf2_32(NumElts
)) {
556 NumVectorRegs
= NumElts
;
560 // Divide the input until we get to a supported size. This will always
561 // end with a scalar if the target doesn't support vectors.
562 while (NumElts
> 1 && !TLI
->isTypeLegal(MVT::getVectorVT(EltTy
, NumElts
))) {
567 NumIntermediates
= NumVectorRegs
;
569 MVT NewVT
= MVT::getVectorVT(EltTy
, NumElts
);
570 if (!TLI
->isTypeLegal(NewVT
))
572 IntermediateVT
= NewVT
;
574 EVT DestVT
= TLI
->getRegisterType(NewVT
);
576 if (EVT(DestVT
).bitsLT(NewVT
)) {
577 // Value is expanded, e.g. i64 -> i16.
578 return NumVectorRegs
*(NewVT
.getSizeInBits()/DestVT
.getSizeInBits());
580 // Otherwise, promotion or legal types use the same number of registers as
581 // the vector decimated to the appropriate level.
582 return NumVectorRegs
;
588 /// computeRegisterProperties - Once all of the register classes are added,
589 /// this allows us to compute derived properties we expose.
590 void TargetLowering::computeRegisterProperties() {
591 assert(MVT::LAST_VALUETYPE
<= MVT::MAX_ALLOWED_VALUETYPE
&&
592 "Too many value types for ValueTypeActions to hold!");
594 // Everything defaults to needing one register.
595 for (unsigned i
= 0; i
!= MVT::LAST_VALUETYPE
; ++i
) {
596 NumRegistersForVT
[i
] = 1;
597 RegisterTypeForVT
[i
] = TransformToType
[i
] = (MVT::SimpleValueType
)i
;
599 // ...except isVoid, which doesn't need any registers.
600 NumRegistersForVT
[MVT::isVoid
] = 0;
602 // Find the largest integer register class.
603 unsigned LargestIntReg
= MVT::LAST_INTEGER_VALUETYPE
;
604 for (; RegClassForVT
[LargestIntReg
] == 0; --LargestIntReg
)
605 assert(LargestIntReg
!= MVT::i1
&& "No integer registers defined!");
607 // Every integer value type larger than this largest register takes twice as
608 // many registers to represent as the previous ValueType.
609 for (unsigned ExpandedReg
= LargestIntReg
+ 1; ; ++ExpandedReg
) {
610 EVT EVT
= (MVT::SimpleValueType
)ExpandedReg
;
611 if (!EVT
.isInteger())
613 NumRegistersForVT
[ExpandedReg
] = 2*NumRegistersForVT
[ExpandedReg
-1];
614 RegisterTypeForVT
[ExpandedReg
] = (MVT::SimpleValueType
)LargestIntReg
;
615 TransformToType
[ExpandedReg
] = (MVT::SimpleValueType
)(ExpandedReg
- 1);
616 ValueTypeActions
.setTypeAction(EVT
, Expand
);
619 // Inspect all of the ValueType's smaller than the largest integer
620 // register to see which ones need promotion.
621 unsigned LegalIntReg
= LargestIntReg
;
622 for (unsigned IntReg
= LargestIntReg
- 1;
623 IntReg
>= (unsigned)MVT::i1
; --IntReg
) {
624 EVT IVT
= (MVT::SimpleValueType
)IntReg
;
625 if (isTypeLegal(IVT
)) {
626 LegalIntReg
= IntReg
;
628 RegisterTypeForVT
[IntReg
] = TransformToType
[IntReg
] =
629 (MVT::SimpleValueType
)LegalIntReg
;
630 ValueTypeActions
.setTypeAction(IVT
, Promote
);
634 // ppcf128 type is really two f64's.
635 if (!isTypeLegal(MVT::ppcf128
)) {
636 NumRegistersForVT
[MVT::ppcf128
] = 2*NumRegistersForVT
[MVT::f64
];
637 RegisterTypeForVT
[MVT::ppcf128
] = MVT::f64
;
638 TransformToType
[MVT::ppcf128
] = MVT::f64
;
639 ValueTypeActions
.setTypeAction(MVT::ppcf128
, Expand
);
642 // Decide how to handle f64. If the target does not have native f64 support,
643 // expand it to i64 and we will be generating soft float library calls.
644 if (!isTypeLegal(MVT::f64
)) {
645 NumRegistersForVT
[MVT::f64
] = NumRegistersForVT
[MVT::i64
];
646 RegisterTypeForVT
[MVT::f64
] = RegisterTypeForVT
[MVT::i64
];
647 TransformToType
[MVT::f64
] = MVT::i64
;
648 ValueTypeActions
.setTypeAction(MVT::f64
, Expand
);
651 // Decide how to handle f32. If the target does not have native support for
652 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
653 if (!isTypeLegal(MVT::f32
)) {
654 if (isTypeLegal(MVT::f64
)) {
655 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::f64
];
656 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::f64
];
657 TransformToType
[MVT::f32
] = MVT::f64
;
658 ValueTypeActions
.setTypeAction(MVT::f32
, Promote
);
660 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::i32
];
661 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::i32
];
662 TransformToType
[MVT::f32
] = MVT::i32
;
663 ValueTypeActions
.setTypeAction(MVT::f32
, Expand
);
667 // Loop over all of the vector value types to see which need transformations.
668 for (unsigned i
= MVT::FIRST_VECTOR_VALUETYPE
;
669 i
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++i
) {
670 MVT VT
= (MVT::SimpleValueType
)i
;
671 if (!isTypeLegal(VT
)) {
674 unsigned NumIntermediates
;
675 NumRegistersForVT
[i
] =
676 getVectorTypeBreakdownMVT(VT
, IntermediateVT
, NumIntermediates
,
678 RegisterTypeForVT
[i
] = RegisterVT
;
680 // Determine if there is a legal wider type.
681 bool IsLegalWiderType
= false;
682 EVT EltVT
= VT
.getVectorElementType();
683 unsigned NElts
= VT
.getVectorNumElements();
684 for (unsigned nVT
= i
+1; nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
685 EVT SVT
= (MVT::SimpleValueType
)nVT
;
686 if (isTypeLegal(SVT
) && SVT
.getVectorElementType() == EltVT
&&
687 SVT
.getVectorNumElements() > NElts
) {
688 TransformToType
[i
] = SVT
;
689 ValueTypeActions
.setTypeAction(VT
, Promote
);
690 IsLegalWiderType
= true;
694 if (!IsLegalWiderType
) {
695 EVT NVT
= VT
.getPow2VectorType();
697 // Type is already a power of 2. The default action is to split.
698 TransformToType
[i
] = MVT::Other
;
699 ValueTypeActions
.setTypeAction(VT
, Expand
);
701 TransformToType
[i
] = NVT
;
702 ValueTypeActions
.setTypeAction(VT
, Promote
);
709 const char *TargetLowering::getTargetNodeName(unsigned Opcode
) const {
714 MVT::SimpleValueType
TargetLowering::getSetCCResultType(EVT VT
) const {
715 return PointerTy
.SimpleTy
;
718 /// getVectorTypeBreakdown - Vector types are broken down into some number of
719 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
720 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
721 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
723 /// This method returns the number of registers needed, and the VT for each
724 /// register. It also returns the VT and quantity of the intermediate values
725 /// before they are promoted/expanded.
727 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext
&Context
, EVT VT
,
729 unsigned &NumIntermediates
,
730 EVT
&RegisterVT
) const {
731 // Figure out the right, legal destination reg to copy into.
732 unsigned NumElts
= VT
.getVectorNumElements();
733 EVT EltTy
= VT
.getVectorElementType();
735 unsigned NumVectorRegs
= 1;
737 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
738 // could break down into LHS/RHS like LegalizeDAG does.
739 if (!isPowerOf2_32(NumElts
)) {
740 NumVectorRegs
= NumElts
;
744 // Divide the input until we get to a supported size. This will always
745 // end with a scalar if the target doesn't support vectors.
746 while (NumElts
> 1 && !isTypeLegal(
747 EVT::getVectorVT(Context
, EltTy
, NumElts
))) {
752 NumIntermediates
= NumVectorRegs
;
754 EVT NewVT
= EVT::getVectorVT(Context
, EltTy
, NumElts
);
755 if (!isTypeLegal(NewVT
))
757 IntermediateVT
= NewVT
;
759 EVT DestVT
= getRegisterType(Context
, NewVT
);
761 if (DestVT
.bitsLT(NewVT
)) {
762 // Value is expanded, e.g. i64 -> i16.
763 return NumVectorRegs
*(NewVT
.getSizeInBits()/DestVT
.getSizeInBits());
765 // Otherwise, promotion or legal types use the same number of registers as
766 // the vector decimated to the appropriate level.
767 return NumVectorRegs
;
773 /// getWidenVectorType: given a vector type, returns the type to widen to
774 /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
775 /// If there is no vector type that we want to widen to, returns MVT::Other
776 /// When and where to widen is target dependent based on the cost of
777 /// scalarizing vs using the wider vector type.
778 EVT
TargetLowering::getWidenVectorType(EVT VT
) const {
779 assert(VT
.isVector());
783 // Default is not to widen until moved to LegalizeTypes
787 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
788 /// function arguments in the caller parameter area. This is the actual
789 /// alignment, not its logarithm.
790 unsigned TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
791 return TD
->getCallFrameTypeAlignment(Ty
);
794 SDValue
TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
795 SelectionDAG
&DAG
) const {
796 if (usesGlobalOffsetTable())
797 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
802 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
803 // Assume that everything is safe in static mode.
804 if (getTargetMachine().getRelocationModel() == Reloc::Static
)
807 // In dynamic-no-pic mode, assume that known defined values are safe.
808 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC
&&
810 !GA
->getGlobal()->isDeclaration() &&
811 !GA
->getGlobal()->isWeakForLinker())
814 // Otherwise assume nothing is safe.
818 //===----------------------------------------------------------------------===//
819 // Optimization Methods
820 //===----------------------------------------------------------------------===//
822 /// ShrinkDemandedConstant - Check to see if the specified operand of the
823 /// specified instruction is a constant integer. If so, check to see if there
824 /// are any bits set in the constant that are not demanded. If so, shrink the
825 /// constant and return true.
826 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op
,
827 const APInt
&Demanded
) {
828 DebugLoc dl
= Op
.getDebugLoc();
830 // FIXME: ISD::SELECT, ISD::SELECT_CC
831 switch (Op
.getOpcode()) {
836 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
837 if (!C
) return false;
839 if (Op
.getOpcode() == ISD::XOR
&&
840 (C
->getAPIntValue() | (~Demanded
)).isAllOnesValue())
843 // if we can expand it to have all bits set, do it
844 if (C
->getAPIntValue().intersects(~Demanded
)) {
845 EVT VT
= Op
.getValueType();
846 SDValue New
= DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op
.getOperand(0),
847 DAG
.getConstant(Demanded
&
850 return CombineTo(Op
, New
);
860 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
861 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
862 /// cast, but it could be generalized for targets with other types of
863 /// implicit widening casts.
865 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op
,
867 const APInt
&Demanded
,
869 assert(Op
.getNumOperands() == 2 &&
870 "ShrinkDemandedOp only supports binary operators!");
871 assert(Op
.getNode()->getNumValues() == 1 &&
872 "ShrinkDemandedOp only supports nodes with one result!");
874 // Don't do this if the node has another user, which may require the
876 if (!Op
.getNode()->hasOneUse())
879 // Search for the smallest integer type with free casts to and from
880 // Op's type. For expedience, just check power-of-2 integer types.
881 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
882 unsigned SmallVTBits
= BitWidth
- Demanded
.countLeadingZeros();
883 if (!isPowerOf2_32(SmallVTBits
))
884 SmallVTBits
= NextPowerOf2(SmallVTBits
);
885 for (; SmallVTBits
< BitWidth
; SmallVTBits
= NextPowerOf2(SmallVTBits
)) {
886 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), SmallVTBits
);
887 if (TLI
.isTruncateFree(Op
.getValueType(), SmallVT
) &&
888 TLI
.isZExtFree(SmallVT
, Op
.getValueType())) {
889 // We found a type with free casts.
890 SDValue X
= DAG
.getNode(Op
.getOpcode(), dl
, SmallVT
,
891 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
892 Op
.getNode()->getOperand(0)),
893 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
894 Op
.getNode()->getOperand(1)));
895 SDValue Z
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, Op
.getValueType(), X
);
896 return CombineTo(Op
, Z
);
902 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
903 /// DemandedMask bits of the result of Op are ever used downstream. If we can
904 /// use this information to simplify Op, create a new simplified DAG node and
905 /// return true, returning the original and new nodes in Old and New. Otherwise,
906 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
907 /// the expression (used to simplify the caller). The KnownZero/One bits may
908 /// only be accurate for those bits in the DemandedMask.
909 bool TargetLowering::SimplifyDemandedBits(SDValue Op
,
910 const APInt
&DemandedMask
,
913 TargetLoweringOpt
&TLO
,
914 unsigned Depth
) const {
915 unsigned BitWidth
= DemandedMask
.getBitWidth();
916 assert(Op
.getValueSizeInBits() == BitWidth
&&
917 "Mask size mismatches value type size!");
918 APInt NewMask
= DemandedMask
;
919 DebugLoc dl
= Op
.getDebugLoc();
921 // Don't know anything.
922 KnownZero
= KnownOne
= APInt(BitWidth
, 0);
924 // Other users may use these bits.
925 if (!Op
.getNode()->hasOneUse()) {
927 // If not at the root, Just compute the KnownZero/KnownOne bits to
928 // simplify things downstream.
929 TLO
.DAG
.ComputeMaskedBits(Op
, DemandedMask
, KnownZero
, KnownOne
, Depth
);
932 // If this is the root being simplified, allow it to have multiple uses,
933 // just set the NewMask to all bits.
934 NewMask
= APInt::getAllOnesValue(BitWidth
);
935 } else if (DemandedMask
== 0) {
936 // Not demanding any bits from Op.
937 if (Op
.getOpcode() != ISD::UNDEF
)
938 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(Op
.getValueType()));
940 } else if (Depth
== 6) { // Limit search depth.
944 APInt KnownZero2
, KnownOne2
, KnownZeroOut
, KnownOneOut
;
945 switch (Op
.getOpcode()) {
947 // We know all of the bits for a constant!
948 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & NewMask
;
949 KnownZero
= ~KnownOne
& NewMask
;
950 return false; // Don't fall through, will infinitely loop.
952 // If the RHS is a constant, check to see if the LHS would be zero without
953 // using the bits from the RHS. Below, we use knowledge about the RHS to
954 // simplify the LHS, here we're using information from the LHS to simplify
956 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
957 APInt LHSZero
, LHSOne
;
958 TLO
.DAG
.ComputeMaskedBits(Op
.getOperand(0), NewMask
,
959 LHSZero
, LHSOne
, Depth
+1);
960 // If the LHS already has zeros where RHSC does, this and is dead.
961 if ((LHSZero
& NewMask
) == (~RHSC
->getAPIntValue() & NewMask
))
962 return TLO
.CombineTo(Op
, Op
.getOperand(0));
963 // If any of the set bits in the RHS are known zero on the LHS, shrink
965 if (TLO
.ShrinkDemandedConstant(Op
, ~LHSZero
& NewMask
))
969 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
970 KnownOne
, TLO
, Depth
+1))
972 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
973 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownZero
& NewMask
,
974 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
976 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
978 // If all of the demanded bits are known one on one side, return the other.
979 // These bits cannot contribute to the result of the 'and'.
980 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
981 return TLO
.CombineTo(Op
, Op
.getOperand(0));
982 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
983 return TLO
.CombineTo(Op
, Op
.getOperand(1));
984 // If all of the demanded bits in the inputs are known zeros, return zero.
985 if ((NewMask
& (KnownZero
|KnownZero2
)) == NewMask
)
986 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, Op
.getValueType()));
987 // If the RHS is a constant, see if we can simplify it.
988 if (TLO
.ShrinkDemandedConstant(Op
, ~KnownZero2
& NewMask
))
990 // If the operation can be done in a smaller type, do so.
991 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
994 // Output known-1 bits are only known if set in both the LHS & RHS.
995 KnownOne
&= KnownOne2
;
996 // Output known-0 are known to be clear if zero in either the LHS | RHS.
997 KnownZero
|= KnownZero2
;
1000 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1001 KnownOne
, TLO
, Depth
+1))
1003 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1004 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownOne
& NewMask
,
1005 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
1007 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1009 // If all of the demanded bits are known zero on one side, return the other.
1010 // These bits cannot contribute to the result of the 'or'.
1011 if ((NewMask
& ~KnownOne2
& KnownZero
) == (~KnownOne2
& NewMask
))
1012 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1013 if ((NewMask
& ~KnownOne
& KnownZero2
) == (~KnownOne
& NewMask
))
1014 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1015 // If all of the potentially set bits on one side are known to be set on
1016 // the other side, just use the 'other' side.
1017 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
1018 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1019 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
1020 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1021 // If the RHS is a constant, see if we can simplify it.
1022 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1024 // If the operation can be done in a smaller type, do so.
1025 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1028 // Output known-0 bits are only known if clear in both the LHS & RHS.
1029 KnownZero
&= KnownZero2
;
1030 // Output known-1 are known to be set if set in either the LHS | RHS.
1031 KnownOne
|= KnownOne2
;
1034 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1035 KnownOne
, TLO
, Depth
+1))
1037 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1038 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
, KnownZero2
,
1039 KnownOne2
, TLO
, Depth
+1))
1041 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1043 // If all of the demanded bits are known zero on one side, return the other.
1044 // These bits cannot contribute to the result of the 'xor'.
1045 if ((KnownZero
& NewMask
) == NewMask
)
1046 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1047 if ((KnownZero2
& NewMask
) == NewMask
)
1048 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1049 // If the operation can be done in a smaller type, do so.
1050 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1053 // If all of the unknown bits are known to be zero on one side or the other
1054 // (but not both) turn this into an *inclusive* or.
1055 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1056 if ((NewMask
& ~KnownZero
& ~KnownZero2
) == 0)
1057 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::OR
, dl
, Op
.getValueType(),
1061 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1062 KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1063 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1064 KnownOneOut
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1066 // If all of the demanded bits on one side are known, and all of the set
1067 // bits on that side are also known to be set on the other side, turn this
1068 // into an AND, as we know the bits will be cleared.
1069 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1070 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
) { // all known
1071 if ((KnownOne
& KnownOne2
) == KnownOne
) {
1072 EVT VT
= Op
.getValueType();
1073 SDValue ANDC
= TLO
.DAG
.getConstant(~KnownOne
& NewMask
, VT
);
1074 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::AND
, dl
, VT
,
1075 Op
.getOperand(0), ANDC
));
1079 // If the RHS is a constant, see if we can simplify it.
1080 // for XOR, we prefer to force bits to 1 if they will make a -1.
1081 // if we can't force bits, try to shrink constant
1082 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1083 APInt Expanded
= C
->getAPIntValue() | (~NewMask
);
1084 // if we can expand it to have all bits set, do it
1085 if (Expanded
.isAllOnesValue()) {
1086 if (Expanded
!= C
->getAPIntValue()) {
1087 EVT VT
= Op
.getValueType();
1088 SDValue New
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
,VT
, Op
.getOperand(0),
1089 TLO
.DAG
.getConstant(Expanded
, VT
));
1090 return TLO
.CombineTo(Op
, New
);
1092 // if it already has all the bits set, nothing to change
1093 // but don't shrink either!
1094 } else if (TLO
.ShrinkDemandedConstant(Op
, NewMask
)) {
1099 KnownZero
= KnownZeroOut
;
1100 KnownOne
= KnownOneOut
;
1103 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero
,
1104 KnownOne
, TLO
, Depth
+1))
1106 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero2
,
1107 KnownOne2
, TLO
, Depth
+1))
1109 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1110 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1112 // If the operands are constants, see if we can simplify them.
1113 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1116 // Only known if known in both the LHS and RHS.
1117 KnownOne
&= KnownOne2
;
1118 KnownZero
&= KnownZero2
;
1120 case ISD::SELECT_CC
:
1121 if (SimplifyDemandedBits(Op
.getOperand(3), NewMask
, KnownZero
,
1122 KnownOne
, TLO
, Depth
+1))
1124 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero2
,
1125 KnownOne2
, TLO
, Depth
+1))
1127 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1128 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1130 // If the operands are constants, see if we can simplify them.
1131 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1134 // Only known if known in both the LHS and RHS.
1135 KnownOne
&= KnownOne2
;
1136 KnownZero
&= KnownZero2
;
1139 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1140 unsigned ShAmt
= SA
->getZExtValue();
1141 SDValue InOp
= Op
.getOperand(0);
1143 // If the shift count is an invalid immediate, don't do anything.
1144 if (ShAmt
>= BitWidth
)
1147 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1148 // single shift. We can do this if the bottom bits (which are shifted
1149 // out) are never demanded.
1150 if (InOp
.getOpcode() == ISD::SRL
&&
1151 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1152 if (ShAmt
&& (NewMask
& APInt::getLowBitsSet(BitWidth
, ShAmt
)) == 0) {
1153 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1154 unsigned Opc
= ISD::SHL
;
1155 int Diff
= ShAmt
-C1
;
1162 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1163 EVT VT
= Op
.getValueType();
1164 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1165 InOp
.getOperand(0), NewSA
));
1169 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
.lshr(ShAmt
),
1170 KnownZero
, KnownOne
, TLO
, Depth
+1))
1172 KnownZero
<<= SA
->getZExtValue();
1173 KnownOne
<<= SA
->getZExtValue();
1174 // low bits known zero.
1175 KnownZero
|= APInt::getLowBitsSet(BitWidth
, SA
->getZExtValue());
1179 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1180 EVT VT
= Op
.getValueType();
1181 unsigned ShAmt
= SA
->getZExtValue();
1182 unsigned VTSize
= VT
.getSizeInBits();
1183 SDValue InOp
= Op
.getOperand(0);
1185 // If the shift count is an invalid immediate, don't do anything.
1186 if (ShAmt
>= BitWidth
)
1189 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1190 // single shift. We can do this if the top bits (which are shifted out)
1191 // are never demanded.
1192 if (InOp
.getOpcode() == ISD::SHL
&&
1193 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1194 if (ShAmt
&& (NewMask
& APInt::getHighBitsSet(VTSize
, ShAmt
)) == 0) {
1195 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1196 unsigned Opc
= ISD::SRL
;
1197 int Diff
= ShAmt
-C1
;
1204 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1205 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1206 InOp
.getOperand(0), NewSA
));
1210 // Compute the new bits that are at the top now.
1211 if (SimplifyDemandedBits(InOp
, (NewMask
<< ShAmt
),
1212 KnownZero
, KnownOne
, TLO
, Depth
+1))
1214 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1215 KnownZero
= KnownZero
.lshr(ShAmt
);
1216 KnownOne
= KnownOne
.lshr(ShAmt
);
1218 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1219 KnownZero
|= HighBits
; // High bits known zero.
1223 // If this is an arithmetic shift right and only the low-bit is set, we can
1224 // always convert this into a logical shr, even if the shift amount is
1225 // variable. The low bit of the shift cannot be an input sign bit unless
1226 // the shift amount is >= the size of the datatype, which is undefined.
1227 if (DemandedMask
== 1)
1228 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, Op
.getValueType(),
1229 Op
.getOperand(0), Op
.getOperand(1)));
1231 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1232 EVT VT
= Op
.getValueType();
1233 unsigned ShAmt
= SA
->getZExtValue();
1235 // If the shift count is an invalid immediate, don't do anything.
1236 if (ShAmt
>= BitWidth
)
1239 APInt InDemandedMask
= (NewMask
<< ShAmt
);
1241 // If any of the demanded bits are produced by the sign extension, we also
1242 // demand the input sign bit.
1243 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1244 if (HighBits
.intersects(NewMask
))
1245 InDemandedMask
|= APInt::getSignBit(VT
.getSizeInBits());
1247 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedMask
,
1248 KnownZero
, KnownOne
, TLO
, Depth
+1))
1250 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1251 KnownZero
= KnownZero
.lshr(ShAmt
);
1252 KnownOne
= KnownOne
.lshr(ShAmt
);
1254 // Handle the sign bit, adjusted to where it is now in the mask.
1255 APInt SignBit
= APInt::getSignBit(BitWidth
).lshr(ShAmt
);
1257 // If the input sign bit is known to be zero, or if none of the top bits
1258 // are demanded, turn this into an unsigned shift right.
1259 if (KnownZero
.intersects(SignBit
) || (HighBits
& ~NewMask
) == HighBits
) {
1260 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
,
1263 } else if (KnownOne
.intersects(SignBit
)) { // New bits are known one.
1264 KnownOne
|= HighBits
;
1268 case ISD::SIGN_EXTEND_INREG
: {
1269 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1271 // Sign extension. Compute the demanded bits in the result that are not
1272 // present in the input.
1273 APInt NewBits
= APInt::getHighBitsSet(BitWidth
,
1274 BitWidth
- EVT
.getSizeInBits()) &
1277 // If none of the extended bits are demanded, eliminate the sextinreg.
1279 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1281 APInt InSignBit
= APInt::getSignBit(EVT
.getSizeInBits());
1282 InSignBit
.zext(BitWidth
);
1283 APInt InputDemandedBits
= APInt::getLowBitsSet(BitWidth
,
1284 EVT
.getSizeInBits()) &
1287 // Since the sign extended bits are demanded, we know that the sign
1289 InputDemandedBits
|= InSignBit
;
1291 if (SimplifyDemandedBits(Op
.getOperand(0), InputDemandedBits
,
1292 KnownZero
, KnownOne
, TLO
, Depth
+1))
1294 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1296 // If the sign bit of the input is known set or clear, then we know the
1297 // top bits of the result.
1299 // If the input sign bit is known zero, convert this into a zero extension.
1300 if (KnownZero
.intersects(InSignBit
))
1301 return TLO
.CombineTo(Op
,
1302 TLO
.DAG
.getZeroExtendInReg(Op
.getOperand(0),dl
,EVT
));
1304 if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1305 KnownOne
|= NewBits
;
1306 KnownZero
&= ~NewBits
;
1307 } else { // Input sign bit unknown
1308 KnownZero
&= ~NewBits
;
1309 KnownOne
&= ~NewBits
;
1313 case ISD::ZERO_EXTEND
: {
1314 unsigned OperandBitWidth
= Op
.getOperand(0).getValueSizeInBits();
1315 APInt InMask
= NewMask
;
1316 InMask
.trunc(OperandBitWidth
);
1318 // If none of the top bits are demanded, convert this into an any_extend.
1320 APInt::getHighBitsSet(BitWidth
, BitWidth
- OperandBitWidth
) & NewMask
;
1321 if (!NewBits
.intersects(NewMask
))
1322 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1326 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1327 KnownZero
, KnownOne
, TLO
, Depth
+1))
1329 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1330 KnownZero
.zext(BitWidth
);
1331 KnownOne
.zext(BitWidth
);
1332 KnownZero
|= NewBits
;
1335 case ISD::SIGN_EXTEND
: {
1336 EVT InVT
= Op
.getOperand(0).getValueType();
1337 unsigned InBits
= InVT
.getSizeInBits();
1338 APInt InMask
= APInt::getLowBitsSet(BitWidth
, InBits
);
1339 APInt InSignBit
= APInt::getBitsSet(BitWidth
, InBits
- 1, InBits
);
1340 APInt NewBits
= ~InMask
& NewMask
;
1342 // If none of the top bits are demanded, convert this into an any_extend.
1344 return TLO
.CombineTo(Op
,TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1348 // Since some of the sign extended bits are demanded, we know that the sign
1350 APInt InDemandedBits
= InMask
& NewMask
;
1351 InDemandedBits
|= InSignBit
;
1352 InDemandedBits
.trunc(InBits
);
1354 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedBits
, KnownZero
,
1355 KnownOne
, TLO
, Depth
+1))
1357 KnownZero
.zext(BitWidth
);
1358 KnownOne
.zext(BitWidth
);
1360 // If the sign bit is known zero, convert this to a zero extend.
1361 if (KnownZero
.intersects(InSignBit
))
1362 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
1366 // If the sign bit is known one, the top bits match.
1367 if (KnownOne
.intersects(InSignBit
)) {
1368 KnownOne
|= NewBits
;
1369 KnownZero
&= ~NewBits
;
1370 } else { // Otherwise, top bits aren't known.
1371 KnownOne
&= ~NewBits
;
1372 KnownZero
&= ~NewBits
;
1376 case ISD::ANY_EXTEND
: {
1377 unsigned OperandBitWidth
= Op
.getOperand(0).getValueSizeInBits();
1378 APInt InMask
= NewMask
;
1379 InMask
.trunc(OperandBitWidth
);
1380 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1381 KnownZero
, KnownOne
, TLO
, Depth
+1))
1383 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1384 KnownZero
.zext(BitWidth
);
1385 KnownOne
.zext(BitWidth
);
1388 case ISD::TRUNCATE
: {
1389 // Simplify the input, using demanded bit information, and compute the known
1390 // zero/one bits live out.
1391 APInt TruncMask
= NewMask
;
1392 TruncMask
.zext(Op
.getOperand(0).getValueSizeInBits());
1393 if (SimplifyDemandedBits(Op
.getOperand(0), TruncMask
,
1394 KnownZero
, KnownOne
, TLO
, Depth
+1))
1396 KnownZero
.trunc(BitWidth
);
1397 KnownOne
.trunc(BitWidth
);
1399 // If the input is only used by this truncate, see if we can shrink it based
1400 // on the known demanded bits.
1401 if (Op
.getOperand(0).getNode()->hasOneUse()) {
1402 SDValue In
= Op
.getOperand(0);
1403 unsigned InBitWidth
= In
.getValueSizeInBits();
1404 switch (In
.getOpcode()) {
1407 // Shrink SRL by a constant if none of the high bits shifted in are
1409 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(In
.getOperand(1))){
1410 APInt HighBits
= APInt::getHighBitsSet(InBitWidth
,
1411 InBitWidth
- BitWidth
);
1412 HighBits
= HighBits
.lshr(ShAmt
->getZExtValue());
1413 HighBits
.trunc(BitWidth
);
1415 if (ShAmt
->getZExtValue() < BitWidth
&& !(HighBits
& NewMask
)) {
1416 // None of the shifted in bits are needed. Add a truncate of the
1417 // shift input, then shift it.
1418 SDValue NewTrunc
= TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
,
1421 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
,
1431 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1434 case ISD::AssertZext
: {
1435 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1436 APInt InMask
= APInt::getLowBitsSet(BitWidth
,
1437 VT
.getSizeInBits());
1438 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
& NewMask
,
1439 KnownZero
, KnownOne
, TLO
, Depth
+1))
1441 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1442 KnownZero
|= ~InMask
& NewMask
;
1445 case ISD::BIT_CONVERT
:
1447 // If this is an FP->Int bitcast and if the sign bit is the only thing that
1448 // is demanded, turn this into a FGETSIGN.
1449 if (NewMask
== EVT::getIntegerVTSignBit(Op
.getValueType()) &&
1450 MVT::isFloatingPoint(Op
.getOperand(0).getValueType()) &&
1451 !MVT::isVector(Op
.getOperand(0).getValueType())) {
1452 // Only do this xform if FGETSIGN is valid or if before legalize.
1453 if (!TLO
.AfterLegalize
||
1454 isOperationLegal(ISD::FGETSIGN
, Op
.getValueType())) {
1455 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1456 // place. We expect the SHL to be eliminated by other optimizations.
1457 SDValue Sign
= TLO
.DAG
.getNode(ISD::FGETSIGN
, Op
.getValueType(),
1459 unsigned ShVal
= Op
.getValueType().getSizeInBits()-1;
1460 SDValue ShAmt
= TLO
.DAG
.getConstant(ShVal
, getShiftAmountTy());
1461 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SHL
, Op
.getValueType(),
1470 // Add, Sub, and Mul don't demand any bits in positions beyond that
1471 // of the highest bit demanded of them.
1472 APInt LoMask
= APInt::getLowBitsSet(BitWidth
,
1473 BitWidth
- NewMask
.countLeadingZeros());
1474 if (SimplifyDemandedBits(Op
.getOperand(0), LoMask
, KnownZero2
,
1475 KnownOne2
, TLO
, Depth
+1))
1477 if (SimplifyDemandedBits(Op
.getOperand(1), LoMask
, KnownZero2
,
1478 KnownOne2
, TLO
, Depth
+1))
1480 // See if the operation should be performed at a smaller bit width.
1481 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1486 // Just use ComputeMaskedBits to compute output bits.
1487 TLO
.DAG
.ComputeMaskedBits(Op
, NewMask
, KnownZero
, KnownOne
, Depth
);
1491 // If we know the value of all of the demanded bits, return this as a
1493 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
)
1494 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(KnownOne
, Op
.getValueType()));
1499 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1500 /// in Mask are known to be either zero or one and return them in the
1501 /// KnownZero/KnownOne bitsets.
1502 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
1506 const SelectionDAG
&DAG
,
1507 unsigned Depth
) const {
1508 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1509 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1510 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1511 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1512 "Should use MaskedValueIsZero if you don't know whether Op"
1513 " is a target node!");
1514 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0);
1517 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1518 /// targets that want to expose additional information about sign bits to the
1520 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op
,
1521 unsigned Depth
) const {
1522 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1523 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1524 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1525 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1526 "Should use ComputeNumSignBits if you don't know whether Op"
1527 " is a target node!");
1531 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1532 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1533 /// determine which bit is set.
1535 static bool ValueHasExactlyOneBitSet(SDValue Val
, const SelectionDAG
&DAG
) {
1536 // A left-shift of a constant one will have exactly one bit set, because
1537 // shifting the bit off the end is undefined.
1538 if (Val
.getOpcode() == ISD::SHL
)
1539 if (ConstantSDNode
*C
=
1540 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1541 if (C
->getAPIntValue() == 1)
1544 // Similarly, a right-shift of a constant sign-bit will have exactly
1546 if (Val
.getOpcode() == ISD::SRL
)
1547 if (ConstantSDNode
*C
=
1548 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1549 if (C
->getAPIntValue().isSignBit())
1552 // More could be done here, though the above checks are enough
1553 // to handle some common cases.
1555 // Fall back to ComputeMaskedBits to catch other known cases.
1556 EVT OpVT
= Val
.getValueType();
1557 unsigned BitWidth
= OpVT
.getSizeInBits();
1558 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
1559 APInt KnownZero
, KnownOne
;
1560 DAG
.ComputeMaskedBits(Val
, Mask
, KnownZero
, KnownOne
);
1561 return (KnownZero
.countPopulation() == BitWidth
- 1) &&
1562 (KnownOne
.countPopulation() == 1);
1565 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1566 /// and cc. If it is unable to simplify it, return a null SDValue.
1568 TargetLowering::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
1569 ISD::CondCode Cond
, bool foldBooleans
,
1570 DAGCombinerInfo
&DCI
, DebugLoc dl
) const {
1571 SelectionDAG
&DAG
= DCI
.DAG
;
1572 LLVMContext
&Context
= *DAG
.getContext();
1574 // These setcc operations always fold.
1578 case ISD::SETFALSE2
: return DAG
.getConstant(0, VT
);
1580 case ISD::SETTRUE2
: return DAG
.getConstant(1, VT
);
1583 if (isa
<ConstantSDNode
>(N0
.getNode())) {
1584 // Ensure that the constant occurs on the RHS, and fold constant
1586 return DAG
.getSetCC(dl
, VT
, N1
, N0
, ISD::getSetCCSwappedOperands(Cond
));
1589 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1590 const APInt
&C1
= N1C
->getAPIntValue();
1592 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1593 // equality comparison, then we're just comparing whether X itself is
1595 if (N0
.getOpcode() == ISD::SRL
&& (C1
== 0 || C1
== 1) &&
1596 N0
.getOperand(0).getOpcode() == ISD::CTLZ
&&
1597 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
1598 unsigned ShAmt
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
1599 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1600 ShAmt
== Log2_32(N0
.getValueType().getSizeInBits())) {
1601 if ((C1
== 0) == (Cond
== ISD::SETEQ
)) {
1602 // (srl (ctlz x), 5) == 0 -> X != 0
1603 // (srl (ctlz x), 5) != 1 -> X != 0
1606 // (srl (ctlz x), 5) != 0 -> X == 0
1607 // (srl (ctlz x), 5) == 1 -> X == 0
1610 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
1611 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0).getOperand(0),
1616 // If the LHS is '(and load, const)', the RHS is 0,
1617 // the test is for equality or unsigned, and all 1 bits of the const are
1618 // in the same partial word, see if we can shorten the load.
1619 if (DCI
.isBeforeLegalize() &&
1620 N0
.getOpcode() == ISD::AND
&& C1
== 0 &&
1621 N0
.getNode()->hasOneUse() &&
1622 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
1623 N0
.getOperand(0).getNode()->hasOneUse() &&
1624 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1625 LoadSDNode
*Lod
= cast
<LoadSDNode
>(N0
.getOperand(0));
1626 uint64_t bestMask
= 0;
1627 unsigned bestWidth
= 0, bestOffset
= 0;
1628 if (!Lod
->isVolatile() && Lod
->isUnindexed() &&
1629 // FIXME: This uses getZExtValue() below so it only works on i64 and
1631 N0
.getValueType().getSizeInBits() <= 64) {
1632 unsigned origWidth
= N0
.getValueType().getSizeInBits();
1633 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1634 // 8 bits, but have to be careful...
1635 if (Lod
->getExtensionType() != ISD::NON_EXTLOAD
)
1636 origWidth
= Lod
->getMemoryVT().getSizeInBits();
1637 uint64_t Mask
=cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
1638 for (unsigned width
= origWidth
/ 2; width
>=8; width
/= 2) {
1639 uint64_t newMask
= (1ULL << width
) - 1;
1640 for (unsigned offset
=0; offset
<origWidth
/width
; offset
++) {
1641 if ((newMask
& Mask
) == Mask
) {
1642 if (!TD
->isLittleEndian())
1643 bestOffset
= (origWidth
/width
- offset
- 1) * (width
/8);
1645 bestOffset
= (uint64_t)offset
* (width
/8);
1646 bestMask
= Mask
>> (offset
* (width
/8) * 8);
1650 newMask
= newMask
<< width
;
1655 EVT newVT
= EVT::getIntegerVT(Context
, bestWidth
);
1656 if (newVT
.isRound()) {
1657 EVT PtrType
= Lod
->getOperand(1).getValueType();
1658 SDValue Ptr
= Lod
->getBasePtr();
1659 if (bestOffset
!= 0)
1660 Ptr
= DAG
.getNode(ISD::ADD
, dl
, PtrType
, Lod
->getBasePtr(),
1661 DAG
.getConstant(bestOffset
, PtrType
));
1662 unsigned NewAlign
= MinAlign(Lod
->getAlignment(), bestOffset
);
1663 SDValue NewLoad
= DAG
.getLoad(newVT
, dl
, Lod
->getChain(), Ptr
,
1665 Lod
->getSrcValueOffset() + bestOffset
,
1667 return DAG
.getSetCC(dl
, VT
,
1668 DAG
.getNode(ISD::AND
, dl
, newVT
, NewLoad
,
1669 DAG
.getConstant(bestMask
, newVT
)),
1670 DAG
.getConstant(0LL, newVT
), Cond
);
1675 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1676 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
1677 unsigned InSize
= N0
.getOperand(0).getValueType().getSizeInBits();
1679 // If the comparison constant has bits in the upper part, the
1680 // zero-extended value could never match.
1681 if (C1
.intersects(APInt::getHighBitsSet(C1
.getBitWidth(),
1682 C1
.getBitWidth() - InSize
))) {
1686 case ISD::SETEQ
: return DAG
.getConstant(0, VT
);
1689 case ISD::SETNE
: return DAG
.getConstant(1, VT
);
1692 // True if the sign bit of C1 is set.
1693 return DAG
.getConstant(C1
.isNegative(), VT
);
1696 // True if the sign bit of C1 isn't set.
1697 return DAG
.getConstant(C1
.isNonNegative(), VT
);
1703 // Otherwise, we can perform the comparison with the low bits.
1711 EVT newVT
= N0
.getOperand(0).getValueType();
1712 if (DCI
.isBeforeLegalizeOps() ||
1713 (isOperationLegal(ISD::SETCC
, newVT
) &&
1714 getCondCodeAction(Cond
, newVT
)==Legal
))
1715 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
1716 DAG
.getConstant(APInt(C1
).trunc(InSize
), newVT
),
1721 break; // todo, be more careful with signed comparisons
1723 } else if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
1724 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
1725 EVT ExtSrcTy
= cast
<VTSDNode
>(N0
.getOperand(1))->getVT();
1726 unsigned ExtSrcTyBits
= ExtSrcTy
.getSizeInBits();
1727 EVT ExtDstTy
= N0
.getValueType();
1728 unsigned ExtDstTyBits
= ExtDstTy
.getSizeInBits();
1730 // If the extended part has any inconsistent bits, it cannot ever
1731 // compare equal. In other words, they have to be all ones or all
1734 APInt::getHighBitsSet(ExtDstTyBits
, ExtDstTyBits
- ExtSrcTyBits
);
1735 if ((C1
& ExtBits
) != 0 && (C1
& ExtBits
) != ExtBits
)
1736 return DAG
.getConstant(Cond
== ISD::SETNE
, VT
);
1739 EVT Op0Ty
= N0
.getOperand(0).getValueType();
1740 if (Op0Ty
== ExtSrcTy
) {
1741 ZextOp
= N0
.getOperand(0);
1743 APInt Imm
= APInt::getLowBitsSet(ExtDstTyBits
, ExtSrcTyBits
);
1744 ZextOp
= DAG
.getNode(ISD::AND
, dl
, Op0Ty
, N0
.getOperand(0),
1745 DAG
.getConstant(Imm
, Op0Ty
));
1747 if (!DCI
.isCalledByLegalizer())
1748 DCI
.AddToWorklist(ZextOp
.getNode());
1749 // Otherwise, make this a use of a zext.
1750 return DAG
.getSetCC(dl
, VT
, ZextOp
,
1751 DAG
.getConstant(C1
& APInt::getLowBitsSet(
1756 } else if ((N1C
->isNullValue() || N1C
->getAPIntValue() == 1) &&
1757 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
1759 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1760 if (N0
.getOpcode() == ISD::SETCC
) {
1761 bool TrueWhenTrue
= (Cond
== ISD::SETEQ
) ^ (N1C
->getZExtValue() != 1);
1765 // Invert the condition.
1766 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
1767 CC
= ISD::getSetCCInverse(CC
,
1768 N0
.getOperand(0).getValueType().isInteger());
1769 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N0
.getOperand(1), CC
);
1772 if ((N0
.getOpcode() == ISD::XOR
||
1773 (N0
.getOpcode() == ISD::AND
&&
1774 N0
.getOperand(0).getOpcode() == ISD::XOR
&&
1775 N0
.getOperand(1) == N0
.getOperand(0).getOperand(1))) &&
1776 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
1777 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue() == 1) {
1778 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1779 // can only do this if the top bits are known zero.
1780 unsigned BitWidth
= N0
.getValueSizeInBits();
1781 if (DAG
.MaskedValueIsZero(N0
,
1782 APInt::getHighBitsSet(BitWidth
,
1784 // Okay, get the un-inverted input value.
1786 if (N0
.getOpcode() == ISD::XOR
)
1787 Val
= N0
.getOperand(0);
1789 assert(N0
.getOpcode() == ISD::AND
&&
1790 N0
.getOperand(0).getOpcode() == ISD::XOR
);
1791 // ((X^1)&1)^1 -> X & 1
1792 Val
= DAG
.getNode(ISD::AND
, dl
, N0
.getValueType(),
1793 N0
.getOperand(0).getOperand(0),
1796 return DAG
.getSetCC(dl
, VT
, Val
, N1
,
1797 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
1802 APInt MinVal
, MaxVal
;
1803 unsigned OperandBitSize
= N1C
->getValueType(0).getSizeInBits();
1804 if (ISD::isSignedIntSetCC(Cond
)) {
1805 MinVal
= APInt::getSignedMinValue(OperandBitSize
);
1806 MaxVal
= APInt::getSignedMaxValue(OperandBitSize
);
1808 MinVal
= APInt::getMinValue(OperandBitSize
);
1809 MaxVal
= APInt::getMaxValue(OperandBitSize
);
1812 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1813 if (Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) {
1814 if (C1
== MinVal
) return DAG
.getConstant(1, VT
); // X >= MIN --> true
1815 // X >= C0 --> X > (C0-1)
1816 return DAG
.getSetCC(dl
, VT
, N0
,
1817 DAG
.getConstant(C1
-1, N1
.getValueType()),
1818 (Cond
== ISD::SETGE
) ? ISD::SETGT
: ISD::SETUGT
);
1821 if (Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) {
1822 if (C1
== MaxVal
) return DAG
.getConstant(1, VT
); // X <= MAX --> true
1823 // X <= C0 --> X < (C0+1)
1824 return DAG
.getSetCC(dl
, VT
, N0
,
1825 DAG
.getConstant(C1
+1, N1
.getValueType()),
1826 (Cond
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETULT
);
1829 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
)
1830 return DAG
.getConstant(0, VT
); // X < MIN --> false
1831 if ((Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) && C1
== MinVal
)
1832 return DAG
.getConstant(1, VT
); // X >= MIN --> true
1833 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
)
1834 return DAG
.getConstant(0, VT
); // X > MAX --> false
1835 if ((Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) && C1
== MaxVal
)
1836 return DAG
.getConstant(1, VT
); // X <= MAX --> true
1838 // Canonicalize setgt X, Min --> setne X, Min
1839 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MinVal
)
1840 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
1841 // Canonicalize setlt X, Max --> setne X, Max
1842 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MaxVal
)
1843 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
1845 // If we have setult X, 1, turn it into seteq X, 0
1846 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
+1)
1847 return DAG
.getSetCC(dl
, VT
, N0
,
1848 DAG
.getConstant(MinVal
, N0
.getValueType()),
1850 // If we have setugt X, Max-1, turn it into seteq X, Max
1851 else if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
-1)
1852 return DAG
.getSetCC(dl
, VT
, N0
,
1853 DAG
.getConstant(MaxVal
, N0
.getValueType()),
1856 // If we have "setcc X, C0", check to see if we can shrink the immediate
1859 // SETUGT X, SINTMAX -> SETLT X, 0
1860 if (Cond
== ISD::SETUGT
&&
1861 C1
== APInt::getSignedMaxValue(OperandBitSize
))
1862 return DAG
.getSetCC(dl
, VT
, N0
,
1863 DAG
.getConstant(0, N1
.getValueType()),
1866 // SETULT X, SINTMIN -> SETGT X, -1
1867 if (Cond
== ISD::SETULT
&&
1868 C1
== APInt::getSignedMinValue(OperandBitSize
)) {
1869 SDValue ConstMinusOne
=
1870 DAG
.getConstant(APInt::getAllOnesValue(OperandBitSize
),
1872 return DAG
.getSetCC(dl
, VT
, N0
, ConstMinusOne
, ISD::SETGT
);
1875 // Fold bit comparisons when we can.
1876 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1877 VT
== N0
.getValueType() && N0
.getOpcode() == ISD::AND
)
1878 if (ConstantSDNode
*AndRHS
=
1879 dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
1880 EVT ShiftTy
= DCI
.isBeforeLegalize() ?
1881 getPointerTy() : getShiftAmountTy();
1882 if (Cond
== ISD::SETNE
&& C1
== 0) {// (X & 8) != 0 --> (X & 8) >> 3
1883 // Perform the xform if the AND RHS is a single bit.
1884 if (isPowerOf2_64(AndRHS
->getZExtValue())) {
1885 return DAG
.getNode(ISD::SRL
, dl
, VT
, N0
,
1886 DAG
.getConstant(Log2_64(AndRHS
->getZExtValue()),
1889 } else if (Cond
== ISD::SETEQ
&& C1
== AndRHS
->getZExtValue()) {
1890 // (X & 8) == 8 --> (X & 8) >> 3
1891 // Perform the xform if C1 is a single bit.
1892 if (C1
.isPowerOf2()) {
1893 return DAG
.getNode(ISD::SRL
, dl
, VT
, N0
,
1894 DAG
.getConstant(C1
.logBase2(), ShiftTy
));
1900 if (isa
<ConstantFPSDNode
>(N0
.getNode())) {
1901 // Constant fold or commute setcc.
1902 SDValue O
= DAG
.FoldSetCC(VT
, N0
, N1
, Cond
, dl
);
1903 if (O
.getNode()) return O
;
1904 } else if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
1905 // If the RHS of an FP comparison is a constant, simplify it away in
1907 if (CFP
->getValueAPF().isNaN()) {
1908 // If an operand is known to be a nan, we can fold it.
1909 switch (ISD::getUnorderedFlavor(Cond
)) {
1910 default: llvm_unreachable("Unknown flavor!");
1911 case 0: // Known false.
1912 return DAG
.getConstant(0, VT
);
1913 case 1: // Known true.
1914 return DAG
.getConstant(1, VT
);
1915 case 2: // Undefined.
1916 return DAG
.getUNDEF(VT
);
1920 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
1921 // constant if knowing that the operand is non-nan is enough. We prefer to
1922 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1924 if (Cond
== ISD::SETO
|| Cond
== ISD::SETUO
)
1925 return DAG
.getSetCC(dl
, VT
, N0
, N0
, Cond
);
1929 // We can always fold X == X for integer setcc's.
1930 if (N0
.getValueType().isInteger())
1931 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
1932 unsigned UOF
= ISD::getUnorderedFlavor(Cond
);
1933 if (UOF
== 2) // FP operators that are undefined on NaNs.
1934 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
1935 if (UOF
== unsigned(ISD::isTrueWhenEqual(Cond
)))
1936 return DAG
.getConstant(UOF
, VT
);
1937 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1938 // if it is not already.
1939 ISD::CondCode NewCond
= UOF
== 0 ? ISD::SETO
: ISD::SETUO
;
1940 if (NewCond
!= Cond
)
1941 return DAG
.getSetCC(dl
, VT
, N0
, N1
, NewCond
);
1944 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1945 N0
.getValueType().isInteger()) {
1946 if (N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::SUB
||
1947 N0
.getOpcode() == ISD::XOR
) {
1948 // Simplify (X+Y) == (X+Z) --> Y == Z
1949 if (N0
.getOpcode() == N1
.getOpcode()) {
1950 if (N0
.getOperand(0) == N1
.getOperand(0))
1951 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(1), Cond
);
1952 if (N0
.getOperand(1) == N1
.getOperand(1))
1953 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(0), Cond
);
1954 if (DAG
.isCommutativeBinOp(N0
.getOpcode())) {
1955 // If X op Y == Y op X, try other combinations.
1956 if (N0
.getOperand(0) == N1
.getOperand(1))
1957 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(0),
1959 if (N0
.getOperand(1) == N1
.getOperand(0))
1960 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(1),
1965 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(N1
)) {
1966 if (ConstantSDNode
*LHSR
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
1967 // Turn (X+C1) == C2 --> X == C2-C1
1968 if (N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse()) {
1969 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
1970 DAG
.getConstant(RHSC
->getAPIntValue()-
1971 LHSR
->getAPIntValue(),
1972 N0
.getValueType()), Cond
);
1975 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1976 if (N0
.getOpcode() == ISD::XOR
)
1977 // If we know that all of the inverted bits are zero, don't bother
1978 // performing the inversion.
1979 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), ~LHSR
->getAPIntValue()))
1981 DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
1982 DAG
.getConstant(LHSR
->getAPIntValue() ^
1983 RHSC
->getAPIntValue(),
1988 // Turn (C1-X) == C2 --> X == C1-C2
1989 if (ConstantSDNode
*SUBC
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0))) {
1990 if (N0
.getOpcode() == ISD::SUB
&& N0
.getNode()->hasOneUse()) {
1992 DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
1993 DAG
.getConstant(SUBC
->getAPIntValue() -
1994 RHSC
->getAPIntValue(),
2001 // Simplify (X+Z) == X --> Z == 0
2002 if (N0
.getOperand(0) == N1
)
2003 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
2004 DAG
.getConstant(0, N0
.getValueType()), Cond
);
2005 if (N0
.getOperand(1) == N1
) {
2006 if (DAG
.isCommutativeBinOp(N0
.getOpcode()))
2007 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2008 DAG
.getConstant(0, N0
.getValueType()), Cond
);
2009 else if (N0
.getNode()->hasOneUse()) {
2010 assert(N0
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
2011 // (Z-X) == X --> Z == X<<1
2012 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(),
2014 DAG
.getConstant(1, getShiftAmountTy()));
2015 if (!DCI
.isCalledByLegalizer())
2016 DCI
.AddToWorklist(SH
.getNode());
2017 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), SH
, Cond
);
2022 if (N1
.getOpcode() == ISD::ADD
|| N1
.getOpcode() == ISD::SUB
||
2023 N1
.getOpcode() == ISD::XOR
) {
2024 // Simplify X == (X+Z) --> Z == 0
2025 if (N1
.getOperand(0) == N0
) {
2026 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(1),
2027 DAG
.getConstant(0, N1
.getValueType()), Cond
);
2028 } else if (N1
.getOperand(1) == N0
) {
2029 if (DAG
.isCommutativeBinOp(N1
.getOpcode())) {
2030 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(0),
2031 DAG
.getConstant(0, N1
.getValueType()), Cond
);
2032 } else if (N1
.getNode()->hasOneUse()) {
2033 assert(N1
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
2034 // X == (Z-X) --> X<<1 == Z
2035 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(), N0
,
2036 DAG
.getConstant(1, getShiftAmountTy()));
2037 if (!DCI
.isCalledByLegalizer())
2038 DCI
.AddToWorklist(SH
.getNode());
2039 return DAG
.getSetCC(dl
, VT
, SH
, N1
.getOperand(0), Cond
);
2044 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2045 // Note that where y is variable and is known to have at most
2046 // one bit set (for example, if it is z&1) we cannot do this;
2047 // the expressions are not equivalent when y==0.
2048 if (N0
.getOpcode() == ISD::AND
)
2049 if (N0
.getOperand(0) == N1
|| N0
.getOperand(1) == N1
) {
2050 if (ValueHasExactlyOneBitSet(N1
, DAG
)) {
2051 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2052 SDValue Zero
= DAG
.getConstant(0, N1
.getValueType());
2053 return DAG
.getSetCC(dl
, VT
, N0
, Zero
, Cond
);
2056 if (N1
.getOpcode() == ISD::AND
)
2057 if (N1
.getOperand(0) == N0
|| N1
.getOperand(1) == N0
) {
2058 if (ValueHasExactlyOneBitSet(N0
, DAG
)) {
2059 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2060 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
2061 return DAG
.getSetCC(dl
, VT
, N1
, Zero
, Cond
);
2066 // Fold away ALL boolean setcc's.
2068 if (N0
.getValueType() == MVT::i1
&& foldBooleans
) {
2070 default: llvm_unreachable("Unknown integer setcc!");
2071 case ISD::SETEQ
: // X == Y -> ~(X^Y)
2072 Temp
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
2073 N0
= DAG
.getNOT(dl
, Temp
, MVT::i1
);
2074 if (!DCI
.isCalledByLegalizer())
2075 DCI
.AddToWorklist(Temp
.getNode());
2077 case ISD::SETNE
: // X != Y --> (X^Y)
2078 N0
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
2080 case ISD::SETGT
: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2081 case ISD::SETULT
: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2082 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
2083 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N1
, Temp
);
2084 if (!DCI
.isCalledByLegalizer())
2085 DCI
.AddToWorklist(Temp
.getNode());
2087 case ISD::SETLT
: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2088 case ISD::SETUGT
: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2089 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2090 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N0
, Temp
);
2091 if (!DCI
.isCalledByLegalizer())
2092 DCI
.AddToWorklist(Temp
.getNode());
2094 case ISD::SETULE
: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2095 case ISD::SETGE
: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2096 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
2097 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N1
, Temp
);
2098 if (!DCI
.isCalledByLegalizer())
2099 DCI
.AddToWorklist(Temp
.getNode());
2101 case ISD::SETUGE
: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2102 case ISD::SETLE
: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2103 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2104 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N0
, Temp
);
2107 if (VT
!= MVT::i1
) {
2108 if (!DCI
.isCalledByLegalizer())
2109 DCI
.AddToWorklist(N0
.getNode());
2110 // FIXME: If running after legalize, we probably can't do this.
2111 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, N0
);
2116 // Could not fold it.
2120 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2121 /// node is a GlobalAddress + offset.
2122 bool TargetLowering::isGAPlusOffset(SDNode
*N
, GlobalValue
* &GA
,
2123 int64_t &Offset
) const {
2124 if (isa
<GlobalAddressSDNode
>(N
)) {
2125 GlobalAddressSDNode
*GASD
= cast
<GlobalAddressSDNode
>(N
);
2126 GA
= GASD
->getGlobal();
2127 Offset
+= GASD
->getOffset();
2131 if (N
->getOpcode() == ISD::ADD
) {
2132 SDValue N1
= N
->getOperand(0);
2133 SDValue N2
= N
->getOperand(1);
2134 if (isGAPlusOffset(N1
.getNode(), GA
, Offset
)) {
2135 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N2
);
2137 Offset
+= V
->getSExtValue();
2140 } else if (isGAPlusOffset(N2
.getNode(), GA
, Offset
)) {
2141 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N1
);
2143 Offset
+= V
->getSExtValue();
2152 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
2153 /// location that is 'Dist' units away from the location that the 'Base' load
2154 /// is loading from.
2155 bool TargetLowering::isConsecutiveLoad(LoadSDNode
*LD
, LoadSDNode
*Base
,
2156 unsigned Bytes
, int Dist
,
2157 const MachineFrameInfo
*MFI
) const {
2158 if (LD
->getChain() != Base
->getChain())
2160 EVT VT
= LD
->getValueType(0);
2161 if (VT
.getSizeInBits() / 8 != Bytes
)
2164 SDValue Loc
= LD
->getOperand(1);
2165 SDValue BaseLoc
= Base
->getOperand(1);
2166 if (Loc
.getOpcode() == ISD::FrameIndex
) {
2167 if (BaseLoc
.getOpcode() != ISD::FrameIndex
)
2169 int FI
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
2170 int BFI
= cast
<FrameIndexSDNode
>(BaseLoc
)->getIndex();
2171 int FS
= MFI
->getObjectSize(FI
);
2172 int BFS
= MFI
->getObjectSize(BFI
);
2173 if (FS
!= BFS
|| FS
!= (int)Bytes
) return false;
2174 return MFI
->getObjectOffset(FI
) == (MFI
->getObjectOffset(BFI
) + Dist
*Bytes
);
2176 if (Loc
.getOpcode() == ISD::ADD
&& Loc
.getOperand(0) == BaseLoc
) {
2177 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(Loc
.getOperand(1));
2178 if (V
&& (V
->getSExtValue() == Dist
*Bytes
))
2182 GlobalValue
*GV1
= NULL
;
2183 GlobalValue
*GV2
= NULL
;
2184 int64_t Offset1
= 0;
2185 int64_t Offset2
= 0;
2186 bool isGA1
= isGAPlusOffset(Loc
.getNode(), GV1
, Offset1
);
2187 bool isGA2
= isGAPlusOffset(BaseLoc
.getNode(), GV2
, Offset2
);
2188 if (isGA1
&& isGA2
&& GV1
== GV2
)
2189 return Offset1
== (Offset2
+ Dist
*Bytes
);
2194 SDValue
TargetLowering::
2195 PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
2196 // Default implementation: no optimization.
2200 //===----------------------------------------------------------------------===//
2201 // Inline Assembler Implementation Methods
2202 //===----------------------------------------------------------------------===//
2205 TargetLowering::ConstraintType
2206 TargetLowering::getConstraintType(const std::string
&Constraint
) const {
2207 // FIXME: lots more standard ones to handle.
2208 if (Constraint
.size() == 1) {
2209 switch (Constraint
[0]) {
2211 case 'r': return C_RegisterClass
;
2213 case 'o': // offsetable
2214 case 'V': // not offsetable
2216 case 'i': // Simple Integer or Relocatable Constant
2217 case 'n': // Simple Integer
2218 case 's': // Relocatable Constant
2219 case 'X': // Allow ANY value.
2220 case 'I': // Target registers.
2232 if (Constraint
.size() > 1 && Constraint
[0] == '{' &&
2233 Constraint
[Constraint
.size()-1] == '}')
2238 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2239 /// with another that has more specific requirements based on the type of the
2240 /// corresponding operand.
2241 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT
) const{
2242 if (ConstraintVT
.isInteger())
2244 if (ConstraintVT
.isFloatingPoint())
2245 return "f"; // works for many targets
2249 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2250 /// vector. If it is invalid, don't add anything to Ops.
2251 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
2252 char ConstraintLetter
,
2254 std::vector
<SDValue
> &Ops
,
2255 SelectionDAG
&DAG
) const {
2256 switch (ConstraintLetter
) {
2258 case 'X': // Allows any operand; labels (basic block) use this.
2259 if (Op
.getOpcode() == ISD::BasicBlock
) {
2264 case 'i': // Simple Integer or Relocatable Constant
2265 case 'n': // Simple Integer
2266 case 's': { // Relocatable Constant
2267 // These operands are interested in values of the form (GV+C), where C may
2268 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2269 // is possible and fine if either GV or C are missing.
2270 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
2271 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2273 // If we have "(add GV, C)", pull out GV/C
2274 if (Op
.getOpcode() == ISD::ADD
) {
2275 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2276 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(0));
2277 if (C
== 0 || GA
== 0) {
2278 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0));
2279 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(1));
2281 if (C
== 0 || GA
== 0)
2285 // If we find a valid operand, map to the TargetXXX version so that the
2286 // value itself doesn't get selected.
2287 if (GA
) { // Either &GV or &GV+C
2288 if (ConstraintLetter
!= 'n') {
2289 int64_t Offs
= GA
->getOffset();
2290 if (C
) Offs
+= C
->getZExtValue();
2291 Ops
.push_back(DAG
.getTargetGlobalAddress(GA
->getGlobal(),
2292 Op
.getValueType(), Offs
));
2296 if (C
) { // just C, no GV.
2297 // Simple constants are not allowed for 's'.
2298 if (ConstraintLetter
!= 's') {
2299 // gcc prints these as sign extended. Sign extend value to 64 bits
2300 // now; without this it would get ZExt'd later in
2301 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2302 Ops
.push_back(DAG
.getTargetConstant(C
->getAPIntValue().getSExtValue(),
2312 std::vector
<unsigned> TargetLowering::
2313 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
2315 return std::vector
<unsigned>();
2319 std::pair
<unsigned, const TargetRegisterClass
*> TargetLowering::
2320 getRegForInlineAsmConstraint(const std::string
&Constraint
,
2322 if (Constraint
[0] != '{')
2323 return std::pair
<unsigned, const TargetRegisterClass
*>(0, 0);
2324 assert(*(Constraint
.end()-1) == '}' && "Not a brace enclosed constraint?");
2326 // Remove the braces from around the name.
2327 std::string
RegName(Constraint
.begin()+1, Constraint
.end()-1);
2329 // Figure out which register class contains this reg.
2330 const TargetRegisterInfo
*RI
= TM
.getRegisterInfo();
2331 for (TargetRegisterInfo::regclass_iterator RCI
= RI
->regclass_begin(),
2332 E
= RI
->regclass_end(); RCI
!= E
; ++RCI
) {
2333 const TargetRegisterClass
*RC
= *RCI
;
2335 // If none of the the value types for this register class are valid, we
2336 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2337 bool isLegal
= false;
2338 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
2340 if (isTypeLegal(*I
)) {
2346 if (!isLegal
) continue;
2348 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
2350 if (StringsEqualNoCase(RegName
, RI
->get(*I
).AsmName
))
2351 return std::make_pair(*I
, RC
);
2355 return std::pair
<unsigned, const TargetRegisterClass
*>(0, 0);
2358 //===----------------------------------------------------------------------===//
2359 // Constraint Selection.
2361 /// isMatchingInputConstraint - Return true of this is an input operand that is
2362 /// a matching constraint like "4".
2363 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2364 assert(!ConstraintCode
.empty() && "No known constraint!");
2365 return isdigit(ConstraintCode
[0]);
2368 /// getMatchedOperand - If this is an input matching constraint, this method
2369 /// returns the output operand it matches.
2370 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2371 assert(!ConstraintCode
.empty() && "No known constraint!");
2372 return atoi(ConstraintCode
.c_str());
2376 /// getConstraintGenerality - Return an integer indicating how general CT
2378 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT
) {
2380 default: llvm_unreachable("Unknown constraint type!");
2381 case TargetLowering::C_Other
:
2382 case TargetLowering::C_Unknown
:
2384 case TargetLowering::C_Register
:
2386 case TargetLowering::C_RegisterClass
:
2388 case TargetLowering::C_Memory
:
2393 /// ChooseConstraint - If there are multiple different constraints that we
2394 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2395 /// This is somewhat tricky: constraints fall into four classes:
2396 /// Other -> immediates and magic values
2397 /// Register -> one specific register
2398 /// RegisterClass -> a group of regs
2399 /// Memory -> memory
2400 /// Ideally, we would pick the most specific constraint possible: if we have
2401 /// something that fits into a register, we would pick it. The problem here
2402 /// is that if we have something that could either be in a register or in
2403 /// memory that use of the register could cause selection of *other*
2404 /// operands to fail: they might only succeed if we pick memory. Because of
2405 /// this the heuristic we use is:
2407 /// 1) If there is an 'other' constraint, and if the operand is valid for
2408 /// that constraint, use it. This makes us take advantage of 'i'
2409 /// constraints when available.
2410 /// 2) Otherwise, pick the most general constraint present. This prefers
2411 /// 'm' over 'r', for example.
2413 static void ChooseConstraint(TargetLowering::AsmOperandInfo
&OpInfo
,
2414 bool hasMemory
, const TargetLowering
&TLI
,
2415 SDValue Op
, SelectionDAG
*DAG
) {
2416 assert(OpInfo
.Codes
.size() > 1 && "Doesn't have multiple constraint options");
2417 unsigned BestIdx
= 0;
2418 TargetLowering::ConstraintType BestType
= TargetLowering::C_Unknown
;
2419 int BestGenerality
= -1;
2421 // Loop over the options, keeping track of the most general one.
2422 for (unsigned i
= 0, e
= OpInfo
.Codes
.size(); i
!= e
; ++i
) {
2423 TargetLowering::ConstraintType CType
=
2424 TLI
.getConstraintType(OpInfo
.Codes
[i
]);
2426 // If this is an 'other' constraint, see if the operand is valid for it.
2427 // For example, on X86 we might have an 'rI' constraint. If the operand
2428 // is an integer in the range [0..31] we want to use I (saving a load
2429 // of a register), otherwise we must use 'r'.
2430 if (CType
== TargetLowering::C_Other
&& Op
.getNode()) {
2431 assert(OpInfo
.Codes
[i
].size() == 1 &&
2432 "Unhandled multi-letter 'other' constraint");
2433 std::vector
<SDValue
> ResultOps
;
2434 TLI
.LowerAsmOperandForConstraint(Op
, OpInfo
.Codes
[i
][0], hasMemory
,
2436 if (!ResultOps
.empty()) {
2443 // This constraint letter is more general than the previous one, use it.
2444 int Generality
= getConstraintGenerality(CType
);
2445 if (Generality
> BestGenerality
) {
2448 BestGenerality
= Generality
;
2452 OpInfo
.ConstraintCode
= OpInfo
.Codes
[BestIdx
];
2453 OpInfo
.ConstraintType
= BestType
;
2456 /// ComputeConstraintToUse - Determines the constraint code and constraint
2457 /// type to use for the specific AsmOperandInfo, setting
2458 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2459 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo
&OpInfo
,
2462 SelectionDAG
*DAG
) const {
2463 assert(!OpInfo
.Codes
.empty() && "Must have at least one constraint");
2465 // Single-letter constraints ('r') are very common.
2466 if (OpInfo
.Codes
.size() == 1) {
2467 OpInfo
.ConstraintCode
= OpInfo
.Codes
[0];
2468 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
2470 ChooseConstraint(OpInfo
, hasMemory
, *this, Op
, DAG
);
2473 // 'X' matches anything.
2474 if (OpInfo
.ConstraintCode
== "X" && OpInfo
.CallOperandVal
) {
2475 // Labels and constants are handled elsewhere ('X' is the only thing
2476 // that matches labels). For Functions, the type here is the type of
2477 // the result, which is not what we want to look at; leave them alone.
2478 Value
*v
= OpInfo
.CallOperandVal
;
2479 if (isa
<BasicBlock
>(v
) || isa
<ConstantInt
>(v
) || isa
<Function
>(v
)) {
2480 OpInfo
.CallOperandVal
= v
;
2484 // Otherwise, try to resolve it to something we know about by looking at
2485 // the actual operand type.
2486 if (const char *Repl
= LowerXConstraint(OpInfo
.ConstraintVT
)) {
2487 OpInfo
.ConstraintCode
= Repl
;
2488 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
2493 //===----------------------------------------------------------------------===//
2494 // Loop Strength Reduction hooks
2495 //===----------------------------------------------------------------------===//
2497 /// isLegalAddressingMode - Return true if the addressing mode represented
2498 /// by AM is legal for this target, for a load/store of the specified type.
2499 bool TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
2500 const Type
*Ty
) const {
2501 // The default implementation of this implements a conservative RISCy, r+r and
2504 // Allows a sign-extended 16-bit immediate field.
2505 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
2508 // No global is ever allowed as a base.
2512 // Only support r+r,
2514 case 0: // "r+i" or just "i", depending on HasBaseReg.
2517 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
2519 // Otherwise we have r+r or r+i.
2522 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
2524 // Allow 2*r as r+r.
2531 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2532 /// return a DAG expression to select that will generate the same value by
2533 /// multiplying by a magic number. See:
2534 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2535 SDValue
TargetLowering::BuildSDIV(SDNode
*N
, SelectionDAG
&DAG
,
2536 std::vector
<SDNode
*>* Created
) const {
2537 EVT VT
= N
->getValueType(0);
2538 DebugLoc dl
= N
->getDebugLoc();
2540 // Check to see if we can do this.
2541 // FIXME: We should be more aggressive here.
2542 if (!isTypeLegal(VT
))
2545 APInt d
= cast
<ConstantSDNode
>(N
->getOperand(1))->getAPIntValue();
2546 APInt::ms magics
= d
.magic();
2548 // Multiply the numerator (operand 0) by the magic value
2549 // FIXME: We should support doing a MUL in a wider type
2551 if (isOperationLegalOrCustom(ISD::MULHS
, VT
))
2552 Q
= DAG
.getNode(ISD::MULHS
, dl
, VT
, N
->getOperand(0),
2553 DAG
.getConstant(magics
.m
, VT
));
2554 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
))
2555 Q
= SDValue(DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
),
2557 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
2559 return SDValue(); // No mulhs or equvialent
2560 // If d > 0 and m < 0, add the numerator
2561 if (d
.isStrictlyPositive() && magics
.m
.isNegative()) {
2562 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, N
->getOperand(0));
2564 Created
->push_back(Q
.getNode());
2566 // If d < 0 and m > 0, subtract the numerator.
2567 if (d
.isNegative() && magics
.m
.isStrictlyPositive()) {
2568 Q
= DAG
.getNode(ISD::SUB
, dl
, VT
, Q
, N
->getOperand(0));
2570 Created
->push_back(Q
.getNode());
2572 // Shift right algebraic if shift value is nonzero
2574 Q
= DAG
.getNode(ISD::SRA
, dl
, VT
, Q
,
2575 DAG
.getConstant(magics
.s
, getShiftAmountTy()));
2577 Created
->push_back(Q
.getNode());
2579 // Extract the sign bit and add it to the quotient
2581 DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, DAG
.getConstant(VT
.getSizeInBits()-1,
2582 getShiftAmountTy()));
2584 Created
->push_back(T
.getNode());
2585 return DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, T
);
2588 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2589 /// return a DAG expression to select that will generate the same value by
2590 /// multiplying by a magic number. See:
2591 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2592 SDValue
TargetLowering::BuildUDIV(SDNode
*N
, SelectionDAG
&DAG
,
2593 std::vector
<SDNode
*>* Created
) const {
2594 EVT VT
= N
->getValueType(0);
2595 DebugLoc dl
= N
->getDebugLoc();
2597 // Check to see if we can do this.
2598 // FIXME: We should be more aggressive here.
2599 if (!isTypeLegal(VT
))
2602 // FIXME: We should use a narrower constant when the upper
2603 // bits are known to be zero.
2604 ConstantSDNode
*N1C
= cast
<ConstantSDNode
>(N
->getOperand(1));
2605 APInt::mu magics
= N1C
->getAPIntValue().magicu();
2607 // Multiply the numerator (operand 0) by the magic value
2608 // FIXME: We should support doing a MUL in a wider type
2610 if (isOperationLegalOrCustom(ISD::MULHU
, VT
))
2611 Q
= DAG
.getNode(ISD::MULHU
, dl
, VT
, N
->getOperand(0),
2612 DAG
.getConstant(magics
.m
, VT
));
2613 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
))
2614 Q
= SDValue(DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
),
2616 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
2618 return SDValue(); // No mulhu or equvialent
2620 Created
->push_back(Q
.getNode());
2622 if (magics
.a
== 0) {
2623 assert(magics
.s
< N1C
->getAPIntValue().getBitWidth() &&
2624 "We shouldn't generate an undefined shift!");
2625 return DAG
.getNode(ISD::SRL
, dl
, VT
, Q
,
2626 DAG
.getConstant(magics
.s
, getShiftAmountTy()));
2628 SDValue NPQ
= DAG
.getNode(ISD::SUB
, dl
, VT
, N
->getOperand(0), Q
);
2630 Created
->push_back(NPQ
.getNode());
2631 NPQ
= DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
2632 DAG
.getConstant(1, getShiftAmountTy()));
2634 Created
->push_back(NPQ
.getNode());
2635 NPQ
= DAG
.getNode(ISD::ADD
, dl
, VT
, NPQ
, Q
);
2637 Created
->push_back(NPQ
.getNode());
2638 return DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
2639 DAG
.getConstant(magics
.s
-1, getShiftAmountTy()));