Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / CodeGen / StrongPHIElimination.cpp
blob568fc7fa6d7f0b196087ad37cf5c48c7ee81c2f2
1 //===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions, using an intelligent copy-folding technique based on
12 // dominator information. This is technique is derived from:
13 //
14 // Budimlic, et al. Fast copy coalescing and live-range identification.
15 // In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
16 // Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
17 // PLDI '02. ACM, New York, NY, 25-32.
18 // DOI= http://doi.acm.org/10.1145/512529.512534
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "strongphielim"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegisterCoalescer.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/ADT/DepthFirstIterator.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 using namespace llvm;
39 namespace {
40 struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass {
41 static char ID; // Pass identification, replacement for typeid
42 StrongPHIElimination() : MachineFunctionPass(&ID) {}
44 // Waiting stores, for each MBB, the set of copies that need to
45 // be inserted into that MBB
46 DenseMap<MachineBasicBlock*,
47 std::multimap<unsigned, unsigned> > Waiting;
49 // Stacks holds the renaming stack for each register
50 std::map<unsigned, std::vector<unsigned> > Stacks;
52 // Registers in UsedByAnother are PHI nodes that are themselves
53 // used as operands to another another PHI node
54 std::set<unsigned> UsedByAnother;
56 // RenameSets are the is a map from a PHI-defined register
57 // to the input registers to be coalesced along with the
58 // predecessor block for those input registers.
59 std::map<unsigned, std::map<unsigned, MachineBasicBlock*> > RenameSets;
61 // PhiValueNumber holds the ID numbers of the VNs for each phi that we're
62 // eliminating, indexed by the register defined by that phi.
63 std::map<unsigned, unsigned> PhiValueNumber;
65 // Store the DFS-in number of each block
66 DenseMap<MachineBasicBlock*, unsigned> preorder;
68 // Store the DFS-out number of each block
69 DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
71 bool runOnMachineFunction(MachineFunction &Fn);
73 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
74 AU.setPreservesCFG();
75 AU.addRequired<MachineDominatorTree>();
76 AU.addRequired<LiveIntervals>();
78 // TODO: Actually make this true.
79 AU.addPreserved<LiveIntervals>();
80 AU.addPreserved<RegisterCoalescer>();
81 MachineFunctionPass::getAnalysisUsage(AU);
84 virtual void releaseMemory() {
85 preorder.clear();
86 maxpreorder.clear();
88 Waiting.clear();
89 Stacks.clear();
90 UsedByAnother.clear();
91 RenameSets.clear();
94 private:
96 /// DomForestNode - Represents a node in the "dominator forest". This is
97 /// a forest in which the nodes represent registers and the edges
98 /// represent a dominance relation in the block defining those registers.
99 struct DomForestNode {
100 private:
101 // Store references to our children
102 std::vector<DomForestNode*> children;
103 // The register we represent
104 unsigned reg;
106 // Add another node as our child
107 void addChild(DomForestNode* DFN) { children.push_back(DFN); }
109 public:
110 typedef std::vector<DomForestNode*>::iterator iterator;
112 // Create a DomForestNode by providing the register it represents, and
113 // the node to be its parent. The virtual root node has register 0
114 // and a null parent.
115 DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
116 if (parent)
117 parent->addChild(this);
120 ~DomForestNode() {
121 for (iterator I = begin(), E = end(); I != E; ++I)
122 delete *I;
125 /// getReg - Return the regiser that this node represents
126 inline unsigned getReg() { return reg; }
128 // Provide iterator access to our children
129 inline DomForestNode::iterator begin() { return children.begin(); }
130 inline DomForestNode::iterator end() { return children.end(); }
133 void computeDFS(MachineFunction& MF);
134 void processBlock(MachineBasicBlock* MBB);
136 std::vector<DomForestNode*> computeDomForest(
137 std::map<unsigned, MachineBasicBlock*>& instrs,
138 MachineRegisterInfo& MRI);
139 void processPHIUnion(MachineInstr* Inst,
140 std::map<unsigned, MachineBasicBlock*>& PHIUnion,
141 std::vector<StrongPHIElimination::DomForestNode*>& DF,
142 std::vector<std::pair<unsigned, unsigned> >& locals);
143 void ScheduleCopies(MachineBasicBlock* MBB, std::set<unsigned>& pushed);
144 void InsertCopies(MachineDomTreeNode* MBB,
145 SmallPtrSet<MachineBasicBlock*, 16>& v);
146 bool mergeLiveIntervals(unsigned primary, unsigned secondary);
150 char StrongPHIElimination::ID = 0;
151 static RegisterPass<StrongPHIElimination>
152 X("strong-phi-node-elimination",
153 "Eliminate PHI nodes for register allocation, intelligently");
155 const PassInfo *const llvm::StrongPHIEliminationID = &X;
157 /// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree
158 /// of the given MachineFunction. These numbers are then used in other parts
159 /// of the PHI elimination process.
160 void StrongPHIElimination::computeDFS(MachineFunction& MF) {
161 SmallPtrSet<MachineDomTreeNode*, 8> frontier;
162 SmallPtrSet<MachineDomTreeNode*, 8> visited;
164 unsigned time = 0;
166 MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>();
168 MachineDomTreeNode* node = DT.getRootNode();
170 std::vector<MachineDomTreeNode*> worklist;
171 worklist.push_back(node);
173 while (!worklist.empty()) {
174 MachineDomTreeNode* currNode = worklist.back();
176 if (!frontier.count(currNode)) {
177 frontier.insert(currNode);
178 ++time;
179 preorder.insert(std::make_pair(currNode->getBlock(), time));
182 bool inserted = false;
183 for (MachineDomTreeNode::iterator I = currNode->begin(), E = currNode->end();
184 I != E; ++I)
185 if (!frontier.count(*I) && !visited.count(*I)) {
186 worklist.push_back(*I);
187 inserted = true;
188 break;
191 if (!inserted) {
192 frontier.erase(currNode);
193 visited.insert(currNode);
194 maxpreorder.insert(std::make_pair(currNode->getBlock(), time));
196 worklist.pop_back();
201 namespace {
203 /// PreorderSorter - a helper class that is used to sort registers
204 /// according to the preorder number of their defining blocks
205 class PreorderSorter {
206 private:
207 DenseMap<MachineBasicBlock*, unsigned>& preorder;
208 MachineRegisterInfo& MRI;
210 public:
211 PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
212 MachineRegisterInfo& M) : preorder(p), MRI(M) { }
214 bool operator()(unsigned A, unsigned B) {
215 if (A == B)
216 return false;
218 MachineBasicBlock* ABlock = MRI.getVRegDef(A)->getParent();
219 MachineBasicBlock* BBlock = MRI.getVRegDef(B)->getParent();
221 if (preorder[ABlock] < preorder[BBlock])
222 return true;
223 else if (preorder[ABlock] > preorder[BBlock])
224 return false;
226 return false;
232 /// computeDomForest - compute the subforest of the DomTree corresponding
233 /// to the defining blocks of the registers in question
234 std::vector<StrongPHIElimination::DomForestNode*>
235 StrongPHIElimination::computeDomForest(
236 std::map<unsigned, MachineBasicBlock*>& regs,
237 MachineRegisterInfo& MRI) {
238 // Begin by creating a virtual root node, since the actual results
239 // may well be a forest. Assume this node has maximum DFS-out number.
240 DomForestNode* VirtualRoot = new DomForestNode(0, 0);
241 maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
243 // Populate a worklist with the registers
244 std::vector<unsigned> worklist;
245 worklist.reserve(regs.size());
246 for (std::map<unsigned, MachineBasicBlock*>::iterator I = regs.begin(),
247 E = regs.end(); I != E; ++I)
248 worklist.push_back(I->first);
250 // Sort the registers by the DFS-in number of their defining block
251 PreorderSorter PS(preorder, MRI);
252 std::sort(worklist.begin(), worklist.end(), PS);
254 // Create a "current parent" stack, and put the virtual root on top of it
255 DomForestNode* CurrentParent = VirtualRoot;
256 std::vector<DomForestNode*> stack;
257 stack.push_back(VirtualRoot);
259 // Iterate over all the registers in the previously computed order
260 for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
261 I != E; ++I) {
262 unsigned pre = preorder[MRI.getVRegDef(*I)->getParent()];
263 MachineBasicBlock* parentBlock = CurrentParent->getReg() ?
264 MRI.getVRegDef(CurrentParent->getReg())->getParent() :
267 // If the DFS-in number of the register is greater than the DFS-out number
268 // of the current parent, repeatedly pop the parent stack until it isn't.
269 while (pre > maxpreorder[parentBlock]) {
270 stack.pop_back();
271 CurrentParent = stack.back();
273 parentBlock = CurrentParent->getReg() ?
274 MRI.getVRegDef(CurrentParent->getReg())->getParent() :
278 // Now that we've found the appropriate parent, create a DomForestNode for
279 // this register and attach it to the forest
280 DomForestNode* child = new DomForestNode(*I, CurrentParent);
282 // Push this new node on the "current parent" stack
283 stack.push_back(child);
284 CurrentParent = child;
287 // Return a vector containing the children of the virtual root node
288 std::vector<DomForestNode*> ret;
289 ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
290 return ret;
293 /// isLiveIn - helper method that determines, from a regno, if a register
294 /// is live into a block
295 static bool isLiveIn(unsigned r, MachineBasicBlock* MBB,
296 LiveIntervals& LI) {
297 LiveInterval& I = LI.getOrCreateInterval(r);
298 unsigned idx = LI.getMBBStartIdx(MBB);
299 return I.liveAt(idx);
302 /// isLiveOut - help method that determines, from a regno, if a register is
303 /// live out of a block.
304 static bool isLiveOut(unsigned r, MachineBasicBlock* MBB,
305 LiveIntervals& LI) {
306 for (MachineBasicBlock::succ_iterator PI = MBB->succ_begin(),
307 E = MBB->succ_end(); PI != E; ++PI)
308 if (isLiveIn(r, *PI, LI))
309 return true;
311 return false;
314 /// interferes - checks for local interferences by scanning a block. The only
315 /// trick parameter is 'mode' which tells it the relationship of the two
316 /// registers. 0 - defined in the same block, 1 - first properly dominates
317 /// second, 2 - second properly dominates first
318 static bool interferes(unsigned a, unsigned b, MachineBasicBlock* scan,
319 LiveIntervals& LV, unsigned mode) {
320 MachineInstr* def = 0;
321 MachineInstr* kill = 0;
323 // The code is still in SSA form at this point, so there is only one
324 // definition per VReg. Thus we can safely use MRI->getVRegDef().
325 const MachineRegisterInfo* MRI = &scan->getParent()->getRegInfo();
327 bool interference = false;
329 // Wallk the block, checking for interferences
330 for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end();
331 MBI != MBE; ++MBI) {
332 MachineInstr* curr = MBI;
334 // Same defining block...
335 if (mode == 0) {
336 if (curr == MRI->getVRegDef(a)) {
337 // If we find our first definition, save it
338 if (!def) {
339 def = curr;
340 // If there's already an unkilled definition, then
341 // this is an interference
342 } else if (!kill) {
343 interference = true;
344 break;
345 // If there's a definition followed by a KillInst, then
346 // they can't interfere
347 } else {
348 interference = false;
349 break;
351 // Symmetric with the above
352 } else if (curr == MRI->getVRegDef(b)) {
353 if (!def) {
354 def = curr;
355 } else if (!kill) {
356 interference = true;
357 break;
358 } else {
359 interference = false;
360 break;
362 // Store KillInsts if they match up with the definition
363 } else if (curr->killsRegister(a)) {
364 if (def == MRI->getVRegDef(a)) {
365 kill = curr;
366 } else if (curr->killsRegister(b)) {
367 if (def == MRI->getVRegDef(b)) {
368 kill = curr;
372 // First properly dominates second...
373 } else if (mode == 1) {
374 if (curr == MRI->getVRegDef(b)) {
375 // Definition of second without kill of first is an interference
376 if (!kill) {
377 interference = true;
378 break;
379 // Definition after a kill is a non-interference
380 } else {
381 interference = false;
382 break;
384 // Save KillInsts of First
385 } else if (curr->killsRegister(a)) {
386 kill = curr;
388 // Symmetric with the above
389 } else if (mode == 2) {
390 if (curr == MRI->getVRegDef(a)) {
391 if (!kill) {
392 interference = true;
393 break;
394 } else {
395 interference = false;
396 break;
398 } else if (curr->killsRegister(b)) {
399 kill = curr;
404 return interference;
407 /// processBlock - Determine how to break up PHIs in the current block. Each
408 /// PHI is broken up by some combination of renaming its operands and inserting
409 /// copies. This method is responsible for determining which operands receive
410 /// which treatment.
411 void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
412 LiveIntervals& LI = getAnalysis<LiveIntervals>();
413 MachineRegisterInfo& MRI = MBB->getParent()->getRegInfo();
415 // Holds names that have been added to a set in any PHI within this block
416 // before the current one.
417 std::set<unsigned> ProcessedNames;
419 // Iterate over all the PHI nodes in this block
420 MachineBasicBlock::iterator P = MBB->begin();
421 while (P != MBB->end() && P->getOpcode() == TargetInstrInfo::PHI) {
422 unsigned DestReg = P->getOperand(0).getReg();
424 // Don't both doing PHI elimination for dead PHI's.
425 if (P->registerDefIsDead(DestReg)) {
426 ++P;
427 continue;
430 LiveInterval& PI = LI.getOrCreateInterval(DestReg);
431 unsigned pIdx = LI.getDefIndex(LI.getInstructionIndex(P));
432 VNInfo* PVN = PI.getLiveRangeContaining(pIdx)->valno;
433 PhiValueNumber.insert(std::make_pair(DestReg, PVN->id));
435 // PHIUnion is the set of incoming registers to the PHI node that
436 // are going to be renames rather than having copies inserted. This set
437 // is refinded over the course of this function. UnionedBlocks is the set
438 // of corresponding MBBs.
439 std::map<unsigned, MachineBasicBlock*> PHIUnion;
440 SmallPtrSet<MachineBasicBlock*, 8> UnionedBlocks;
442 // Iterate over the operands of the PHI node
443 for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
444 unsigned SrcReg = P->getOperand(i-1).getReg();
446 // Don't need to try to coalesce a register with itself.
447 if (SrcReg == DestReg) {
448 ProcessedNames.insert(SrcReg);
449 continue;
452 // We don't need to insert copies for implicit_defs.
453 MachineInstr* DefMI = MRI.getVRegDef(SrcReg);
454 if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
455 ProcessedNames.insert(SrcReg);
457 // Check for trivial interferences via liveness information, allowing us
458 // to avoid extra work later. Any registers that interfere cannot both
459 // be in the renaming set, so choose one and add copies for it instead.
460 // The conditions are:
461 // 1) if the operand is live into the PHI node's block OR
462 // 2) if the PHI node is live out of the operand's defining block OR
463 // 3) if the operand is itself a PHI node and the original PHI is
464 // live into the operand's defining block OR
465 // 4) if the operand is already being renamed for another PHI node
466 // in this block OR
467 // 5) if any two operands are defined in the same block, insert copies
468 // for one of them
469 if (isLiveIn(SrcReg, P->getParent(), LI) ||
470 isLiveOut(P->getOperand(0).getReg(),
471 MRI.getVRegDef(SrcReg)->getParent(), LI) ||
472 ( MRI.getVRegDef(SrcReg)->getOpcode() == TargetInstrInfo::PHI &&
473 isLiveIn(P->getOperand(0).getReg(),
474 MRI.getVRegDef(SrcReg)->getParent(), LI) ) ||
475 ProcessedNames.count(SrcReg) ||
476 UnionedBlocks.count(MRI.getVRegDef(SrcReg)->getParent())) {
478 // Add a copy for the selected register
479 MachineBasicBlock* From = P->getOperand(i).getMBB();
480 Waiting[From].insert(std::make_pair(SrcReg, DestReg));
481 UsedByAnother.insert(SrcReg);
482 } else {
483 // Otherwise, add it to the renaming set
484 PHIUnion.insert(std::make_pair(SrcReg,P->getOperand(i).getMBB()));
485 UnionedBlocks.insert(MRI.getVRegDef(SrcReg)->getParent());
489 // Compute the dominator forest for the renaming set. This is a forest
490 // where the nodes are the registers and the edges represent dominance
491 // relations between the defining blocks of the registers
492 std::vector<StrongPHIElimination::DomForestNode*> DF =
493 computeDomForest(PHIUnion, MRI);
495 // Walk DomForest to resolve interferences at an inter-block level. This
496 // will remove registers from the renaming set (and insert copies for them)
497 // if interferences are found.
498 std::vector<std::pair<unsigned, unsigned> > localInterferences;
499 processPHIUnion(P, PHIUnion, DF, localInterferences);
501 // If one of the inputs is defined in the same block as the current PHI
502 // then we need to check for a local interference between that input and
503 // the PHI.
504 for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(),
505 E = PHIUnion.end(); I != E; ++I)
506 if (MRI.getVRegDef(I->first)->getParent() == P->getParent())
507 localInterferences.push_back(std::make_pair(I->first,
508 P->getOperand(0).getReg()));
510 // The dominator forest walk may have returned some register pairs whose
511 // interference cannot be determined from dominator analysis. We now
512 // examine these pairs for local interferences.
513 for (std::vector<std::pair<unsigned, unsigned> >::iterator I =
514 localInterferences.begin(), E = localInterferences.end(); I != E; ++I) {
515 std::pair<unsigned, unsigned> p = *I;
517 MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
519 // Determine the block we need to scan and the relationship between
520 // the two registers
521 MachineBasicBlock* scan = 0;
522 unsigned mode = 0;
523 if (MRI.getVRegDef(p.first)->getParent() ==
524 MRI.getVRegDef(p.second)->getParent()) {
525 scan = MRI.getVRegDef(p.first)->getParent();
526 mode = 0; // Same block
527 } else if (MDT.dominates(MRI.getVRegDef(p.first)->getParent(),
528 MRI.getVRegDef(p.second)->getParent())) {
529 scan = MRI.getVRegDef(p.second)->getParent();
530 mode = 1; // First dominates second
531 } else {
532 scan = MRI.getVRegDef(p.first)->getParent();
533 mode = 2; // Second dominates first
536 // If there's an interference, we need to insert copies
537 if (interferes(p.first, p.second, scan, LI, mode)) {
538 // Insert copies for First
539 for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
540 if (P->getOperand(i-1).getReg() == p.first) {
541 unsigned SrcReg = p.first;
542 MachineBasicBlock* From = P->getOperand(i).getMBB();
544 Waiting[From].insert(std::make_pair(SrcReg,
545 P->getOperand(0).getReg()));
546 UsedByAnother.insert(SrcReg);
548 PHIUnion.erase(SrcReg);
554 // Add the renaming set for this PHI node to our overall renaming information
555 for (std::map<unsigned, MachineBasicBlock*>::iterator QI = PHIUnion.begin(),
556 QE = PHIUnion.end(); QI != QE; ++QI) {
557 DOUT << "Adding Renaming: " << QI->first << " -> "
558 << P->getOperand(0).getReg() << "\n";
561 RenameSets.insert(std::make_pair(P->getOperand(0).getReg(), PHIUnion));
563 // Remember which registers are already renamed, so that we don't try to
564 // rename them for another PHI node in this block
565 for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(),
566 E = PHIUnion.end(); I != E; ++I)
567 ProcessedNames.insert(I->first);
569 ++P;
573 /// processPHIUnion - Take a set of candidate registers to be coalesced when
574 /// decomposing the PHI instruction. Use the DominanceForest to remove the ones
575 /// that are known to interfere, and flag others that need to be checked for
576 /// local interferences.
577 void StrongPHIElimination::processPHIUnion(MachineInstr* Inst,
578 std::map<unsigned, MachineBasicBlock*>& PHIUnion,
579 std::vector<StrongPHIElimination::DomForestNode*>& DF,
580 std::vector<std::pair<unsigned, unsigned> >& locals) {
582 std::vector<DomForestNode*> worklist(DF.begin(), DF.end());
583 SmallPtrSet<DomForestNode*, 4> visited;
585 // Code is still in SSA form, so we can use MRI::getVRegDef()
586 MachineRegisterInfo& MRI = Inst->getParent()->getParent()->getRegInfo();
588 LiveIntervals& LI = getAnalysis<LiveIntervals>();
589 unsigned DestReg = Inst->getOperand(0).getReg();
591 // DF walk on the DomForest
592 while (!worklist.empty()) {
593 DomForestNode* DFNode = worklist.back();
595 visited.insert(DFNode);
597 bool inserted = false;
598 for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end();
599 CI != CE; ++CI) {
600 DomForestNode* child = *CI;
602 // If the current node is live-out of the defining block of one of its
603 // children, insert a copy for it. NOTE: The paper actually calls for
604 // a more elaborate heuristic for determining whether to insert copies
605 // for the child or the parent. In the interest of simplicity, we're
606 // just always choosing the parent.
607 if (isLiveOut(DFNode->getReg(),
608 MRI.getVRegDef(child->getReg())->getParent(), LI)) {
609 // Insert copies for parent
610 for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) {
611 if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) {
612 unsigned SrcReg = DFNode->getReg();
613 MachineBasicBlock* From = Inst->getOperand(i).getMBB();
615 Waiting[From].insert(std::make_pair(SrcReg, DestReg));
616 UsedByAnother.insert(SrcReg);
618 PHIUnion.erase(SrcReg);
622 // If a node is live-in to the defining block of one of its children, but
623 // not live-out, then we need to scan that block for local interferences.
624 } else if (isLiveIn(DFNode->getReg(),
625 MRI.getVRegDef(child->getReg())->getParent(), LI) ||
626 MRI.getVRegDef(DFNode->getReg())->getParent() ==
627 MRI.getVRegDef(child->getReg())->getParent()) {
628 // Add (p, c) to possible local interferences
629 locals.push_back(std::make_pair(DFNode->getReg(), child->getReg()));
632 if (!visited.count(child)) {
633 worklist.push_back(child);
634 inserted = true;
638 if (!inserted) worklist.pop_back();
642 /// ScheduleCopies - Insert copies into predecessor blocks, scheduling
643 /// them properly so as to avoid the 'lost copy' and the 'virtual swap'
644 /// problems.
646 /// Based on "Practical Improvements to the Construction and Destruction
647 /// of Static Single Assignment Form" by Briggs, et al.
648 void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
649 std::set<unsigned>& pushed) {
650 // FIXME: This function needs to update LiveIntervals
651 std::multimap<unsigned, unsigned>& copy_set= Waiting[MBB];
653 std::multimap<unsigned, unsigned> worklist;
654 std::map<unsigned, unsigned> map;
656 // Setup worklist of initial copies
657 for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(),
658 E = copy_set.end(); I != E; ) {
659 map.insert(std::make_pair(I->first, I->first));
660 map.insert(std::make_pair(I->second, I->second));
662 if (!UsedByAnother.count(I->second)) {
663 worklist.insert(*I);
665 // Avoid iterator invalidation
666 std::multimap<unsigned, unsigned>::iterator OI = I;
667 ++I;
668 copy_set.erase(OI);
669 } else {
670 ++I;
674 LiveIntervals& LI = getAnalysis<LiveIntervals>();
675 MachineFunction* MF = MBB->getParent();
676 MachineRegisterInfo& MRI = MF->getRegInfo();
677 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
679 SmallVector<std::pair<unsigned, MachineInstr*>, 4> InsertedPHIDests;
681 // Iterate over the worklist, inserting copies
682 while (!worklist.empty() || !copy_set.empty()) {
683 while (!worklist.empty()) {
684 std::multimap<unsigned, unsigned>::iterator WI = worklist.begin();
685 std::pair<unsigned, unsigned> curr = *WI;
686 worklist.erase(WI);
688 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first);
690 if (isLiveOut(curr.second, MBB, LI)) {
691 // Create a temporary
692 unsigned t = MF->getRegInfo().createVirtualRegister(RC);
694 // Insert copy from curr.second to a temporary at
695 // the Phi defining curr.second
696 MachineBasicBlock::iterator PI = MRI.getVRegDef(curr.second);
697 TII->copyRegToReg(*PI->getParent(), PI, t,
698 curr.second, RC, RC);
700 DOUT << "Inserted copy from " << curr.second << " to " << t << "\n";
702 // Push temporary on Stacks
703 Stacks[curr.second].push_back(t);
705 // Insert curr.second in pushed
706 pushed.insert(curr.second);
708 // Create a live interval for this temporary
709 InsertedPHIDests.push_back(std::make_pair(t, --PI));
712 // Insert copy from map[curr.first] to curr.second
713 TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), curr.second,
714 map[curr.first], RC, RC);
715 map[curr.first] = curr.second;
716 DOUT << "Inserted copy from " << curr.first << " to "
717 << curr.second << "\n";
719 // Push this copy onto InsertedPHICopies so we can
720 // update LiveIntervals with it.
721 MachineBasicBlock::iterator MI = MBB->getFirstTerminator();
722 InsertedPHIDests.push_back(std::make_pair(curr.second, --MI));
724 // If curr.first is a destination in copy_set...
725 for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(),
726 E = copy_set.end(); I != E; )
727 if (curr.first == I->second) {
728 std::pair<unsigned, unsigned> temp = *I;
729 worklist.insert(temp);
731 // Avoid iterator invalidation
732 std::multimap<unsigned, unsigned>::iterator OI = I;
733 ++I;
734 copy_set.erase(OI);
736 break;
737 } else {
738 ++I;
742 if (!copy_set.empty()) {
743 std::multimap<unsigned, unsigned>::iterator CI = copy_set.begin();
744 std::pair<unsigned, unsigned> curr = *CI;
745 worklist.insert(curr);
746 copy_set.erase(CI);
748 LiveInterval& I = LI.getInterval(curr.second);
749 MachineBasicBlock::iterator term = MBB->getFirstTerminator();
750 unsigned endIdx = 0;
751 if (term != MBB->end())
752 endIdx = LI.getInstructionIndex(term);
753 else
754 endIdx = LI.getMBBEndIdx(MBB);
756 if (I.liveAt(endIdx)) {
757 const TargetRegisterClass *RC =
758 MF->getRegInfo().getRegClass(curr.first);
760 // Insert a copy from dest to a new temporary t at the end of b
761 unsigned t = MF->getRegInfo().createVirtualRegister(RC);
762 TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), t,
763 curr.second, RC, RC);
764 map[curr.second] = t;
766 MachineBasicBlock::iterator TI = MBB->getFirstTerminator();
767 InsertedPHIDests.push_back(std::make_pair(t, --TI));
772 // Renumber the instructions so that we can perform the index computations
773 // needed to create new live intervals.
774 LI.computeNumbering();
776 // For copies that we inserted at the ends of predecessors, we construct
777 // live intervals. This is pretty easy, since we know that the destination
778 // register cannot have be in live at that point previously. We just have
779 // to make sure that, for registers that serve as inputs to more than one
780 // PHI, we don't create multiple overlapping live intervals.
781 std::set<unsigned> RegHandled;
782 for (SmallVector<std::pair<unsigned, MachineInstr*>, 4>::iterator I =
783 InsertedPHIDests.begin(), E = InsertedPHIDests.end(); I != E; ++I) {
784 if (RegHandled.insert(I->first).second) {
785 LiveInterval& Int = LI.getOrCreateInterval(I->first);
786 unsigned instrIdx = LI.getInstructionIndex(I->second);
787 if (Int.liveAt(LiveIntervals::getDefIndex(instrIdx)))
788 Int.removeRange(LiveIntervals::getDefIndex(instrIdx),
789 LI.getMBBEndIdx(I->second->getParent())+1,
790 true);
792 LiveRange R = LI.addLiveRangeToEndOfBlock(I->first, I->second);
793 R.valno->setCopy(I->second);
794 R.valno->def =
795 LiveIntervals::getDefIndex(LI.getInstructionIndex(I->second));
800 /// InsertCopies - insert copies into MBB and all of its successors
801 void StrongPHIElimination::InsertCopies(MachineDomTreeNode* MDTN,
802 SmallPtrSet<MachineBasicBlock*, 16>& visited) {
803 MachineBasicBlock* MBB = MDTN->getBlock();
804 visited.insert(MBB);
806 std::set<unsigned> pushed;
808 LiveIntervals& LI = getAnalysis<LiveIntervals>();
809 // Rewrite register uses from Stacks
810 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
811 I != E; ++I) {
812 if (I->getOpcode() == TargetInstrInfo::PHI)
813 continue;
815 for (unsigned i = 0; i < I->getNumOperands(); ++i)
816 if (I->getOperand(i).isReg() &&
817 Stacks[I->getOperand(i).getReg()].size()) {
818 // Remove the live range for the old vreg.
819 LiveInterval& OldInt = LI.getInterval(I->getOperand(i).getReg());
820 LiveInterval::iterator OldLR = OldInt.FindLiveRangeContaining(
821 LiveIntervals::getUseIndex(LI.getInstructionIndex(I)));
822 if (OldLR != OldInt.end())
823 OldInt.removeRange(*OldLR, true);
825 // Change the register
826 I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back());
828 // Add a live range for the new vreg
829 LiveInterval& Int = LI.getInterval(I->getOperand(i).getReg());
830 VNInfo* FirstVN = *Int.vni_begin();
831 FirstVN->setHasPHIKill(false);
832 if (I->getOperand(i).isKill())
833 Int.addKill(FirstVN,
834 LiveIntervals::getUseIndex(LI.getInstructionIndex(I)), false);
836 LiveRange LR (LI.getMBBStartIdx(I->getParent()),
837 LiveIntervals::getUseIndex(LI.getInstructionIndex(I))+1,
838 FirstVN);
840 Int.addRange(LR);
844 // Schedule the copies for this block
845 ScheduleCopies(MBB, pushed);
847 // Recur down the dominator tree.
848 for (MachineDomTreeNode::iterator I = MDTN->begin(),
849 E = MDTN->end(); I != E; ++I)
850 if (!visited.count((*I)->getBlock()))
851 InsertCopies(*I, visited);
853 // As we exit this block, pop the names we pushed while processing it
854 for (std::set<unsigned>::iterator I = pushed.begin(),
855 E = pushed.end(); I != E; ++I)
856 Stacks[*I].pop_back();
859 bool StrongPHIElimination::mergeLiveIntervals(unsigned primary,
860 unsigned secondary) {
862 LiveIntervals& LI = getAnalysis<LiveIntervals>();
863 LiveInterval& LHS = LI.getOrCreateInterval(primary);
864 LiveInterval& RHS = LI.getOrCreateInterval(secondary);
866 LI.computeNumbering();
868 DenseMap<VNInfo*, VNInfo*> VNMap;
869 for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
870 LiveRange R = *I;
872 unsigned Start = R.start;
873 unsigned End = R.end;
874 if (LHS.getLiveRangeContaining(Start))
875 return false;
877 if (LHS.getLiveRangeContaining(End))
878 return false;
880 LiveInterval::iterator RI = std::upper_bound(LHS.begin(), LHS.end(), R);
881 if (RI != LHS.end() && RI->start < End)
882 return false;
885 for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
886 LiveRange R = *I;
887 VNInfo* OldVN = R.valno;
888 VNInfo*& NewVN = VNMap[OldVN];
889 if (!NewVN) {
890 NewVN = LHS.createValueCopy(OldVN, LI.getVNInfoAllocator());
893 LiveRange LR (R.start, R.end, NewVN);
894 LHS.addRange(LR);
897 LI.removeInterval(RHS.reg);
899 return true;
902 bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
903 LiveIntervals& LI = getAnalysis<LiveIntervals>();
905 // Compute DFS numbers of each block
906 computeDFS(Fn);
908 // Determine which phi node operands need copies
909 for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
910 if (!I->empty() &&
911 I->begin()->getOpcode() == TargetInstrInfo::PHI)
912 processBlock(I);
914 // Break interferences where two different phis want to coalesce
915 // in the same register.
916 std::set<unsigned> seen;
917 typedef std::map<unsigned, std::map<unsigned, MachineBasicBlock*> >
918 RenameSetType;
919 for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
920 I != E; ++I) {
921 for (std::map<unsigned, MachineBasicBlock*>::iterator
922 OI = I->second.begin(), OE = I->second.end(); OI != OE; ) {
923 if (!seen.count(OI->first)) {
924 seen.insert(OI->first);
925 ++OI;
926 } else {
927 Waiting[OI->second].insert(std::make_pair(OI->first, I->first));
928 unsigned reg = OI->first;
929 ++OI;
930 I->second.erase(reg);
931 DOUT << "Removing Renaming: " << reg << " -> " << I->first << "\n";
936 // Insert copies
937 // FIXME: This process should probably preserve LiveIntervals
938 SmallPtrSet<MachineBasicBlock*, 16> visited;
939 MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
940 InsertCopies(MDT.getRootNode(), visited);
942 // Perform renaming
943 for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
944 I != E; ++I)
945 while (I->second.size()) {
946 std::map<unsigned, MachineBasicBlock*>::iterator SI = I->second.begin();
948 DOUT << "Renaming: " << SI->first << " -> " << I->first << "\n";
950 if (SI->first != I->first) {
951 if (mergeLiveIntervals(I->first, SI->first)) {
952 Fn.getRegInfo().replaceRegWith(SI->first, I->first);
954 if (RenameSets.count(SI->first)) {
955 I->second.insert(RenameSets[SI->first].begin(),
956 RenameSets[SI->first].end());
957 RenameSets.erase(SI->first);
959 } else {
960 // Insert a last-minute copy if a conflict was detected.
961 const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
962 const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(I->first);
963 TII->copyRegToReg(*SI->second, SI->second->getFirstTerminator(),
964 I->first, SI->first, RC, RC);
966 LI.computeNumbering();
968 LiveInterval& Int = LI.getOrCreateInterval(I->first);
969 unsigned instrIdx =
970 LI.getInstructionIndex(--SI->second->getFirstTerminator());
971 if (Int.liveAt(LiveIntervals::getDefIndex(instrIdx)))
972 Int.removeRange(LiveIntervals::getDefIndex(instrIdx),
973 LI.getMBBEndIdx(SI->second)+1, true);
975 LiveRange R = LI.addLiveRangeToEndOfBlock(I->first,
976 --SI->second->getFirstTerminator());
977 R.valno->setCopy(--SI->second->getFirstTerminator());
978 R.valno->def = LiveIntervals::getDefIndex(instrIdx);
980 DOUT << "Renaming failed: " << SI->first << " -> "
981 << I->first << "\n";
985 LiveInterval& Int = LI.getOrCreateInterval(I->first);
986 const LiveRange* LR =
987 Int.getLiveRangeContaining(LI.getMBBEndIdx(SI->second));
988 LR->valno->setHasPHIKill(true);
990 I->second.erase(SI->first);
993 // Remove PHIs
994 std::vector<MachineInstr*> phis;
995 for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
996 for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end();
997 BI != BE; ++BI)
998 if (BI->getOpcode() == TargetInstrInfo::PHI)
999 phis.push_back(BI);
1002 for (std::vector<MachineInstr*>::iterator I = phis.begin(), E = phis.end();
1003 I != E; ) {
1004 MachineInstr* PInstr = *(I++);
1006 // If this is a dead PHI node, then remove it from LiveIntervals.
1007 unsigned DestReg = PInstr->getOperand(0).getReg();
1008 LiveInterval& PI = LI.getInterval(DestReg);
1009 if (PInstr->registerDefIsDead(DestReg)) {
1010 if (PI.containsOneValue()) {
1011 LI.removeInterval(DestReg);
1012 } else {
1013 unsigned idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
1014 PI.removeRange(*PI.getLiveRangeContaining(idx), true);
1016 } else {
1017 // Trim live intervals of input registers. They are no longer live into
1018 // this block if they died after the PHI. If they lived after it, don't
1019 // trim them because they might have other legitimate uses.
1020 for (unsigned i = 1; i < PInstr->getNumOperands(); i += 2) {
1021 unsigned reg = PInstr->getOperand(i).getReg();
1023 MachineBasicBlock* MBB = PInstr->getOperand(i+1).getMBB();
1024 LiveInterval& InputI = LI.getInterval(reg);
1025 if (MBB != PInstr->getParent() &&
1026 InputI.liveAt(LI.getMBBStartIdx(PInstr->getParent())) &&
1027 InputI.expiredAt(LI.getInstructionIndex(PInstr) +
1028 LiveInterval::InstrSlots::NUM))
1029 InputI.removeRange(LI.getMBBStartIdx(PInstr->getParent()),
1030 LI.getInstructionIndex(PInstr),
1031 true);
1034 // If the PHI is not dead, then the valno defined by the PHI
1035 // now has an unknown def.
1036 unsigned idx = LI.getDefIndex(LI.getInstructionIndex(PInstr));
1037 const LiveRange* PLR = PI.getLiveRangeContaining(idx);
1038 PLR->valno->setIsPHIDef(true);
1039 LiveRange R (LI.getMBBStartIdx(PInstr->getParent()),
1040 PLR->start, PLR->valno);
1041 PI.addRange(R);
1044 LI.RemoveMachineInstrFromMaps(PInstr);
1045 PInstr->eraseFromParent();
1048 LI.computeNumbering();
1050 return true;