Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / CodeGen / VirtRegRewriter.cpp
blob3e651a57cfe61aeaeb295aaafc4857471c242853
1 //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "virtregrewriter"
11 #include "VirtRegRewriter.h"
12 #include "llvm/Support/Compiler.h"
13 #include "llvm/Support/ErrorHandling.h"
14 #include "llvm/Support/raw_ostream.h"
15 #include "llvm/Target/TargetLowering.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include <algorithm>
20 using namespace llvm;
22 STATISTIC(NumDSE , "Number of dead stores elided");
23 STATISTIC(NumDSS , "Number of dead spill slots removed");
24 STATISTIC(NumCommutes, "Number of instructions commuted");
25 STATISTIC(NumDRM , "Number of re-materializable defs elided");
26 STATISTIC(NumStores , "Number of stores added");
27 STATISTIC(NumPSpills , "Number of physical register spills");
28 STATISTIC(NumOmitted , "Number of reloads omited");
29 STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
30 STATISTIC(NumCopified, "Number of available reloads turned into copies");
31 STATISTIC(NumReMats , "Number of re-materialization");
32 STATISTIC(NumLoads , "Number of loads added");
33 STATISTIC(NumReused , "Number of values reused");
34 STATISTIC(NumDCE , "Number of copies elided");
35 STATISTIC(NumSUnfold , "Number of stores unfolded");
36 STATISTIC(NumModRefUnfold, "Number of modref unfolded");
38 namespace {
39 enum RewriterName { local, trivial };
42 static cl::opt<RewriterName>
43 RewriterOpt("rewriter",
44 cl::desc("Rewriter to use: (default: local)"),
45 cl::Prefix,
46 cl::values(clEnumVal(local, "local rewriter"),
47 clEnumVal(trivial, "trivial rewriter"),
48 clEnumValEnd),
49 cl::init(local));
51 static cl::opt<bool>
52 ScheduleSpills("schedule-spills",
53 cl::desc("Schedule spill code"),
54 cl::init(false));
56 VirtRegRewriter::~VirtRegRewriter() {}
58 namespace {
60 /// This class is intended for use with the new spilling framework only. It
61 /// rewrites vreg def/uses to use the assigned preg, but does not insert any
62 /// spill code.
63 struct VISIBILITY_HIDDEN TrivialRewriter : public VirtRegRewriter {
65 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
66 LiveIntervals* LIs) {
67 DOUT << "********** REWRITE MACHINE CODE **********\n";
68 DEBUG(errs() << "********** Function: "
69 << MF.getFunction()->getName() << '\n');
70 DOUT << "**** Machine Instrs"
71 << "(NOTE! Does not include spills and reloads!) ****\n";
72 DEBUG(MF.dump());
74 MachineRegisterInfo *mri = &MF.getRegInfo();
76 bool changed = false;
78 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
79 liItr != liEnd; ++liItr) {
81 if (TargetRegisterInfo::isVirtualRegister(liItr->first)) {
82 if (VRM.hasPhys(liItr->first)) {
83 unsigned preg = VRM.getPhys(liItr->first);
84 mri->replaceRegWith(liItr->first, preg);
85 mri->setPhysRegUsed(preg);
86 changed = true;
89 else {
90 if (!liItr->second->empty()) {
91 mri->setPhysRegUsed(liItr->first);
97 DOUT << "**** Post Machine Instrs ****\n";
98 DEBUG(MF.dump());
100 return changed;
107 // ************************************************************************ //
109 namespace {
111 /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
112 /// from top down, keep track of which spill slots or remat are available in
113 /// each register.
115 /// Note that not all physregs are created equal here. In particular, some
116 /// physregs are reloads that we are allowed to clobber or ignore at any time.
117 /// Other physregs are values that the register allocated program is using
118 /// that we cannot CHANGE, but we can read if we like. We keep track of this
119 /// on a per-stack-slot / remat id basis as the low bit in the value of the
120 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
121 /// this bit and addAvailable sets it if.
122 class VISIBILITY_HIDDEN AvailableSpills {
123 const TargetRegisterInfo *TRI;
124 const TargetInstrInfo *TII;
126 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
127 // or remat'ed virtual register values that are still available, due to
128 // being loaded or stored to, but not invalidated yet.
129 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
131 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
132 // indicating which stack slot values are currently held by a physreg. This
133 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
134 // physreg is modified.
135 std::multimap<unsigned, int> PhysRegsAvailable;
137 void disallowClobberPhysRegOnly(unsigned PhysReg);
139 void ClobberPhysRegOnly(unsigned PhysReg);
140 public:
141 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
142 : TRI(tri), TII(tii) {
145 /// clear - Reset the state.
146 void clear() {
147 SpillSlotsOrReMatsAvailable.clear();
148 PhysRegsAvailable.clear();
151 const TargetRegisterInfo *getRegInfo() const { return TRI; }
153 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
154 /// available in a physical register, return that PhysReg, otherwise
155 /// return 0.
156 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
157 std::map<int, unsigned>::const_iterator I =
158 SpillSlotsOrReMatsAvailable.find(Slot);
159 if (I != SpillSlotsOrReMatsAvailable.end()) {
160 return I->second >> 1; // Remove the CanClobber bit.
162 return 0;
165 /// addAvailable - Mark that the specified stack slot / remat is available
166 /// in the specified physreg. If CanClobber is true, the physreg can be
167 /// modified at any time without changing the semantics of the program.
168 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
169 // If this stack slot is thought to be available in some other physreg,
170 // remove its record.
171 ModifyStackSlotOrReMat(SlotOrReMat);
173 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
174 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
175 (unsigned)CanClobber;
177 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
178 DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
179 else
180 DOUT << "Remembering SS#" << SlotOrReMat;
181 DOUT << " in physreg " << TRI->getName(Reg) << "\n";
184 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
185 /// the value of the specified stackslot register if it desires. The
186 /// specified stack slot must be available in a physreg for this query to
187 /// make sense.
188 bool canClobberPhysRegForSS(int SlotOrReMat) const {
189 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
190 "Value not available!");
191 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
194 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
195 /// physical register where values for some stack slot(s) might be
196 /// available.
197 bool canClobberPhysReg(unsigned PhysReg) const {
198 std::multimap<unsigned, int>::const_iterator I =
199 PhysRegsAvailable.lower_bound(PhysReg);
200 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
201 int SlotOrReMat = I->second;
202 I++;
203 if (!canClobberPhysRegForSS(SlotOrReMat))
204 return false;
206 return true;
209 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
210 /// stackslot register. The register is still available but is no longer
211 /// allowed to be modifed.
212 void disallowClobberPhysReg(unsigned PhysReg);
214 /// ClobberPhysReg - This is called when the specified physreg changes
215 /// value. We use this to invalidate any info about stuff that lives in
216 /// it and any of its aliases.
217 void ClobberPhysReg(unsigned PhysReg);
219 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
220 /// slot changes. This removes information about which register the
221 /// previous value for this slot lives in (as the previous value is dead
222 /// now).
223 void ModifyStackSlotOrReMat(int SlotOrReMat);
225 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
226 /// into the specified MBB. Add available physical registers as potential
227 /// live-in's. If they are reused in the MBB, they will be added to the
228 /// live-in set to make register scavenger and post-allocation scheduler.
229 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
230 std::vector<MachineOperand*> &KillOps);
235 // ************************************************************************ //
237 // Given a location where a reload of a spilled register or a remat of
238 // a constant is to be inserted, attempt to find a safe location to
239 // insert the load at an earlier point in the basic-block, to hide
240 // latency of the load and to avoid address-generation interlock
241 // issues.
242 static MachineBasicBlock::iterator
243 ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
244 MachineBasicBlock::iterator const Begin,
245 unsigned PhysReg,
246 const TargetRegisterInfo *TRI,
247 bool DoReMat,
248 int SSorRMId,
249 const TargetInstrInfo *TII,
250 const MachineFunction &MF)
252 if (!ScheduleSpills)
253 return InsertLoc;
255 // Spill backscheduling is of primary interest to addresses, so
256 // don't do anything if the register isn't in the register class
257 // used for pointers.
259 const TargetLowering *TL = MF.getTarget().getTargetLowering();
261 if (!TL->isTypeLegal(TL->getPointerTy()))
262 // Believe it or not, this is true on PIC16.
263 return InsertLoc;
265 const TargetRegisterClass *ptrRegClass =
266 TL->getRegClassFor(TL->getPointerTy());
267 if (!ptrRegClass->contains(PhysReg))
268 return InsertLoc;
270 // Scan upwards through the preceding instructions. If an instruction doesn't
271 // reference the stack slot or the register we're loading, we can
272 // backschedule the reload up past it.
273 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
274 while (NewInsertLoc != Begin) {
275 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
276 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
277 MachineOperand &Op = Prev->getOperand(i);
278 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
279 goto stop;
281 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
282 Prev->findRegisterDefOperand(PhysReg))
283 goto stop;
284 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
285 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
286 Prev->findRegisterDefOperand(*Alias))
287 goto stop;
288 NewInsertLoc = Prev;
290 stop:;
292 // If we made it to the beginning of the block, turn around and move back
293 // down just past any existing reloads. They're likely to be reloads/remats
294 // for instructions earlier than what our current reload/remat is for, so
295 // they should be scheduled earlier.
296 if (NewInsertLoc == Begin) {
297 int FrameIdx;
298 while (InsertLoc != NewInsertLoc &&
299 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
300 TII->isTriviallyReMaterializable(NewInsertLoc)))
301 ++NewInsertLoc;
304 return NewInsertLoc;
307 namespace {
309 // ReusedOp - For each reused operand, we keep track of a bit of information,
310 // in case we need to rollback upon processing a new operand. See comments
311 // below.
312 struct ReusedOp {
313 // The MachineInstr operand that reused an available value.
314 unsigned Operand;
316 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
317 unsigned StackSlotOrReMat;
319 // PhysRegReused - The physical register the value was available in.
320 unsigned PhysRegReused;
322 // AssignedPhysReg - The physreg that was assigned for use by the reload.
323 unsigned AssignedPhysReg;
325 // VirtReg - The virtual register itself.
326 unsigned VirtReg;
328 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
329 unsigned vreg)
330 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
331 AssignedPhysReg(apr), VirtReg(vreg) {}
334 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
335 /// is reused instead of reloaded.
336 class VISIBILITY_HIDDEN ReuseInfo {
337 MachineInstr &MI;
338 std::vector<ReusedOp> Reuses;
339 BitVector PhysRegsClobbered;
340 public:
341 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
342 PhysRegsClobbered.resize(tri->getNumRegs());
345 bool hasReuses() const {
346 return !Reuses.empty();
349 /// addReuse - If we choose to reuse a virtual register that is already
350 /// available instead of reloading it, remember that we did so.
351 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
352 unsigned PhysRegReused, unsigned AssignedPhysReg,
353 unsigned VirtReg) {
354 // If the reload is to the assigned register anyway, no undo will be
355 // required.
356 if (PhysRegReused == AssignedPhysReg) return;
358 // Otherwise, remember this.
359 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
360 AssignedPhysReg, VirtReg));
363 void markClobbered(unsigned PhysReg) {
364 PhysRegsClobbered.set(PhysReg);
367 bool isClobbered(unsigned PhysReg) const {
368 return PhysRegsClobbered.test(PhysReg);
371 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
372 /// is some other operand that is using the specified register, either pick
373 /// a new register to use, or evict the previous reload and use this reg.
374 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
375 MachineFunction &MF, MachineInstr *MI,
376 AvailableSpills &Spills,
377 std::vector<MachineInstr*> &MaybeDeadStores,
378 SmallSet<unsigned, 8> &Rejected,
379 BitVector &RegKills,
380 std::vector<MachineOperand*> &KillOps,
381 VirtRegMap &VRM);
383 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
384 /// 'Rejected' set to remember which registers have been considered and
385 /// rejected for the reload. This avoids infinite looping in case like
386 /// this:
387 /// t1 := op t2, t3
388 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
389 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
390 /// t1 <- desires r1
391 /// sees r1 is taken by t2, tries t2's reload register r0
392 /// sees r0 is taken by t3, tries t3's reload register r1
393 /// sees r1 is taken by t2, tries t2's reload register r0 ...
394 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
395 AvailableSpills &Spills,
396 std::vector<MachineInstr*> &MaybeDeadStores,
397 BitVector &RegKills,
398 std::vector<MachineOperand*> &KillOps,
399 VirtRegMap &VRM) {
400 SmallSet<unsigned, 8> Rejected;
401 MachineFunction &MF = *MI->getParent()->getParent();
402 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
403 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
404 Rejected, RegKills, KillOps, VRM);
410 // ****************** //
411 // Utility Functions //
412 // ****************** //
414 /// findSinglePredSuccessor - Return via reference a vector of machine basic
415 /// blocks each of which is a successor of the specified BB and has no other
416 /// predecessor.
417 static void findSinglePredSuccessor(MachineBasicBlock *MBB,
418 SmallVectorImpl<MachineBasicBlock *> &Succs) {
419 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
420 SE = MBB->succ_end(); SI != SE; ++SI) {
421 MachineBasicBlock *SuccMBB = *SI;
422 if (SuccMBB->pred_size() == 1)
423 Succs.push_back(SuccMBB);
427 /// InvalidateKill - Invalidate register kill information for a specific
428 /// register. This also unsets the kills marker on the last kill operand.
429 static void InvalidateKill(unsigned Reg,
430 const TargetRegisterInfo* TRI,
431 BitVector &RegKills,
432 std::vector<MachineOperand*> &KillOps) {
433 if (RegKills[Reg]) {
434 KillOps[Reg]->setIsKill(false);
435 // KillOps[Reg] might be a def of a super-register.
436 unsigned KReg = KillOps[Reg]->getReg();
437 KillOps[KReg] = NULL;
438 RegKills.reset(KReg);
439 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
440 if (RegKills[*SR]) {
441 KillOps[*SR]->setIsKill(false);
442 KillOps[*SR] = NULL;
443 RegKills.reset(*SR);
449 /// InvalidateKills - MI is going to be deleted. If any of its operands are
450 /// marked kill, then invalidate the information.
451 static void InvalidateKills(MachineInstr &MI,
452 const TargetRegisterInfo* TRI,
453 BitVector &RegKills,
454 std::vector<MachineOperand*> &KillOps,
455 SmallVector<unsigned, 2> *KillRegs = NULL) {
456 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
457 MachineOperand &MO = MI.getOperand(i);
458 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
459 continue;
460 unsigned Reg = MO.getReg();
461 if (TargetRegisterInfo::isVirtualRegister(Reg))
462 continue;
463 if (KillRegs)
464 KillRegs->push_back(Reg);
465 assert(Reg < KillOps.size());
466 if (KillOps[Reg] == &MO) {
467 KillOps[Reg] = NULL;
468 RegKills.reset(Reg);
469 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
470 if (RegKills[*SR]) {
471 KillOps[*SR] = NULL;
472 RegKills.reset(*SR);
479 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
480 /// (since it's spill instruction is removed), mark it isDead. Also checks if
481 /// the def MI has other definition operands that are not dead. Returns it by
482 /// reference.
483 static bool InvalidateRegDef(MachineBasicBlock::iterator I,
484 MachineInstr &NewDef, unsigned Reg,
485 bool &HasLiveDef) {
486 // Due to remat, it's possible this reg isn't being reused. That is,
487 // the def of this reg (by prev MI) is now dead.
488 MachineInstr *DefMI = I;
489 MachineOperand *DefOp = NULL;
490 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
491 MachineOperand &MO = DefMI->getOperand(i);
492 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
493 continue;
494 if (MO.getReg() == Reg)
495 DefOp = &MO;
496 else if (!MO.isDead())
497 HasLiveDef = true;
499 if (!DefOp)
500 return false;
502 bool FoundUse = false, Done = false;
503 MachineBasicBlock::iterator E = &NewDef;
504 ++I; ++E;
505 for (; !Done && I != E; ++I) {
506 MachineInstr *NMI = I;
507 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
508 MachineOperand &MO = NMI->getOperand(j);
509 if (!MO.isReg() || MO.getReg() != Reg)
510 continue;
511 if (MO.isUse())
512 FoundUse = true;
513 Done = true; // Stop after scanning all the operands of this MI.
516 if (!FoundUse) {
517 // Def is dead!
518 DefOp->setIsDead();
519 return true;
521 return false;
524 /// UpdateKills - Track and update kill info. If a MI reads a register that is
525 /// marked kill, then it must be due to register reuse. Transfer the kill info
526 /// over.
527 static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
528 BitVector &RegKills,
529 std::vector<MachineOperand*> &KillOps) {
530 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
531 MachineOperand &MO = MI.getOperand(i);
532 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
533 continue;
534 unsigned Reg = MO.getReg();
535 if (Reg == 0)
536 continue;
538 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
539 // That can't be right. Register is killed but not re-defined and it's
540 // being reused. Let's fix that.
541 KillOps[Reg]->setIsKill(false);
542 // KillOps[Reg] might be a def of a super-register.
543 unsigned KReg = KillOps[Reg]->getReg();
544 KillOps[KReg] = NULL;
545 RegKills.reset(KReg);
547 // Must be a def of a super-register. Its other sub-regsters are no
548 // longer killed as well.
549 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
550 KillOps[*SR] = NULL;
551 RegKills.reset(*SR);
554 if (!MI.isRegTiedToDefOperand(i))
555 // Unless it's a two-address operand, this is the new kill.
556 MO.setIsKill();
558 if (MO.isKill()) {
559 RegKills.set(Reg);
560 KillOps[Reg] = &MO;
561 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
562 RegKills.set(*SR);
563 KillOps[*SR] = &MO;
568 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
569 const MachineOperand &MO = MI.getOperand(i);
570 if (!MO.isReg() || !MO.isDef())
571 continue;
572 unsigned Reg = MO.getReg();
573 RegKills.reset(Reg);
574 KillOps[Reg] = NULL;
575 // It also defines (or partially define) aliases.
576 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
577 RegKills.reset(*SR);
578 KillOps[*SR] = NULL;
583 /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
585 static void ReMaterialize(MachineBasicBlock &MBB,
586 MachineBasicBlock::iterator &MII,
587 unsigned DestReg, unsigned Reg,
588 const TargetInstrInfo *TII,
589 const TargetRegisterInfo *TRI,
590 VirtRegMap &VRM) {
591 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
592 #ifndef NDEBUG
593 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
594 assert(TID.getNumDefs() == 1 &&
595 "Don't know how to remat instructions that define > 1 values!");
596 #endif
597 TII->reMaterialize(MBB, MII, DestReg,
598 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI);
599 MachineInstr *NewMI = prior(MII);
600 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
601 MachineOperand &MO = NewMI->getOperand(i);
602 if (!MO.isReg() || MO.getReg() == 0)
603 continue;
604 unsigned VirtReg = MO.getReg();
605 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
606 continue;
607 assert(MO.isUse());
608 unsigned SubIdx = MO.getSubReg();
609 unsigned Phys = VRM.getPhys(VirtReg);
610 assert(Phys);
611 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
612 MO.setReg(RReg);
613 MO.setSubReg(0);
615 ++NumReMats;
618 /// findSuperReg - Find the SubReg's super-register of given register class
619 /// where its SubIdx sub-register is SubReg.
620 static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
621 unsigned SubIdx, const TargetRegisterInfo *TRI) {
622 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
623 I != E; ++I) {
624 unsigned Reg = *I;
625 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
626 return Reg;
628 return 0;
631 // ******************************** //
632 // Available Spills Implementation //
633 // ******************************** //
635 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
636 /// stackslot register. The register is still available but is no longer
637 /// allowed to be modifed.
638 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
639 std::multimap<unsigned, int>::iterator I =
640 PhysRegsAvailable.lower_bound(PhysReg);
641 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
642 int SlotOrReMat = I->second;
643 I++;
644 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
645 "Bidirectional map mismatch!");
646 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
647 DOUT << "PhysReg " << TRI->getName(PhysReg)
648 << " copied, it is available for use but can no longer be modified\n";
652 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
653 /// stackslot register and its aliases. The register and its aliases may
654 /// still available but is no longer allowed to be modifed.
655 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
656 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
657 disallowClobberPhysRegOnly(*AS);
658 disallowClobberPhysRegOnly(PhysReg);
661 /// ClobberPhysRegOnly - This is called when the specified physreg changes
662 /// value. We use this to invalidate any info about stuff we thing lives in it.
663 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
664 std::multimap<unsigned, int>::iterator I =
665 PhysRegsAvailable.lower_bound(PhysReg);
666 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
667 int SlotOrReMat = I->second;
668 PhysRegsAvailable.erase(I++);
669 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
670 "Bidirectional map mismatch!");
671 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
672 DOUT << "PhysReg " << TRI->getName(PhysReg)
673 << " clobbered, invalidating ";
674 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
675 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
676 else
677 DOUT << "SS#" << SlotOrReMat << "\n";
681 /// ClobberPhysReg - This is called when the specified physreg changes
682 /// value. We use this to invalidate any info about stuff we thing lives in
683 /// it and any of its aliases.
684 void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
685 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
686 ClobberPhysRegOnly(*AS);
687 ClobberPhysRegOnly(PhysReg);
690 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
691 /// into the specified MBB. Add available physical registers as potential
692 /// live-in's. If they are reused in the MBB, they will be added to the
693 /// live-in set to make register scavenger and post-allocation scheduler.
694 void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
695 BitVector &RegKills,
696 std::vector<MachineOperand*> &KillOps) {
697 std::set<unsigned> NotAvailable;
698 for (std::multimap<unsigned, int>::iterator
699 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
700 I != E; ++I) {
701 unsigned Reg = I->first;
702 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
703 // FIXME: A temporary workaround. We can't reuse available value if it's
704 // not safe to move the def of the virtual register's class. e.g.
705 // X86::RFP* register classes. Do not add it as a live-in.
706 if (!TII->isSafeToMoveRegClassDefs(RC))
707 // This is no longer available.
708 NotAvailable.insert(Reg);
709 else {
710 MBB.addLiveIn(Reg);
711 InvalidateKill(Reg, TRI, RegKills, KillOps);
714 // Skip over the same register.
715 std::multimap<unsigned, int>::iterator NI = next(I);
716 while (NI != E && NI->first == Reg) {
717 ++I;
718 ++NI;
722 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
723 E = NotAvailable.end(); I != E; ++I) {
724 ClobberPhysReg(*I);
725 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
726 *SubRegs; ++SubRegs)
727 ClobberPhysReg(*SubRegs);
731 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
732 /// slot changes. This removes information about which register the previous
733 /// value for this slot lives in (as the previous value is dead now).
734 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
735 std::map<int, unsigned>::iterator It =
736 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
737 if (It == SpillSlotsOrReMatsAvailable.end()) return;
738 unsigned Reg = It->second >> 1;
739 SpillSlotsOrReMatsAvailable.erase(It);
741 // This register may hold the value of multiple stack slots, only remove this
742 // stack slot from the set of values the register contains.
743 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
744 for (; ; ++I) {
745 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
746 "Map inverse broken!");
747 if (I->second == SlotOrReMat) break;
749 PhysRegsAvailable.erase(I);
752 // ************************** //
753 // Reuse Info Implementation //
754 // ************************** //
756 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
757 /// is some other operand that is using the specified register, either pick
758 /// a new register to use, or evict the previous reload and use this reg.
759 unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
760 unsigned PhysReg,
761 MachineFunction &MF,
762 MachineInstr *MI, AvailableSpills &Spills,
763 std::vector<MachineInstr*> &MaybeDeadStores,
764 SmallSet<unsigned, 8> &Rejected,
765 BitVector &RegKills,
766 std::vector<MachineOperand*> &KillOps,
767 VirtRegMap &VRM) {
768 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
769 const TargetRegisterInfo *TRI = Spills.getRegInfo();
771 if (Reuses.empty()) return PhysReg; // This is most often empty.
773 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
774 ReusedOp &Op = Reuses[ro];
775 // If we find some other reuse that was supposed to use this register
776 // exactly for its reload, we can change this reload to use ITS reload
777 // register. That is, unless its reload register has already been
778 // considered and subsequently rejected because it has also been reused
779 // by another operand.
780 if (Op.PhysRegReused == PhysReg &&
781 Rejected.count(Op.AssignedPhysReg) == 0 &&
782 RC->contains(Op.AssignedPhysReg)) {
783 // Yup, use the reload register that we didn't use before.
784 unsigned NewReg = Op.AssignedPhysReg;
785 Rejected.insert(PhysReg);
786 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
787 RegKills, KillOps, VRM);
788 } else {
789 // Otherwise, we might also have a problem if a previously reused
790 // value aliases the new register. If so, codegen the previous reload
791 // and use this one.
792 unsigned PRRU = Op.PhysRegReused;
793 if (TRI->areAliases(PRRU, PhysReg)) {
794 // Okay, we found out that an alias of a reused register
795 // was used. This isn't good because it means we have
796 // to undo a previous reuse.
797 MachineBasicBlock *MBB = MI->getParent();
798 const TargetRegisterClass *AliasRC =
799 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
801 // Copy Op out of the vector and remove it, we're going to insert an
802 // explicit load for it.
803 ReusedOp NewOp = Op;
804 Reuses.erase(Reuses.begin()+ro);
806 // Ok, we're going to try to reload the assigned physreg into the
807 // slot that we were supposed to in the first place. However, that
808 // register could hold a reuse. Check to see if it conflicts or
809 // would prefer us to use a different register.
810 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
811 MF, MI, Spills, MaybeDeadStores,
812 Rejected, RegKills, KillOps, VRM);
814 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
815 int SSorRMId = DoReMat
816 ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
818 // Back-schedule reloads and remats.
819 MachineBasicBlock::iterator InsertLoc =
820 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
821 DoReMat, SSorRMId, TII, MF);
823 if (DoReMat) {
824 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
825 TRI, VRM);
826 } else {
827 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
828 NewOp.StackSlotOrReMat, AliasRC);
829 MachineInstr *LoadMI = prior(InsertLoc);
830 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
831 // Any stores to this stack slot are not dead anymore.
832 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
833 ++NumLoads;
835 Spills.ClobberPhysReg(NewPhysReg);
836 Spills.ClobberPhysReg(NewOp.PhysRegReused);
838 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
839 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
840 MI->getOperand(NewOp.Operand).setReg(RReg);
841 MI->getOperand(NewOp.Operand).setSubReg(0);
843 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
844 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
845 DOUT << '\t' << *prior(InsertLoc);
847 DOUT << "Reuse undone!\n";
848 --NumReused;
850 // Finally, PhysReg is now available, go ahead and use it.
851 return PhysReg;
855 return PhysReg;
858 // ************************************************************************ //
860 /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
861 /// stack slot mod/ref. It also checks if it's possible to unfold the
862 /// instruction by having it define a specified physical register instead.
863 static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
864 const TargetInstrInfo *TII,
865 const TargetRegisterInfo *TRI,
866 VirtRegMap &VRM) {
867 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
868 return false;
870 bool Found = false;
871 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
872 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
873 unsigned VirtReg = I->second.first;
874 VirtRegMap::ModRef MR = I->second.second;
875 if (MR & VirtRegMap::isModRef)
876 if (VRM.getStackSlot(VirtReg) == SS) {
877 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
878 break;
881 if (!Found)
882 return false;
884 // Does the instruction uses a register that overlaps the scratch register?
885 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
886 MachineOperand &MO = MI.getOperand(i);
887 if (!MO.isReg() || MO.getReg() == 0)
888 continue;
889 unsigned Reg = MO.getReg();
890 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
891 if (!VRM.hasPhys(Reg))
892 continue;
893 Reg = VRM.getPhys(Reg);
895 if (TRI->regsOverlap(PhysReg, Reg))
896 return false;
898 return true;
901 /// FindFreeRegister - Find a free register of a given register class by looking
902 /// at (at most) the last two machine instructions.
903 static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
904 MachineBasicBlock &MBB,
905 const TargetRegisterClass *RC,
906 const TargetRegisterInfo *TRI,
907 BitVector &AllocatableRegs) {
908 BitVector Defs(TRI->getNumRegs());
909 BitVector Uses(TRI->getNumRegs());
910 SmallVector<unsigned, 4> LocalUses;
911 SmallVector<unsigned, 4> Kills;
913 // Take a look at 2 instructions at most.
914 for (unsigned Count = 0; Count < 2; ++Count) {
915 if (MII == MBB.begin())
916 break;
917 MachineInstr *PrevMI = prior(MII);
918 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
919 MachineOperand &MO = PrevMI->getOperand(i);
920 if (!MO.isReg() || MO.getReg() == 0)
921 continue;
922 unsigned Reg = MO.getReg();
923 if (MO.isDef()) {
924 Defs.set(Reg);
925 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
926 Defs.set(*AS);
927 } else {
928 LocalUses.push_back(Reg);
929 if (MO.isKill() && AllocatableRegs[Reg])
930 Kills.push_back(Reg);
934 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
935 unsigned Kill = Kills[i];
936 if (!Defs[Kill] && !Uses[Kill] &&
937 TRI->getPhysicalRegisterRegClass(Kill) == RC)
938 return Kill;
940 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
941 unsigned Reg = LocalUses[i];
942 Uses.set(Reg);
943 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
944 Uses.set(*AS);
947 MII = PrevMI;
950 return 0;
953 static
954 void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
955 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
956 MachineOperand &MO = MI->getOperand(i);
957 if (MO.isReg() && MO.getReg() == VirtReg)
958 MO.setReg(PhysReg);
962 namespace {
963 struct RefSorter {
964 bool operator()(const std::pair<MachineInstr*, int> &A,
965 const std::pair<MachineInstr*, int> &B) {
966 return A.second < B.second;
971 // ***************************** //
972 // Local Spiller Implementation //
973 // ***************************** //
975 namespace {
977 class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
978 MachineRegisterInfo *RegInfo;
979 const TargetRegisterInfo *TRI;
980 const TargetInstrInfo *TII;
981 BitVector AllocatableRegs;
982 DenseMap<MachineInstr*, unsigned> DistanceMap;
983 public:
985 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
986 LiveIntervals* LIs) {
987 RegInfo = &MF.getRegInfo();
988 TRI = MF.getTarget().getRegisterInfo();
989 TII = MF.getTarget().getInstrInfo();
990 AllocatableRegs = TRI->getAllocatableSet(MF);
991 DEBUG(errs() << "\n**** Local spiller rewriting function '"
992 << MF.getFunction()->getName() << "':\n");
993 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
994 " ****\n";
995 DEBUG(MF.dump());
997 // Spills - Keep track of which spilled values are available in physregs
998 // so that we can choose to reuse the physregs instead of emitting
999 // reloads. This is usually refreshed per basic block.
1000 AvailableSpills Spills(TRI, TII);
1002 // Keep track of kill information.
1003 BitVector RegKills(TRI->getNumRegs());
1004 std::vector<MachineOperand*> KillOps;
1005 KillOps.resize(TRI->getNumRegs(), NULL);
1007 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1008 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
1009 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
1011 // Traverse the basic blocks depth first.
1012 MachineBasicBlock *Entry = MF.begin();
1013 SmallPtrSet<MachineBasicBlock*,16> Visited;
1014 for (df_ext_iterator<MachineBasicBlock*,
1015 SmallPtrSet<MachineBasicBlock*,16> >
1016 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1017 DFI != E; ++DFI) {
1018 MachineBasicBlock *MBB = *DFI;
1019 if (!EarlyVisited.count(MBB))
1020 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1022 // If this MBB is the only predecessor of a successor. Keep the
1023 // availability information and visit it next.
1024 do {
1025 // Keep visiting single predecessor successor as long as possible.
1026 SinglePredSuccs.clear();
1027 findSinglePredSuccessor(MBB, SinglePredSuccs);
1028 if (SinglePredSuccs.empty())
1029 MBB = 0;
1030 else {
1031 // FIXME: More than one successors, each of which has MBB has
1032 // the only predecessor.
1033 MBB = SinglePredSuccs[0];
1034 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1035 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1036 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1039 } while (MBB);
1041 // Clear the availability info.
1042 Spills.clear();
1045 DOUT << "**** Post Machine Instrs ****\n";
1046 DEBUG(MF.dump());
1048 // Mark unused spill slots.
1049 MachineFrameInfo *MFI = MF.getFrameInfo();
1050 int SS = VRM.getLowSpillSlot();
1051 if (SS != VirtRegMap::NO_STACK_SLOT)
1052 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
1053 if (!VRM.isSpillSlotUsed(SS)) {
1054 MFI->RemoveStackObject(SS);
1055 ++NumDSS;
1058 return true;
1061 private:
1063 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1064 /// a scratch register is available.
1065 /// xorq %r12<kill>, %r13
1066 /// addq %rax, -184(%rbp)
1067 /// addq %r13, -184(%rbp)
1068 /// ==>
1069 /// xorq %r12<kill>, %r13
1070 /// movq -184(%rbp), %r12
1071 /// addq %rax, %r12
1072 /// addq %r13, %r12
1073 /// movq %r12, -184(%rbp)
1074 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
1075 MachineBasicBlock &MBB,
1076 MachineBasicBlock::iterator &MII,
1077 std::vector<MachineInstr*> &MaybeDeadStores,
1078 AvailableSpills &Spills,
1079 BitVector &RegKills,
1080 std::vector<MachineOperand*> &KillOps,
1081 VirtRegMap &VRM) {
1083 MachineBasicBlock::iterator NextMII = next(MII);
1084 if (NextMII == MBB.end())
1085 return false;
1087 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1088 return false;
1090 // Now let's see if the last couple of instructions happens to have freed up
1091 // a register.
1092 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1093 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
1094 if (!PhysReg)
1095 return false;
1097 MachineFunction &MF = *MBB.getParent();
1098 TRI = MF.getTarget().getRegisterInfo();
1099 MachineInstr &MI = *MII;
1100 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
1101 return false;
1103 // If the next instruction also folds the same SS modref and can be unfoled,
1104 // then it's worthwhile to issue a load from SS into the free register and
1105 // then unfold these instructions.
1106 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
1107 return false;
1109 // Back-schedule reloads and remats.
1110 MachineBasicBlock::iterator InsertLoc =
1111 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, false, SS, TII, MF);
1113 // Load from SS to the spare physical register.
1114 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
1115 // This invalidates Phys.
1116 Spills.ClobberPhysReg(PhysReg);
1117 // Remember it's available.
1118 Spills.addAvailable(SS, PhysReg);
1119 MaybeDeadStores[SS] = NULL;
1121 // Unfold current MI.
1122 SmallVector<MachineInstr*, 4> NewMIs;
1123 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1124 llvm_unreachable("Unable unfold the load / store folding instruction!");
1125 assert(NewMIs.size() == 1);
1126 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1127 VRM.transferRestorePts(&MI, NewMIs[0]);
1128 MII = MBB.insert(MII, NewMIs[0]);
1129 InvalidateKills(MI, TRI, RegKills, KillOps);
1130 VRM.RemoveMachineInstrFromMaps(&MI);
1131 MBB.erase(&MI);
1132 ++NumModRefUnfold;
1134 // Unfold next instructions that fold the same SS.
1135 do {
1136 MachineInstr &NextMI = *NextMII;
1137 NextMII = next(NextMII);
1138 NewMIs.clear();
1139 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1140 llvm_unreachable("Unable unfold the load / store folding instruction!");
1141 assert(NewMIs.size() == 1);
1142 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1143 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1144 MBB.insert(NextMII, NewMIs[0]);
1145 InvalidateKills(NextMI, TRI, RegKills, KillOps);
1146 VRM.RemoveMachineInstrFromMaps(&NextMI);
1147 MBB.erase(&NextMI);
1148 ++NumModRefUnfold;
1149 if (NextMII == MBB.end())
1150 break;
1151 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1153 // Store the value back into SS.
1154 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1155 MachineInstr *StoreMI = prior(NextMII);
1156 VRM.addSpillSlotUse(SS, StoreMI);
1157 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1159 return true;
1162 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1163 /// instruction. e.g.
1164 /// xorl %edi, %eax
1165 /// movl %eax, -32(%ebp)
1166 /// movl -36(%ebp), %eax
1167 /// orl %eax, -32(%ebp)
1168 /// ==>
1169 /// xorl %edi, %eax
1170 /// orl -36(%ebp), %eax
1171 /// mov %eax, -32(%ebp)
1172 /// This enables unfolding optimization for a subsequent instruction which will
1173 /// also eliminate the newly introduced store instruction.
1174 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1175 MachineBasicBlock::iterator &MII,
1176 std::vector<MachineInstr*> &MaybeDeadStores,
1177 AvailableSpills &Spills,
1178 BitVector &RegKills,
1179 std::vector<MachineOperand*> &KillOps,
1180 VirtRegMap &VRM) {
1181 MachineFunction &MF = *MBB.getParent();
1182 MachineInstr &MI = *MII;
1183 unsigned UnfoldedOpc = 0;
1184 unsigned UnfoldPR = 0;
1185 unsigned UnfoldVR = 0;
1186 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1187 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1188 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1189 // Only transform a MI that folds a single register.
1190 if (UnfoldedOpc)
1191 return false;
1192 UnfoldVR = I->second.first;
1193 VirtRegMap::ModRef MR = I->second.second;
1194 // MI2VirtMap be can updated which invalidate the iterator.
1195 // Increment the iterator first.
1196 ++I;
1197 if (VRM.isAssignedReg(UnfoldVR))
1198 continue;
1199 // If this reference is not a use, any previous store is now dead.
1200 // Otherwise, the store to this stack slot is not dead anymore.
1201 FoldedSS = VRM.getStackSlot(UnfoldVR);
1202 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1203 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1204 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1205 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1206 continue;
1207 UnfoldPR = PhysReg;
1208 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1209 false, true);
1213 if (!UnfoldedOpc) {
1214 if (!UnfoldVR)
1215 return false;
1217 // Look for other unfolding opportunities.
1218 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1219 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1222 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1223 MachineOperand &MO = MI.getOperand(i);
1224 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1225 continue;
1226 unsigned VirtReg = MO.getReg();
1227 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1228 continue;
1229 if (VRM.isAssignedReg(VirtReg)) {
1230 unsigned PhysReg = VRM.getPhys(VirtReg);
1231 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1232 return false;
1233 } else if (VRM.isReMaterialized(VirtReg))
1234 continue;
1235 int SS = VRM.getStackSlot(VirtReg);
1236 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1237 if (PhysReg) {
1238 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1239 return false;
1240 continue;
1242 if (VRM.hasPhys(VirtReg)) {
1243 PhysReg = VRM.getPhys(VirtReg);
1244 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1245 continue;
1248 // Ok, we'll need to reload the value into a register which makes
1249 // it impossible to perform the store unfolding optimization later.
1250 // Let's see if it is possible to fold the load if the store is
1251 // unfolded. This allows us to perform the store unfolding
1252 // optimization.
1253 SmallVector<MachineInstr*, 4> NewMIs;
1254 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1255 assert(NewMIs.size() == 1);
1256 MachineInstr *NewMI = NewMIs.back();
1257 NewMIs.clear();
1258 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1259 assert(Idx != -1);
1260 SmallVector<unsigned, 1> Ops;
1261 Ops.push_back(Idx);
1262 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1263 if (FoldedMI) {
1264 VRM.addSpillSlotUse(SS, FoldedMI);
1265 if (!VRM.hasPhys(UnfoldVR))
1266 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1267 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1268 MII = MBB.insert(MII, FoldedMI);
1269 InvalidateKills(MI, TRI, RegKills, KillOps);
1270 VRM.RemoveMachineInstrFromMaps(&MI);
1271 MBB.erase(&MI);
1272 MF.DeleteMachineInstr(NewMI);
1273 return true;
1275 MF.DeleteMachineInstr(NewMI);
1279 return false;
1282 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1283 /// where SrcReg is r1 and it is tied to r0. Return true if after
1284 /// commuting this instruction it will be r0 = op r2, r1.
1285 static bool CommuteChangesDestination(MachineInstr *DefMI,
1286 const TargetInstrDesc &TID,
1287 unsigned SrcReg,
1288 const TargetInstrInfo *TII,
1289 unsigned &DstIdx) {
1290 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1291 return false;
1292 if (!DefMI->getOperand(1).isReg() ||
1293 DefMI->getOperand(1).getReg() != SrcReg)
1294 return false;
1295 unsigned DefIdx;
1296 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1297 return false;
1298 unsigned SrcIdx1, SrcIdx2;
1299 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1300 return false;
1301 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1302 DstIdx = 2;
1303 return true;
1305 return false;
1308 /// CommuteToFoldReload -
1309 /// Look for
1310 /// r1 = load fi#1
1311 /// r1 = op r1, r2<kill>
1312 /// store r1, fi#1
1314 /// If op is commutable and r2 is killed, then we can xform these to
1315 /// r2 = op r2, fi#1
1316 /// store r2, fi#1
1317 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1318 MachineBasicBlock::iterator &MII,
1319 unsigned VirtReg, unsigned SrcReg, int SS,
1320 AvailableSpills &Spills,
1321 BitVector &RegKills,
1322 std::vector<MachineOperand*> &KillOps,
1323 const TargetRegisterInfo *TRI,
1324 VirtRegMap &VRM) {
1325 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1326 return false;
1328 MachineFunction &MF = *MBB.getParent();
1329 MachineInstr &MI = *MII;
1330 MachineBasicBlock::iterator DefMII = prior(MII);
1331 MachineInstr *DefMI = DefMII;
1332 const TargetInstrDesc &TID = DefMI->getDesc();
1333 unsigned NewDstIdx;
1334 if (DefMII != MBB.begin() &&
1335 TID.isCommutable() &&
1336 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
1337 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1338 unsigned NewReg = NewDstMO.getReg();
1339 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1340 return false;
1341 MachineInstr *ReloadMI = prior(DefMII);
1342 int FrameIdx;
1343 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1344 if (DestReg != SrcReg || FrameIdx != SS)
1345 return false;
1346 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1347 if (UseIdx == -1)
1348 return false;
1349 unsigned DefIdx;
1350 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1351 return false;
1352 assert(DefMI->getOperand(DefIdx).isReg() &&
1353 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1355 // Now commute def instruction.
1356 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1357 if (!CommutedMI)
1358 return false;
1359 SmallVector<unsigned, 1> Ops;
1360 Ops.push_back(NewDstIdx);
1361 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1362 // Not needed since foldMemoryOperand returns new MI.
1363 MF.DeleteMachineInstr(CommutedMI);
1364 if (!FoldedMI)
1365 return false;
1367 VRM.addSpillSlotUse(SS, FoldedMI);
1368 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1369 // Insert new def MI and spill MI.
1370 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1371 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1372 MII = prior(MII);
1373 MachineInstr *StoreMI = MII;
1374 VRM.addSpillSlotUse(SS, StoreMI);
1375 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1376 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1378 // Delete all 3 old instructions.
1379 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
1380 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1381 MBB.erase(ReloadMI);
1382 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
1383 VRM.RemoveMachineInstrFromMaps(DefMI);
1384 MBB.erase(DefMI);
1385 InvalidateKills(MI, TRI, RegKills, KillOps);
1386 VRM.RemoveMachineInstrFromMaps(&MI);
1387 MBB.erase(&MI);
1389 // If NewReg was previously holding value of some SS, it's now clobbered.
1390 // This has to be done now because it's a physical register. When this
1391 // instruction is re-visited, it's ignored.
1392 Spills.ClobberPhysReg(NewReg);
1394 ++NumCommutes;
1395 return true;
1398 return false;
1401 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1402 /// the last store to the same slot is now dead. If so, remove the last store.
1403 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1404 MachineBasicBlock::iterator &MII,
1405 int Idx, unsigned PhysReg, int StackSlot,
1406 const TargetRegisterClass *RC,
1407 bool isAvailable, MachineInstr *&LastStore,
1408 AvailableSpills &Spills,
1409 SmallSet<MachineInstr*, 4> &ReMatDefs,
1410 BitVector &RegKills,
1411 std::vector<MachineOperand*> &KillOps,
1412 VirtRegMap &VRM) {
1414 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1415 MachineInstr *StoreMI = next(MII);
1416 VRM.addSpillSlotUse(StackSlot, StoreMI);
1417 DOUT << "Store:\t" << *StoreMI;
1419 // If there is a dead store to this stack slot, nuke it now.
1420 if (LastStore) {
1421 DOUT << "Removed dead store:\t" << *LastStore;
1422 ++NumDSE;
1423 SmallVector<unsigned, 2> KillRegs;
1424 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
1425 MachineBasicBlock::iterator PrevMII = LastStore;
1426 bool CheckDef = PrevMII != MBB.begin();
1427 if (CheckDef)
1428 --PrevMII;
1429 VRM.RemoveMachineInstrFromMaps(LastStore);
1430 MBB.erase(LastStore);
1431 if (CheckDef) {
1432 // Look at defs of killed registers on the store. Mark the defs
1433 // as dead since the store has been deleted and they aren't
1434 // being reused.
1435 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1436 bool HasOtherDef = false;
1437 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1438 MachineInstr *DeadDef = PrevMII;
1439 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1440 // FIXME: This assumes a remat def does not have side effects.
1441 VRM.RemoveMachineInstrFromMaps(DeadDef);
1442 MBB.erase(DeadDef);
1443 ++NumDRM;
1450 LastStore = next(MII);
1452 // If the stack slot value was previously available in some other
1453 // register, change it now. Otherwise, make the register available,
1454 // in PhysReg.
1455 Spills.ModifyStackSlotOrReMat(StackSlot);
1456 Spills.ClobberPhysReg(PhysReg);
1457 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1458 ++NumStores;
1461 /// TransferDeadness - A identity copy definition is dead and it's being
1462 /// removed. Find the last def or use and mark it as dead / kill.
1463 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1464 unsigned Reg, BitVector &RegKills,
1465 std::vector<MachineOperand*> &KillOps,
1466 VirtRegMap &VRM) {
1467 SmallPtrSet<MachineInstr*, 4> Seens;
1468 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
1469 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1470 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1471 MachineInstr *UDMI = &*RI;
1472 if (UDMI->getParent() != MBB)
1473 continue;
1474 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1475 if (DI == DistanceMap.end() || DI->second > CurDist)
1476 continue;
1477 if (Seens.insert(UDMI))
1478 Refs.push_back(std::make_pair(UDMI, DI->second));
1481 if (Refs.empty())
1482 return;
1483 std::sort(Refs.begin(), Refs.end(), RefSorter());
1485 while (!Refs.empty()) {
1486 MachineInstr *LastUDMI = Refs.back().first;
1487 Refs.pop_back();
1489 MachineOperand *LastUD = NULL;
1490 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1491 MachineOperand &MO = LastUDMI->getOperand(i);
1492 if (!MO.isReg() || MO.getReg() != Reg)
1493 continue;
1494 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1495 LastUD = &MO;
1496 if (LastUDMI->isRegTiedToDefOperand(i))
1497 break;
1499 if (LastUD->isDef()) {
1500 // If the instruction has no side effect, delete it and propagate
1501 // backward further. Otherwise, mark is dead and we are done.
1502 if (!TII->isDeadInstruction(LastUDMI)) {
1503 LastUD->setIsDead();
1504 break;
1506 VRM.RemoveMachineInstrFromMaps(LastUDMI);
1507 MBB->erase(LastUDMI);
1508 } else {
1509 LastUD->setIsKill();
1510 RegKills.set(Reg);
1511 KillOps[Reg] = LastUD;
1512 break;
1517 /// rewriteMBB - Keep track of which spills are available even after the
1518 /// register allocator is done with them. If possible, avid reloading vregs.
1519 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1520 LiveIntervals *LIs,
1521 AvailableSpills &Spills, BitVector &RegKills,
1522 std::vector<MachineOperand*> &KillOps) {
1524 DEBUG(errs() << "\n**** Local spiller rewriting MBB '"
1525 << MBB.getBasicBlock()->getName() << "':\n");
1527 MachineFunction &MF = *MBB.getParent();
1529 // MaybeDeadStores - When we need to write a value back into a stack slot,
1530 // keep track of the inserted store. If the stack slot value is never read
1531 // (because the value was used from some available register, for example), and
1532 // subsequently stored to, the original store is dead. This map keeps track
1533 // of inserted stores that are not used. If we see a subsequent store to the
1534 // same stack slot, the original store is deleted.
1535 std::vector<MachineInstr*> MaybeDeadStores;
1536 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1538 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1539 SmallSet<MachineInstr*, 4> ReMatDefs;
1541 // Clear kill info.
1542 SmallSet<unsigned, 2> KilledMIRegs;
1543 RegKills.reset();
1544 KillOps.clear();
1545 KillOps.resize(TRI->getNumRegs(), NULL);
1547 unsigned Dist = 0;
1548 DistanceMap.clear();
1549 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1550 MII != E; ) {
1551 MachineBasicBlock::iterator NextMII = next(MII);
1553 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1554 bool Erased = false;
1555 bool BackTracked = false;
1556 if (OptimizeByUnfold(MBB, MII,
1557 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1558 NextMII = next(MII);
1560 MachineInstr &MI = *MII;
1562 if (VRM.hasEmergencySpills(&MI)) {
1563 // Spill physical register(s) in the rare case the allocator has run out
1564 // of registers to allocate.
1565 SmallSet<int, 4> UsedSS;
1566 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1567 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1568 unsigned PhysReg = EmSpills[i];
1569 const TargetRegisterClass *RC =
1570 TRI->getPhysicalRegisterRegClass(PhysReg);
1571 assert(RC && "Unable to determine register class!");
1572 int SS = VRM.getEmergencySpillSlot(RC);
1573 if (UsedSS.count(SS))
1574 llvm_unreachable("Need to spill more than one physical registers!");
1575 UsedSS.insert(SS);
1576 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1577 MachineInstr *StoreMI = prior(MII);
1578 VRM.addSpillSlotUse(SS, StoreMI);
1580 // Back-schedule reloads and remats.
1581 MachineBasicBlock::iterator InsertLoc =
1582 ComputeReloadLoc(next(MII), MBB.begin(), PhysReg, TRI, false,
1583 SS, TII, MF);
1585 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SS, RC);
1587 MachineInstr *LoadMI = prior(InsertLoc);
1588 VRM.addSpillSlotUse(SS, LoadMI);
1589 ++NumPSpills;
1590 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
1592 NextMII = next(MII);
1595 // Insert restores here if asked to.
1596 if (VRM.isRestorePt(&MI)) {
1597 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1598 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1599 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1600 if (!VRM.getPreSplitReg(VirtReg))
1601 continue; // Split interval spilled again.
1602 unsigned Phys = VRM.getPhys(VirtReg);
1603 RegInfo->setPhysRegUsed(Phys);
1605 // Check if the value being restored if available. If so, it must be
1606 // from a predecessor BB that fallthrough into this BB. We do not
1607 // expect:
1608 // BB1:
1609 // r1 = load fi#1
1610 // ...
1611 // = r1<kill>
1612 // ... # r1 not clobbered
1613 // ...
1614 // = load fi#1
1615 bool DoReMat = VRM.isReMaterialized(VirtReg);
1616 int SSorRMId = DoReMat
1617 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1618 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1619 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1620 if (InReg == Phys) {
1621 // If the value is already available in the expected register, save
1622 // a reload / remat.
1623 if (SSorRMId)
1624 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1625 else
1626 DOUT << "Reusing SS#" << SSorRMId;
1627 DOUT << " from physreg "
1628 << TRI->getName(InReg) << " for vreg"
1629 << VirtReg <<" instead of reloading into physreg "
1630 << TRI->getName(Phys) << "\n";
1631 ++NumOmitted;
1632 continue;
1633 } else if (InReg && InReg != Phys) {
1634 if (SSorRMId)
1635 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1636 else
1637 DOUT << "Reusing SS#" << SSorRMId;
1638 DOUT << " from physreg "
1639 << TRI->getName(InReg) << " for vreg"
1640 << VirtReg <<" by copying it into physreg "
1641 << TRI->getName(Phys) << "\n";
1643 // If the reloaded / remat value is available in another register,
1644 // copy it to the desired register.
1646 // Back-schedule reloads and remats.
1647 MachineBasicBlock::iterator InsertLoc =
1648 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1649 SSorRMId, TII, MF);
1651 TII->copyRegToReg(MBB, InsertLoc, Phys, InReg, RC, RC);
1653 // This invalidates Phys.
1654 Spills.ClobberPhysReg(Phys);
1655 // Remember it's available.
1656 Spills.addAvailable(SSorRMId, Phys);
1658 // Mark is killed.
1659 MachineInstr *CopyMI = prior(InsertLoc);
1660 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1661 KillOpnd->setIsKill();
1662 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1664 DOUT << '\t' << *CopyMI;
1665 ++NumCopified;
1666 continue;
1669 // Back-schedule reloads and remats.
1670 MachineBasicBlock::iterator InsertLoc =
1671 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1672 SSorRMId, TII, MF);
1674 if (VRM.isReMaterialized(VirtReg)) {
1675 ReMaterialize(MBB, InsertLoc, Phys, VirtReg, TII, TRI, VRM);
1676 } else {
1677 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1678 TII->loadRegFromStackSlot(MBB, InsertLoc, Phys, SSorRMId, RC);
1679 MachineInstr *LoadMI = prior(InsertLoc);
1680 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1681 ++NumLoads;
1682 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
1685 // This invalidates Phys.
1686 Spills.ClobberPhysReg(Phys);
1687 // Remember it's available.
1688 Spills.addAvailable(SSorRMId, Phys);
1690 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1691 DOUT << '\t' << *prior(MII);
1695 // Insert spills here if asked to.
1696 if (VRM.isSpillPt(&MI)) {
1697 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1698 VRM.getSpillPtSpills(&MI);
1699 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1700 unsigned VirtReg = SpillRegs[i].first;
1701 bool isKill = SpillRegs[i].second;
1702 if (!VRM.getPreSplitReg(VirtReg))
1703 continue; // Split interval spilled again.
1704 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1705 unsigned Phys = VRM.getPhys(VirtReg);
1706 int StackSlot = VRM.getStackSlot(VirtReg);
1707 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1708 MachineInstr *StoreMI = next(MII);
1709 VRM.addSpillSlotUse(StackSlot, StoreMI);
1710 DOUT << "Store:\t" << *StoreMI;
1711 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1713 NextMII = next(MII);
1716 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1717 /// reuse.
1718 ReuseInfo ReusedOperands(MI, TRI);
1719 SmallVector<unsigned, 4> VirtUseOps;
1720 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1721 MachineOperand &MO = MI.getOperand(i);
1722 if (!MO.isReg() || MO.getReg() == 0)
1723 continue; // Ignore non-register operands.
1725 unsigned VirtReg = MO.getReg();
1726 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1727 // Ignore physregs for spilling, but remember that it is used by this
1728 // function.
1729 RegInfo->setPhysRegUsed(VirtReg);
1730 continue;
1733 // We want to process implicit virtual register uses first.
1734 if (MO.isImplicit())
1735 // If the virtual register is implicitly defined, emit a implicit_def
1736 // before so scavenger knows it's "defined".
1737 // FIXME: This is a horrible hack done the by register allocator to
1738 // remat a definition with virtual register operand.
1739 VirtUseOps.insert(VirtUseOps.begin(), i);
1740 else
1741 VirtUseOps.push_back(i);
1744 // Process all of the spilled uses and all non spilled reg references.
1745 SmallVector<int, 2> PotentialDeadStoreSlots;
1746 KilledMIRegs.clear();
1747 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1748 unsigned i = VirtUseOps[j];
1749 MachineOperand &MO = MI.getOperand(i);
1750 unsigned VirtReg = MO.getReg();
1751 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1752 "Not a virtual register?");
1754 unsigned SubIdx = MO.getSubReg();
1755 if (VRM.isAssignedReg(VirtReg)) {
1756 // This virtual register was assigned a physreg!
1757 unsigned Phys = VRM.getPhys(VirtReg);
1758 RegInfo->setPhysRegUsed(Phys);
1759 if (MO.isDef())
1760 ReusedOperands.markClobbered(Phys);
1761 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1762 MI.getOperand(i).setReg(RReg);
1763 MI.getOperand(i).setSubReg(0);
1764 if (VRM.isImplicitlyDefined(VirtReg))
1765 // FIXME: Is this needed?
1766 BuildMI(MBB, &MI, MI.getDebugLoc(),
1767 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1768 continue;
1771 // This virtual register is now known to be a spilled value.
1772 if (!MO.isUse())
1773 continue; // Handle defs in the loop below (handle use&def here though)
1775 bool AvoidReload = MO.isUndef();
1776 // Check if it is defined by an implicit def. It should not be spilled.
1777 // Note, this is for correctness reason. e.g.
1778 // 8 %reg1024<def> = IMPLICIT_DEF
1779 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1780 // The live range [12, 14) are not part of the r1024 live interval since
1781 // it's defined by an implicit def. It will not conflicts with live
1782 // interval of r1025. Now suppose both registers are spilled, you can
1783 // easily see a situation where both registers are reloaded before
1784 // the INSERT_SUBREG and both target registers that would overlap.
1785 bool DoReMat = VRM.isReMaterialized(VirtReg);
1786 int SSorRMId = DoReMat
1787 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1788 int ReuseSlot = SSorRMId;
1790 // Check to see if this stack slot is available.
1791 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1793 // If this is a sub-register use, make sure the reuse register is in the
1794 // right register class. For example, for x86 not all of the 32-bit
1795 // registers have accessible sub-registers.
1796 // Similarly so for EXTRACT_SUBREG. Consider this:
1797 // EDI = op
1798 // MOV32_mr fi#1, EDI
1799 // ...
1800 // = EXTRACT_SUBREG fi#1
1801 // fi#1 is available in EDI, but it cannot be reused because it's not in
1802 // the right register file.
1803 if (PhysReg && !AvoidReload &&
1804 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1805 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1806 if (!RC->contains(PhysReg))
1807 PhysReg = 0;
1810 if (PhysReg && !AvoidReload) {
1811 // This spilled operand might be part of a two-address operand. If this
1812 // is the case, then changing it will necessarily require changing the
1813 // def part of the instruction as well. However, in some cases, we
1814 // aren't allowed to modify the reused register. If none of these cases
1815 // apply, reuse it.
1816 bool CanReuse = true;
1817 bool isTied = MI.isRegTiedToDefOperand(i);
1818 if (isTied) {
1819 // Okay, we have a two address operand. We can reuse this physreg as
1820 // long as we are allowed to clobber the value and there isn't an
1821 // earlier def that has already clobbered the physreg.
1822 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1823 Spills.canClobberPhysReg(PhysReg);
1826 if (CanReuse) {
1827 // If this stack slot value is already available, reuse it!
1828 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1829 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1830 else
1831 DOUT << "Reusing SS#" << ReuseSlot;
1832 DOUT << " from physreg "
1833 << TRI->getName(PhysReg) << " for vreg"
1834 << VirtReg <<" instead of reloading into physreg "
1835 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1836 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1837 MI.getOperand(i).setReg(RReg);
1838 MI.getOperand(i).setSubReg(0);
1840 // The only technical detail we have is that we don't know that
1841 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1842 // later in the instruction. In particular, consider 'op V1, V2'.
1843 // If V1 is available in physreg R0, we would choose to reuse it
1844 // here, instead of reloading it into the register the allocator
1845 // indicated (say R1). However, V2 might have to be reloaded
1846 // later, and it might indicate that it needs to live in R0. When
1847 // this occurs, we need to have information available that
1848 // indicates it is safe to use R1 for the reload instead of R0.
1850 // To further complicate matters, we might conflict with an alias,
1851 // or R0 and R1 might not be compatible with each other. In this
1852 // case, we actually insert a reload for V1 in R1, ensuring that
1853 // we can get at R0 or its alias.
1854 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1855 VRM.getPhys(VirtReg), VirtReg);
1856 if (isTied)
1857 // Only mark it clobbered if this is a use&def operand.
1858 ReusedOperands.markClobbered(PhysReg);
1859 ++NumReused;
1861 if (MI.getOperand(i).isKill() &&
1862 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1864 // The store of this spilled value is potentially dead, but we
1865 // won't know for certain until we've confirmed that the re-use
1866 // above is valid, which means waiting until the other operands
1867 // are processed. For now we just track the spill slot, we'll
1868 // remove it after the other operands are processed if valid.
1870 PotentialDeadStoreSlots.push_back(ReuseSlot);
1873 // Mark is isKill if it's there no other uses of the same virtual
1874 // register and it's not a two-address operand. IsKill will be
1875 // unset if reg is reused.
1876 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1877 MI.getOperand(i).setIsKill();
1878 KilledMIRegs.insert(VirtReg);
1881 continue;
1882 } // CanReuse
1884 // Otherwise we have a situation where we have a two-address instruction
1885 // whose mod/ref operand needs to be reloaded. This reload is already
1886 // available in some register "PhysReg", but if we used PhysReg as the
1887 // operand to our 2-addr instruction, the instruction would modify
1888 // PhysReg. This isn't cool if something later uses PhysReg and expects
1889 // to get its initial value.
1891 // To avoid this problem, and to avoid doing a load right after a store,
1892 // we emit a copy from PhysReg into the designated register for this
1893 // operand.
1894 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1895 assert(DesignatedReg && "Must map virtreg to physreg!");
1897 // Note that, if we reused a register for a previous operand, the
1898 // register we want to reload into might not actually be
1899 // available. If this occurs, use the register indicated by the
1900 // reuser.
1901 if (ReusedOperands.hasReuses())
1902 DesignatedReg = ReusedOperands.GetRegForReload(VirtReg,
1903 DesignatedReg, &MI,
1904 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1906 // If the mapped designated register is actually the physreg we have
1907 // incoming, we don't need to inserted a dead copy.
1908 if (DesignatedReg == PhysReg) {
1909 // If this stack slot value is already available, reuse it!
1910 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1911 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1912 else
1913 DOUT << "Reusing SS#" << ReuseSlot;
1914 DOUT << " from physreg " << TRI->getName(PhysReg)
1915 << " for vreg" << VirtReg
1916 << " instead of reloading into same physreg.\n";
1917 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1918 MI.getOperand(i).setReg(RReg);
1919 MI.getOperand(i).setSubReg(0);
1920 ReusedOperands.markClobbered(RReg);
1921 ++NumReused;
1922 continue;
1925 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1926 RegInfo->setPhysRegUsed(DesignatedReg);
1927 ReusedOperands.markClobbered(DesignatedReg);
1929 // Back-schedule reloads and remats.
1930 MachineBasicBlock::iterator InsertLoc =
1931 ComputeReloadLoc(&MI, MBB.begin(), PhysReg, TRI, DoReMat,
1932 SSorRMId, TII, MF);
1934 TII->copyRegToReg(MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
1936 MachineInstr *CopyMI = prior(InsertLoc);
1937 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1939 // This invalidates DesignatedReg.
1940 Spills.ClobberPhysReg(DesignatedReg);
1942 Spills.addAvailable(ReuseSlot, DesignatedReg);
1943 unsigned RReg =
1944 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1945 MI.getOperand(i).setReg(RReg);
1946 MI.getOperand(i).setSubReg(0);
1947 DOUT << '\t' << *prior(MII);
1948 ++NumReused;
1949 continue;
1950 } // if (PhysReg)
1952 // Otherwise, reload it and remember that we have it.
1953 PhysReg = VRM.getPhys(VirtReg);
1954 assert(PhysReg && "Must map virtreg to physreg!");
1956 // Note that, if we reused a register for a previous operand, the
1957 // register we want to reload into might not actually be
1958 // available. If this occurs, use the register indicated by the
1959 // reuser.
1960 if (ReusedOperands.hasReuses())
1961 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
1962 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1964 RegInfo->setPhysRegUsed(PhysReg);
1965 ReusedOperands.markClobbered(PhysReg);
1966 if (AvoidReload)
1967 ++NumAvoided;
1968 else {
1969 // Back-schedule reloads and remats.
1970 MachineBasicBlock::iterator InsertLoc =
1971 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, DoReMat,
1972 SSorRMId, TII, MF);
1974 if (DoReMat) {
1975 ReMaterialize(MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, VRM);
1976 } else {
1977 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1978 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SSorRMId, RC);
1979 MachineInstr *LoadMI = prior(InsertLoc);
1980 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1981 ++NumLoads;
1982 DistanceMap.insert(std::make_pair(LoadMI, Dist++));
1984 // This invalidates PhysReg.
1985 Spills.ClobberPhysReg(PhysReg);
1987 // Any stores to this stack slot are not dead anymore.
1988 if (!DoReMat)
1989 MaybeDeadStores[SSorRMId] = NULL;
1990 Spills.addAvailable(SSorRMId, PhysReg);
1991 // Assumes this is the last use. IsKill will be unset if reg is reused
1992 // unless it's a two-address operand.
1993 if (!MI.isRegTiedToDefOperand(i) &&
1994 KilledMIRegs.count(VirtReg) == 0) {
1995 MI.getOperand(i).setIsKill();
1996 KilledMIRegs.insert(VirtReg);
1999 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
2000 DOUT << '\t' << *prior(InsertLoc);
2002 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2003 MI.getOperand(i).setReg(RReg);
2004 MI.getOperand(i).setSubReg(0);
2007 // Ok - now we can remove stores that have been confirmed dead.
2008 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
2009 // This was the last use and the spilled value is still available
2010 // for reuse. That means the spill was unnecessary!
2011 int PDSSlot = PotentialDeadStoreSlots[j];
2012 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
2013 if (DeadStore) {
2014 DOUT << "Removed dead store:\t" << *DeadStore;
2015 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2016 VRM.RemoveMachineInstrFromMaps(DeadStore);
2017 MBB.erase(DeadStore);
2018 MaybeDeadStores[PDSSlot] = NULL;
2019 ++NumDSE;
2024 DOUT << '\t' << MI;
2027 // If we have folded references to memory operands, make sure we clear all
2028 // physical registers that may contain the value of the spilled virtual
2029 // register
2030 SmallSet<int, 2> FoldedSS;
2031 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
2032 unsigned VirtReg = I->second.first;
2033 VirtRegMap::ModRef MR = I->second.second;
2034 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
2036 // MI2VirtMap be can updated which invalidate the iterator.
2037 // Increment the iterator first.
2038 ++I;
2039 int SS = VRM.getStackSlot(VirtReg);
2040 if (SS == VirtRegMap::NO_STACK_SLOT)
2041 continue;
2042 FoldedSS.insert(SS);
2043 DOUT << " - StackSlot: " << SS << "\n";
2045 // If this folded instruction is just a use, check to see if it's a
2046 // straight load from the virt reg slot.
2047 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2048 int FrameIdx;
2049 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2050 if (DestReg && FrameIdx == SS) {
2051 // If this spill slot is available, turn it into a copy (or nothing)
2052 // instead of leaving it as a load!
2053 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
2054 DOUT << "Promoted Load To Copy: " << MI;
2055 if (DestReg != InReg) {
2056 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2057 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
2058 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2059 unsigned SubIdx = DefMO->getSubReg();
2060 // Revisit the copy so we make sure to notice the effects of the
2061 // operation on the destreg (either needing to RA it if it's
2062 // virtual or needing to clobber any values if it's physical).
2063 NextMII = &MI;
2064 --NextMII; // backtrack to the copy.
2065 // Propagate the sub-register index over.
2066 if (SubIdx) {
2067 DefMO = NextMII->findRegisterDefOperand(DestReg);
2068 DefMO->setSubReg(SubIdx);
2071 // Mark is killed.
2072 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
2073 KillOpnd->setIsKill();
2075 BackTracked = true;
2076 } else {
2077 DOUT << "Removing now-noop copy: " << MI;
2078 // Unset last kill since it's being reused.
2079 InvalidateKill(InReg, TRI, RegKills, KillOps);
2080 Spills.disallowClobberPhysReg(InReg);
2083 InvalidateKills(MI, TRI, RegKills, KillOps);
2084 VRM.RemoveMachineInstrFromMaps(&MI);
2085 MBB.erase(&MI);
2086 Erased = true;
2087 goto ProcessNextInst;
2089 } else {
2090 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2091 SmallVector<MachineInstr*, 4> NewMIs;
2092 if (PhysReg &&
2093 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
2094 MBB.insert(MII, NewMIs[0]);
2095 InvalidateKills(MI, TRI, RegKills, KillOps);
2096 VRM.RemoveMachineInstrFromMaps(&MI);
2097 MBB.erase(&MI);
2098 Erased = true;
2099 --NextMII; // backtrack to the unfolded instruction.
2100 BackTracked = true;
2101 goto ProcessNextInst;
2106 // If this reference is not a use, any previous store is now dead.
2107 // Otherwise, the store to this stack slot is not dead anymore.
2108 MachineInstr* DeadStore = MaybeDeadStores[SS];
2109 if (DeadStore) {
2110 bool isDead = !(MR & VirtRegMap::isRef);
2111 MachineInstr *NewStore = NULL;
2112 if (MR & VirtRegMap::isModRef) {
2113 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2114 SmallVector<MachineInstr*, 4> NewMIs;
2115 // We can reuse this physreg as long as we are allowed to clobber
2116 // the value and there isn't an earlier def that has already clobbered
2117 // the physreg.
2118 if (PhysReg &&
2119 !ReusedOperands.isClobbered(PhysReg) &&
2120 Spills.canClobberPhysReg(PhysReg) &&
2121 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2122 MachineOperand *KillOpnd =
2123 DeadStore->findRegisterUseOperand(PhysReg, true);
2124 // Note, if the store is storing a sub-register, it's possible the
2125 // super-register is needed below.
2126 if (KillOpnd && !KillOpnd->getSubReg() &&
2127 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2128 MBB.insert(MII, NewMIs[0]);
2129 NewStore = NewMIs[1];
2130 MBB.insert(MII, NewStore);
2131 VRM.addSpillSlotUse(SS, NewStore);
2132 InvalidateKills(MI, TRI, RegKills, KillOps);
2133 VRM.RemoveMachineInstrFromMaps(&MI);
2134 MBB.erase(&MI);
2135 Erased = true;
2136 --NextMII;
2137 --NextMII; // backtrack to the unfolded instruction.
2138 BackTracked = true;
2139 isDead = true;
2140 ++NumSUnfold;
2145 if (isDead) { // Previous store is dead.
2146 // If we get here, the store is dead, nuke it now.
2147 DOUT << "Removed dead store:\t" << *DeadStore;
2148 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2149 VRM.RemoveMachineInstrFromMaps(DeadStore);
2150 MBB.erase(DeadStore);
2151 if (!NewStore)
2152 ++NumDSE;
2155 MaybeDeadStores[SS] = NULL;
2156 if (NewStore) {
2157 // Treat this store as a spill merged into a copy. That makes the
2158 // stack slot value available.
2159 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2160 goto ProcessNextInst;
2164 // If the spill slot value is available, and this is a new definition of
2165 // the value, the value is not available anymore.
2166 if (MR & VirtRegMap::isMod) {
2167 // Notice that the value in this stack slot has been modified.
2168 Spills.ModifyStackSlotOrReMat(SS);
2170 // If this is *just* a mod of the value, check to see if this is just a
2171 // store to the spill slot (i.e. the spill got merged into the copy). If
2172 // so, realize that the vreg is available now, and add the store to the
2173 // MaybeDeadStore info.
2174 int StackSlot;
2175 if (!(MR & VirtRegMap::isRef)) {
2176 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2177 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2178 "Src hasn't been allocated yet?");
2180 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
2181 Spills, RegKills, KillOps, TRI, VRM)) {
2182 NextMII = next(MII);
2183 BackTracked = true;
2184 goto ProcessNextInst;
2187 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2188 // this as a potentially dead store in case there is a subsequent
2189 // store into the stack slot without a read from it.
2190 MaybeDeadStores[StackSlot] = &MI;
2192 // If the stack slot value was previously available in some other
2193 // register, change it now. Otherwise, make the register
2194 // available in PhysReg.
2195 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2201 // Process all of the spilled defs.
2202 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2203 MachineOperand &MO = MI.getOperand(i);
2204 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2205 continue;
2207 unsigned VirtReg = MO.getReg();
2208 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2209 // Check to see if this is a noop copy. If so, eliminate the
2210 // instruction before considering the dest reg to be changed.
2211 // Also check if it's copying from an "undef", if so, we can't
2212 // eliminate this or else the undef marker is lost and it will
2213 // confuses the scavenger. This is extremely rare.
2214 unsigned Src, Dst, SrcSR, DstSR;
2215 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
2216 !MI.findRegisterUseOperand(Src)->isUndef()) {
2217 ++NumDCE;
2218 DOUT << "Removing now-noop copy: " << MI;
2219 SmallVector<unsigned, 2> KillRegs;
2220 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
2221 if (MO.isDead() && !KillRegs.empty()) {
2222 // Source register or an implicit super/sub-register use is killed.
2223 assert(KillRegs[0] == Dst ||
2224 TRI->isSubRegister(KillRegs[0], Dst) ||
2225 TRI->isSuperRegister(KillRegs[0], Dst));
2226 // Last def is now dead.
2227 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
2229 VRM.RemoveMachineInstrFromMaps(&MI);
2230 MBB.erase(&MI);
2231 Erased = true;
2232 Spills.disallowClobberPhysReg(VirtReg);
2233 goto ProcessNextInst;
2236 // If it's not a no-op copy, it clobbers the value in the destreg.
2237 Spills.ClobberPhysReg(VirtReg);
2238 ReusedOperands.markClobbered(VirtReg);
2240 // Check to see if this instruction is a load from a stack slot into
2241 // a register. If so, this provides the stack slot value in the reg.
2242 int FrameIdx;
2243 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2244 assert(DestReg == VirtReg && "Unknown load situation!");
2246 // If it is a folded reference, then it's not safe to clobber.
2247 bool Folded = FoldedSS.count(FrameIdx);
2248 // Otherwise, if it wasn't available, remember that it is now!
2249 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2250 goto ProcessNextInst;
2253 continue;
2256 unsigned SubIdx = MO.getSubReg();
2257 bool DoReMat = VRM.isReMaterialized(VirtReg);
2258 if (DoReMat)
2259 ReMatDefs.insert(&MI);
2261 // The only vregs left are stack slot definitions.
2262 int StackSlot = VRM.getStackSlot(VirtReg);
2263 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2265 // If this def is part of a two-address operand, make sure to execute
2266 // the store from the correct physical register.
2267 unsigned PhysReg;
2268 unsigned TiedOp;
2269 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2270 PhysReg = MI.getOperand(TiedOp).getReg();
2271 if (SubIdx) {
2272 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2273 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2274 "Can't find corresponding super-register!");
2275 PhysReg = SuperReg;
2277 } else {
2278 PhysReg = VRM.getPhys(VirtReg);
2279 if (ReusedOperands.isClobbered(PhysReg)) {
2280 // Another def has taken the assigned physreg. It must have been a
2281 // use&def which got it due to reuse. Undo the reuse!
2282 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2283 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
2287 assert(PhysReg && "VR not assigned a physical register?");
2288 RegInfo->setPhysRegUsed(PhysReg);
2289 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2290 ReusedOperands.markClobbered(RReg);
2291 MI.getOperand(i).setReg(RReg);
2292 MI.getOperand(i).setSubReg(0);
2294 if (!MO.isDead()) {
2295 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2296 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2297 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2298 NextMII = next(MII);
2300 // Check to see if this is a noop copy. If so, eliminate the
2301 // instruction before considering the dest reg to be changed.
2303 unsigned Src, Dst, SrcSR, DstSR;
2304 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2305 ++NumDCE;
2306 DOUT << "Removing now-noop copy: " << MI;
2307 InvalidateKills(MI, TRI, RegKills, KillOps);
2308 VRM.RemoveMachineInstrFromMaps(&MI);
2309 MBB.erase(&MI);
2310 Erased = true;
2311 UpdateKills(*LastStore, TRI, RegKills, KillOps);
2312 goto ProcessNextInst;
2317 ProcessNextInst:
2318 // Delete dead instructions without side effects.
2319 if (!Erased && !BackTracked && TII->isDeadInstruction(&MI)) {
2320 InvalidateKills(MI, TRI, RegKills, KillOps);
2321 VRM.RemoveMachineInstrFromMaps(&MI);
2322 MBB.erase(&MI);
2323 Erased = true;
2325 if (!Erased)
2326 DistanceMap.insert(std::make_pair(&MI, Dist++));
2327 if (!Erased && !BackTracked) {
2328 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2329 UpdateKills(*II, TRI, RegKills, KillOps);
2331 MII = NextMII;
2340 llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2341 switch (RewriterOpt) {
2342 default: llvm_unreachable("Unreachable!");
2343 case local:
2344 return new LocalRewriter();
2345 case trivial:
2346 return new TrivialRewriter();