Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / Support / APInt.cpp
blobe352b630ce46bfd7fb63d481371646229b657dc9
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integer
11 // constant values and provide a variety of arithmetic operations on them.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "apint"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <cmath>
25 #include <limits>
26 #include <cstring>
27 #include <cstdlib>
28 using namespace llvm;
30 /// A utility function for allocating memory, checking for allocation failures,
31 /// and ensuring the contents are zeroed.
32 inline static uint64_t* getClearedMemory(unsigned numWords) {
33 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
39 /// A utility function for allocating memory and checking for allocation
40 /// failure. The content is not zeroed.
41 inline static uint64_t* getMemory(unsigned numWords) {
42 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
47 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
48 pVal = getClearedMemory(getNumWords());
49 pVal[0] = val;
50 if (isSigned && int64_t(val) < 0)
51 for (unsigned i = 1; i < getNumWords(); ++i)
52 pVal[i] = -1ULL;
55 void APInt::initSlowCase(const APInt& that) {
56 pVal = getMemory(getNumWords());
57 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
61 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
62 : BitWidth(numBits), VAL(0) {
63 assert(BitWidth && "bitwidth too small");
64 assert(bigVal && "Null pointer detected!");
65 if (isSingleWord())
66 VAL = bigVal[0];
67 else {
68 // Get memory, cleared to 0
69 pVal = getClearedMemory(getNumWords());
70 // Calculate the number of words to copy
71 unsigned words = std::min<unsigned>(numWords, getNumWords());
72 // Copy the words from bigVal to pVal
73 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
75 // Make sure unused high bits are cleared
76 clearUnusedBits();
79 APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
80 : BitWidth(numbits), VAL(0) {
81 assert(BitWidth && "bitwidth too small");
82 fromString(numbits, Str, radix);
85 APInt& APInt::AssignSlowCase(const APInt& RHS) {
86 // Don't do anything for X = X
87 if (this == &RHS)
88 return *this;
90 if (BitWidth == RHS.getBitWidth()) {
91 // assume same bit-width single-word case is already handled
92 assert(!isSingleWord());
93 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
94 return *this;
97 if (isSingleWord()) {
98 // assume case where both are single words is already handled
99 assert(!RHS.isSingleWord());
100 VAL = 0;
101 pVal = getMemory(RHS.getNumWords());
102 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
103 } else if (getNumWords() == RHS.getNumWords())
104 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
105 else if (RHS.isSingleWord()) {
106 delete [] pVal;
107 VAL = RHS.VAL;
108 } else {
109 delete [] pVal;
110 pVal = getMemory(RHS.getNumWords());
111 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
113 BitWidth = RHS.BitWidth;
114 return clearUnusedBits();
117 APInt& APInt::operator=(uint64_t RHS) {
118 if (isSingleWord())
119 VAL = RHS;
120 else {
121 pVal[0] = RHS;
122 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
124 return clearUnusedBits();
127 /// Profile - This method 'profiles' an APInt for use with FoldingSet.
128 void APInt::Profile(FoldingSetNodeID& ID) const {
129 ID.AddInteger(BitWidth);
131 if (isSingleWord()) {
132 ID.AddInteger(VAL);
133 return;
136 unsigned NumWords = getNumWords();
137 for (unsigned i = 0; i < NumWords; ++i)
138 ID.AddInteger(pVal[i]);
141 /// add_1 - This function adds a single "digit" integer, y, to the multiple
142 /// "digit" integer array, x[]. x[] is modified to reflect the addition and
143 /// 1 is returned if there is a carry out, otherwise 0 is returned.
144 /// @returns the carry of the addition.
145 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
146 for (unsigned i = 0; i < len; ++i) {
147 dest[i] = y + x[i];
148 if (dest[i] < y)
149 y = 1; // Carry one to next digit.
150 else {
151 y = 0; // No need to carry so exit early
152 break;
155 return y;
158 /// @brief Prefix increment operator. Increments the APInt by one.
159 APInt& APInt::operator++() {
160 if (isSingleWord())
161 ++VAL;
162 else
163 add_1(pVal, pVal, getNumWords(), 1);
164 return clearUnusedBits();
167 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
168 /// the multi-digit integer array, x[], propagating the borrowed 1 value until
169 /// no further borrowing is neeeded or it runs out of "digits" in x. The result
170 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
171 /// In other words, if y > x then this function returns 1, otherwise 0.
172 /// @returns the borrow out of the subtraction
173 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
174 for (unsigned i = 0; i < len; ++i) {
175 uint64_t X = x[i];
176 x[i] -= y;
177 if (y > X)
178 y = 1; // We have to "borrow 1" from next "digit"
179 else {
180 y = 0; // No need to borrow
181 break; // Remaining digits are unchanged so exit early
184 return bool(y);
187 /// @brief Prefix decrement operator. Decrements the APInt by one.
188 APInt& APInt::operator--() {
189 if (isSingleWord())
190 --VAL;
191 else
192 sub_1(pVal, getNumWords(), 1);
193 return clearUnusedBits();
196 /// add - This function adds the integer array x to the integer array Y and
197 /// places the result in dest.
198 /// @returns the carry out from the addition
199 /// @brief General addition of 64-bit integer arrays
200 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
201 unsigned len) {
202 bool carry = false;
203 for (unsigned i = 0; i< len; ++i) {
204 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
205 dest[i] = x[i] + y[i] + carry;
206 carry = dest[i] < limit || (carry && dest[i] == limit);
208 return carry;
211 /// Adds the RHS APint to this APInt.
212 /// @returns this, after addition of RHS.
213 /// @brief Addition assignment operator.
214 APInt& APInt::operator+=(const APInt& RHS) {
215 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
216 if (isSingleWord())
217 VAL += RHS.VAL;
218 else {
219 add(pVal, pVal, RHS.pVal, getNumWords());
221 return clearUnusedBits();
224 /// Subtracts the integer array y from the integer array x
225 /// @returns returns the borrow out.
226 /// @brief Generalized subtraction of 64-bit integer arrays.
227 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
228 unsigned len) {
229 bool borrow = false;
230 for (unsigned i = 0; i < len; ++i) {
231 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
232 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
233 dest[i] = x_tmp - y[i];
235 return borrow;
238 /// Subtracts the RHS APInt from this APInt
239 /// @returns this, after subtraction
240 /// @brief Subtraction assignment operator.
241 APInt& APInt::operator-=(const APInt& RHS) {
242 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
243 if (isSingleWord())
244 VAL -= RHS.VAL;
245 else
246 sub(pVal, pVal, RHS.pVal, getNumWords());
247 return clearUnusedBits();
250 /// Multiplies an integer array, x by a a uint64_t integer and places the result
251 /// into dest.
252 /// @returns the carry out of the multiplication.
253 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
254 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
255 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
256 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
257 uint64_t carry = 0;
259 // For each digit of x.
260 for (unsigned i = 0; i < len; ++i) {
261 // Split x into high and low words
262 uint64_t lx = x[i] & 0xffffffffULL;
263 uint64_t hx = x[i] >> 32;
264 // hasCarry - A flag to indicate if there is a carry to the next digit.
265 // hasCarry == 0, no carry
266 // hasCarry == 1, has carry
267 // hasCarry == 2, no carry and the calculation result == 0.
268 uint8_t hasCarry = 0;
269 dest[i] = carry + lx * ly;
270 // Determine if the add above introduces carry.
271 hasCarry = (dest[i] < carry) ? 1 : 0;
272 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
273 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
274 // (2^32 - 1) + 2^32 = 2^64.
275 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
277 carry += (lx * hy) & 0xffffffffULL;
278 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
279 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
280 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
282 return carry;
285 /// Multiplies integer array x by integer array y and stores the result into
286 /// the integer array dest. Note that dest's size must be >= xlen + ylen.
287 /// @brief Generalized multiplicate of integer arrays.
288 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
289 unsigned ylen) {
290 dest[xlen] = mul_1(dest, x, xlen, y[0]);
291 for (unsigned i = 1; i < ylen; ++i) {
292 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
293 uint64_t carry = 0, lx = 0, hx = 0;
294 for (unsigned j = 0; j < xlen; ++j) {
295 lx = x[j] & 0xffffffffULL;
296 hx = x[j] >> 32;
297 // hasCarry - A flag to indicate if has carry.
298 // hasCarry == 0, no carry
299 // hasCarry == 1, has carry
300 // hasCarry == 2, no carry and the calculation result == 0.
301 uint8_t hasCarry = 0;
302 uint64_t resul = carry + lx * ly;
303 hasCarry = (resul < carry) ? 1 : 0;
304 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
305 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
307 carry += (lx * hy) & 0xffffffffULL;
308 resul = (carry << 32) | (resul & 0xffffffffULL);
309 dest[i+j] += resul;
310 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
311 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
312 ((lx * hy) >> 32) + hx * hy;
314 dest[i+xlen] = carry;
318 APInt& APInt::operator*=(const APInt& RHS) {
319 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
320 if (isSingleWord()) {
321 VAL *= RHS.VAL;
322 clearUnusedBits();
323 return *this;
326 // Get some bit facts about LHS and check for zero
327 unsigned lhsBits = getActiveBits();
328 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
329 if (!lhsWords)
330 // 0 * X ===> 0
331 return *this;
333 // Get some bit facts about RHS and check for zero
334 unsigned rhsBits = RHS.getActiveBits();
335 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
336 if (!rhsWords) {
337 // X * 0 ===> 0
338 clear();
339 return *this;
342 // Allocate space for the result
343 unsigned destWords = rhsWords + lhsWords;
344 uint64_t *dest = getMemory(destWords);
346 // Perform the long multiply
347 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
349 // Copy result back into *this
350 clear();
351 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
352 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
354 // delete dest array and return
355 delete[] dest;
356 return *this;
359 APInt& APInt::operator&=(const APInt& RHS) {
360 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
361 if (isSingleWord()) {
362 VAL &= RHS.VAL;
363 return *this;
365 unsigned numWords = getNumWords();
366 for (unsigned i = 0; i < numWords; ++i)
367 pVal[i] &= RHS.pVal[i];
368 return *this;
371 APInt& APInt::operator|=(const APInt& RHS) {
372 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
373 if (isSingleWord()) {
374 VAL |= RHS.VAL;
375 return *this;
377 unsigned numWords = getNumWords();
378 for (unsigned i = 0; i < numWords; ++i)
379 pVal[i] |= RHS.pVal[i];
380 return *this;
383 APInt& APInt::operator^=(const APInt& RHS) {
384 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
385 if (isSingleWord()) {
386 VAL ^= RHS.VAL;
387 this->clearUnusedBits();
388 return *this;
390 unsigned numWords = getNumWords();
391 for (unsigned i = 0; i < numWords; ++i)
392 pVal[i] ^= RHS.pVal[i];
393 return clearUnusedBits();
396 APInt APInt::AndSlowCase(const APInt& RHS) const {
397 unsigned numWords = getNumWords();
398 uint64_t* val = getMemory(numWords);
399 for (unsigned i = 0; i < numWords; ++i)
400 val[i] = pVal[i] & RHS.pVal[i];
401 return APInt(val, getBitWidth());
404 APInt APInt::OrSlowCase(const APInt& RHS) const {
405 unsigned numWords = getNumWords();
406 uint64_t *val = getMemory(numWords);
407 for (unsigned i = 0; i < numWords; ++i)
408 val[i] = pVal[i] | RHS.pVal[i];
409 return APInt(val, getBitWidth());
412 APInt APInt::XorSlowCase(const APInt& RHS) const {
413 unsigned numWords = getNumWords();
414 uint64_t *val = getMemory(numWords);
415 for (unsigned i = 0; i < numWords; ++i)
416 val[i] = pVal[i] ^ RHS.pVal[i];
418 // 0^0==1 so clear the high bits in case they got set.
419 return APInt(val, getBitWidth()).clearUnusedBits();
422 bool APInt::operator !() const {
423 if (isSingleWord())
424 return !VAL;
426 for (unsigned i = 0; i < getNumWords(); ++i)
427 if (pVal[i])
428 return false;
429 return true;
432 APInt APInt::operator*(const APInt& RHS) const {
433 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
434 if (isSingleWord())
435 return APInt(BitWidth, VAL * RHS.VAL);
436 APInt Result(*this);
437 Result *= RHS;
438 return Result.clearUnusedBits();
441 APInt APInt::operator+(const APInt& RHS) const {
442 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
443 if (isSingleWord())
444 return APInt(BitWidth, VAL + RHS.VAL);
445 APInt Result(BitWidth, 0);
446 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
447 return Result.clearUnusedBits();
450 APInt APInt::operator-(const APInt& RHS) const {
451 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
452 if (isSingleWord())
453 return APInt(BitWidth, VAL - RHS.VAL);
454 APInt Result(BitWidth, 0);
455 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
456 return Result.clearUnusedBits();
459 bool APInt::operator[](unsigned bitPosition) const {
460 return (maskBit(bitPosition) &
461 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
464 bool APInt::EqualSlowCase(const APInt& RHS) const {
465 // Get some facts about the number of bits used in the two operands.
466 unsigned n1 = getActiveBits();
467 unsigned n2 = RHS.getActiveBits();
469 // If the number of bits isn't the same, they aren't equal
470 if (n1 != n2)
471 return false;
473 // If the number of bits fits in a word, we only need to compare the low word.
474 if (n1 <= APINT_BITS_PER_WORD)
475 return pVal[0] == RHS.pVal[0];
477 // Otherwise, compare everything
478 for (int i = whichWord(n1 - 1); i >= 0; --i)
479 if (pVal[i] != RHS.pVal[i])
480 return false;
481 return true;
484 bool APInt::EqualSlowCase(uint64_t Val) const {
485 unsigned n = getActiveBits();
486 if (n <= APINT_BITS_PER_WORD)
487 return pVal[0] == Val;
488 else
489 return false;
492 bool APInt::ult(const APInt& RHS) const {
493 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
494 if (isSingleWord())
495 return VAL < RHS.VAL;
497 // Get active bit length of both operands
498 unsigned n1 = getActiveBits();
499 unsigned n2 = RHS.getActiveBits();
501 // If magnitude of LHS is less than RHS, return true.
502 if (n1 < n2)
503 return true;
505 // If magnitude of RHS is greather than LHS, return false.
506 if (n2 < n1)
507 return false;
509 // If they bot fit in a word, just compare the low order word
510 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
511 return pVal[0] < RHS.pVal[0];
513 // Otherwise, compare all words
514 unsigned topWord = whichWord(std::max(n1,n2)-1);
515 for (int i = topWord; i >= 0; --i) {
516 if (pVal[i] > RHS.pVal[i])
517 return false;
518 if (pVal[i] < RHS.pVal[i])
519 return true;
521 return false;
524 bool APInt::slt(const APInt& RHS) const {
525 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
526 if (isSingleWord()) {
527 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
528 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
529 return lhsSext < rhsSext;
532 APInt lhs(*this);
533 APInt rhs(RHS);
534 bool lhsNeg = isNegative();
535 bool rhsNeg = rhs.isNegative();
536 if (lhsNeg) {
537 // Sign bit is set so perform two's complement to make it positive
538 lhs.flip();
539 lhs++;
541 if (rhsNeg) {
542 // Sign bit is set so perform two's complement to make it positive
543 rhs.flip();
544 rhs++;
547 // Now we have unsigned values to compare so do the comparison if necessary
548 // based on the negativeness of the values.
549 if (lhsNeg)
550 if (rhsNeg)
551 return lhs.ugt(rhs);
552 else
553 return true;
554 else if (rhsNeg)
555 return false;
556 else
557 return lhs.ult(rhs);
560 APInt& APInt::set(unsigned bitPosition) {
561 if (isSingleWord())
562 VAL |= maskBit(bitPosition);
563 else
564 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
565 return *this;
568 /// Set the given bit to 0 whose position is given as "bitPosition".
569 /// @brief Set a given bit to 0.
570 APInt& APInt::clear(unsigned bitPosition) {
571 if (isSingleWord())
572 VAL &= ~maskBit(bitPosition);
573 else
574 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
575 return *this;
578 /// @brief Toggle every bit to its opposite value.
580 /// Toggle a given bit to its opposite value whose position is given
581 /// as "bitPosition".
582 /// @brief Toggles a given bit to its opposite value.
583 APInt& APInt::flip(unsigned bitPosition) {
584 assert(bitPosition < BitWidth && "Out of the bit-width range!");
585 if ((*this)[bitPosition]) clear(bitPosition);
586 else set(bitPosition);
587 return *this;
590 unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
591 assert(!str.empty() && "Invalid string length");
593 size_t slen = str.size();
595 // Each computation below needs to know if its negative
596 unsigned isNegative = str.front() == '-';
597 if (isNegative) {
598 slen--;
599 assert(slen && "string is only a minus!");
601 // For radixes of power-of-two values, the bits required is accurately and
602 // easily computed
603 if (radix == 2)
604 return slen + isNegative;
605 if (radix == 8)
606 return slen * 3 + isNegative;
607 if (radix == 16)
608 return slen * 4 + isNegative;
610 // Otherwise it must be radix == 10, the hard case
611 assert(radix == 10 && "Invalid radix");
613 // This is grossly inefficient but accurate. We could probably do something
614 // with a computation of roughly slen*64/20 and then adjust by the value of
615 // the first few digits. But, I'm not sure how accurate that could be.
617 // Compute a sufficient number of bits that is always large enough but might
618 // be too large. This avoids the assertion in the constructor.
619 unsigned sufficient = slen*64/18;
621 // Convert to the actual binary value.
622 APInt tmp(sufficient, str.substr(isNegative), radix);
624 // Compute how many bits are required.
625 return isNegative + tmp.logBase2() + 1;
628 // From http://www.burtleburtle.net, byBob Jenkins.
629 // When targeting x86, both GCC and LLVM seem to recognize this as a
630 // rotate instruction.
631 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
633 // From http://www.burtleburtle.net, by Bob Jenkins.
634 #define mix(a,b,c) \
636 a -= c; a ^= rot(c, 4); c += b; \
637 b -= a; b ^= rot(a, 6); a += c; \
638 c -= b; c ^= rot(b, 8); b += a; \
639 a -= c; a ^= rot(c,16); c += b; \
640 b -= a; b ^= rot(a,19); a += c; \
641 c -= b; c ^= rot(b, 4); b += a; \
644 // From http://www.burtleburtle.net, by Bob Jenkins.
645 #define final(a,b,c) \
647 c ^= b; c -= rot(b,14); \
648 a ^= c; a -= rot(c,11); \
649 b ^= a; b -= rot(a,25); \
650 c ^= b; c -= rot(b,16); \
651 a ^= c; a -= rot(c,4); \
652 b ^= a; b -= rot(a,14); \
653 c ^= b; c -= rot(b,24); \
656 // hashword() was adapted from http://www.burtleburtle.net, by Bob
657 // Jenkins. k is a pointer to an array of uint32_t values; length is
658 // the length of the key, in 32-bit chunks. This version only handles
659 // keys that are a multiple of 32 bits in size.
660 static inline uint32_t hashword(const uint64_t *k64, size_t length)
662 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
663 uint32_t a,b,c;
665 /* Set up the internal state */
666 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
668 /*------------------------------------------------- handle most of the key */
669 while (length > 3)
671 a += k[0];
672 b += k[1];
673 c += k[2];
674 mix(a,b,c);
675 length -= 3;
676 k += 3;
679 /*------------------------------------------- handle the last 3 uint32_t's */
680 switch (length) { /* all the case statements fall through */
681 case 3 : c+=k[2];
682 case 2 : b+=k[1];
683 case 1 : a+=k[0];
684 final(a,b,c);
685 case 0: /* case 0: nothing left to add */
686 break;
688 /*------------------------------------------------------ report the result */
689 return c;
692 // hashword8() was adapted from http://www.burtleburtle.net, by Bob
693 // Jenkins. This computes a 32-bit hash from one 64-bit word. When
694 // targeting x86 (32 or 64 bit), both LLVM and GCC compile this
695 // function into about 35 instructions when inlined.
696 static inline uint32_t hashword8(const uint64_t k64)
698 uint32_t a,b,c;
699 a = b = c = 0xdeadbeef + 4;
700 b += k64 >> 32;
701 a += k64 & 0xffffffff;
702 final(a,b,c);
703 return c;
705 #undef final
706 #undef mix
707 #undef rot
709 uint64_t APInt::getHashValue() const {
710 uint64_t hash;
711 if (isSingleWord())
712 hash = hashword8(VAL);
713 else
714 hash = hashword(pVal, getNumWords()*2);
715 return hash;
718 /// HiBits - This function returns the high "numBits" bits of this APInt.
719 APInt APInt::getHiBits(unsigned numBits) const {
720 return APIntOps::lshr(*this, BitWidth - numBits);
723 /// LoBits - This function returns the low "numBits" bits of this APInt.
724 APInt APInt::getLoBits(unsigned numBits) const {
725 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
726 BitWidth - numBits);
729 bool APInt::isPowerOf2() const {
730 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
733 unsigned APInt::countLeadingZerosSlowCase() const {
734 unsigned Count = 0;
735 for (unsigned i = getNumWords(); i > 0u; --i) {
736 if (pVal[i-1] == 0)
737 Count += APINT_BITS_PER_WORD;
738 else {
739 Count += CountLeadingZeros_64(pVal[i-1]);
740 break;
743 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
744 if (remainder)
745 Count -= APINT_BITS_PER_WORD - remainder;
746 return std::min(Count, BitWidth);
749 static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
750 unsigned Count = 0;
751 if (skip)
752 V <<= skip;
753 while (V && (V & (1ULL << 63))) {
754 Count++;
755 V <<= 1;
757 return Count;
760 unsigned APInt::countLeadingOnes() const {
761 if (isSingleWord())
762 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
764 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
765 unsigned shift;
766 if (!highWordBits) {
767 highWordBits = APINT_BITS_PER_WORD;
768 shift = 0;
769 } else {
770 shift = APINT_BITS_PER_WORD - highWordBits;
772 int i = getNumWords() - 1;
773 unsigned Count = countLeadingOnes_64(pVal[i], shift);
774 if (Count == highWordBits) {
775 for (i--; i >= 0; --i) {
776 if (pVal[i] == -1ULL)
777 Count += APINT_BITS_PER_WORD;
778 else {
779 Count += countLeadingOnes_64(pVal[i], 0);
780 break;
784 return Count;
787 unsigned APInt::countTrailingZeros() const {
788 if (isSingleWord())
789 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
790 unsigned Count = 0;
791 unsigned i = 0;
792 for (; i < getNumWords() && pVal[i] == 0; ++i)
793 Count += APINT_BITS_PER_WORD;
794 if (i < getNumWords())
795 Count += CountTrailingZeros_64(pVal[i]);
796 return std::min(Count, BitWidth);
799 unsigned APInt::countTrailingOnesSlowCase() const {
800 unsigned Count = 0;
801 unsigned i = 0;
802 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
803 Count += APINT_BITS_PER_WORD;
804 if (i < getNumWords())
805 Count += CountTrailingOnes_64(pVal[i]);
806 return std::min(Count, BitWidth);
809 unsigned APInt::countPopulationSlowCase() const {
810 unsigned Count = 0;
811 for (unsigned i = 0; i < getNumWords(); ++i)
812 Count += CountPopulation_64(pVal[i]);
813 return Count;
816 APInt APInt::byteSwap() const {
817 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
818 if (BitWidth == 16)
819 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
820 else if (BitWidth == 32)
821 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
822 else if (BitWidth == 48) {
823 unsigned Tmp1 = unsigned(VAL >> 16);
824 Tmp1 = ByteSwap_32(Tmp1);
825 uint16_t Tmp2 = uint16_t(VAL);
826 Tmp2 = ByteSwap_16(Tmp2);
827 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
828 } else if (BitWidth == 64)
829 return APInt(BitWidth, ByteSwap_64(VAL));
830 else {
831 APInt Result(BitWidth, 0);
832 char *pByte = (char*)Result.pVal;
833 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
834 char Tmp = pByte[i];
835 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
836 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
838 return Result;
842 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
843 const APInt& API2) {
844 APInt A = API1, B = API2;
845 while (!!B) {
846 APInt T = B;
847 B = APIntOps::urem(A, B);
848 A = T;
850 return A;
853 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
854 union {
855 double D;
856 uint64_t I;
857 } T;
858 T.D = Double;
860 // Get the sign bit from the highest order bit
861 bool isNeg = T.I >> 63;
863 // Get the 11-bit exponent and adjust for the 1023 bit bias
864 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
866 // If the exponent is negative, the value is < 0 so just return 0.
867 if (exp < 0)
868 return APInt(width, 0u);
870 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
871 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
873 // If the exponent doesn't shift all bits out of the mantissa
874 if (exp < 52)
875 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
876 APInt(width, mantissa >> (52 - exp));
878 // If the client didn't provide enough bits for us to shift the mantissa into
879 // then the result is undefined, just return 0
880 if (width <= exp - 52)
881 return APInt(width, 0);
883 // Otherwise, we have to shift the mantissa bits up to the right location
884 APInt Tmp(width, mantissa);
885 Tmp = Tmp.shl((unsigned)exp - 52);
886 return isNeg ? -Tmp : Tmp;
889 /// RoundToDouble - This function converts this APInt to a double.
890 /// The layout for double is as following (IEEE Standard 754):
891 /// --------------------------------------
892 /// | Sign Exponent Fraction Bias |
893 /// |-------------------------------------- |
894 /// | 1[63] 11[62-52] 52[51-00] 1023 |
895 /// --------------------------------------
896 double APInt::roundToDouble(bool isSigned) const {
898 // Handle the simple case where the value is contained in one uint64_t.
899 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
900 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
901 if (isSigned) {
902 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
903 return double(sext);
904 } else
905 return double(getWord(0));
908 // Determine if the value is negative.
909 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
911 // Construct the absolute value if we're negative.
912 APInt Tmp(isNeg ? -(*this) : (*this));
914 // Figure out how many bits we're using.
915 unsigned n = Tmp.getActiveBits();
917 // The exponent (without bias normalization) is just the number of bits
918 // we are using. Note that the sign bit is gone since we constructed the
919 // absolute value.
920 uint64_t exp = n;
922 // Return infinity for exponent overflow
923 if (exp > 1023) {
924 if (!isSigned || !isNeg)
925 return std::numeric_limits<double>::infinity();
926 else
927 return -std::numeric_limits<double>::infinity();
929 exp += 1023; // Increment for 1023 bias
931 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
932 // extract the high 52 bits from the correct words in pVal.
933 uint64_t mantissa;
934 unsigned hiWord = whichWord(n-1);
935 if (hiWord == 0) {
936 mantissa = Tmp.pVal[0];
937 if (n > 52)
938 mantissa >>= n - 52; // shift down, we want the top 52 bits.
939 } else {
940 assert(hiWord > 0 && "huh?");
941 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
942 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
943 mantissa = hibits | lobits;
946 // The leading bit of mantissa is implicit, so get rid of it.
947 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
948 union {
949 double D;
950 uint64_t I;
951 } T;
952 T.I = sign | (exp << 52) | mantissa;
953 return T.D;
956 // Truncate to new width.
957 APInt &APInt::trunc(unsigned width) {
958 assert(width < BitWidth && "Invalid APInt Truncate request");
959 assert(width && "Can't truncate to 0 bits");
960 unsigned wordsBefore = getNumWords();
961 BitWidth = width;
962 unsigned wordsAfter = getNumWords();
963 if (wordsBefore != wordsAfter) {
964 if (wordsAfter == 1) {
965 uint64_t *tmp = pVal;
966 VAL = pVal[0];
967 delete [] tmp;
968 } else {
969 uint64_t *newVal = getClearedMemory(wordsAfter);
970 for (unsigned i = 0; i < wordsAfter; ++i)
971 newVal[i] = pVal[i];
972 delete [] pVal;
973 pVal = newVal;
976 return clearUnusedBits();
979 // Sign extend to a new width.
980 APInt &APInt::sext(unsigned width) {
981 assert(width > BitWidth && "Invalid APInt SignExtend request");
982 // If the sign bit isn't set, this is the same as zext.
983 if (!isNegative()) {
984 zext(width);
985 return *this;
988 // The sign bit is set. First, get some facts
989 unsigned wordsBefore = getNumWords();
990 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
991 BitWidth = width;
992 unsigned wordsAfter = getNumWords();
994 // Mask the high order word appropriately
995 if (wordsBefore == wordsAfter) {
996 unsigned newWordBits = width % APINT_BITS_PER_WORD;
997 // The extension is contained to the wordsBefore-1th word.
998 uint64_t mask = ~0ULL;
999 if (newWordBits)
1000 mask >>= APINT_BITS_PER_WORD - newWordBits;
1001 mask <<= wordBits;
1002 if (wordsBefore == 1)
1003 VAL |= mask;
1004 else
1005 pVal[wordsBefore-1] |= mask;
1006 return clearUnusedBits();
1009 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1010 uint64_t *newVal = getMemory(wordsAfter);
1011 if (wordsBefore == 1)
1012 newVal[0] = VAL | mask;
1013 else {
1014 for (unsigned i = 0; i < wordsBefore; ++i)
1015 newVal[i] = pVal[i];
1016 newVal[wordsBefore-1] |= mask;
1018 for (unsigned i = wordsBefore; i < wordsAfter; i++)
1019 newVal[i] = -1ULL;
1020 if (wordsBefore != 1)
1021 delete [] pVal;
1022 pVal = newVal;
1023 return clearUnusedBits();
1026 // Zero extend to a new width.
1027 APInt &APInt::zext(unsigned width) {
1028 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
1029 unsigned wordsBefore = getNumWords();
1030 BitWidth = width;
1031 unsigned wordsAfter = getNumWords();
1032 if (wordsBefore != wordsAfter) {
1033 uint64_t *newVal = getClearedMemory(wordsAfter);
1034 if (wordsBefore == 1)
1035 newVal[0] = VAL;
1036 else
1037 for (unsigned i = 0; i < wordsBefore; ++i)
1038 newVal[i] = pVal[i];
1039 if (wordsBefore != 1)
1040 delete [] pVal;
1041 pVal = newVal;
1043 return *this;
1046 APInt &APInt::zextOrTrunc(unsigned width) {
1047 if (BitWidth < width)
1048 return zext(width);
1049 if (BitWidth > width)
1050 return trunc(width);
1051 return *this;
1054 APInt &APInt::sextOrTrunc(unsigned width) {
1055 if (BitWidth < width)
1056 return sext(width);
1057 if (BitWidth > width)
1058 return trunc(width);
1059 return *this;
1062 /// Arithmetic right-shift this APInt by shiftAmt.
1063 /// @brief Arithmetic right-shift function.
1064 APInt APInt::ashr(const APInt &shiftAmt) const {
1065 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1068 /// Arithmetic right-shift this APInt by shiftAmt.
1069 /// @brief Arithmetic right-shift function.
1070 APInt APInt::ashr(unsigned shiftAmt) const {
1071 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1072 // Handle a degenerate case
1073 if (shiftAmt == 0)
1074 return *this;
1076 // Handle single word shifts with built-in ashr
1077 if (isSingleWord()) {
1078 if (shiftAmt == BitWidth)
1079 return APInt(BitWidth, 0); // undefined
1080 else {
1081 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
1082 return APInt(BitWidth,
1083 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1087 // If all the bits were shifted out, the result is, technically, undefined.
1088 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1089 // issues in the algorithm below.
1090 if (shiftAmt == BitWidth) {
1091 if (isNegative())
1092 return APInt(BitWidth, -1ULL, true);
1093 else
1094 return APInt(BitWidth, 0);
1097 // Create some space for the result.
1098 uint64_t * val = new uint64_t[getNumWords()];
1100 // Compute some values needed by the following shift algorithms
1101 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1102 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1103 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1104 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
1105 if (bitsInWord == 0)
1106 bitsInWord = APINT_BITS_PER_WORD;
1108 // If we are shifting whole words, just move whole words
1109 if (wordShift == 0) {
1110 // Move the words containing significant bits
1111 for (unsigned i = 0; i <= breakWord; ++i)
1112 val[i] = pVal[i+offset]; // move whole word
1114 // Adjust the top significant word for sign bit fill, if negative
1115 if (isNegative())
1116 if (bitsInWord < APINT_BITS_PER_WORD)
1117 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1118 } else {
1119 // Shift the low order words
1120 for (unsigned i = 0; i < breakWord; ++i) {
1121 // This combines the shifted corresponding word with the low bits from
1122 // the next word (shifted into this word's high bits).
1123 val[i] = (pVal[i+offset] >> wordShift) |
1124 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1127 // Shift the break word. In this case there are no bits from the next word
1128 // to include in this word.
1129 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1131 // Deal with sign extenstion in the break word, and possibly the word before
1132 // it.
1133 if (isNegative()) {
1134 if (wordShift > bitsInWord) {
1135 if (breakWord > 0)
1136 val[breakWord-1] |=
1137 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1138 val[breakWord] |= ~0ULL;
1139 } else
1140 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1144 // Remaining words are 0 or -1, just assign them.
1145 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1146 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1147 val[i] = fillValue;
1148 return APInt(val, BitWidth).clearUnusedBits();
1151 /// Logical right-shift this APInt by shiftAmt.
1152 /// @brief Logical right-shift function.
1153 APInt APInt::lshr(const APInt &shiftAmt) const {
1154 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1157 /// Logical right-shift this APInt by shiftAmt.
1158 /// @brief Logical right-shift function.
1159 APInt APInt::lshr(unsigned shiftAmt) const {
1160 if (isSingleWord()) {
1161 if (shiftAmt == BitWidth)
1162 return APInt(BitWidth, 0);
1163 else
1164 return APInt(BitWidth, this->VAL >> shiftAmt);
1167 // If all the bits were shifted out, the result is 0. This avoids issues
1168 // with shifting by the size of the integer type, which produces undefined
1169 // results. We define these "undefined results" to always be 0.
1170 if (shiftAmt == BitWidth)
1171 return APInt(BitWidth, 0);
1173 // If none of the bits are shifted out, the result is *this. This avoids
1174 // issues with shifting by the size of the integer type, which produces
1175 // undefined results in the code below. This is also an optimization.
1176 if (shiftAmt == 0)
1177 return *this;
1179 // Create some space for the result.
1180 uint64_t * val = new uint64_t[getNumWords()];
1182 // If we are shifting less than a word, compute the shift with a simple carry
1183 if (shiftAmt < APINT_BITS_PER_WORD) {
1184 uint64_t carry = 0;
1185 for (int i = getNumWords()-1; i >= 0; --i) {
1186 val[i] = (pVal[i] >> shiftAmt) | carry;
1187 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1189 return APInt(val, BitWidth).clearUnusedBits();
1192 // Compute some values needed by the remaining shift algorithms
1193 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1194 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1196 // If we are shifting whole words, just move whole words
1197 if (wordShift == 0) {
1198 for (unsigned i = 0; i < getNumWords() - offset; ++i)
1199 val[i] = pVal[i+offset];
1200 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
1201 val[i] = 0;
1202 return APInt(val,BitWidth).clearUnusedBits();
1205 // Shift the low order words
1206 unsigned breakWord = getNumWords() - offset -1;
1207 for (unsigned i = 0; i < breakWord; ++i)
1208 val[i] = (pVal[i+offset] >> wordShift) |
1209 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1210 // Shift the break word.
1211 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1213 // Remaining words are 0
1214 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1215 val[i] = 0;
1216 return APInt(val, BitWidth).clearUnusedBits();
1219 /// Left-shift this APInt by shiftAmt.
1220 /// @brief Left-shift function.
1221 APInt APInt::shl(const APInt &shiftAmt) const {
1222 // It's undefined behavior in C to shift by BitWidth or greater.
1223 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
1226 APInt APInt::shlSlowCase(unsigned shiftAmt) const {
1227 // If all the bits were shifted out, the result is 0. This avoids issues
1228 // with shifting by the size of the integer type, which produces undefined
1229 // results. We define these "undefined results" to always be 0.
1230 if (shiftAmt == BitWidth)
1231 return APInt(BitWidth, 0);
1233 // If none of the bits are shifted out, the result is *this. This avoids a
1234 // lshr by the words size in the loop below which can produce incorrect
1235 // results. It also avoids the expensive computation below for a common case.
1236 if (shiftAmt == 0)
1237 return *this;
1239 // Create some space for the result.
1240 uint64_t * val = new uint64_t[getNumWords()];
1242 // If we are shifting less than a word, do it the easy way
1243 if (shiftAmt < APINT_BITS_PER_WORD) {
1244 uint64_t carry = 0;
1245 for (unsigned i = 0; i < getNumWords(); i++) {
1246 val[i] = pVal[i] << shiftAmt | carry;
1247 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1249 return APInt(val, BitWidth).clearUnusedBits();
1252 // Compute some values needed by the remaining shift algorithms
1253 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1254 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1256 // If we are shifting whole words, just move whole words
1257 if (wordShift == 0) {
1258 for (unsigned i = 0; i < offset; i++)
1259 val[i] = 0;
1260 for (unsigned i = offset; i < getNumWords(); i++)
1261 val[i] = pVal[i-offset];
1262 return APInt(val,BitWidth).clearUnusedBits();
1265 // Copy whole words from this to Result.
1266 unsigned i = getNumWords() - 1;
1267 for (; i > offset; --i)
1268 val[i] = pVal[i-offset] << wordShift |
1269 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1270 val[offset] = pVal[0] << wordShift;
1271 for (i = 0; i < offset; ++i)
1272 val[i] = 0;
1273 return APInt(val, BitWidth).clearUnusedBits();
1276 APInt APInt::rotl(const APInt &rotateAmt) const {
1277 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
1280 APInt APInt::rotl(unsigned rotateAmt) const {
1281 if (rotateAmt == 0)
1282 return *this;
1283 // Don't get too fancy, just use existing shift/or facilities
1284 APInt hi(*this);
1285 APInt lo(*this);
1286 hi.shl(rotateAmt);
1287 lo.lshr(BitWidth - rotateAmt);
1288 return hi | lo;
1291 APInt APInt::rotr(const APInt &rotateAmt) const {
1292 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
1295 APInt APInt::rotr(unsigned rotateAmt) const {
1296 if (rotateAmt == 0)
1297 return *this;
1298 // Don't get too fancy, just use existing shift/or facilities
1299 APInt hi(*this);
1300 APInt lo(*this);
1301 lo.lshr(rotateAmt);
1302 hi.shl(BitWidth - rotateAmt);
1303 return hi | lo;
1306 // Square Root - this method computes and returns the square root of "this".
1307 // Three mechanisms are used for computation. For small values (<= 5 bits),
1308 // a table lookup is done. This gets some performance for common cases. For
1309 // values using less than 52 bits, the value is converted to double and then
1310 // the libc sqrt function is called. The result is rounded and then converted
1311 // back to a uint64_t which is then used to construct the result. Finally,
1312 // the Babylonian method for computing square roots is used.
1313 APInt APInt::sqrt() const {
1315 // Determine the magnitude of the value.
1316 unsigned magnitude = getActiveBits();
1318 // Use a fast table for some small values. This also gets rid of some
1319 // rounding errors in libc sqrt for small values.
1320 if (magnitude <= 5) {
1321 static const uint8_t results[32] = {
1322 /* 0 */ 0,
1323 /* 1- 2 */ 1, 1,
1324 /* 3- 6 */ 2, 2, 2, 2,
1325 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1326 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1327 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1328 /* 31 */ 6
1330 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1333 // If the magnitude of the value fits in less than 52 bits (the precision of
1334 // an IEEE double precision floating point value), then we can use the
1335 // libc sqrt function which will probably use a hardware sqrt computation.
1336 // This should be faster than the algorithm below.
1337 if (magnitude < 52) {
1338 #ifdef _MSC_VER
1339 // Amazingly, VC++ doesn't have round().
1340 return APInt(BitWidth,
1341 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1342 #else
1343 return APInt(BitWidth,
1344 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1345 #endif
1348 // Okay, all the short cuts are exhausted. We must compute it. The following
1349 // is a classical Babylonian method for computing the square root. This code
1350 // was adapted to APINt from a wikipedia article on such computations.
1351 // See http://www.wikipedia.org/ and go to the page named
1352 // Calculate_an_integer_square_root.
1353 unsigned nbits = BitWidth, i = 4;
1354 APInt testy(BitWidth, 16);
1355 APInt x_old(BitWidth, 1);
1356 APInt x_new(BitWidth, 0);
1357 APInt two(BitWidth, 2);
1359 // Select a good starting value using binary logarithms.
1360 for (;; i += 2, testy = testy.shl(2))
1361 if (i >= nbits || this->ule(testy)) {
1362 x_old = x_old.shl(i / 2);
1363 break;
1366 // Use the Babylonian method to arrive at the integer square root:
1367 for (;;) {
1368 x_new = (this->udiv(x_old) + x_old).udiv(two);
1369 if (x_old.ule(x_new))
1370 break;
1371 x_old = x_new;
1374 // Make sure we return the closest approximation
1375 // NOTE: The rounding calculation below is correct. It will produce an
1376 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1377 // determined to be a rounding issue with pari/gp as it begins to use a
1378 // floating point representation after 192 bits. There are no discrepancies
1379 // between this algorithm and pari/gp for bit widths < 192 bits.
1380 APInt square(x_old * x_old);
1381 APInt nextSquare((x_old + 1) * (x_old +1));
1382 if (this->ult(square))
1383 return x_old;
1384 else if (this->ule(nextSquare)) {
1385 APInt midpoint((nextSquare - square).udiv(two));
1386 APInt offset(*this - square);
1387 if (offset.ult(midpoint))
1388 return x_old;
1389 else
1390 return x_old + 1;
1391 } else
1392 llvm_unreachable("Error in APInt::sqrt computation");
1393 return x_old + 1;
1396 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1397 /// iterative extended Euclidean algorithm is used to solve for this value,
1398 /// however we simplify it to speed up calculating only the inverse, and take
1399 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1400 /// (potentially large) APInts around.
1401 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1402 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1404 // Using the properties listed at the following web page (accessed 06/21/08):
1405 // http://www.numbertheory.org/php/euclid.html
1406 // (especially the properties numbered 3, 4 and 9) it can be proved that
1407 // BitWidth bits suffice for all the computations in the algorithm implemented
1408 // below. More precisely, this number of bits suffice if the multiplicative
1409 // inverse exists, but may not suffice for the general extended Euclidean
1410 // algorithm.
1412 APInt r[2] = { modulo, *this };
1413 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1414 APInt q(BitWidth, 0);
1416 unsigned i;
1417 for (i = 0; r[i^1] != 0; i ^= 1) {
1418 // An overview of the math without the confusing bit-flipping:
1419 // q = r[i-2] / r[i-1]
1420 // r[i] = r[i-2] % r[i-1]
1421 // t[i] = t[i-2] - t[i-1] * q
1422 udivrem(r[i], r[i^1], q, r[i]);
1423 t[i] -= t[i^1] * q;
1426 // If this APInt and the modulo are not coprime, there is no multiplicative
1427 // inverse, so return 0. We check this by looking at the next-to-last
1428 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1429 // algorithm.
1430 if (r[i] != 1)
1431 return APInt(BitWidth, 0);
1433 // The next-to-last t is the multiplicative inverse. However, we are
1434 // interested in a positive inverse. Calcuate a positive one from a negative
1435 // one if necessary. A simple addition of the modulo suffices because
1436 // abs(t[i]) is known to be less than *this/2 (see the link above).
1437 return t[i].isNegative() ? t[i] + modulo : t[i];
1440 /// Calculate the magic numbers required to implement a signed integer division
1441 /// by a constant as a sequence of multiplies, adds and shifts. Requires that
1442 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1443 /// Warren, Jr., chapter 10.
1444 APInt::ms APInt::magic() const {
1445 const APInt& d = *this;
1446 unsigned p;
1447 APInt ad, anc, delta, q1, r1, q2, r2, t;
1448 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1449 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1450 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1451 struct ms mag;
1453 ad = d.abs();
1454 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1455 anc = t - 1 - t.urem(ad); // absolute value of nc
1456 p = d.getBitWidth() - 1; // initialize p
1457 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1458 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1459 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1460 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1461 do {
1462 p = p + 1;
1463 q1 = q1<<1; // update q1 = 2p/abs(nc)
1464 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1465 if (r1.uge(anc)) { // must be unsigned comparison
1466 q1 = q1 + 1;
1467 r1 = r1 - anc;
1469 q2 = q2<<1; // update q2 = 2p/abs(d)
1470 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1471 if (r2.uge(ad)) { // must be unsigned comparison
1472 q2 = q2 + 1;
1473 r2 = r2 - ad;
1475 delta = ad - r2;
1476 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1478 mag.m = q2 + 1;
1479 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1480 mag.s = p - d.getBitWidth(); // resulting shift
1481 return mag;
1484 /// Calculate the magic numbers required to implement an unsigned integer
1485 /// division by a constant as a sequence of multiplies, adds and shifts.
1486 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1487 /// S. Warren, Jr., chapter 10.
1488 APInt::mu APInt::magicu() const {
1489 const APInt& d = *this;
1490 unsigned p;
1491 APInt nc, delta, q1, r1, q2, r2;
1492 struct mu magu;
1493 magu.a = 0; // initialize "add" indicator
1494 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1495 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1496 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1498 nc = allOnes - (-d).urem(d);
1499 p = d.getBitWidth() - 1; // initialize p
1500 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1501 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1502 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1503 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1504 do {
1505 p = p + 1;
1506 if (r1.uge(nc - r1)) {
1507 q1 = q1 + q1 + 1; // update q1
1508 r1 = r1 + r1 - nc; // update r1
1510 else {
1511 q1 = q1+q1; // update q1
1512 r1 = r1+r1; // update r1
1514 if ((r2 + 1).uge(d - r2)) {
1515 if (q2.uge(signedMax)) magu.a = 1;
1516 q2 = q2+q2 + 1; // update q2
1517 r2 = r2+r2 + 1 - d; // update r2
1519 else {
1520 if (q2.uge(signedMin)) magu.a = 1;
1521 q2 = q2+q2; // update q2
1522 r2 = r2+r2 + 1; // update r2
1524 delta = d - 1 - r2;
1525 } while (p < d.getBitWidth()*2 &&
1526 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1527 magu.m = q2 + 1; // resulting magic number
1528 magu.s = p - d.getBitWidth(); // resulting shift
1529 return magu;
1532 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1533 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1534 /// variables here have the same names as in the algorithm. Comments explain
1535 /// the algorithm and any deviation from it.
1536 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1537 unsigned m, unsigned n) {
1538 assert(u && "Must provide dividend");
1539 assert(v && "Must provide divisor");
1540 assert(q && "Must provide quotient");
1541 assert(u != v && u != q && v != q && "Must us different memory");
1542 assert(n>1 && "n must be > 1");
1544 // Knuth uses the value b as the base of the number system. In our case b
1545 // is 2^31 so we just set it to -1u.
1546 uint64_t b = uint64_t(1) << 32;
1548 #if 0
1549 DEBUG(errs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1550 DEBUG(errs() << "KnuthDiv: original:");
1551 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1552 DEBUG(errs() << " by");
1553 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1554 DEBUG(errs() << '\n');
1555 #endif
1556 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1557 // u and v by d. Note that we have taken Knuth's advice here to use a power
1558 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1559 // 2 allows us to shift instead of multiply and it is easy to determine the
1560 // shift amount from the leading zeros. We are basically normalizing the u
1561 // and v so that its high bits are shifted to the top of v's range without
1562 // overflow. Note that this can require an extra word in u so that u must
1563 // be of length m+n+1.
1564 unsigned shift = CountLeadingZeros_32(v[n-1]);
1565 unsigned v_carry = 0;
1566 unsigned u_carry = 0;
1567 if (shift) {
1568 for (unsigned i = 0; i < m+n; ++i) {
1569 unsigned u_tmp = u[i] >> (32 - shift);
1570 u[i] = (u[i] << shift) | u_carry;
1571 u_carry = u_tmp;
1573 for (unsigned i = 0; i < n; ++i) {
1574 unsigned v_tmp = v[i] >> (32 - shift);
1575 v[i] = (v[i] << shift) | v_carry;
1576 v_carry = v_tmp;
1579 u[m+n] = u_carry;
1580 #if 0
1581 DEBUG(errs() << "KnuthDiv: normal:");
1582 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1583 DEBUG(errs() << " by");
1584 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1585 DEBUG(errs() << '\n');
1586 #endif
1588 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1589 int j = m;
1590 do {
1591 DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n');
1592 // D3. [Calculate q'.].
1593 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1594 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1595 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1596 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1597 // on v[n-2] determines at high speed most of the cases in which the trial
1598 // value qp is one too large, and it eliminates all cases where qp is two
1599 // too large.
1600 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1601 DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n');
1602 uint64_t qp = dividend / v[n-1];
1603 uint64_t rp = dividend % v[n-1];
1604 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1605 qp--;
1606 rp += v[n-1];
1607 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1608 qp--;
1610 DEBUG(errs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1612 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1613 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1614 // consists of a simple multiplication by a one-place number, combined with
1615 // a subtraction.
1616 bool isNeg = false;
1617 for (unsigned i = 0; i < n; ++i) {
1618 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1619 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1620 bool borrow = subtrahend > u_tmp;
1621 DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
1622 << ", subtrahend == " << subtrahend
1623 << ", borrow = " << borrow << '\n');
1625 uint64_t result = u_tmp - subtrahend;
1626 unsigned k = j + i;
1627 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1628 u[k++] = (unsigned)(result >> 32); // subtract high word
1629 while (borrow && k <= m+n) { // deal with borrow to the left
1630 borrow = u[k] == 0;
1631 u[k]--;
1632 k++;
1634 isNeg |= borrow;
1635 DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1636 u[j+i+1] << '\n');
1638 DEBUG(errs() << "KnuthDiv: after subtraction:");
1639 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1640 DEBUG(errs() << '\n');
1641 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1642 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1643 // true value plus b**(n+1), namely as the b's complement of
1644 // the true value, and a "borrow" to the left should be remembered.
1646 if (isNeg) {
1647 bool carry = true; // true because b's complement is "complement + 1"
1648 for (unsigned i = 0; i <= m+n; ++i) {
1649 u[i] = ~u[i] + carry; // b's complement
1650 carry = carry && u[i] == 0;
1653 DEBUG(errs() << "KnuthDiv: after complement:");
1654 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1655 DEBUG(errs() << '\n');
1657 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1658 // negative, go to step D6; otherwise go on to step D7.
1659 q[j] = (unsigned)qp;
1660 if (isNeg) {
1661 // D6. [Add back]. The probability that this step is necessary is very
1662 // small, on the order of only 2/b. Make sure that test data accounts for
1663 // this possibility. Decrease q[j] by 1
1664 q[j]--;
1665 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1666 // A carry will occur to the left of u[j+n], and it should be ignored
1667 // since it cancels with the borrow that occurred in D4.
1668 bool carry = false;
1669 for (unsigned i = 0; i < n; i++) {
1670 unsigned limit = std::min(u[j+i],v[i]);
1671 u[j+i] += v[i] + carry;
1672 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1674 u[j+n] += carry;
1676 DEBUG(errs() << "KnuthDiv: after correction:");
1677 DEBUG(for (int i = m+n; i >=0; i--) errs() <<" " << u[i]);
1678 DEBUG(errs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1680 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1681 } while (--j >= 0);
1683 DEBUG(errs() << "KnuthDiv: quotient:");
1684 DEBUG(for (int i = m; i >=0; i--) errs() <<" " << q[i]);
1685 DEBUG(errs() << '\n');
1687 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1688 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1689 // compute the remainder (urem uses this).
1690 if (r) {
1691 // The value d is expressed by the "shift" value above since we avoided
1692 // multiplication by d by using a shift left. So, all we have to do is
1693 // shift right here. In order to mak
1694 if (shift) {
1695 unsigned carry = 0;
1696 DEBUG(errs() << "KnuthDiv: remainder:");
1697 for (int i = n-1; i >= 0; i--) {
1698 r[i] = (u[i] >> shift) | carry;
1699 carry = u[i] << (32 - shift);
1700 DEBUG(errs() << " " << r[i]);
1702 } else {
1703 for (int i = n-1; i >= 0; i--) {
1704 r[i] = u[i];
1705 DEBUG(errs() << " " << r[i]);
1708 DEBUG(errs() << '\n');
1710 #if 0
1711 DEBUG(errs() << '\n');
1712 #endif
1715 void APInt::divide(const APInt LHS, unsigned lhsWords,
1716 const APInt &RHS, unsigned rhsWords,
1717 APInt *Quotient, APInt *Remainder)
1719 assert(lhsWords >= rhsWords && "Fractional result");
1721 // First, compose the values into an array of 32-bit words instead of
1722 // 64-bit words. This is a necessity of both the "short division" algorithm
1723 // and the the Knuth "classical algorithm" which requires there to be native
1724 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1725 // can't use 64-bit operands here because we don't have native results of
1726 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1727 // work on large-endian machines.
1728 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
1729 unsigned n = rhsWords * 2;
1730 unsigned m = (lhsWords * 2) - n;
1732 // Allocate space for the temporary values we need either on the stack, if
1733 // it will fit, or on the heap if it won't.
1734 unsigned SPACE[128];
1735 unsigned *U = 0;
1736 unsigned *V = 0;
1737 unsigned *Q = 0;
1738 unsigned *R = 0;
1739 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1740 U = &SPACE[0];
1741 V = &SPACE[m+n+1];
1742 Q = &SPACE[(m+n+1) + n];
1743 if (Remainder)
1744 R = &SPACE[(m+n+1) + n + (m+n)];
1745 } else {
1746 U = new unsigned[m + n + 1];
1747 V = new unsigned[n];
1748 Q = new unsigned[m+n];
1749 if (Remainder)
1750 R = new unsigned[n];
1753 // Initialize the dividend
1754 memset(U, 0, (m+n+1)*sizeof(unsigned));
1755 for (unsigned i = 0; i < lhsWords; ++i) {
1756 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1757 U[i * 2] = (unsigned)(tmp & mask);
1758 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1760 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1762 // Initialize the divisor
1763 memset(V, 0, (n)*sizeof(unsigned));
1764 for (unsigned i = 0; i < rhsWords; ++i) {
1765 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1766 V[i * 2] = (unsigned)(tmp & mask);
1767 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1770 // initialize the quotient and remainder
1771 memset(Q, 0, (m+n) * sizeof(unsigned));
1772 if (Remainder)
1773 memset(R, 0, n * sizeof(unsigned));
1775 // Now, adjust m and n for the Knuth division. n is the number of words in
1776 // the divisor. m is the number of words by which the dividend exceeds the
1777 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1778 // contain any zero words or the Knuth algorithm fails.
1779 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1780 n--;
1781 m++;
1783 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1784 m--;
1786 // If we're left with only a single word for the divisor, Knuth doesn't work
1787 // so we implement the short division algorithm here. This is much simpler
1788 // and faster because we are certain that we can divide a 64-bit quantity
1789 // by a 32-bit quantity at hardware speed and short division is simply a
1790 // series of such operations. This is just like doing short division but we
1791 // are using base 2^32 instead of base 10.
1792 assert(n != 0 && "Divide by zero?");
1793 if (n == 1) {
1794 unsigned divisor = V[0];
1795 unsigned remainder = 0;
1796 for (int i = m+n-1; i >= 0; i--) {
1797 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1798 if (partial_dividend == 0) {
1799 Q[i] = 0;
1800 remainder = 0;
1801 } else if (partial_dividend < divisor) {
1802 Q[i] = 0;
1803 remainder = (unsigned)partial_dividend;
1804 } else if (partial_dividend == divisor) {
1805 Q[i] = 1;
1806 remainder = 0;
1807 } else {
1808 Q[i] = (unsigned)(partial_dividend / divisor);
1809 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
1812 if (R)
1813 R[0] = remainder;
1814 } else {
1815 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1816 // case n > 1.
1817 KnuthDiv(U, V, Q, R, m, n);
1820 // If the caller wants the quotient
1821 if (Quotient) {
1822 // Set up the Quotient value's memory.
1823 if (Quotient->BitWidth != LHS.BitWidth) {
1824 if (Quotient->isSingleWord())
1825 Quotient->VAL = 0;
1826 else
1827 delete [] Quotient->pVal;
1828 Quotient->BitWidth = LHS.BitWidth;
1829 if (!Quotient->isSingleWord())
1830 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1831 } else
1832 Quotient->clear();
1834 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1835 // order words.
1836 if (lhsWords == 1) {
1837 uint64_t tmp =
1838 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1839 if (Quotient->isSingleWord())
1840 Quotient->VAL = tmp;
1841 else
1842 Quotient->pVal[0] = tmp;
1843 } else {
1844 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1845 for (unsigned i = 0; i < lhsWords; ++i)
1846 Quotient->pVal[i] =
1847 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1851 // If the caller wants the remainder
1852 if (Remainder) {
1853 // Set up the Remainder value's memory.
1854 if (Remainder->BitWidth != RHS.BitWidth) {
1855 if (Remainder->isSingleWord())
1856 Remainder->VAL = 0;
1857 else
1858 delete [] Remainder->pVal;
1859 Remainder->BitWidth = RHS.BitWidth;
1860 if (!Remainder->isSingleWord())
1861 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1862 } else
1863 Remainder->clear();
1865 // The remainder is in R. Reconstitute the remainder into Remainder's low
1866 // order words.
1867 if (rhsWords == 1) {
1868 uint64_t tmp =
1869 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1870 if (Remainder->isSingleWord())
1871 Remainder->VAL = tmp;
1872 else
1873 Remainder->pVal[0] = tmp;
1874 } else {
1875 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1876 for (unsigned i = 0; i < rhsWords; ++i)
1877 Remainder->pVal[i] =
1878 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1882 // Clean up the memory we allocated.
1883 if (U != &SPACE[0]) {
1884 delete [] U;
1885 delete [] V;
1886 delete [] Q;
1887 delete [] R;
1891 APInt APInt::udiv(const APInt& RHS) const {
1892 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1894 // First, deal with the easy case
1895 if (isSingleWord()) {
1896 assert(RHS.VAL != 0 && "Divide by zero?");
1897 return APInt(BitWidth, VAL / RHS.VAL);
1900 // Get some facts about the LHS and RHS number of bits and words
1901 unsigned rhsBits = RHS.getActiveBits();
1902 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1903 assert(rhsWords && "Divided by zero???");
1904 unsigned lhsBits = this->getActiveBits();
1905 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1907 // Deal with some degenerate cases
1908 if (!lhsWords)
1909 // 0 / X ===> 0
1910 return APInt(BitWidth, 0);
1911 else if (lhsWords < rhsWords || this->ult(RHS)) {
1912 // X / Y ===> 0, iff X < Y
1913 return APInt(BitWidth, 0);
1914 } else if (*this == RHS) {
1915 // X / X ===> 1
1916 return APInt(BitWidth, 1);
1917 } else if (lhsWords == 1 && rhsWords == 1) {
1918 // All high words are zero, just use native divide
1919 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1922 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1923 APInt Quotient(1,0); // to hold result.
1924 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1925 return Quotient;
1928 APInt APInt::urem(const APInt& RHS) const {
1929 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1930 if (isSingleWord()) {
1931 assert(RHS.VAL != 0 && "Remainder by zero?");
1932 return APInt(BitWidth, VAL % RHS.VAL);
1935 // Get some facts about the LHS
1936 unsigned lhsBits = getActiveBits();
1937 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1939 // Get some facts about the RHS
1940 unsigned rhsBits = RHS.getActiveBits();
1941 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1942 assert(rhsWords && "Performing remainder operation by zero ???");
1944 // Check the degenerate cases
1945 if (lhsWords == 0) {
1946 // 0 % Y ===> 0
1947 return APInt(BitWidth, 0);
1948 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1949 // X % Y ===> X, iff X < Y
1950 return *this;
1951 } else if (*this == RHS) {
1952 // X % X == 0;
1953 return APInt(BitWidth, 0);
1954 } else if (lhsWords == 1) {
1955 // All high words are zero, just use native remainder
1956 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1959 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1960 APInt Remainder(1,0);
1961 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1962 return Remainder;
1965 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1966 APInt &Quotient, APInt &Remainder) {
1967 // Get some size facts about the dividend and divisor
1968 unsigned lhsBits = LHS.getActiveBits();
1969 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1970 unsigned rhsBits = RHS.getActiveBits();
1971 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1973 // Check the degenerate cases
1974 if (lhsWords == 0) {
1975 Quotient = 0; // 0 / Y ===> 0
1976 Remainder = 0; // 0 % Y ===> 0
1977 return;
1980 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1981 Quotient = 0; // X / Y ===> 0, iff X < Y
1982 Remainder = LHS; // X % Y ===> X, iff X < Y
1983 return;
1986 if (LHS == RHS) {
1987 Quotient = 1; // X / X ===> 1
1988 Remainder = 0; // X % X ===> 0;
1989 return;
1992 if (lhsWords == 1 && rhsWords == 1) {
1993 // There is only one word to consider so use the native versions.
1994 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1995 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1996 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1997 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
1998 return;
2001 // Okay, lets do it the long way
2002 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2005 void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
2006 // Check our assumptions here
2007 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2008 "Radix should be 2, 8, 10, or 16!");
2009 assert(!str.empty() && "Invalid string length");
2010 StringRef::iterator p = str.begin();
2011 size_t slen = str.size();
2012 bool isNeg = *p == '-';
2013 if (isNeg) {
2014 p++;
2015 slen--;
2016 assert(slen && "string is only a minus!");
2018 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2019 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2020 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2021 assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
2023 // Allocate memory
2024 if (!isSingleWord())
2025 pVal = getClearedMemory(getNumWords());
2027 // Figure out if we can shift instead of multiply
2028 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2030 // Set up an APInt for the digit to add outside the loop so we don't
2031 // constantly construct/destruct it.
2032 APInt apdigit(getBitWidth(), 0);
2033 APInt apradix(getBitWidth(), radix);
2035 // Enter digit traversal loop
2036 for (StringRef::iterator e = str.end(); p != e; ++p) {
2037 // Get a digit
2038 unsigned digit = 0;
2039 char cdigit = *p;
2040 if (radix == 16) {
2041 if (!isxdigit(cdigit))
2042 llvm_unreachable("Invalid hex digit in string");
2043 if (isdigit(cdigit))
2044 digit = cdigit - '0';
2045 else if (cdigit >= 'a')
2046 digit = cdigit - 'a' + 10;
2047 else if (cdigit >= 'A')
2048 digit = cdigit - 'A' + 10;
2049 else
2050 llvm_unreachable("huh? we shouldn't get here");
2051 } else if (isdigit(cdigit)) {
2052 digit = cdigit - '0';
2053 assert((radix == 10 ||
2054 (radix == 8 && digit != 8 && digit != 9) ||
2055 (radix == 2 && (digit == 0 || digit == 1))) &&
2056 "Invalid digit in string for given radix");
2057 } else {
2058 llvm_unreachable("Invalid character in digit string");
2061 // Shift or multiply the value by the radix
2062 if (slen > 1) {
2063 if (shift)
2064 *this <<= shift;
2065 else
2066 *this *= apradix;
2069 // Add in the digit we just interpreted
2070 if (apdigit.isSingleWord())
2071 apdigit.VAL = digit;
2072 else
2073 apdigit.pVal[0] = digit;
2074 *this += apdigit;
2076 // If its negative, put it in two's complement form
2077 if (isNeg) {
2078 (*this)--;
2079 this->flip();
2083 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2084 bool Signed) const {
2085 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
2086 "Radix should be 2, 8, 10, or 16!");
2088 // First, check for a zero value and just short circuit the logic below.
2089 if (*this == 0) {
2090 Str.push_back('0');
2091 return;
2094 static const char Digits[] = "0123456789ABCDEF";
2096 if (isSingleWord()) {
2097 char Buffer[65];
2098 char *BufPtr = Buffer+65;
2100 uint64_t N;
2101 if (Signed) {
2102 int64_t I = getSExtValue();
2103 if (I < 0) {
2104 Str.push_back('-');
2105 I = -I;
2107 N = I;
2108 } else {
2109 N = getZExtValue();
2112 while (N) {
2113 *--BufPtr = Digits[N % Radix];
2114 N /= Radix;
2116 Str.append(BufPtr, Buffer+65);
2117 return;
2120 APInt Tmp(*this);
2122 if (Signed && isNegative()) {
2123 // They want to print the signed version and it is a negative value
2124 // Flip the bits and add one to turn it into the equivalent positive
2125 // value and put a '-' in the result.
2126 Tmp.flip();
2127 Tmp++;
2128 Str.push_back('-');
2131 // We insert the digits backward, then reverse them to get the right order.
2132 unsigned StartDig = Str.size();
2134 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2135 // because the number of bits per digit (1, 3 and 4 respectively) divides
2136 // equaly. We just shift until the value is zero.
2137 if (Radix != 10) {
2138 // Just shift tmp right for each digit width until it becomes zero
2139 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2140 unsigned MaskAmt = Radix - 1;
2142 while (Tmp != 0) {
2143 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2144 Str.push_back(Digits[Digit]);
2145 Tmp = Tmp.lshr(ShiftAmt);
2147 } else {
2148 APInt divisor(4, 10);
2149 while (Tmp != 0) {
2150 APInt APdigit(1, 0);
2151 APInt tmp2(Tmp.getBitWidth(), 0);
2152 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2153 &APdigit);
2154 unsigned Digit = (unsigned)APdigit.getZExtValue();
2155 assert(Digit < Radix && "divide failed");
2156 Str.push_back(Digits[Digit]);
2157 Tmp = tmp2;
2161 // Reverse the digits before returning.
2162 std::reverse(Str.begin()+StartDig, Str.end());
2165 /// toString - This returns the APInt as a std::string. Note that this is an
2166 /// inefficient method. It is better to pass in a SmallVector/SmallString
2167 /// to the methods above.
2168 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2169 SmallString<40> S;
2170 toString(S, Radix, Signed);
2171 return S.c_str();
2175 void APInt::dump() const {
2176 SmallString<40> S, U;
2177 this->toStringUnsigned(U);
2178 this->toStringSigned(S);
2179 fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
2182 void APInt::print(raw_ostream &OS, bool isSigned) const {
2183 SmallString<40> S;
2184 this->toString(S, 10, isSigned);
2185 OS << S.c_str();
2188 std::ostream &llvm::operator<<(std::ostream &o, const APInt &I) {
2189 raw_os_ostream OS(o);
2190 OS << I;
2191 return o;
2194 // This implements a variety of operations on a representation of
2195 // arbitrary precision, two's-complement, bignum integer values.
2197 /* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2198 and unrestricting assumption. */
2199 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
2200 COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
2202 /* Some handy functions local to this file. */
2203 namespace {
2205 /* Returns the integer part with the least significant BITS set.
2206 BITS cannot be zero. */
2207 static inline integerPart
2208 lowBitMask(unsigned int bits)
2210 assert (bits != 0 && bits <= integerPartWidth);
2212 return ~(integerPart) 0 >> (integerPartWidth - bits);
2215 /* Returns the value of the lower half of PART. */
2216 static inline integerPart
2217 lowHalf(integerPart part)
2219 return part & lowBitMask(integerPartWidth / 2);
2222 /* Returns the value of the upper half of PART. */
2223 static inline integerPart
2224 highHalf(integerPart part)
2226 return part >> (integerPartWidth / 2);
2229 /* Returns the bit number of the most significant set bit of a part.
2230 If the input number has no bits set -1U is returned. */
2231 static unsigned int
2232 partMSB(integerPart value)
2234 unsigned int n, msb;
2236 if (value == 0)
2237 return -1U;
2239 n = integerPartWidth / 2;
2241 msb = 0;
2242 do {
2243 if (value >> n) {
2244 value >>= n;
2245 msb += n;
2248 n >>= 1;
2249 } while (n);
2251 return msb;
2254 /* Returns the bit number of the least significant set bit of a
2255 part. If the input number has no bits set -1U is returned. */
2256 static unsigned int
2257 partLSB(integerPart value)
2259 unsigned int n, lsb;
2261 if (value == 0)
2262 return -1U;
2264 lsb = integerPartWidth - 1;
2265 n = integerPartWidth / 2;
2267 do {
2268 if (value << n) {
2269 value <<= n;
2270 lsb -= n;
2273 n >>= 1;
2274 } while (n);
2276 return lsb;
2280 /* Sets the least significant part of a bignum to the input value, and
2281 zeroes out higher parts. */
2282 void
2283 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2285 unsigned int i;
2287 assert (parts > 0);
2289 dst[0] = part;
2290 for(i = 1; i < parts; i++)
2291 dst[i] = 0;
2294 /* Assign one bignum to another. */
2295 void
2296 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2298 unsigned int i;
2300 for(i = 0; i < parts; i++)
2301 dst[i] = src[i];
2304 /* Returns true if a bignum is zero, false otherwise. */
2305 bool
2306 APInt::tcIsZero(const integerPart *src, unsigned int parts)
2308 unsigned int i;
2310 for(i = 0; i < parts; i++)
2311 if (src[i])
2312 return false;
2314 return true;
2317 /* Extract the given bit of a bignum; returns 0 or 1. */
2319 APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2321 return(parts[bit / integerPartWidth]
2322 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2325 /* Set the given bit of a bignum. */
2326 void
2327 APInt::tcSetBit(integerPart *parts, unsigned int bit)
2329 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2332 /* Returns the bit number of the least significant set bit of a
2333 number. If the input number has no bits set -1U is returned. */
2334 unsigned int
2335 APInt::tcLSB(const integerPart *parts, unsigned int n)
2337 unsigned int i, lsb;
2339 for(i = 0; i < n; i++) {
2340 if (parts[i] != 0) {
2341 lsb = partLSB(parts[i]);
2343 return lsb + i * integerPartWidth;
2347 return -1U;
2350 /* Returns the bit number of the most significant set bit of a number.
2351 If the input number has no bits set -1U is returned. */
2352 unsigned int
2353 APInt::tcMSB(const integerPart *parts, unsigned int n)
2355 unsigned int msb;
2357 do {
2358 --n;
2360 if (parts[n] != 0) {
2361 msb = partMSB(parts[n]);
2363 return msb + n * integerPartWidth;
2365 } while (n);
2367 return -1U;
2370 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2371 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2372 the least significant bit of DST. All high bits above srcBITS in
2373 DST are zero-filled. */
2374 void
2375 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
2376 unsigned int srcBits, unsigned int srcLSB)
2378 unsigned int firstSrcPart, dstParts, shift, n;
2380 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2381 assert (dstParts <= dstCount);
2383 firstSrcPart = srcLSB / integerPartWidth;
2384 tcAssign (dst, src + firstSrcPart, dstParts);
2386 shift = srcLSB % integerPartWidth;
2387 tcShiftRight (dst, dstParts, shift);
2389 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2390 in DST. If this is less that srcBits, append the rest, else
2391 clear the high bits. */
2392 n = dstParts * integerPartWidth - shift;
2393 if (n < srcBits) {
2394 integerPart mask = lowBitMask (srcBits - n);
2395 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2396 << n % integerPartWidth);
2397 } else if (n > srcBits) {
2398 if (srcBits % integerPartWidth)
2399 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
2402 /* Clear high parts. */
2403 while (dstParts < dstCount)
2404 dst[dstParts++] = 0;
2407 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
2408 integerPart
2409 APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2410 integerPart c, unsigned int parts)
2412 unsigned int i;
2414 assert(c <= 1);
2416 for(i = 0; i < parts; i++) {
2417 integerPart l;
2419 l = dst[i];
2420 if (c) {
2421 dst[i] += rhs[i] + 1;
2422 c = (dst[i] <= l);
2423 } else {
2424 dst[i] += rhs[i];
2425 c = (dst[i] < l);
2429 return c;
2432 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2433 integerPart
2434 APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2435 integerPart c, unsigned int parts)
2437 unsigned int i;
2439 assert(c <= 1);
2441 for(i = 0; i < parts; i++) {
2442 integerPart l;
2444 l = dst[i];
2445 if (c) {
2446 dst[i] -= rhs[i] + 1;
2447 c = (dst[i] >= l);
2448 } else {
2449 dst[i] -= rhs[i];
2450 c = (dst[i] > l);
2454 return c;
2457 /* Negate a bignum in-place. */
2458 void
2459 APInt::tcNegate(integerPart *dst, unsigned int parts)
2461 tcComplement(dst, parts);
2462 tcIncrement(dst, parts);
2465 /* DST += SRC * MULTIPLIER + CARRY if add is true
2466 DST = SRC * MULTIPLIER + CARRY if add is false
2468 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2469 they must start at the same point, i.e. DST == SRC.
2471 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2472 returned. Otherwise DST is filled with the least significant
2473 DSTPARTS parts of the result, and if all of the omitted higher
2474 parts were zero return zero, otherwise overflow occurred and
2475 return one. */
2477 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2478 integerPart multiplier, integerPart carry,
2479 unsigned int srcParts, unsigned int dstParts,
2480 bool add)
2482 unsigned int i, n;
2484 /* Otherwise our writes of DST kill our later reads of SRC. */
2485 assert(dst <= src || dst >= src + srcParts);
2486 assert(dstParts <= srcParts + 1);
2488 /* N loops; minimum of dstParts and srcParts. */
2489 n = dstParts < srcParts ? dstParts: srcParts;
2491 for(i = 0; i < n; i++) {
2492 integerPart low, mid, high, srcPart;
2494 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2496 This cannot overflow, because
2498 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2500 which is less than n^2. */
2502 srcPart = src[i];
2504 if (multiplier == 0 || srcPart == 0) {
2505 low = carry;
2506 high = 0;
2507 } else {
2508 low = lowHalf(srcPart) * lowHalf(multiplier);
2509 high = highHalf(srcPart) * highHalf(multiplier);
2511 mid = lowHalf(srcPart) * highHalf(multiplier);
2512 high += highHalf(mid);
2513 mid <<= integerPartWidth / 2;
2514 if (low + mid < low)
2515 high++;
2516 low += mid;
2518 mid = highHalf(srcPart) * lowHalf(multiplier);
2519 high += highHalf(mid);
2520 mid <<= integerPartWidth / 2;
2521 if (low + mid < low)
2522 high++;
2523 low += mid;
2525 /* Now add carry. */
2526 if (low + carry < low)
2527 high++;
2528 low += carry;
2531 if (add) {
2532 /* And now DST[i], and store the new low part there. */
2533 if (low + dst[i] < low)
2534 high++;
2535 dst[i] += low;
2536 } else
2537 dst[i] = low;
2539 carry = high;
2542 if (i < dstParts) {
2543 /* Full multiplication, there is no overflow. */
2544 assert(i + 1 == dstParts);
2545 dst[i] = carry;
2546 return 0;
2547 } else {
2548 /* We overflowed if there is carry. */
2549 if (carry)
2550 return 1;
2552 /* We would overflow if any significant unwritten parts would be
2553 non-zero. This is true if any remaining src parts are non-zero
2554 and the multiplier is non-zero. */
2555 if (multiplier)
2556 for(; i < srcParts; i++)
2557 if (src[i])
2558 return 1;
2560 /* We fitted in the narrow destination. */
2561 return 0;
2565 /* DST = LHS * RHS, where DST has the same width as the operands and
2566 is filled with the least significant parts of the result. Returns
2567 one if overflow occurred, otherwise zero. DST must be disjoint
2568 from both operands. */
2570 APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2571 const integerPart *rhs, unsigned int parts)
2573 unsigned int i;
2574 int overflow;
2576 assert(dst != lhs && dst != rhs);
2578 overflow = 0;
2579 tcSet(dst, 0, parts);
2581 for(i = 0; i < parts; i++)
2582 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2583 parts - i, true);
2585 return overflow;
2588 /* DST = LHS * RHS, where DST has width the sum of the widths of the
2589 operands. No overflow occurs. DST must be disjoint from both
2590 operands. Returns the number of parts required to hold the
2591 result. */
2592 unsigned int
2593 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
2594 const integerPart *rhs, unsigned int lhsParts,
2595 unsigned int rhsParts)
2597 /* Put the narrower number on the LHS for less loops below. */
2598 if (lhsParts > rhsParts) {
2599 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2600 } else {
2601 unsigned int n;
2603 assert(dst != lhs && dst != rhs);
2605 tcSet(dst, 0, rhsParts);
2607 for(n = 0; n < lhsParts; n++)
2608 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
2610 n = lhsParts + rhsParts;
2612 return n - (dst[n - 1] == 0);
2616 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2617 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2618 set REMAINDER to the remainder, return zero. i.e.
2620 OLD_LHS = RHS * LHS + REMAINDER
2622 SCRATCH is a bignum of the same size as the operands and result for
2623 use by the routine; its contents need not be initialized and are
2624 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2627 APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2628 integerPart *remainder, integerPart *srhs,
2629 unsigned int parts)
2631 unsigned int n, shiftCount;
2632 integerPart mask;
2634 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2636 shiftCount = tcMSB(rhs, parts) + 1;
2637 if (shiftCount == 0)
2638 return true;
2640 shiftCount = parts * integerPartWidth - shiftCount;
2641 n = shiftCount / integerPartWidth;
2642 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2644 tcAssign(srhs, rhs, parts);
2645 tcShiftLeft(srhs, parts, shiftCount);
2646 tcAssign(remainder, lhs, parts);
2647 tcSet(lhs, 0, parts);
2649 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2650 the total. */
2651 for(;;) {
2652 int compare;
2654 compare = tcCompare(remainder, srhs, parts);
2655 if (compare >= 0) {
2656 tcSubtract(remainder, srhs, 0, parts);
2657 lhs[n] |= mask;
2660 if (shiftCount == 0)
2661 break;
2662 shiftCount--;
2663 tcShiftRight(srhs, parts, 1);
2664 if ((mask >>= 1) == 0)
2665 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2668 return false;
2671 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2672 There are no restrictions on COUNT. */
2673 void
2674 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2676 if (count) {
2677 unsigned int jump, shift;
2679 /* Jump is the inter-part jump; shift is is intra-part shift. */
2680 jump = count / integerPartWidth;
2681 shift = count % integerPartWidth;
2683 while (parts > jump) {
2684 integerPart part;
2686 parts--;
2688 /* dst[i] comes from the two parts src[i - jump] and, if we have
2689 an intra-part shift, src[i - jump - 1]. */
2690 part = dst[parts - jump];
2691 if (shift) {
2692 part <<= shift;
2693 if (parts >= jump + 1)
2694 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2697 dst[parts] = part;
2700 while (parts > 0)
2701 dst[--parts] = 0;
2705 /* Shift a bignum right COUNT bits in-place. Shifted in bits are
2706 zero. There are no restrictions on COUNT. */
2707 void
2708 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2710 if (count) {
2711 unsigned int i, jump, shift;
2713 /* Jump is the inter-part jump; shift is is intra-part shift. */
2714 jump = count / integerPartWidth;
2715 shift = count % integerPartWidth;
2717 /* Perform the shift. This leaves the most significant COUNT bits
2718 of the result at zero. */
2719 for(i = 0; i < parts; i++) {
2720 integerPart part;
2722 if (i + jump >= parts) {
2723 part = 0;
2724 } else {
2725 part = dst[i + jump];
2726 if (shift) {
2727 part >>= shift;
2728 if (i + jump + 1 < parts)
2729 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2733 dst[i] = part;
2738 /* Bitwise and of two bignums. */
2739 void
2740 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2742 unsigned int i;
2744 for(i = 0; i < parts; i++)
2745 dst[i] &= rhs[i];
2748 /* Bitwise inclusive or of two bignums. */
2749 void
2750 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2752 unsigned int i;
2754 for(i = 0; i < parts; i++)
2755 dst[i] |= rhs[i];
2758 /* Bitwise exclusive or of two bignums. */
2759 void
2760 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2762 unsigned int i;
2764 for(i = 0; i < parts; i++)
2765 dst[i] ^= rhs[i];
2768 /* Complement a bignum in-place. */
2769 void
2770 APInt::tcComplement(integerPart *dst, unsigned int parts)
2772 unsigned int i;
2774 for(i = 0; i < parts; i++)
2775 dst[i] = ~dst[i];
2778 /* Comparison (unsigned) of two bignums. */
2780 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2781 unsigned int parts)
2783 while (parts) {
2784 parts--;
2785 if (lhs[parts] == rhs[parts])
2786 continue;
2788 if (lhs[parts] > rhs[parts])
2789 return 1;
2790 else
2791 return -1;
2794 return 0;
2797 /* Increment a bignum in-place, return the carry flag. */
2798 integerPart
2799 APInt::tcIncrement(integerPart *dst, unsigned int parts)
2801 unsigned int i;
2803 for(i = 0; i < parts; i++)
2804 if (++dst[i] != 0)
2805 break;
2807 return i == parts;
2810 /* Set the least significant BITS bits of a bignum, clear the
2811 rest. */
2812 void
2813 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2814 unsigned int bits)
2816 unsigned int i;
2818 i = 0;
2819 while (bits > integerPartWidth) {
2820 dst[i++] = ~(integerPart) 0;
2821 bits -= integerPartWidth;
2824 if (bits)
2825 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2827 while (i < parts)
2828 dst[i++] = 0;