Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / Target / ARM / ARMISelLowering.cpp
blob99135b23115e2897e7069b6fa341dbf82f2d802f
1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #include "ARM.h"
16 #include "ARMAddressingModes.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMISelLowering.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMRegisterInfo.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "ARMTargetObjectFile.h"
24 #include "llvm/CallingConv.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/Instruction.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/GlobalValue.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/ADT/VectorExtras.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MathExtras.h"
42 using namespace llvm;
44 static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
45 CCValAssign::LocInfo &LocInfo,
46 ISD::ArgFlagsTy &ArgFlags,
47 CCState &State);
48 static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
49 CCValAssign::LocInfo &LocInfo,
50 ISD::ArgFlagsTy &ArgFlags,
51 CCState &State);
52 static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
53 CCValAssign::LocInfo &LocInfo,
54 ISD::ArgFlagsTy &ArgFlags,
55 CCState &State);
56 static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
57 CCValAssign::LocInfo &LocInfo,
58 ISD::ArgFlagsTy &ArgFlags,
59 CCState &State);
61 void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
62 EVT PromotedBitwiseVT) {
63 if (VT != PromotedLdStVT) {
64 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
65 AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
66 PromotedLdStVT.getSimpleVT());
68 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
69 AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
70 PromotedLdStVT.getSimpleVT());
73 EVT ElemTy = VT.getVectorElementType();
74 if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
75 setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
76 if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
77 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
78 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
79 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
80 setOperationAction(ISD::SCALAR_TO_VECTOR, VT.getSimpleVT(), Custom);
81 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Custom);
82 if (VT.isInteger()) {
83 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
84 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
85 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
88 // Promote all bit-wise operations.
89 if (VT.isInteger() && VT != PromotedBitwiseVT) {
90 setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
91 AddPromotedToType (ISD::AND, VT.getSimpleVT(),
92 PromotedBitwiseVT.getSimpleVT());
93 setOperationAction(ISD::OR, VT.getSimpleVT(), Promote);
94 AddPromotedToType (ISD::OR, VT.getSimpleVT(),
95 PromotedBitwiseVT.getSimpleVT());
96 setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
97 AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
98 PromotedBitwiseVT.getSimpleVT());
102 void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
103 addRegisterClass(VT, ARM::DPRRegisterClass);
104 addTypeForNEON(VT, MVT::f64, MVT::v2i32);
107 void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
108 addRegisterClass(VT, ARM::QPRRegisterClass);
109 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
112 static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
113 if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
114 return new TargetLoweringObjectFileMachO();
115 return new ARMElfTargetObjectFile();
118 ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
119 : TargetLowering(TM, createTLOF(TM)), ARMPCLabelIndex(0) {
120 Subtarget = &TM.getSubtarget<ARMSubtarget>();
122 if (Subtarget->isTargetDarwin()) {
123 // Uses VFP for Thumb libfuncs if available.
124 if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
125 // Single-precision floating-point arithmetic.
126 setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
127 setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
128 setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
129 setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
131 // Double-precision floating-point arithmetic.
132 setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
133 setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
134 setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
135 setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
137 // Single-precision comparisons.
138 setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
139 setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
140 setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
141 setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
142 setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
143 setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
144 setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
145 setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
147 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
148 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
149 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
150 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
151 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
152 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
153 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
154 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
156 // Double-precision comparisons.
157 setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
158 setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
159 setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
160 setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
161 setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
162 setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
163 setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
164 setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
166 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
167 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
168 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
169 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
170 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
171 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
172 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
173 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
175 // Floating-point to integer conversions.
176 // i64 conversions are done via library routines even when generating VFP
177 // instructions, so use the same ones.
178 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
179 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
180 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
181 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
183 // Conversions between floating types.
184 setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
185 setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
187 // Integer to floating-point conversions.
188 // i64 conversions are done via library routines even when generating VFP
189 // instructions, so use the same ones.
190 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
191 // e.g., __floatunsidf vs. __floatunssidfvfp.
192 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
193 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
194 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
195 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
199 // These libcalls are not available in 32-bit.
200 setLibcallName(RTLIB::SHL_I128, 0);
201 setLibcallName(RTLIB::SRL_I128, 0);
202 setLibcallName(RTLIB::SRA_I128, 0);
204 // Libcalls should use the AAPCS base standard ABI, even if hard float
205 // is in effect, as per the ARM RTABI specification, section 4.1.2.
206 if (Subtarget->isAAPCS_ABI()) {
207 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
208 setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
209 CallingConv::ARM_AAPCS);
213 if (Subtarget->isThumb1Only())
214 addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
215 else
216 addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
217 if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
218 addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
219 addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
221 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
224 if (Subtarget->hasNEON()) {
225 addDRTypeForNEON(MVT::v2f32);
226 addDRTypeForNEON(MVT::v8i8);
227 addDRTypeForNEON(MVT::v4i16);
228 addDRTypeForNEON(MVT::v2i32);
229 addDRTypeForNEON(MVT::v1i64);
231 addQRTypeForNEON(MVT::v4f32);
232 addQRTypeForNEON(MVT::v2f64);
233 addQRTypeForNEON(MVT::v16i8);
234 addQRTypeForNEON(MVT::v8i16);
235 addQRTypeForNEON(MVT::v4i32);
236 addQRTypeForNEON(MVT::v2i64);
238 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
239 setTargetDAGCombine(ISD::SHL);
240 setTargetDAGCombine(ISD::SRL);
241 setTargetDAGCombine(ISD::SRA);
242 setTargetDAGCombine(ISD::SIGN_EXTEND);
243 setTargetDAGCombine(ISD::ZERO_EXTEND);
244 setTargetDAGCombine(ISD::ANY_EXTEND);
247 computeRegisterProperties();
249 // ARM does not have f32 extending load.
250 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
252 // ARM does not have i1 sign extending load.
253 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
255 // ARM supports all 4 flavors of integer indexed load / store.
256 if (!Subtarget->isThumb1Only()) {
257 for (unsigned im = (unsigned)ISD::PRE_INC;
258 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
259 setIndexedLoadAction(im, MVT::i1, Legal);
260 setIndexedLoadAction(im, MVT::i8, Legal);
261 setIndexedLoadAction(im, MVT::i16, Legal);
262 setIndexedLoadAction(im, MVT::i32, Legal);
263 setIndexedStoreAction(im, MVT::i1, Legal);
264 setIndexedStoreAction(im, MVT::i8, Legal);
265 setIndexedStoreAction(im, MVT::i16, Legal);
266 setIndexedStoreAction(im, MVT::i32, Legal);
270 // i64 operation support.
271 if (Subtarget->isThumb1Only()) {
272 setOperationAction(ISD::MUL, MVT::i64, Expand);
273 setOperationAction(ISD::MULHU, MVT::i32, Expand);
274 setOperationAction(ISD::MULHS, MVT::i32, Expand);
275 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
276 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
277 } else {
278 setOperationAction(ISD::MUL, MVT::i64, Expand);
279 setOperationAction(ISD::MULHU, MVT::i32, Expand);
280 if (!Subtarget->hasV6Ops())
281 setOperationAction(ISD::MULHS, MVT::i32, Expand);
283 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
284 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
285 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
286 setOperationAction(ISD::SRL, MVT::i64, Custom);
287 setOperationAction(ISD::SRA, MVT::i64, Custom);
289 // ARM does not have ROTL.
290 setOperationAction(ISD::ROTL, MVT::i32, Expand);
291 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
292 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
293 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
294 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
296 // Only ARMv6 has BSWAP.
297 if (!Subtarget->hasV6Ops())
298 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
300 // These are expanded into libcalls.
301 setOperationAction(ISD::SDIV, MVT::i32, Expand);
302 setOperationAction(ISD::UDIV, MVT::i32, Expand);
303 setOperationAction(ISD::SREM, MVT::i32, Expand);
304 setOperationAction(ISD::UREM, MVT::i32, Expand);
305 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
306 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
308 // Support label based line numbers.
309 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
310 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
312 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
313 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
314 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
315 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
317 // Use the default implementation.
318 setOperationAction(ISD::VASTART, MVT::Other, Custom);
319 setOperationAction(ISD::VAARG, MVT::Other, Expand);
320 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
321 setOperationAction(ISD::VAEND, MVT::Other, Expand);
322 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
323 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
324 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
325 // FIXME: Shouldn't need this, since no register is used, but the legalizer
326 // doesn't yet know how to not do that for SjLj.
327 setExceptionSelectorRegister(ARM::R0);
328 if (Subtarget->isThumb())
329 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
330 else
331 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
332 setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
334 if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
335 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
336 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
338 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
340 if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
341 // Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2.
342 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
344 // We want to custom lower some of our intrinsics.
345 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
346 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
347 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
349 setOperationAction(ISD::SETCC, MVT::i32, Expand);
350 setOperationAction(ISD::SETCC, MVT::f32, Expand);
351 setOperationAction(ISD::SETCC, MVT::f64, Expand);
352 setOperationAction(ISD::SELECT, MVT::i32, Expand);
353 setOperationAction(ISD::SELECT, MVT::f32, Expand);
354 setOperationAction(ISD::SELECT, MVT::f64, Expand);
355 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
356 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
357 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
359 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
360 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
361 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
362 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
363 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
365 // We don't support sin/cos/fmod/copysign/pow
366 setOperationAction(ISD::FSIN, MVT::f64, Expand);
367 setOperationAction(ISD::FSIN, MVT::f32, Expand);
368 setOperationAction(ISD::FCOS, MVT::f32, Expand);
369 setOperationAction(ISD::FCOS, MVT::f64, Expand);
370 setOperationAction(ISD::FREM, MVT::f64, Expand);
371 setOperationAction(ISD::FREM, MVT::f32, Expand);
372 if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
373 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
374 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
376 setOperationAction(ISD::FPOW, MVT::f64, Expand);
377 setOperationAction(ISD::FPOW, MVT::f32, Expand);
379 // int <-> fp are custom expanded into bit_convert + ARMISD ops.
380 if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
381 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
382 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
383 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
384 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
387 // We have target-specific dag combine patterns for the following nodes:
388 // ARMISD::FMRRD - No need to call setTargetDAGCombine
389 setTargetDAGCombine(ISD::ADD);
390 setTargetDAGCombine(ISD::SUB);
392 setStackPointerRegisterToSaveRestore(ARM::SP);
393 setSchedulingPreference(SchedulingForRegPressure);
395 // FIXME: If-converter should use instruction latency to determine
396 // profitability rather than relying on fixed limits.
397 if (Subtarget->getCPUString() == "generic") {
398 // Generic (and overly aggressive) if-conversion limits.
399 setIfCvtBlockSizeLimit(10);
400 setIfCvtDupBlockSizeLimit(2);
401 } else if (Subtarget->hasV6Ops()) {
402 setIfCvtBlockSizeLimit(2);
403 setIfCvtDupBlockSizeLimit(1);
404 } else {
405 setIfCvtBlockSizeLimit(3);
406 setIfCvtDupBlockSizeLimit(2);
409 maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type
410 // Do not enable CodePlacementOpt for now: it currently runs after the
411 // ARMConstantIslandPass and messes up branch relaxation and placement
412 // of constant islands.
413 // benefitFromCodePlacementOpt = true;
416 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
417 switch (Opcode) {
418 default: return 0;
419 case ARMISD::Wrapper: return "ARMISD::Wrapper";
420 case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
421 case ARMISD::CALL: return "ARMISD::CALL";
422 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
423 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
424 case ARMISD::tCALL: return "ARMISD::tCALL";
425 case ARMISD::BRCOND: return "ARMISD::BRCOND";
426 case ARMISD::BR_JT: return "ARMISD::BR_JT";
427 case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
428 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
429 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
430 case ARMISD::CMP: return "ARMISD::CMP";
431 case ARMISD::CMPZ: return "ARMISD::CMPZ";
432 case ARMISD::CMPFP: return "ARMISD::CMPFP";
433 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
434 case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
435 case ARMISD::CMOV: return "ARMISD::CMOV";
436 case ARMISD::CNEG: return "ARMISD::CNEG";
438 case ARMISD::FTOSI: return "ARMISD::FTOSI";
439 case ARMISD::FTOUI: return "ARMISD::FTOUI";
440 case ARMISD::SITOF: return "ARMISD::SITOF";
441 case ARMISD::UITOF: return "ARMISD::UITOF";
443 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
444 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
445 case ARMISD::RRX: return "ARMISD::RRX";
447 case ARMISD::FMRRD: return "ARMISD::FMRRD";
448 case ARMISD::FMDRR: return "ARMISD::FMDRR";
450 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
452 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
454 case ARMISD::VCEQ: return "ARMISD::VCEQ";
455 case ARMISD::VCGE: return "ARMISD::VCGE";
456 case ARMISD::VCGEU: return "ARMISD::VCGEU";
457 case ARMISD::VCGT: return "ARMISD::VCGT";
458 case ARMISD::VCGTU: return "ARMISD::VCGTU";
459 case ARMISD::VTST: return "ARMISD::VTST";
461 case ARMISD::VSHL: return "ARMISD::VSHL";
462 case ARMISD::VSHRs: return "ARMISD::VSHRs";
463 case ARMISD::VSHRu: return "ARMISD::VSHRu";
464 case ARMISD::VSHLLs: return "ARMISD::VSHLLs";
465 case ARMISD::VSHLLu: return "ARMISD::VSHLLu";
466 case ARMISD::VSHLLi: return "ARMISD::VSHLLi";
467 case ARMISD::VSHRN: return "ARMISD::VSHRN";
468 case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
469 case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
470 case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
471 case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
472 case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
473 case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
474 case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
475 case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
476 case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
477 case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
478 case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
479 case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
480 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
481 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
482 case ARMISD::VDUP: return "ARMISD::VDUP";
483 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
484 case ARMISD::VLD2D: return "ARMISD::VLD2D";
485 case ARMISD::VLD3D: return "ARMISD::VLD3D";
486 case ARMISD::VLD4D: return "ARMISD::VLD4D";
487 case ARMISD::VST2D: return "ARMISD::VST2D";
488 case ARMISD::VST3D: return "ARMISD::VST3D";
489 case ARMISD::VST4D: return "ARMISD::VST4D";
490 case ARMISD::VREV64: return "ARMISD::VREV64";
491 case ARMISD::VREV32: return "ARMISD::VREV32";
492 case ARMISD::VREV16: return "ARMISD::VREV16";
496 /// getFunctionAlignment - Return the Log2 alignment of this function.
497 unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
498 return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
501 //===----------------------------------------------------------------------===//
502 // Lowering Code
503 //===----------------------------------------------------------------------===//
505 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
506 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
507 switch (CC) {
508 default: llvm_unreachable("Unknown condition code!");
509 case ISD::SETNE: return ARMCC::NE;
510 case ISD::SETEQ: return ARMCC::EQ;
511 case ISD::SETGT: return ARMCC::GT;
512 case ISD::SETGE: return ARMCC::GE;
513 case ISD::SETLT: return ARMCC::LT;
514 case ISD::SETLE: return ARMCC::LE;
515 case ISD::SETUGT: return ARMCC::HI;
516 case ISD::SETUGE: return ARMCC::HS;
517 case ISD::SETULT: return ARMCC::LO;
518 case ISD::SETULE: return ARMCC::LS;
522 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
523 /// returns true if the operands should be inverted to form the proper
524 /// comparison.
525 static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
526 ARMCC::CondCodes &CondCode2) {
527 bool Invert = false;
528 CondCode2 = ARMCC::AL;
529 switch (CC) {
530 default: llvm_unreachable("Unknown FP condition!");
531 case ISD::SETEQ:
532 case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
533 case ISD::SETGT:
534 case ISD::SETOGT: CondCode = ARMCC::GT; break;
535 case ISD::SETGE:
536 case ISD::SETOGE: CondCode = ARMCC::GE; break;
537 case ISD::SETOLT: CondCode = ARMCC::MI; break;
538 case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
539 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
540 case ISD::SETO: CondCode = ARMCC::VC; break;
541 case ISD::SETUO: CondCode = ARMCC::VS; break;
542 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
543 case ISD::SETUGT: CondCode = ARMCC::HI; break;
544 case ISD::SETUGE: CondCode = ARMCC::PL; break;
545 case ISD::SETLT:
546 case ISD::SETULT: CondCode = ARMCC::LT; break;
547 case ISD::SETLE:
548 case ISD::SETULE: CondCode = ARMCC::LE; break;
549 case ISD::SETNE:
550 case ISD::SETUNE: CondCode = ARMCC::NE; break;
552 return Invert;
555 //===----------------------------------------------------------------------===//
556 // Calling Convention Implementation
557 //===----------------------------------------------------------------------===//
559 #include "ARMGenCallingConv.inc"
561 // APCS f64 is in register pairs, possibly split to stack
562 static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
563 CCValAssign::LocInfo &LocInfo,
564 CCState &State, bool CanFail) {
565 static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
567 // Try to get the first register.
568 if (unsigned Reg = State.AllocateReg(RegList, 4))
569 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
570 else {
571 // For the 2nd half of a v2f64, do not fail.
572 if (CanFail)
573 return false;
575 // Put the whole thing on the stack.
576 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
577 State.AllocateStack(8, 4),
578 LocVT, LocInfo));
579 return true;
582 // Try to get the second register.
583 if (unsigned Reg = State.AllocateReg(RegList, 4))
584 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
585 else
586 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
587 State.AllocateStack(4, 4),
588 LocVT, LocInfo));
589 return true;
592 static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
593 CCValAssign::LocInfo &LocInfo,
594 ISD::ArgFlagsTy &ArgFlags,
595 CCState &State) {
596 if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
597 return false;
598 if (LocVT == MVT::v2f64 &&
599 !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
600 return false;
601 return true; // we handled it
604 // AAPCS f64 is in aligned register pairs
605 static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
606 CCValAssign::LocInfo &LocInfo,
607 CCState &State, bool CanFail) {
608 static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
609 static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
611 unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
612 if (Reg == 0) {
613 // For the 2nd half of a v2f64, do not just fail.
614 if (CanFail)
615 return false;
617 // Put the whole thing on the stack.
618 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
619 State.AllocateStack(8, 8),
620 LocVT, LocInfo));
621 return true;
624 unsigned i;
625 for (i = 0; i < 2; ++i)
626 if (HiRegList[i] == Reg)
627 break;
629 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
630 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
631 LocVT, LocInfo));
632 return true;
635 static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
636 CCValAssign::LocInfo &LocInfo,
637 ISD::ArgFlagsTy &ArgFlags,
638 CCState &State) {
639 if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
640 return false;
641 if (LocVT == MVT::v2f64 &&
642 !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
643 return false;
644 return true; // we handled it
647 static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
648 CCValAssign::LocInfo &LocInfo, CCState &State) {
649 static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
650 static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
652 unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
653 if (Reg == 0)
654 return false; // we didn't handle it
656 unsigned i;
657 for (i = 0; i < 2; ++i)
658 if (HiRegList[i] == Reg)
659 break;
661 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
662 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
663 LocVT, LocInfo));
664 return true;
667 static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
668 CCValAssign::LocInfo &LocInfo,
669 ISD::ArgFlagsTy &ArgFlags,
670 CCState &State) {
671 if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
672 return false;
673 if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
674 return false;
675 return true; // we handled it
678 static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
679 CCValAssign::LocInfo &LocInfo,
680 ISD::ArgFlagsTy &ArgFlags,
681 CCState &State) {
682 return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
683 State);
686 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
687 /// given CallingConvention value.
688 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(unsigned CC,
689 bool Return,
690 bool isVarArg) const {
691 switch (CC) {
692 default:
693 llvm_unreachable("Unsupported calling convention");
694 case CallingConv::C:
695 case CallingConv::Fast:
696 // Use target triple & subtarget features to do actual dispatch.
697 if (Subtarget->isAAPCS_ABI()) {
698 if (Subtarget->hasVFP2() &&
699 FloatABIType == FloatABI::Hard && !isVarArg)
700 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
701 else
702 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
703 } else
704 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
705 case CallingConv::ARM_AAPCS_VFP:
706 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
707 case CallingConv::ARM_AAPCS:
708 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
709 case CallingConv::ARM_APCS:
710 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
714 /// LowerCallResult - Lower the result values of a call into the
715 /// appropriate copies out of appropriate physical registers.
716 SDValue
717 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
718 unsigned CallConv, bool isVarArg,
719 const SmallVectorImpl<ISD::InputArg> &Ins,
720 DebugLoc dl, SelectionDAG &DAG,
721 SmallVectorImpl<SDValue> &InVals) {
723 // Assign locations to each value returned by this call.
724 SmallVector<CCValAssign, 16> RVLocs;
725 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
726 RVLocs, *DAG.getContext());
727 CCInfo.AnalyzeCallResult(Ins,
728 CCAssignFnForNode(CallConv, /* Return*/ true,
729 isVarArg));
731 // Copy all of the result registers out of their specified physreg.
732 for (unsigned i = 0; i != RVLocs.size(); ++i) {
733 CCValAssign VA = RVLocs[i];
735 SDValue Val;
736 if (VA.needsCustom()) {
737 // Handle f64 or half of a v2f64.
738 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
739 InFlag);
740 Chain = Lo.getValue(1);
741 InFlag = Lo.getValue(2);
742 VA = RVLocs[++i]; // skip ahead to next loc
743 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
744 InFlag);
745 Chain = Hi.getValue(1);
746 InFlag = Hi.getValue(2);
747 Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
749 if (VA.getLocVT() == MVT::v2f64) {
750 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
751 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
752 DAG.getConstant(0, MVT::i32));
754 VA = RVLocs[++i]; // skip ahead to next loc
755 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
756 Chain = Lo.getValue(1);
757 InFlag = Lo.getValue(2);
758 VA = RVLocs[++i]; // skip ahead to next loc
759 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
760 Chain = Hi.getValue(1);
761 InFlag = Hi.getValue(2);
762 Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
763 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
764 DAG.getConstant(1, MVT::i32));
766 } else {
767 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
768 InFlag);
769 Chain = Val.getValue(1);
770 InFlag = Val.getValue(2);
773 switch (VA.getLocInfo()) {
774 default: llvm_unreachable("Unknown loc info!");
775 case CCValAssign::Full: break;
776 case CCValAssign::BCvt:
777 Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
778 break;
781 InVals.push_back(Val);
784 return Chain;
787 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
788 /// by "Src" to address "Dst" of size "Size". Alignment information is
789 /// specified by the specific parameter attribute. The copy will be passed as
790 /// a byval function parameter.
791 /// Sometimes what we are copying is the end of a larger object, the part that
792 /// does not fit in registers.
793 static SDValue
794 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
795 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
796 DebugLoc dl) {
797 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
798 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
799 /*AlwaysInline=*/false, NULL, 0, NULL, 0);
802 /// LowerMemOpCallTo - Store the argument to the stack.
803 SDValue
804 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
805 SDValue StackPtr, SDValue Arg,
806 DebugLoc dl, SelectionDAG &DAG,
807 const CCValAssign &VA,
808 ISD::ArgFlagsTy Flags) {
809 unsigned LocMemOffset = VA.getLocMemOffset();
810 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
811 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
812 if (Flags.isByVal()) {
813 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
815 return DAG.getStore(Chain, dl, Arg, PtrOff,
816 PseudoSourceValue::getStack(), LocMemOffset);
819 void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
820 SDValue Chain, SDValue &Arg,
821 RegsToPassVector &RegsToPass,
822 CCValAssign &VA, CCValAssign &NextVA,
823 SDValue &StackPtr,
824 SmallVector<SDValue, 8> &MemOpChains,
825 ISD::ArgFlagsTy Flags) {
827 SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
828 DAG.getVTList(MVT::i32, MVT::i32), Arg);
829 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
831 if (NextVA.isRegLoc())
832 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
833 else {
834 assert(NextVA.isMemLoc());
835 if (StackPtr.getNode() == 0)
836 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
838 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
839 dl, DAG, NextVA,
840 Flags));
844 /// LowerCall - Lowering a call into a callseq_start <-
845 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
846 /// nodes.
847 SDValue
848 ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
849 unsigned CallConv, bool isVarArg,
850 bool isTailCall,
851 const SmallVectorImpl<ISD::OutputArg> &Outs,
852 const SmallVectorImpl<ISD::InputArg> &Ins,
853 DebugLoc dl, SelectionDAG &DAG,
854 SmallVectorImpl<SDValue> &InVals) {
856 // Analyze operands of the call, assigning locations to each operand.
857 SmallVector<CCValAssign, 16> ArgLocs;
858 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
859 *DAG.getContext());
860 CCInfo.AnalyzeCallOperands(Outs,
861 CCAssignFnForNode(CallConv, /* Return*/ false,
862 isVarArg));
864 // Get a count of how many bytes are to be pushed on the stack.
865 unsigned NumBytes = CCInfo.getNextStackOffset();
867 // Adjust the stack pointer for the new arguments...
868 // These operations are automatically eliminated by the prolog/epilog pass
869 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
871 SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
873 RegsToPassVector RegsToPass;
874 SmallVector<SDValue, 8> MemOpChains;
876 // Walk the register/memloc assignments, inserting copies/loads. In the case
877 // of tail call optimization, arguments are handled later.
878 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
879 i != e;
880 ++i, ++realArgIdx) {
881 CCValAssign &VA = ArgLocs[i];
882 SDValue Arg = Outs[realArgIdx].Val;
883 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
885 // Promote the value if needed.
886 switch (VA.getLocInfo()) {
887 default: llvm_unreachable("Unknown loc info!");
888 case CCValAssign::Full: break;
889 case CCValAssign::SExt:
890 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
891 break;
892 case CCValAssign::ZExt:
893 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
894 break;
895 case CCValAssign::AExt:
896 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
897 break;
898 case CCValAssign::BCvt:
899 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
900 break;
903 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
904 if (VA.needsCustom()) {
905 if (VA.getLocVT() == MVT::v2f64) {
906 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
907 DAG.getConstant(0, MVT::i32));
908 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
909 DAG.getConstant(1, MVT::i32));
911 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
912 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
914 VA = ArgLocs[++i]; // skip ahead to next loc
915 if (VA.isRegLoc()) {
916 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
917 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
918 } else {
919 assert(VA.isMemLoc());
920 if (StackPtr.getNode() == 0)
921 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
923 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
924 dl, DAG, VA, Flags));
926 } else {
927 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
928 StackPtr, MemOpChains, Flags);
930 } else if (VA.isRegLoc()) {
931 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
932 } else {
933 assert(VA.isMemLoc());
934 if (StackPtr.getNode() == 0)
935 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
937 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
938 dl, DAG, VA, Flags));
942 if (!MemOpChains.empty())
943 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
944 &MemOpChains[0], MemOpChains.size());
946 // Build a sequence of copy-to-reg nodes chained together with token chain
947 // and flag operands which copy the outgoing args into the appropriate regs.
948 SDValue InFlag;
949 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
950 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
951 RegsToPass[i].second, InFlag);
952 InFlag = Chain.getValue(1);
955 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
956 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
957 // node so that legalize doesn't hack it.
958 bool isDirect = false;
959 bool isARMFunc = false;
960 bool isLocalARMFunc = false;
961 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
962 GlobalValue *GV = G->getGlobal();
963 isDirect = true;
964 bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
965 bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
966 getTargetMachine().getRelocationModel() != Reloc::Static;
967 isARMFunc = !Subtarget->isThumb() || isStub;
968 // ARM call to a local ARM function is predicable.
969 isLocalARMFunc = !Subtarget->isThumb() && !isExt;
970 // tBX takes a register source operand.
971 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
972 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
973 ARMCP::CPStub, 4);
974 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
975 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
976 Callee = DAG.getLoad(getPointerTy(), dl,
977 DAG.getEntryNode(), CPAddr, NULL, 0);
978 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
979 Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
980 getPointerTy(), Callee, PICLabel);
981 } else
982 Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
983 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
984 isDirect = true;
985 bool isStub = Subtarget->isTargetDarwin() &&
986 getTargetMachine().getRelocationModel() != Reloc::Static;
987 isARMFunc = !Subtarget->isThumb() || isStub;
988 // tBX takes a register source operand.
989 const char *Sym = S->getSymbol();
990 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
991 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
992 Sym, ARMPCLabelIndex,
993 ARMCP::CPStub, 4);
994 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
995 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
996 Callee = DAG.getLoad(getPointerTy(), dl,
997 DAG.getEntryNode(), CPAddr, NULL, 0);
998 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
999 Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1000 getPointerTy(), Callee, PICLabel);
1001 } else
1002 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1005 // FIXME: handle tail calls differently.
1006 unsigned CallOpc;
1007 if (Subtarget->isThumb()) {
1008 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1009 CallOpc = ARMISD::CALL_NOLINK;
1010 else
1011 CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1012 } else {
1013 CallOpc = (isDirect || Subtarget->hasV5TOps())
1014 ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1015 : ARMISD::CALL_NOLINK;
1017 if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
1018 // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
1019 Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
1020 InFlag = Chain.getValue(1);
1023 std::vector<SDValue> Ops;
1024 Ops.push_back(Chain);
1025 Ops.push_back(Callee);
1027 // Add argument registers to the end of the list so that they are known live
1028 // into the call.
1029 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1030 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1031 RegsToPass[i].second.getValueType()));
1033 if (InFlag.getNode())
1034 Ops.push_back(InFlag);
1035 // Returns a chain and a flag for retval copy to use.
1036 Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
1037 &Ops[0], Ops.size());
1038 InFlag = Chain.getValue(1);
1040 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1041 DAG.getIntPtrConstant(0, true), InFlag);
1042 if (!Ins.empty())
1043 InFlag = Chain.getValue(1);
1045 // Handle result values, copying them out of physregs into vregs that we
1046 // return.
1047 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1048 dl, DAG, InVals);
1051 SDValue
1052 ARMTargetLowering::LowerReturn(SDValue Chain,
1053 unsigned CallConv, bool isVarArg,
1054 const SmallVectorImpl<ISD::OutputArg> &Outs,
1055 DebugLoc dl, SelectionDAG &DAG) {
1057 // CCValAssign - represent the assignment of the return value to a location.
1058 SmallVector<CCValAssign, 16> RVLocs;
1060 // CCState - Info about the registers and stack slots.
1061 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1062 *DAG.getContext());
1064 // Analyze outgoing return values.
1065 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1066 isVarArg));
1068 // If this is the first return lowered for this function, add
1069 // the regs to the liveout set for the function.
1070 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1071 for (unsigned i = 0; i != RVLocs.size(); ++i)
1072 if (RVLocs[i].isRegLoc())
1073 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1076 SDValue Flag;
1078 // Copy the result values into the output registers.
1079 for (unsigned i = 0, realRVLocIdx = 0;
1080 i != RVLocs.size();
1081 ++i, ++realRVLocIdx) {
1082 CCValAssign &VA = RVLocs[i];
1083 assert(VA.isRegLoc() && "Can only return in registers!");
1085 SDValue Arg = Outs[realRVLocIdx].Val;
1087 switch (VA.getLocInfo()) {
1088 default: llvm_unreachable("Unknown loc info!");
1089 case CCValAssign::Full: break;
1090 case CCValAssign::BCvt:
1091 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1092 break;
1095 if (VA.needsCustom()) {
1096 if (VA.getLocVT() == MVT::v2f64) {
1097 // Extract the first half and return it in two registers.
1098 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1099 DAG.getConstant(0, MVT::i32));
1100 SDValue HalfGPRs = DAG.getNode(ARMISD::FMRRD, dl,
1101 DAG.getVTList(MVT::i32, MVT::i32), Half);
1103 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1104 Flag = Chain.getValue(1);
1105 VA = RVLocs[++i]; // skip ahead to next loc
1106 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1107 HalfGPRs.getValue(1), Flag);
1108 Flag = Chain.getValue(1);
1109 VA = RVLocs[++i]; // skip ahead to next loc
1111 // Extract the 2nd half and fall through to handle it as an f64 value.
1112 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1113 DAG.getConstant(1, MVT::i32));
1115 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
1116 // available.
1117 SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
1118 DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1119 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1120 Flag = Chain.getValue(1);
1121 VA = RVLocs[++i]; // skip ahead to next loc
1122 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1123 Flag);
1124 } else
1125 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1127 // Guarantee that all emitted copies are
1128 // stuck together, avoiding something bad.
1129 Flag = Chain.getValue(1);
1132 SDValue result;
1133 if (Flag.getNode())
1134 result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1135 else // Return Void
1136 result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1138 return result;
1141 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1142 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1143 // one of the above mentioned nodes. It has to be wrapped because otherwise
1144 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1145 // be used to form addressing mode. These wrapped nodes will be selected
1146 // into MOVi.
1147 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1148 EVT PtrVT = Op.getValueType();
1149 // FIXME there is no actual debug info here
1150 DebugLoc dl = Op.getDebugLoc();
1151 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1152 SDValue Res;
1153 if (CP->isMachineConstantPoolEntry())
1154 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1155 CP->getAlignment());
1156 else
1157 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1158 CP->getAlignment());
1159 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1162 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
1163 SDValue
1164 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1165 SelectionDAG &DAG) {
1166 DebugLoc dl = GA->getDebugLoc();
1167 EVT PtrVT = getPointerTy();
1168 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1169 ARMConstantPoolValue *CPV =
1170 new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1171 PCAdj, "tlsgd", true);
1172 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1173 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1174 Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, NULL, 0);
1175 SDValue Chain = Argument.getValue(1);
1177 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1178 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1180 // call __tls_get_addr.
1181 ArgListTy Args;
1182 ArgListEntry Entry;
1183 Entry.Node = Argument;
1184 Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1185 Args.push_back(Entry);
1186 // FIXME: is there useful debug info available here?
1187 std::pair<SDValue, SDValue> CallResult =
1188 LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1189 false, false, false, false,
1190 0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1191 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1192 return CallResult.first;
1195 // Lower ISD::GlobalTLSAddress using the "initial exec" or
1196 // "local exec" model.
1197 SDValue
1198 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1199 SelectionDAG &DAG) {
1200 GlobalValue *GV = GA->getGlobal();
1201 DebugLoc dl = GA->getDebugLoc();
1202 SDValue Offset;
1203 SDValue Chain = DAG.getEntryNode();
1204 EVT PtrVT = getPointerTy();
1205 // Get the Thread Pointer
1206 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1208 if (GV->isDeclaration()) {
1209 // initial exec model
1210 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1211 ARMConstantPoolValue *CPV =
1212 new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1213 PCAdj, "gottpoff", true);
1214 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1215 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1216 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1217 Chain = Offset.getValue(1);
1219 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1220 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1222 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1223 } else {
1224 // local exec model
1225 ARMConstantPoolValue *CPV =
1226 new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff");
1227 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1228 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1229 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1232 // The address of the thread local variable is the add of the thread
1233 // pointer with the offset of the variable.
1234 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1237 SDValue
1238 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
1239 // TODO: implement the "local dynamic" model
1240 assert(Subtarget->isTargetELF() &&
1241 "TLS not implemented for non-ELF targets");
1242 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1243 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1244 // otherwise use the "Local Exec" TLS Model
1245 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1246 return LowerToTLSGeneralDynamicModel(GA, DAG);
1247 else
1248 return LowerToTLSExecModels(GA, DAG);
1251 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1252 SelectionDAG &DAG) {
1253 EVT PtrVT = getPointerTy();
1254 DebugLoc dl = Op.getDebugLoc();
1255 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1256 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1257 if (RelocM == Reloc::PIC_) {
1258 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1259 ARMConstantPoolValue *CPV =
1260 new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT");
1261 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1262 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1263 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1264 CPAddr, NULL, 0);
1265 SDValue Chain = Result.getValue(1);
1266 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1267 Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1268 if (!UseGOTOFF)
1269 Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1270 return Result;
1271 } else {
1272 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1273 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1274 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1278 /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
1279 /// even in non-static mode.
1280 static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) {
1281 // If symbol visibility is hidden, the extra load is not needed if
1282 // the symbol is definitely defined in the current translation unit.
1283 bool isDecl = GV->isDeclaration() || GV->hasAvailableExternallyLinkage();
1284 if (GV->hasHiddenVisibility() && (!isDecl && !GV->hasCommonLinkage()))
1285 return false;
1286 return RelocM != Reloc::Static && (isDecl || GV->isWeakForLinker());
1289 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1290 SelectionDAG &DAG) {
1291 EVT PtrVT = getPointerTy();
1292 DebugLoc dl = Op.getDebugLoc();
1293 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1294 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1295 bool IsIndirect = GVIsIndirectSymbol(GV, RelocM);
1296 SDValue CPAddr;
1297 if (RelocM == Reloc::Static)
1298 CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1299 else {
1300 unsigned PCAdj = (RelocM != Reloc::PIC_)
1301 ? 0 : (Subtarget->isThumb() ? 4 : 8);
1302 ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr
1303 : ARMCP::CPValue;
1304 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
1305 Kind, PCAdj);
1306 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1308 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1310 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1311 SDValue Chain = Result.getValue(1);
1313 if (RelocM == Reloc::PIC_) {
1314 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1315 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1317 if (IsIndirect)
1318 Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1320 return Result;
1323 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1324 SelectionDAG &DAG){
1325 assert(Subtarget->isTargetELF() &&
1326 "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1327 EVT PtrVT = getPointerTy();
1328 DebugLoc dl = Op.getDebugLoc();
1329 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1330 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1331 "_GLOBAL_OFFSET_TABLE_",
1332 ARMPCLabelIndex,
1333 ARMCP::CPValue, PCAdj);
1334 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1335 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1336 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1337 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1338 return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1341 static SDValue LowerNeonVLDIntrinsic(SDValue Op, SelectionDAG &DAG,
1342 unsigned Opcode) {
1343 SDNode *Node = Op.getNode();
1344 EVT VT = Node->getValueType(0);
1345 DebugLoc dl = Op.getDebugLoc();
1347 if (!VT.is64BitVector())
1348 return SDValue(); // unimplemented
1350 SDValue Ops[] = { Node->getOperand(0),
1351 Node->getOperand(2) };
1352 return DAG.getNode(Opcode, dl, Node->getVTList(), Ops, 2);
1355 static SDValue LowerNeonVSTIntrinsic(SDValue Op, SelectionDAG &DAG,
1356 unsigned Opcode, unsigned NumVecs) {
1357 SDNode *Node = Op.getNode();
1358 EVT VT = Node->getOperand(3).getValueType();
1359 DebugLoc dl = Op.getDebugLoc();
1361 if (!VT.is64BitVector())
1362 return SDValue(); // unimplemented
1364 SmallVector<SDValue, 6> Ops;
1365 Ops.push_back(Node->getOperand(0));
1366 Ops.push_back(Node->getOperand(2));
1367 for (unsigned N = 0; N < NumVecs; ++N)
1368 Ops.push_back(Node->getOperand(N + 3));
1369 return DAG.getNode(Opcode, dl, MVT::Other, Ops.data(), Ops.size());
1372 SDValue
1373 ARMTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
1374 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1375 switch (IntNo) {
1376 case Intrinsic::arm_neon_vld2:
1377 return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD2D);
1378 case Intrinsic::arm_neon_vld3:
1379 return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD3D);
1380 case Intrinsic::arm_neon_vld4:
1381 return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD4D);
1382 case Intrinsic::arm_neon_vst2:
1383 return LowerNeonVSTIntrinsic(Op, DAG, ARMISD::VST2D, 2);
1384 case Intrinsic::arm_neon_vst3:
1385 return LowerNeonVSTIntrinsic(Op, DAG, ARMISD::VST3D, 3);
1386 case Intrinsic::arm_neon_vst4:
1387 return LowerNeonVSTIntrinsic(Op, DAG, ARMISD::VST4D, 4);
1388 default: return SDValue(); // Don't custom lower most intrinsics.
1392 SDValue
1393 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
1394 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1395 DebugLoc dl = Op.getDebugLoc();
1396 switch (IntNo) {
1397 default: return SDValue(); // Don't custom lower most intrinsics.
1398 case Intrinsic::arm_thread_pointer: {
1399 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1400 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1402 case Intrinsic::eh_sjlj_lsda: {
1403 // blah. horrible, horrible hack with the forced magic name.
1404 // really need to clean this up. It belongs in the target-independent
1405 // layer somehow that doesn't require the coupling with the asm
1406 // printer.
1407 MachineFunction &MF = DAG.getMachineFunction();
1408 EVT PtrVT = getPointerTy();
1409 DebugLoc dl = Op.getDebugLoc();
1410 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1411 SDValue CPAddr;
1412 unsigned PCAdj = (RelocM != Reloc::PIC_)
1413 ? 0 : (Subtarget->isThumb() ? 4 : 8);
1414 ARMCP::ARMCPKind Kind = ARMCP::CPValue;
1415 // Save off the LSDA name for the AsmPrinter to use when it's time
1416 // to emit the table
1417 std::string LSDAName = "L_lsda_";
1418 LSDAName += MF.getFunction()->getName();
1419 ARMConstantPoolValue *CPV =
1420 new ARMConstantPoolValue(*DAG.getContext(), LSDAName.c_str(),
1421 ARMPCLabelIndex, Kind, PCAdj);
1422 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1423 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1424 SDValue Result =
1425 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1426 SDValue Chain = Result.getValue(1);
1428 if (RelocM == Reloc::PIC_) {
1429 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1430 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1432 return Result;
1434 case Intrinsic::eh_sjlj_setjmp:
1435 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1));
1439 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1440 unsigned VarArgsFrameIndex) {
1441 // vastart just stores the address of the VarArgsFrameIndex slot into the
1442 // memory location argument.
1443 DebugLoc dl = Op.getDebugLoc();
1444 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1445 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1446 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1447 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1450 SDValue
1451 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
1452 SDNode *Node = Op.getNode();
1453 DebugLoc dl = Node->getDebugLoc();
1454 EVT VT = Node->getValueType(0);
1455 SDValue Chain = Op.getOperand(0);
1456 SDValue Size = Op.getOperand(1);
1457 SDValue Align = Op.getOperand(2);
1459 // Chain the dynamic stack allocation so that it doesn't modify the stack
1460 // pointer when other instructions are using the stack.
1461 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1463 unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
1464 unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
1465 if (AlignVal > StackAlign)
1466 // Do this now since selection pass cannot introduce new target
1467 // independent node.
1468 Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
1470 // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
1471 // using a "add r, sp, r" instead. Negate the size now so we don't have to
1472 // do even more horrible hack later.
1473 MachineFunction &MF = DAG.getMachineFunction();
1474 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1475 if (AFI->isThumb1OnlyFunction()) {
1476 bool Negate = true;
1477 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
1478 if (C) {
1479 uint32_t Val = C->getZExtValue();
1480 if (Val <= 508 && ((Val & 3) == 0))
1481 Negate = false;
1483 if (Negate)
1484 Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
1487 SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1488 SDValue Ops1[] = { Chain, Size, Align };
1489 SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
1490 Chain = Res.getValue(1);
1491 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1492 DAG.getIntPtrConstant(0, true), SDValue());
1493 SDValue Ops2[] = { Res, Chain };
1494 return DAG.getMergeValues(Ops2, 2, dl);
1497 SDValue
1498 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1499 SDValue &Root, SelectionDAG &DAG,
1500 DebugLoc dl) {
1501 MachineFunction &MF = DAG.getMachineFunction();
1502 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1504 TargetRegisterClass *RC;
1505 if (AFI->isThumb1OnlyFunction())
1506 RC = ARM::tGPRRegisterClass;
1507 else
1508 RC = ARM::GPRRegisterClass;
1510 // Transform the arguments stored in physical registers into virtual ones.
1511 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1512 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1514 SDValue ArgValue2;
1515 if (NextVA.isMemLoc()) {
1516 unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8;
1517 MachineFrameInfo *MFI = MF.getFrameInfo();
1518 int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset());
1520 // Create load node to retrieve arguments from the stack.
1521 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1522 ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, NULL, 0);
1523 } else {
1524 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1525 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1528 return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, ArgValue, ArgValue2);
1531 SDValue
1532 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
1533 unsigned CallConv, bool isVarArg,
1534 const SmallVectorImpl<ISD::InputArg>
1535 &Ins,
1536 DebugLoc dl, SelectionDAG &DAG,
1537 SmallVectorImpl<SDValue> &InVals) {
1539 MachineFunction &MF = DAG.getMachineFunction();
1540 MachineFrameInfo *MFI = MF.getFrameInfo();
1542 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1544 // Assign locations to all of the incoming arguments.
1545 SmallVector<CCValAssign, 16> ArgLocs;
1546 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1547 *DAG.getContext());
1548 CCInfo.AnalyzeFormalArguments(Ins,
1549 CCAssignFnForNode(CallConv, /* Return*/ false,
1550 isVarArg));
1552 SmallVector<SDValue, 16> ArgValues;
1554 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1555 CCValAssign &VA = ArgLocs[i];
1557 // Arguments stored in registers.
1558 if (VA.isRegLoc()) {
1559 EVT RegVT = VA.getLocVT();
1561 SDValue ArgValue;
1562 if (VA.needsCustom()) {
1563 // f64 and vector types are split up into multiple registers or
1564 // combinations of registers and stack slots.
1565 RegVT = MVT::i32;
1567 if (VA.getLocVT() == MVT::v2f64) {
1568 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
1569 Chain, DAG, dl);
1570 VA = ArgLocs[++i]; // skip ahead to next loc
1571 SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
1572 Chain, DAG, dl);
1573 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1574 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1575 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
1576 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1577 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
1578 } else
1579 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
1581 } else {
1582 TargetRegisterClass *RC;
1584 if (RegVT == MVT::f32)
1585 RC = ARM::SPRRegisterClass;
1586 else if (RegVT == MVT::f64)
1587 RC = ARM::DPRRegisterClass;
1588 else if (RegVT == MVT::v2f64)
1589 RC = ARM::QPRRegisterClass;
1590 else if (RegVT == MVT::i32)
1591 RC = (AFI->isThumb1OnlyFunction() ?
1592 ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
1593 else
1594 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1596 // Transform the arguments in physical registers into virtual ones.
1597 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1598 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1601 // If this is an 8 or 16-bit value, it is really passed promoted
1602 // to 32 bits. Insert an assert[sz]ext to capture this, then
1603 // truncate to the right size.
1604 switch (VA.getLocInfo()) {
1605 default: llvm_unreachable("Unknown loc info!");
1606 case CCValAssign::Full: break;
1607 case CCValAssign::BCvt:
1608 ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1609 break;
1610 case CCValAssign::SExt:
1611 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1612 DAG.getValueType(VA.getValVT()));
1613 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1614 break;
1615 case CCValAssign::ZExt:
1616 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1617 DAG.getValueType(VA.getValVT()));
1618 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1619 break;
1622 InVals.push_back(ArgValue);
1624 } else { // VA.isRegLoc()
1626 // sanity check
1627 assert(VA.isMemLoc());
1628 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1630 unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1631 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset());
1633 // Create load nodes to retrieve arguments from the stack.
1634 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1635 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
1639 // varargs
1640 if (isVarArg) {
1641 static const unsigned GPRArgRegs[] = {
1642 ARM::R0, ARM::R1, ARM::R2, ARM::R3
1645 unsigned NumGPRs = CCInfo.getFirstUnallocated
1646 (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1648 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1649 unsigned VARegSize = (4 - NumGPRs) * 4;
1650 unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1651 unsigned ArgOffset = 0;
1652 if (VARegSaveSize) {
1653 // If this function is vararg, store any remaining integer argument regs
1654 // to their spots on the stack so that they may be loaded by deferencing
1655 // the result of va_next.
1656 AFI->setVarArgsRegSaveSize(VARegSaveSize);
1657 ArgOffset = CCInfo.getNextStackOffset();
1658 VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1659 VARegSaveSize - VARegSize);
1660 SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1662 SmallVector<SDValue, 4> MemOps;
1663 for (; NumGPRs < 4; ++NumGPRs) {
1664 TargetRegisterClass *RC;
1665 if (AFI->isThumb1OnlyFunction())
1666 RC = ARM::tGPRRegisterClass;
1667 else
1668 RC = ARM::GPRRegisterClass;
1670 unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1671 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1672 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1673 MemOps.push_back(Store);
1674 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1675 DAG.getConstant(4, getPointerTy()));
1677 if (!MemOps.empty())
1678 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1679 &MemOps[0], MemOps.size());
1680 } else
1681 // This will point to the next argument passed via stack.
1682 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1685 return Chain;
1688 /// isFloatingPointZero - Return true if this is +0.0.
1689 static bool isFloatingPointZero(SDValue Op) {
1690 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1691 return CFP->getValueAPF().isPosZero();
1692 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1693 // Maybe this has already been legalized into the constant pool?
1694 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1695 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1696 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1697 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1698 return CFP->getValueAPF().isPosZero();
1701 return false;
1704 static bool isLegalCmpImmediate(unsigned C, bool isThumb1Only) {
1705 return ( isThumb1Only && (C & ~255U) == 0) ||
1706 (!isThumb1Only && ARM_AM::getSOImmVal(C) != -1);
1709 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1710 /// the given operands.
1711 static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1712 SDValue &ARMCC, SelectionDAG &DAG, bool isThumb1Only,
1713 DebugLoc dl) {
1714 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1715 unsigned C = RHSC->getZExtValue();
1716 if (!isLegalCmpImmediate(C, isThumb1Only)) {
1717 // Constant does not fit, try adjusting it by one?
1718 switch (CC) {
1719 default: break;
1720 case ISD::SETLT:
1721 case ISD::SETGE:
1722 if (isLegalCmpImmediate(C-1, isThumb1Only)) {
1723 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1724 RHS = DAG.getConstant(C-1, MVT::i32);
1726 break;
1727 case ISD::SETULT:
1728 case ISD::SETUGE:
1729 if (C > 0 && isLegalCmpImmediate(C-1, isThumb1Only)) {
1730 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1731 RHS = DAG.getConstant(C-1, MVT::i32);
1733 break;
1734 case ISD::SETLE:
1735 case ISD::SETGT:
1736 if (isLegalCmpImmediate(C+1, isThumb1Only)) {
1737 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1738 RHS = DAG.getConstant(C+1, MVT::i32);
1740 break;
1741 case ISD::SETULE:
1742 case ISD::SETUGT:
1743 if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb1Only)) {
1744 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1745 RHS = DAG.getConstant(C+1, MVT::i32);
1747 break;
1752 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1753 ARMISD::NodeType CompareType;
1754 switch (CondCode) {
1755 default:
1756 CompareType = ARMISD::CMP;
1757 break;
1758 case ARMCC::EQ:
1759 case ARMCC::NE:
1760 // Uses only Z Flag
1761 CompareType = ARMISD::CMPZ;
1762 break;
1764 ARMCC = DAG.getConstant(CondCode, MVT::i32);
1765 return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1768 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1769 static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1770 DebugLoc dl) {
1771 SDValue Cmp;
1772 if (!isFloatingPointZero(RHS))
1773 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1774 else
1775 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1776 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1779 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
1780 const ARMSubtarget *ST) {
1781 EVT VT = Op.getValueType();
1782 SDValue LHS = Op.getOperand(0);
1783 SDValue RHS = Op.getOperand(1);
1784 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1785 SDValue TrueVal = Op.getOperand(2);
1786 SDValue FalseVal = Op.getOperand(3);
1787 DebugLoc dl = Op.getDebugLoc();
1789 if (LHS.getValueType() == MVT::i32) {
1790 SDValue ARMCC;
1791 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1792 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1793 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1796 ARMCC::CondCodes CondCode, CondCode2;
1797 if (FPCCToARMCC(CC, CondCode, CondCode2))
1798 std::swap(TrueVal, FalseVal);
1800 SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1801 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1802 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1803 SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1804 ARMCC, CCR, Cmp);
1805 if (CondCode2 != ARMCC::AL) {
1806 SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1807 // FIXME: Needs another CMP because flag can have but one use.
1808 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1809 Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1810 Result, TrueVal, ARMCC2, CCR, Cmp2);
1812 return Result;
1815 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
1816 const ARMSubtarget *ST) {
1817 SDValue Chain = Op.getOperand(0);
1818 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1819 SDValue LHS = Op.getOperand(2);
1820 SDValue RHS = Op.getOperand(3);
1821 SDValue Dest = Op.getOperand(4);
1822 DebugLoc dl = Op.getDebugLoc();
1824 if (LHS.getValueType() == MVT::i32) {
1825 SDValue ARMCC;
1826 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1827 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1828 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1829 Chain, Dest, ARMCC, CCR,Cmp);
1832 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1833 ARMCC::CondCodes CondCode, CondCode2;
1834 if (FPCCToARMCC(CC, CondCode, CondCode2))
1835 // Swap the LHS/RHS of the comparison if needed.
1836 std::swap(LHS, RHS);
1838 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1839 SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1840 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1841 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1842 SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1843 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1844 if (CondCode2 != ARMCC::AL) {
1845 ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1846 SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1847 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1849 return Res;
1852 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1853 SDValue Chain = Op.getOperand(0);
1854 SDValue Table = Op.getOperand(1);
1855 SDValue Index = Op.getOperand(2);
1856 DebugLoc dl = Op.getDebugLoc();
1858 EVT PTy = getPointerTy();
1859 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
1860 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
1861 SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
1862 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
1863 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
1864 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
1865 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1866 if (Subtarget->isThumb2()) {
1867 // Thumb2 uses a two-level jump. That is, it jumps into the jump table
1868 // which does another jump to the destination. This also makes it easier
1869 // to translate it to TBB / TBH later.
1870 // FIXME: This might not work if the function is extremely large.
1871 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
1872 Addr, Op.getOperand(2), JTI, UId);
1874 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1875 Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, NULL, 0);
1876 Chain = Addr.getValue(1);
1877 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
1878 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1879 } else {
1880 Addr = DAG.getLoad(PTy, dl, Chain, Addr, NULL, 0);
1881 Chain = Addr.getValue(1);
1882 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1886 static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1887 DebugLoc dl = Op.getDebugLoc();
1888 unsigned Opc =
1889 Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
1890 Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
1891 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
1894 static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1895 EVT VT = Op.getValueType();
1896 DebugLoc dl = Op.getDebugLoc();
1897 unsigned Opc =
1898 Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
1900 Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
1901 return DAG.getNode(Opc, dl, VT, Op);
1904 static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
1905 // Implement fcopysign with a fabs and a conditional fneg.
1906 SDValue Tmp0 = Op.getOperand(0);
1907 SDValue Tmp1 = Op.getOperand(1);
1908 DebugLoc dl = Op.getDebugLoc();
1909 EVT VT = Op.getValueType();
1910 EVT SrcVT = Tmp1.getValueType();
1911 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
1912 SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
1913 SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
1914 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1915 return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
1918 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
1919 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1920 MFI->setFrameAddressIsTaken(true);
1921 EVT VT = Op.getValueType();
1922 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
1923 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1924 unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
1925 ? ARM::R7 : ARM::R11;
1926 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
1927 while (Depth--)
1928 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
1929 return FrameAddr;
1932 SDValue
1933 ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1934 SDValue Chain,
1935 SDValue Dst, SDValue Src,
1936 SDValue Size, unsigned Align,
1937 bool AlwaysInline,
1938 const Value *DstSV, uint64_t DstSVOff,
1939 const Value *SrcSV, uint64_t SrcSVOff){
1940 // Do repeated 4-byte loads and stores. To be improved.
1941 // This requires 4-byte alignment.
1942 if ((Align & 3) != 0)
1943 return SDValue();
1944 // This requires the copy size to be a constant, preferrably
1945 // within a subtarget-specific limit.
1946 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
1947 if (!ConstantSize)
1948 return SDValue();
1949 uint64_t SizeVal = ConstantSize->getZExtValue();
1950 if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
1951 return SDValue();
1953 unsigned BytesLeft = SizeVal & 3;
1954 unsigned NumMemOps = SizeVal >> 2;
1955 unsigned EmittedNumMemOps = 0;
1956 EVT VT = MVT::i32;
1957 unsigned VTSize = 4;
1958 unsigned i = 0;
1959 const unsigned MAX_LOADS_IN_LDM = 6;
1960 SDValue TFOps[MAX_LOADS_IN_LDM];
1961 SDValue Loads[MAX_LOADS_IN_LDM];
1962 uint64_t SrcOff = 0, DstOff = 0;
1964 // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
1965 // same number of stores. The loads and stores will get combined into
1966 // ldm/stm later on.
1967 while (EmittedNumMemOps < NumMemOps) {
1968 for (i = 0;
1969 i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1970 Loads[i] = DAG.getLoad(VT, dl, Chain,
1971 DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1972 DAG.getConstant(SrcOff, MVT::i32)),
1973 SrcSV, SrcSVOff + SrcOff);
1974 TFOps[i] = Loads[i].getValue(1);
1975 SrcOff += VTSize;
1977 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1979 for (i = 0;
1980 i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1981 TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1982 DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1983 DAG.getConstant(DstOff, MVT::i32)),
1984 DstSV, DstSVOff + DstOff);
1985 DstOff += VTSize;
1987 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1989 EmittedNumMemOps += i;
1992 if (BytesLeft == 0)
1993 return Chain;
1995 // Issue loads / stores for the trailing (1 - 3) bytes.
1996 unsigned BytesLeftSave = BytesLeft;
1997 i = 0;
1998 while (BytesLeft) {
1999 if (BytesLeft >= 2) {
2000 VT = MVT::i16;
2001 VTSize = 2;
2002 } else {
2003 VT = MVT::i8;
2004 VTSize = 1;
2007 Loads[i] = DAG.getLoad(VT, dl, Chain,
2008 DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
2009 DAG.getConstant(SrcOff, MVT::i32)),
2010 SrcSV, SrcSVOff + SrcOff);
2011 TFOps[i] = Loads[i].getValue(1);
2012 ++i;
2013 SrcOff += VTSize;
2014 BytesLeft -= VTSize;
2016 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2018 i = 0;
2019 BytesLeft = BytesLeftSave;
2020 while (BytesLeft) {
2021 if (BytesLeft >= 2) {
2022 VT = MVT::i16;
2023 VTSize = 2;
2024 } else {
2025 VT = MVT::i8;
2026 VTSize = 1;
2029 TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
2030 DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
2031 DAG.getConstant(DstOff, MVT::i32)),
2032 DstSV, DstSVOff + DstOff);
2033 ++i;
2034 DstOff += VTSize;
2035 BytesLeft -= VTSize;
2037 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2040 static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2041 SDValue Op = N->getOperand(0);
2042 DebugLoc dl = N->getDebugLoc();
2043 if (N->getValueType(0) == MVT::f64) {
2044 // Turn i64->f64 into FMDRR.
2045 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2046 DAG.getConstant(0, MVT::i32));
2047 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2048 DAG.getConstant(1, MVT::i32));
2049 return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
2052 // Turn f64->i64 into FMRRD.
2053 SDValue Cvt = DAG.getNode(ARMISD::FMRRD, dl,
2054 DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2056 // Merge the pieces into a single i64 value.
2057 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2060 /// getZeroVector - Returns a vector of specified type with all zero elements.
2062 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2063 assert(VT.isVector() && "Expected a vector type");
2065 // Zero vectors are used to represent vector negation and in those cases
2066 // will be implemented with the NEON VNEG instruction. However, VNEG does
2067 // not support i64 elements, so sometimes the zero vectors will need to be
2068 // explicitly constructed. For those cases, and potentially other uses in
2069 // the future, always build zero vectors as <4 x i32> or <2 x i32> bitcasted
2070 // to their dest type. This ensures they get CSE'd.
2071 SDValue Vec;
2072 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2073 if (VT.getSizeInBits() == 64)
2074 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2075 else
2076 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2078 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2081 /// getOnesVector - Returns a vector of specified type with all bits set.
2083 static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2084 assert(VT.isVector() && "Expected a vector type");
2086 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2087 // type. This ensures they get CSE'd.
2088 SDValue Vec;
2089 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2090 if (VT.getSizeInBits() == 64)
2091 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2092 else
2093 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2095 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2098 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2099 const ARMSubtarget *ST) {
2100 EVT VT = N->getValueType(0);
2101 DebugLoc dl = N->getDebugLoc();
2103 // Lower vector shifts on NEON to use VSHL.
2104 if (VT.isVector()) {
2105 assert(ST->hasNEON() && "unexpected vector shift");
2107 // Left shifts translate directly to the vshiftu intrinsic.
2108 if (N->getOpcode() == ISD::SHL)
2109 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2110 DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2111 N->getOperand(0), N->getOperand(1));
2113 assert((N->getOpcode() == ISD::SRA ||
2114 N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2116 // NEON uses the same intrinsics for both left and right shifts. For
2117 // right shifts, the shift amounts are negative, so negate the vector of
2118 // shift amounts.
2119 EVT ShiftVT = N->getOperand(1).getValueType();
2120 SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2121 getZeroVector(ShiftVT, DAG, dl),
2122 N->getOperand(1));
2123 Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2124 Intrinsic::arm_neon_vshifts :
2125 Intrinsic::arm_neon_vshiftu);
2126 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2127 DAG.getConstant(vshiftInt, MVT::i32),
2128 N->getOperand(0), NegatedCount);
2131 assert(VT == MVT::i64 &&
2132 (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2133 "Unknown shift to lower!");
2135 // We only lower SRA, SRL of 1 here, all others use generic lowering.
2136 if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2137 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2138 return SDValue();
2140 // If we are in thumb mode, we don't have RRX.
2141 if (ST->isThumb1Only()) return SDValue();
2143 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
2144 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2145 DAG.getConstant(0, MVT::i32));
2146 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2147 DAG.getConstant(1, MVT::i32));
2149 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2150 // captures the result into a carry flag.
2151 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2152 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2154 // The low part is an ARMISD::RRX operand, which shifts the carry in.
2155 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2157 // Merge the pieces into a single i64 value.
2158 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2161 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2162 SDValue TmpOp0, TmpOp1;
2163 bool Invert = false;
2164 bool Swap = false;
2165 unsigned Opc = 0;
2167 SDValue Op0 = Op.getOperand(0);
2168 SDValue Op1 = Op.getOperand(1);
2169 SDValue CC = Op.getOperand(2);
2170 EVT VT = Op.getValueType();
2171 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2172 DebugLoc dl = Op.getDebugLoc();
2174 if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2175 switch (SetCCOpcode) {
2176 default: llvm_unreachable("Illegal FP comparison"); break;
2177 case ISD::SETUNE:
2178 case ISD::SETNE: Invert = true; // Fallthrough
2179 case ISD::SETOEQ:
2180 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
2181 case ISD::SETOLT:
2182 case ISD::SETLT: Swap = true; // Fallthrough
2183 case ISD::SETOGT:
2184 case ISD::SETGT: Opc = ARMISD::VCGT; break;
2185 case ISD::SETOLE:
2186 case ISD::SETLE: Swap = true; // Fallthrough
2187 case ISD::SETOGE:
2188 case ISD::SETGE: Opc = ARMISD::VCGE; break;
2189 case ISD::SETUGE: Swap = true; // Fallthrough
2190 case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2191 case ISD::SETUGT: Swap = true; // Fallthrough
2192 case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2193 case ISD::SETUEQ: Invert = true; // Fallthrough
2194 case ISD::SETONE:
2195 // Expand this to (OLT | OGT).
2196 TmpOp0 = Op0;
2197 TmpOp1 = Op1;
2198 Opc = ISD::OR;
2199 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2200 Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2201 break;
2202 case ISD::SETUO: Invert = true; // Fallthrough
2203 case ISD::SETO:
2204 // Expand this to (OLT | OGE).
2205 TmpOp0 = Op0;
2206 TmpOp1 = Op1;
2207 Opc = ISD::OR;
2208 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2209 Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2210 break;
2212 } else {
2213 // Integer comparisons.
2214 switch (SetCCOpcode) {
2215 default: llvm_unreachable("Illegal integer comparison"); break;
2216 case ISD::SETNE: Invert = true;
2217 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
2218 case ISD::SETLT: Swap = true;
2219 case ISD::SETGT: Opc = ARMISD::VCGT; break;
2220 case ISD::SETLE: Swap = true;
2221 case ISD::SETGE: Opc = ARMISD::VCGE; break;
2222 case ISD::SETULT: Swap = true;
2223 case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2224 case ISD::SETULE: Swap = true;
2225 case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2228 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2229 if (Opc == ARMISD::VCEQ) {
2231 SDValue AndOp;
2232 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2233 AndOp = Op0;
2234 else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2235 AndOp = Op1;
2237 // Ignore bitconvert.
2238 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2239 AndOp = AndOp.getOperand(0);
2241 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2242 Opc = ARMISD::VTST;
2243 Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2244 Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2245 Invert = !Invert;
2250 if (Swap)
2251 std::swap(Op0, Op1);
2253 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2255 if (Invert)
2256 Result = DAG.getNOT(dl, Result, VT);
2258 return Result;
2261 /// isVMOVSplat - Check if the specified splat value corresponds to an immediate
2262 /// VMOV instruction, and if so, return the constant being splatted.
2263 static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
2264 unsigned SplatBitSize, SelectionDAG &DAG) {
2265 switch (SplatBitSize) {
2266 case 8:
2267 // Any 1-byte value is OK.
2268 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2269 return DAG.getTargetConstant(SplatBits, MVT::i8);
2271 case 16:
2272 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2273 if ((SplatBits & ~0xff) == 0 ||
2274 (SplatBits & ~0xff00) == 0)
2275 return DAG.getTargetConstant(SplatBits, MVT::i16);
2276 break;
2278 case 32:
2279 // NEON's 32-bit VMOV supports splat values where:
2280 // * only one byte is nonzero, or
2281 // * the least significant byte is 0xff and the second byte is nonzero, or
2282 // * the least significant 2 bytes are 0xff and the third is nonzero.
2283 if ((SplatBits & ~0xff) == 0 ||
2284 (SplatBits & ~0xff00) == 0 ||
2285 (SplatBits & ~0xff0000) == 0 ||
2286 (SplatBits & ~0xff000000) == 0)
2287 return DAG.getTargetConstant(SplatBits, MVT::i32);
2289 if ((SplatBits & ~0xffff) == 0 &&
2290 ((SplatBits | SplatUndef) & 0xff) == 0xff)
2291 return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
2293 if ((SplatBits & ~0xffffff) == 0 &&
2294 ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
2295 return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
2297 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2298 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2299 // VMOV.I32. A (very) minor optimization would be to replicate the value
2300 // and fall through here to test for a valid 64-bit splat. But, then the
2301 // caller would also need to check and handle the change in size.
2302 break;
2304 case 64: {
2305 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2306 uint64_t BitMask = 0xff;
2307 uint64_t Val = 0;
2308 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2309 if (((SplatBits | SplatUndef) & BitMask) == BitMask)
2310 Val |= BitMask;
2311 else if ((SplatBits & BitMask) != 0)
2312 return SDValue();
2313 BitMask <<= 8;
2315 return DAG.getTargetConstant(Val, MVT::i64);
2318 default:
2319 llvm_unreachable("unexpected size for isVMOVSplat");
2320 break;
2323 return SDValue();
2326 /// getVMOVImm - If this is a build_vector of constants which can be
2327 /// formed by using a VMOV instruction of the specified element size,
2328 /// return the constant being splatted. The ByteSize field indicates the
2329 /// number of bytes of each element [1248].
2330 SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2331 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2332 APInt SplatBits, SplatUndef;
2333 unsigned SplatBitSize;
2334 bool HasAnyUndefs;
2335 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2336 HasAnyUndefs, ByteSize * 8))
2337 return SDValue();
2339 if (SplatBitSize > ByteSize * 8)
2340 return SDValue();
2342 return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2343 SplatBitSize, DAG);
2346 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
2347 /// instruction with the specified blocksize. (The order of the elements
2348 /// within each block of the vector is reversed.)
2349 static bool isVREVMask(ShuffleVectorSDNode *N, unsigned BlockSize) {
2350 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
2351 "Only possible block sizes for VREV are: 16, 32, 64");
2353 EVT VT = N->getValueType(0);
2354 unsigned NumElts = VT.getVectorNumElements();
2355 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2356 unsigned BlockElts = N->getMaskElt(0) + 1;
2358 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
2359 return false;
2361 for (unsigned i = 0; i < NumElts; ++i) {
2362 if ((unsigned) N->getMaskElt(i) !=
2363 (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
2364 return false;
2367 return true;
2370 static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2371 // Canonicalize all-zeros and all-ones vectors.
2372 ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode());
2373 if (ConstVal->isNullValue())
2374 return getZeroVector(VT, DAG, dl);
2375 if (ConstVal->isAllOnesValue())
2376 return getOnesVector(VT, DAG, dl);
2378 EVT CanonicalVT;
2379 if (VT.is64BitVector()) {
2380 switch (Val.getValueType().getSizeInBits()) {
2381 case 8: CanonicalVT = MVT::v8i8; break;
2382 case 16: CanonicalVT = MVT::v4i16; break;
2383 case 32: CanonicalVT = MVT::v2i32; break;
2384 case 64: CanonicalVT = MVT::v1i64; break;
2385 default: llvm_unreachable("unexpected splat element type"); break;
2387 } else {
2388 assert(VT.is128BitVector() && "unknown splat vector size");
2389 switch (Val.getValueType().getSizeInBits()) {
2390 case 8: CanonicalVT = MVT::v16i8; break;
2391 case 16: CanonicalVT = MVT::v8i16; break;
2392 case 32: CanonicalVT = MVT::v4i32; break;
2393 case 64: CanonicalVT = MVT::v2i64; break;
2394 default: llvm_unreachable("unexpected splat element type"); break;
2398 // Build a canonical splat for this value.
2399 SmallVector<SDValue, 8> Ops;
2400 Ops.assign(CanonicalVT.getVectorNumElements(), Val);
2401 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
2402 Ops.size());
2403 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
2406 // If this is a case we can't handle, return null and let the default
2407 // expansion code take care of it.
2408 static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
2409 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
2410 DebugLoc dl = Op.getDebugLoc();
2411 EVT VT = Op.getValueType();
2413 APInt SplatBits, SplatUndef;
2414 unsigned SplatBitSize;
2415 bool HasAnyUndefs;
2416 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
2417 SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
2418 SplatUndef.getZExtValue(), SplatBitSize, DAG);
2419 if (Val.getNode())
2420 return BuildSplat(Val, VT, DAG, dl);
2423 // If there are only 2 elements in a 128-bit vector, insert them into an
2424 // undef vector. This handles the common case for 128-bit vector argument
2425 // passing, where the insertions should be translated to subreg accesses
2426 // with no real instructions.
2427 if (VT.is128BitVector() && Op.getNumOperands() == 2) {
2428 SDValue Val = DAG.getUNDEF(VT);
2429 SDValue Op0 = Op.getOperand(0);
2430 SDValue Op1 = Op.getOperand(1);
2431 if (Op0.getOpcode() != ISD::UNDEF)
2432 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0,
2433 DAG.getIntPtrConstant(0));
2434 if (Op1.getOpcode() != ISD::UNDEF)
2435 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1,
2436 DAG.getIntPtrConstant(1));
2437 return Val;
2440 return SDValue();
2443 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2444 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2445 DebugLoc dl = Op.getDebugLoc();
2446 EVT VT = Op.getValueType();
2448 // Convert shuffles that are directly supported on NEON to target-specific
2449 // DAG nodes, instead of keeping them as shuffles and matching them again
2450 // during code selection. This is more efficient and avoids the possibility
2451 // of inconsistencies between legalization and selection.
2452 // FIXME: floating-point vectors should be canonicalized to integer vectors
2453 // of the same time so that they get CSEd properly.
2454 if (SVN->isSplat()) {
2455 int Lane = SVN->getSplatIndex();
2456 SDValue Op0 = SVN->getOperand(0);
2457 if (Lane == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) {
2458 return DAG.getNode(ARMISD::VDUP, dl, VT, Op0.getOperand(0));
2460 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, SVN->getOperand(0),
2461 DAG.getConstant(Lane, MVT::i32));
2463 if (isVREVMask(SVN, 64))
2464 return DAG.getNode(ARMISD::VREV64, dl, VT, SVN->getOperand(0));
2465 if (isVREVMask(SVN, 32))
2466 return DAG.getNode(ARMISD::VREV32, dl, VT, SVN->getOperand(0));
2467 if (isVREVMask(SVN, 16))
2468 return DAG.getNode(ARMISD::VREV16, dl, VT, SVN->getOperand(0));
2470 return SDValue();
2473 static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
2474 return Op;
2477 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
2478 EVT VT = Op.getValueType();
2479 DebugLoc dl = Op.getDebugLoc();
2480 assert((VT == MVT::i8 || VT == MVT::i16) &&
2481 "unexpected type for custom-lowering vector extract");
2482 SDValue Vec = Op.getOperand(0);
2483 SDValue Lane = Op.getOperand(1);
2484 Op = DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
2485 Op = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Op, DAG.getValueType(VT));
2486 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
2489 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
2490 // The only time a CONCAT_VECTORS operation can have legal types is when
2491 // two 64-bit vectors are concatenated to a 128-bit vector.
2492 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
2493 "unexpected CONCAT_VECTORS");
2494 DebugLoc dl = Op.getDebugLoc();
2495 SDValue Val = DAG.getUNDEF(MVT::v2f64);
2496 SDValue Op0 = Op.getOperand(0);
2497 SDValue Op1 = Op.getOperand(1);
2498 if (Op0.getOpcode() != ISD::UNDEF)
2499 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2500 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
2501 DAG.getIntPtrConstant(0));
2502 if (Op1.getOpcode() != ISD::UNDEF)
2503 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2504 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
2505 DAG.getIntPtrConstant(1));
2506 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
2509 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
2510 switch (Op.getOpcode()) {
2511 default: llvm_unreachable("Don't know how to custom lower this!");
2512 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2513 case ISD::GlobalAddress:
2514 return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
2515 LowerGlobalAddressELF(Op, DAG);
2516 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2517 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, Subtarget);
2518 case ISD::BR_CC: return LowerBR_CC(Op, DAG, Subtarget);
2519 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
2520 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
2521 case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2522 case ISD::SINT_TO_FP:
2523 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
2524 case ISD::FP_TO_SINT:
2525 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
2526 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
2527 case ISD::RETURNADDR: break;
2528 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
2529 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2530 case ISD::INTRINSIC_VOID:
2531 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
2532 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2533 case ISD::BIT_CONVERT: return ExpandBIT_CONVERT(Op.getNode(), DAG);
2534 case ISD::SHL:
2535 case ISD::SRL:
2536 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
2537 case ISD::VSETCC: return LowerVSETCC(Op, DAG);
2538 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
2539 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2540 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
2541 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2542 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
2544 return SDValue();
2547 /// ReplaceNodeResults - Replace the results of node with an illegal result
2548 /// type with new values built out of custom code.
2549 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
2550 SmallVectorImpl<SDValue>&Results,
2551 SelectionDAG &DAG) {
2552 switch (N->getOpcode()) {
2553 default:
2554 llvm_unreachable("Don't know how to custom expand this!");
2555 return;
2556 case ISD::BIT_CONVERT:
2557 Results.push_back(ExpandBIT_CONVERT(N, DAG));
2558 return;
2559 case ISD::SRL:
2560 case ISD::SRA: {
2561 SDValue Res = LowerShift(N, DAG, Subtarget);
2562 if (Res.getNode())
2563 Results.push_back(Res);
2564 return;
2569 //===----------------------------------------------------------------------===//
2570 // ARM Scheduler Hooks
2571 //===----------------------------------------------------------------------===//
2573 MachineBasicBlock *
2574 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
2575 MachineBasicBlock *BB) const {
2576 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2577 DebugLoc dl = MI->getDebugLoc();
2578 switch (MI->getOpcode()) {
2579 default:
2580 llvm_unreachable("Unexpected instr type to insert");
2581 case ARM::tMOVCCr_pseudo: {
2582 // To "insert" a SELECT_CC instruction, we actually have to insert the
2583 // diamond control-flow pattern. The incoming instruction knows the
2584 // destination vreg to set, the condition code register to branch on, the
2585 // true/false values to select between, and a branch opcode to use.
2586 const BasicBlock *LLVM_BB = BB->getBasicBlock();
2587 MachineFunction::iterator It = BB;
2588 ++It;
2590 // thisMBB:
2591 // ...
2592 // TrueVal = ...
2593 // cmpTY ccX, r1, r2
2594 // bCC copy1MBB
2595 // fallthrough --> copy0MBB
2596 MachineBasicBlock *thisMBB = BB;
2597 MachineFunction *F = BB->getParent();
2598 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
2599 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
2600 BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
2601 .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
2602 F->insert(It, copy0MBB);
2603 F->insert(It, sinkMBB);
2604 // Update machine-CFG edges by first adding all successors of the current
2605 // block to the new block which will contain the Phi node for the select.
2606 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2607 e = BB->succ_end(); i != e; ++i)
2608 sinkMBB->addSuccessor(*i);
2609 // Next, remove all successors of the current block, and add the true
2610 // and fallthrough blocks as its successors.
2611 while(!BB->succ_empty())
2612 BB->removeSuccessor(BB->succ_begin());
2613 BB->addSuccessor(copy0MBB);
2614 BB->addSuccessor(sinkMBB);
2616 // copy0MBB:
2617 // %FalseValue = ...
2618 // # fallthrough to sinkMBB
2619 BB = copy0MBB;
2621 // Update machine-CFG edges
2622 BB->addSuccessor(sinkMBB);
2624 // sinkMBB:
2625 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2626 // ...
2627 BB = sinkMBB;
2628 BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
2629 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
2630 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2632 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
2633 return BB;
2636 case ARM::tANDsp:
2637 case ARM::tADDspr_:
2638 case ARM::tSUBspi_:
2639 case ARM::t2SUBrSPi_:
2640 case ARM::t2SUBrSPi12_:
2641 case ARM::t2SUBrSPs_: {
2642 MachineFunction *MF = BB->getParent();
2643 unsigned DstReg = MI->getOperand(0).getReg();
2644 unsigned SrcReg = MI->getOperand(1).getReg();
2645 bool DstIsDead = MI->getOperand(0).isDead();
2646 bool SrcIsKill = MI->getOperand(1).isKill();
2648 if (SrcReg != ARM::SP) {
2649 // Copy the source to SP from virtual register.
2650 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
2651 unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
2652 ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
2653 BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP)
2654 .addReg(SrcReg, getKillRegState(SrcIsKill));
2657 unsigned OpOpc = 0;
2658 bool NeedPred = false, NeedCC = false, NeedOp3 = false;
2659 switch (MI->getOpcode()) {
2660 default:
2661 llvm_unreachable("Unexpected pseudo instruction!");
2662 case ARM::tANDsp:
2663 OpOpc = ARM::tAND;
2664 NeedPred = true;
2665 break;
2666 case ARM::tADDspr_:
2667 OpOpc = ARM::tADDspr;
2668 break;
2669 case ARM::tSUBspi_:
2670 OpOpc = ARM::tSUBspi;
2671 break;
2672 case ARM::t2SUBrSPi_:
2673 OpOpc = ARM::t2SUBrSPi;
2674 NeedPred = true; NeedCC = true;
2675 break;
2676 case ARM::t2SUBrSPi12_:
2677 OpOpc = ARM::t2SUBrSPi12;
2678 NeedPred = true;
2679 break;
2680 case ARM::t2SUBrSPs_:
2681 OpOpc = ARM::t2SUBrSPs;
2682 NeedPred = true; NeedCC = true; NeedOp3 = true;
2683 break;
2685 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP);
2686 if (OpOpc == ARM::tAND)
2687 AddDefaultT1CC(MIB);
2688 MIB.addReg(ARM::SP);
2689 MIB.addOperand(MI->getOperand(2));
2690 if (NeedOp3)
2691 MIB.addOperand(MI->getOperand(3));
2692 if (NeedPred)
2693 AddDefaultPred(MIB);
2694 if (NeedCC)
2695 AddDefaultCC(MIB);
2697 // Copy the result from SP to virtual register.
2698 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
2699 unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
2700 ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
2701 BuildMI(BB, dl, TII->get(CopyOpc))
2702 .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
2703 .addReg(ARM::SP);
2704 MF->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
2705 return BB;
2710 //===----------------------------------------------------------------------===//
2711 // ARM Optimization Hooks
2712 //===----------------------------------------------------------------------===//
2714 static
2715 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
2716 TargetLowering::DAGCombinerInfo &DCI) {
2717 SelectionDAG &DAG = DCI.DAG;
2718 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2719 EVT VT = N->getValueType(0);
2720 unsigned Opc = N->getOpcode();
2721 bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
2722 SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
2723 SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
2724 ISD::CondCode CC = ISD::SETCC_INVALID;
2726 if (isSlctCC) {
2727 CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
2728 } else {
2729 SDValue CCOp = Slct.getOperand(0);
2730 if (CCOp.getOpcode() == ISD::SETCC)
2731 CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
2734 bool DoXform = false;
2735 bool InvCC = false;
2736 assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
2737 "Bad input!");
2739 if (LHS.getOpcode() == ISD::Constant &&
2740 cast<ConstantSDNode>(LHS)->isNullValue()) {
2741 DoXform = true;
2742 } else if (CC != ISD::SETCC_INVALID &&
2743 RHS.getOpcode() == ISD::Constant &&
2744 cast<ConstantSDNode>(RHS)->isNullValue()) {
2745 std::swap(LHS, RHS);
2746 SDValue Op0 = Slct.getOperand(0);
2747 EVT OpVT = isSlctCC ? Op0.getValueType() :
2748 Op0.getOperand(0).getValueType();
2749 bool isInt = OpVT.isInteger();
2750 CC = ISD::getSetCCInverse(CC, isInt);
2752 if (!TLI.isCondCodeLegal(CC, OpVT))
2753 return SDValue(); // Inverse operator isn't legal.
2755 DoXform = true;
2756 InvCC = true;
2759 if (DoXform) {
2760 SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
2761 if (isSlctCC)
2762 return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
2763 Slct.getOperand(0), Slct.getOperand(1), CC);
2764 SDValue CCOp = Slct.getOperand(0);
2765 if (InvCC)
2766 CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
2767 CCOp.getOperand(0), CCOp.getOperand(1), CC);
2768 return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
2769 CCOp, OtherOp, Result);
2771 return SDValue();
2774 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
2775 static SDValue PerformADDCombine(SDNode *N,
2776 TargetLowering::DAGCombinerInfo &DCI) {
2777 // added by evan in r37685 with no testcase.
2778 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2780 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
2781 if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
2782 SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
2783 if (Result.getNode()) return Result;
2785 if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2786 SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2787 if (Result.getNode()) return Result;
2790 return SDValue();
2793 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
2794 static SDValue PerformSUBCombine(SDNode *N,
2795 TargetLowering::DAGCombinerInfo &DCI) {
2796 // added by evan in r37685 with no testcase.
2797 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2799 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
2800 if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2801 SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2802 if (Result.getNode()) return Result;
2805 return SDValue();
2809 /// PerformFMRRDCombine - Target-specific dag combine xforms for ARMISD::FMRRD.
2810 static SDValue PerformFMRRDCombine(SDNode *N,
2811 TargetLowering::DAGCombinerInfo &DCI) {
2812 // fmrrd(fmdrr x, y) -> x,y
2813 SDValue InDouble = N->getOperand(0);
2814 if (InDouble.getOpcode() == ARMISD::FMDRR)
2815 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
2816 return SDValue();
2819 /// getVShiftImm - Check if this is a valid build_vector for the immediate
2820 /// operand of a vector shift operation, where all the elements of the
2821 /// build_vector must have the same constant integer value.
2822 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
2823 // Ignore bit_converts.
2824 while (Op.getOpcode() == ISD::BIT_CONVERT)
2825 Op = Op.getOperand(0);
2826 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
2827 APInt SplatBits, SplatUndef;
2828 unsigned SplatBitSize;
2829 bool HasAnyUndefs;
2830 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2831 HasAnyUndefs, ElementBits) ||
2832 SplatBitSize > ElementBits)
2833 return false;
2834 Cnt = SplatBits.getSExtValue();
2835 return true;
2838 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
2839 /// operand of a vector shift left operation. That value must be in the range:
2840 /// 0 <= Value < ElementBits for a left shift; or
2841 /// 0 <= Value <= ElementBits for a long left shift.
2842 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
2843 assert(VT.isVector() && "vector shift count is not a vector type");
2844 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2845 if (! getVShiftImm(Op, ElementBits, Cnt))
2846 return false;
2847 return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
2850 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
2851 /// operand of a vector shift right operation. For a shift opcode, the value
2852 /// is positive, but for an intrinsic the value count must be negative. The
2853 /// absolute value must be in the range:
2854 /// 1 <= |Value| <= ElementBits for a right shift; or
2855 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
2856 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
2857 int64_t &Cnt) {
2858 assert(VT.isVector() && "vector shift count is not a vector type");
2859 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2860 if (! getVShiftImm(Op, ElementBits, Cnt))
2861 return false;
2862 if (isIntrinsic)
2863 Cnt = -Cnt;
2864 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
2867 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
2868 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
2869 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2870 switch (IntNo) {
2871 default:
2872 // Don't do anything for most intrinsics.
2873 break;
2875 // Vector shifts: check for immediate versions and lower them.
2876 // Note: This is done during DAG combining instead of DAG legalizing because
2877 // the build_vectors for 64-bit vector element shift counts are generally
2878 // not legal, and it is hard to see their values after they get legalized to
2879 // loads from a constant pool.
2880 case Intrinsic::arm_neon_vshifts:
2881 case Intrinsic::arm_neon_vshiftu:
2882 case Intrinsic::arm_neon_vshiftls:
2883 case Intrinsic::arm_neon_vshiftlu:
2884 case Intrinsic::arm_neon_vshiftn:
2885 case Intrinsic::arm_neon_vrshifts:
2886 case Intrinsic::arm_neon_vrshiftu:
2887 case Intrinsic::arm_neon_vrshiftn:
2888 case Intrinsic::arm_neon_vqshifts:
2889 case Intrinsic::arm_neon_vqshiftu:
2890 case Intrinsic::arm_neon_vqshiftsu:
2891 case Intrinsic::arm_neon_vqshiftns:
2892 case Intrinsic::arm_neon_vqshiftnu:
2893 case Intrinsic::arm_neon_vqshiftnsu:
2894 case Intrinsic::arm_neon_vqrshiftns:
2895 case Intrinsic::arm_neon_vqrshiftnu:
2896 case Intrinsic::arm_neon_vqrshiftnsu: {
2897 EVT VT = N->getOperand(1).getValueType();
2898 int64_t Cnt;
2899 unsigned VShiftOpc = 0;
2901 switch (IntNo) {
2902 case Intrinsic::arm_neon_vshifts:
2903 case Intrinsic::arm_neon_vshiftu:
2904 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
2905 VShiftOpc = ARMISD::VSHL;
2906 break;
2908 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
2909 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
2910 ARMISD::VSHRs : ARMISD::VSHRu);
2911 break;
2913 return SDValue();
2915 case Intrinsic::arm_neon_vshiftls:
2916 case Intrinsic::arm_neon_vshiftlu:
2917 if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
2918 break;
2919 llvm_unreachable("invalid shift count for vshll intrinsic");
2921 case Intrinsic::arm_neon_vrshifts:
2922 case Intrinsic::arm_neon_vrshiftu:
2923 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
2924 break;
2925 return SDValue();
2927 case Intrinsic::arm_neon_vqshifts:
2928 case Intrinsic::arm_neon_vqshiftu:
2929 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2930 break;
2931 return SDValue();
2933 case Intrinsic::arm_neon_vqshiftsu:
2934 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2935 break;
2936 llvm_unreachable("invalid shift count for vqshlu intrinsic");
2938 case Intrinsic::arm_neon_vshiftn:
2939 case Intrinsic::arm_neon_vrshiftn:
2940 case Intrinsic::arm_neon_vqshiftns:
2941 case Intrinsic::arm_neon_vqshiftnu:
2942 case Intrinsic::arm_neon_vqshiftnsu:
2943 case Intrinsic::arm_neon_vqrshiftns:
2944 case Intrinsic::arm_neon_vqrshiftnu:
2945 case Intrinsic::arm_neon_vqrshiftnsu:
2946 // Narrowing shifts require an immediate right shift.
2947 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
2948 break;
2949 llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
2951 default:
2952 llvm_unreachable("unhandled vector shift");
2955 switch (IntNo) {
2956 case Intrinsic::arm_neon_vshifts:
2957 case Intrinsic::arm_neon_vshiftu:
2958 // Opcode already set above.
2959 break;
2960 case Intrinsic::arm_neon_vshiftls:
2961 case Intrinsic::arm_neon_vshiftlu:
2962 if (Cnt == VT.getVectorElementType().getSizeInBits())
2963 VShiftOpc = ARMISD::VSHLLi;
2964 else
2965 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
2966 ARMISD::VSHLLs : ARMISD::VSHLLu);
2967 break;
2968 case Intrinsic::arm_neon_vshiftn:
2969 VShiftOpc = ARMISD::VSHRN; break;
2970 case Intrinsic::arm_neon_vrshifts:
2971 VShiftOpc = ARMISD::VRSHRs; break;
2972 case Intrinsic::arm_neon_vrshiftu:
2973 VShiftOpc = ARMISD::VRSHRu; break;
2974 case Intrinsic::arm_neon_vrshiftn:
2975 VShiftOpc = ARMISD::VRSHRN; break;
2976 case Intrinsic::arm_neon_vqshifts:
2977 VShiftOpc = ARMISD::VQSHLs; break;
2978 case Intrinsic::arm_neon_vqshiftu:
2979 VShiftOpc = ARMISD::VQSHLu; break;
2980 case Intrinsic::arm_neon_vqshiftsu:
2981 VShiftOpc = ARMISD::VQSHLsu; break;
2982 case Intrinsic::arm_neon_vqshiftns:
2983 VShiftOpc = ARMISD::VQSHRNs; break;
2984 case Intrinsic::arm_neon_vqshiftnu:
2985 VShiftOpc = ARMISD::VQSHRNu; break;
2986 case Intrinsic::arm_neon_vqshiftnsu:
2987 VShiftOpc = ARMISD::VQSHRNsu; break;
2988 case Intrinsic::arm_neon_vqrshiftns:
2989 VShiftOpc = ARMISD::VQRSHRNs; break;
2990 case Intrinsic::arm_neon_vqrshiftnu:
2991 VShiftOpc = ARMISD::VQRSHRNu; break;
2992 case Intrinsic::arm_neon_vqrshiftnsu:
2993 VShiftOpc = ARMISD::VQRSHRNsu; break;
2996 return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
2997 N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
3000 case Intrinsic::arm_neon_vshiftins: {
3001 EVT VT = N->getOperand(1).getValueType();
3002 int64_t Cnt;
3003 unsigned VShiftOpc = 0;
3005 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
3006 VShiftOpc = ARMISD::VSLI;
3007 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
3008 VShiftOpc = ARMISD::VSRI;
3009 else {
3010 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
3013 return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
3014 N->getOperand(1), N->getOperand(2),
3015 DAG.getConstant(Cnt, MVT::i32));
3018 case Intrinsic::arm_neon_vqrshifts:
3019 case Intrinsic::arm_neon_vqrshiftu:
3020 // No immediate versions of these to check for.
3021 break;
3024 return SDValue();
3027 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
3028 /// lowers them. As with the vector shift intrinsics, this is done during DAG
3029 /// combining instead of DAG legalizing because the build_vectors for 64-bit
3030 /// vector element shift counts are generally not legal, and it is hard to see
3031 /// their values after they get legalized to loads from a constant pool.
3032 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
3033 const ARMSubtarget *ST) {
3034 EVT VT = N->getValueType(0);
3036 // Nothing to be done for scalar shifts.
3037 if (! VT.isVector())
3038 return SDValue();
3040 assert(ST->hasNEON() && "unexpected vector shift");
3041 int64_t Cnt;
3043 switch (N->getOpcode()) {
3044 default: llvm_unreachable("unexpected shift opcode");
3046 case ISD::SHL:
3047 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
3048 return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
3049 DAG.getConstant(Cnt, MVT::i32));
3050 break;
3052 case ISD::SRA:
3053 case ISD::SRL:
3054 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
3055 unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
3056 ARMISD::VSHRs : ARMISD::VSHRu);
3057 return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
3058 DAG.getConstant(Cnt, MVT::i32));
3061 return SDValue();
3064 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
3065 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
3066 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
3067 const ARMSubtarget *ST) {
3068 SDValue N0 = N->getOperand(0);
3070 // Check for sign- and zero-extensions of vector extract operations of 8-
3071 // and 16-bit vector elements. NEON supports these directly. They are
3072 // handled during DAG combining because type legalization will promote them
3073 // to 32-bit types and it is messy to recognize the operations after that.
3074 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3075 SDValue Vec = N0.getOperand(0);
3076 SDValue Lane = N0.getOperand(1);
3077 EVT VT = N->getValueType(0);
3078 EVT EltVT = N0.getValueType();
3079 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3081 if (VT == MVT::i32 &&
3082 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
3083 TLI.isTypeLegal(Vec.getValueType())) {
3085 unsigned Opc = 0;
3086 switch (N->getOpcode()) {
3087 default: llvm_unreachable("unexpected opcode");
3088 case ISD::SIGN_EXTEND:
3089 Opc = ARMISD::VGETLANEs;
3090 break;
3091 case ISD::ZERO_EXTEND:
3092 case ISD::ANY_EXTEND:
3093 Opc = ARMISD::VGETLANEu;
3094 break;
3096 return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
3100 return SDValue();
3103 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
3104 DAGCombinerInfo &DCI) const {
3105 switch (N->getOpcode()) {
3106 default: break;
3107 case ISD::ADD: return PerformADDCombine(N, DCI);
3108 case ISD::SUB: return PerformSUBCombine(N, DCI);
3109 case ARMISD::FMRRD: return PerformFMRRDCombine(N, DCI);
3110 case ISD::INTRINSIC_WO_CHAIN:
3111 return PerformIntrinsicCombine(N, DCI.DAG);
3112 case ISD::SHL:
3113 case ISD::SRA:
3114 case ISD::SRL:
3115 return PerformShiftCombine(N, DCI.DAG, Subtarget);
3116 case ISD::SIGN_EXTEND:
3117 case ISD::ZERO_EXTEND:
3118 case ISD::ANY_EXTEND:
3119 return PerformExtendCombine(N, DCI.DAG, Subtarget);
3121 return SDValue();
3124 bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
3125 if (!Subtarget->hasV6Ops())
3126 // Pre-v6 does not support unaligned mem access.
3127 return false;
3128 else if (!Subtarget->hasV6Ops()) {
3129 // v6 may or may not support unaligned mem access.
3130 if (!Subtarget->isTargetDarwin())
3131 return false;
3134 switch (VT.getSimpleVT().SimpleTy) {
3135 default:
3136 return false;
3137 case MVT::i8:
3138 case MVT::i16:
3139 case MVT::i32:
3140 return true;
3141 // FIXME: VLD1 etc with standard alignment is legal.
3145 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
3146 if (V < 0)
3147 return false;
3149 unsigned Scale = 1;
3150 switch (VT.getSimpleVT().SimpleTy) {
3151 default: return false;
3152 case MVT::i1:
3153 case MVT::i8:
3154 // Scale == 1;
3155 break;
3156 case MVT::i16:
3157 // Scale == 2;
3158 Scale = 2;
3159 break;
3160 case MVT::i32:
3161 // Scale == 4;
3162 Scale = 4;
3163 break;
3166 if ((V & (Scale - 1)) != 0)
3167 return false;
3168 V /= Scale;
3169 return V == (V & ((1LL << 5) - 1));
3172 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
3173 const ARMSubtarget *Subtarget) {
3174 bool isNeg = false;
3175 if (V < 0) {
3176 isNeg = true;
3177 V = - V;
3180 switch (VT.getSimpleVT().SimpleTy) {
3181 default: return false;
3182 case MVT::i1:
3183 case MVT::i8:
3184 case MVT::i16:
3185 case MVT::i32:
3186 // + imm12 or - imm8
3187 if (isNeg)
3188 return V == (V & ((1LL << 8) - 1));
3189 return V == (V & ((1LL << 12) - 1));
3190 case MVT::f32:
3191 case MVT::f64:
3192 // Same as ARM mode. FIXME: NEON?
3193 if (!Subtarget->hasVFP2())
3194 return false;
3195 if ((V & 3) != 0)
3196 return false;
3197 V >>= 2;
3198 return V == (V & ((1LL << 8) - 1));
3202 /// isLegalAddressImmediate - Return true if the integer value can be used
3203 /// as the offset of the target addressing mode for load / store of the
3204 /// given type.
3205 static bool isLegalAddressImmediate(int64_t V, EVT VT,
3206 const ARMSubtarget *Subtarget) {
3207 if (V == 0)
3208 return true;
3210 if (!VT.isSimple())
3211 return false;
3213 if (Subtarget->isThumb1Only())
3214 return isLegalT1AddressImmediate(V, VT);
3215 else if (Subtarget->isThumb2())
3216 return isLegalT2AddressImmediate(V, VT, Subtarget);
3218 // ARM mode.
3219 if (V < 0)
3220 V = - V;
3221 switch (VT.getSimpleVT().SimpleTy) {
3222 default: return false;
3223 case MVT::i1:
3224 case MVT::i8:
3225 case MVT::i32:
3226 // +- imm12
3227 return V == (V & ((1LL << 12) - 1));
3228 case MVT::i16:
3229 // +- imm8
3230 return V == (V & ((1LL << 8) - 1));
3231 case MVT::f32:
3232 case MVT::f64:
3233 if (!Subtarget->hasVFP2()) // FIXME: NEON?
3234 return false;
3235 if ((V & 3) != 0)
3236 return false;
3237 V >>= 2;
3238 return V == (V & ((1LL << 8) - 1));
3242 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
3243 EVT VT) const {
3244 int Scale = AM.Scale;
3245 if (Scale < 0)
3246 return false;
3248 switch (VT.getSimpleVT().SimpleTy) {
3249 default: return false;
3250 case MVT::i1:
3251 case MVT::i8:
3252 case MVT::i16:
3253 case MVT::i32:
3254 if (Scale == 1)
3255 return true;
3256 // r + r << imm
3257 Scale = Scale & ~1;
3258 return Scale == 2 || Scale == 4 || Scale == 8;
3259 case MVT::i64:
3260 // r + r
3261 if (((unsigned)AM.HasBaseReg + Scale) <= 2)
3262 return true;
3263 return false;
3264 case MVT::isVoid:
3265 // Note, we allow "void" uses (basically, uses that aren't loads or
3266 // stores), because arm allows folding a scale into many arithmetic
3267 // operations. This should be made more precise and revisited later.
3269 // Allow r << imm, but the imm has to be a multiple of two.
3270 if (Scale & 1) return false;
3271 return isPowerOf2_32(Scale);
3275 /// isLegalAddressingMode - Return true if the addressing mode represented
3276 /// by AM is legal for this target, for a load/store of the specified type.
3277 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3278 const Type *Ty) const {
3279 EVT VT = getValueType(Ty, true);
3280 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
3281 return false;
3283 // Can never fold addr of global into load/store.
3284 if (AM.BaseGV)
3285 return false;
3287 switch (AM.Scale) {
3288 case 0: // no scale reg, must be "r+i" or "r", or "i".
3289 break;
3290 case 1:
3291 if (Subtarget->isThumb1Only())
3292 return false;
3293 // FALL THROUGH.
3294 default:
3295 // ARM doesn't support any R+R*scale+imm addr modes.
3296 if (AM.BaseOffs)
3297 return false;
3299 if (!VT.isSimple())
3300 return false;
3302 if (Subtarget->isThumb2())
3303 return isLegalT2ScaledAddressingMode(AM, VT);
3305 int Scale = AM.Scale;
3306 switch (VT.getSimpleVT().SimpleTy) {
3307 default: return false;
3308 case MVT::i1:
3309 case MVT::i8:
3310 case MVT::i32:
3311 if (Scale < 0) Scale = -Scale;
3312 if (Scale == 1)
3313 return true;
3314 // r + r << imm
3315 return isPowerOf2_32(Scale & ~1);
3316 case MVT::i16:
3317 case MVT::i64:
3318 // r + r
3319 if (((unsigned)AM.HasBaseReg + Scale) <= 2)
3320 return true;
3321 return false;
3323 case MVT::isVoid:
3324 // Note, we allow "void" uses (basically, uses that aren't loads or
3325 // stores), because arm allows folding a scale into many arithmetic
3326 // operations. This should be made more precise and revisited later.
3328 // Allow r << imm, but the imm has to be a multiple of two.
3329 if (Scale & 1) return false;
3330 return isPowerOf2_32(Scale);
3332 break;
3334 return true;
3337 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
3338 bool isSEXTLoad, SDValue &Base,
3339 SDValue &Offset, bool &isInc,
3340 SelectionDAG &DAG) {
3341 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
3342 return false;
3344 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
3345 // AddressingMode 3
3346 Base = Ptr->getOperand(0);
3347 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3348 int RHSC = (int)RHS->getZExtValue();
3349 if (RHSC < 0 && RHSC > -256) {
3350 assert(Ptr->getOpcode() == ISD::ADD);
3351 isInc = false;
3352 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3353 return true;
3356 isInc = (Ptr->getOpcode() == ISD::ADD);
3357 Offset = Ptr->getOperand(1);
3358 return true;
3359 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
3360 // AddressingMode 2
3361 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3362 int RHSC = (int)RHS->getZExtValue();
3363 if (RHSC < 0 && RHSC > -0x1000) {
3364 assert(Ptr->getOpcode() == ISD::ADD);
3365 isInc = false;
3366 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3367 Base = Ptr->getOperand(0);
3368 return true;
3372 if (Ptr->getOpcode() == ISD::ADD) {
3373 isInc = true;
3374 ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
3375 if (ShOpcVal != ARM_AM::no_shift) {
3376 Base = Ptr->getOperand(1);
3377 Offset = Ptr->getOperand(0);
3378 } else {
3379 Base = Ptr->getOperand(0);
3380 Offset = Ptr->getOperand(1);
3382 return true;
3385 isInc = (Ptr->getOpcode() == ISD::ADD);
3386 Base = Ptr->getOperand(0);
3387 Offset = Ptr->getOperand(1);
3388 return true;
3391 // FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
3392 return false;
3395 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
3396 bool isSEXTLoad, SDValue &Base,
3397 SDValue &Offset, bool &isInc,
3398 SelectionDAG &DAG) {
3399 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
3400 return false;
3402 Base = Ptr->getOperand(0);
3403 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3404 int RHSC = (int)RHS->getZExtValue();
3405 if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
3406 assert(Ptr->getOpcode() == ISD::ADD);
3407 isInc = false;
3408 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3409 return true;
3410 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
3411 isInc = Ptr->getOpcode() == ISD::ADD;
3412 Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
3413 return true;
3417 return false;
3420 /// getPreIndexedAddressParts - returns true by value, base pointer and
3421 /// offset pointer and addressing mode by reference if the node's address
3422 /// can be legally represented as pre-indexed load / store address.
3423 bool
3424 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
3425 SDValue &Offset,
3426 ISD::MemIndexedMode &AM,
3427 SelectionDAG &DAG) const {
3428 if (Subtarget->isThumb1Only())
3429 return false;
3431 EVT VT;
3432 SDValue Ptr;
3433 bool isSEXTLoad = false;
3434 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3435 Ptr = LD->getBasePtr();
3436 VT = LD->getMemoryVT();
3437 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3438 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3439 Ptr = ST->getBasePtr();
3440 VT = ST->getMemoryVT();
3441 } else
3442 return false;
3444 bool isInc;
3445 bool isLegal = false;
3446 if (Subtarget->isThumb2())
3447 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3448 Offset, isInc, DAG);
3449 else
3450 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3451 Offset, isInc, DAG);
3452 if (!isLegal)
3453 return false;
3455 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
3456 return true;
3459 /// getPostIndexedAddressParts - returns true by value, base pointer and
3460 /// offset pointer and addressing mode by reference if this node can be
3461 /// combined with a load / store to form a post-indexed load / store.
3462 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
3463 SDValue &Base,
3464 SDValue &Offset,
3465 ISD::MemIndexedMode &AM,
3466 SelectionDAG &DAG) const {
3467 if (Subtarget->isThumb1Only())
3468 return false;
3470 EVT VT;
3471 SDValue Ptr;
3472 bool isSEXTLoad = false;
3473 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3474 VT = LD->getMemoryVT();
3475 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3476 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3477 VT = ST->getMemoryVT();
3478 } else
3479 return false;
3481 bool isInc;
3482 bool isLegal = false;
3483 if (Subtarget->isThumb2())
3484 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3485 isInc, DAG);
3486 else
3487 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3488 isInc, DAG);
3489 if (!isLegal)
3490 return false;
3492 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
3493 return true;
3496 void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
3497 const APInt &Mask,
3498 APInt &KnownZero,
3499 APInt &KnownOne,
3500 const SelectionDAG &DAG,
3501 unsigned Depth) const {
3502 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3503 switch (Op.getOpcode()) {
3504 default: break;
3505 case ARMISD::CMOV: {
3506 // Bits are known zero/one if known on the LHS and RHS.
3507 DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
3508 if (KnownZero == 0 && KnownOne == 0) return;
3510 APInt KnownZeroRHS, KnownOneRHS;
3511 DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
3512 KnownZeroRHS, KnownOneRHS, Depth+1);
3513 KnownZero &= KnownZeroRHS;
3514 KnownOne &= KnownOneRHS;
3515 return;
3520 //===----------------------------------------------------------------------===//
3521 // ARM Inline Assembly Support
3522 //===----------------------------------------------------------------------===//
3524 /// getConstraintType - Given a constraint letter, return the type of
3525 /// constraint it is for this target.
3526 ARMTargetLowering::ConstraintType
3527 ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
3528 if (Constraint.size() == 1) {
3529 switch (Constraint[0]) {
3530 default: break;
3531 case 'l': return C_RegisterClass;
3532 case 'w': return C_RegisterClass;
3535 return TargetLowering::getConstraintType(Constraint);
3538 std::pair<unsigned, const TargetRegisterClass*>
3539 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3540 EVT VT) const {
3541 if (Constraint.size() == 1) {
3542 // GCC RS6000 Constraint Letters
3543 switch (Constraint[0]) {
3544 case 'l':
3545 if (Subtarget->isThumb1Only())
3546 return std::make_pair(0U, ARM::tGPRRegisterClass);
3547 else
3548 return std::make_pair(0U, ARM::GPRRegisterClass);
3549 case 'r':
3550 return std::make_pair(0U, ARM::GPRRegisterClass);
3551 case 'w':
3552 if (VT == MVT::f32)
3553 return std::make_pair(0U, ARM::SPRRegisterClass);
3554 if (VT == MVT::f64)
3555 return std::make_pair(0U, ARM::DPRRegisterClass);
3556 break;
3559 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3562 std::vector<unsigned> ARMTargetLowering::
3563 getRegClassForInlineAsmConstraint(const std::string &Constraint,
3564 EVT VT) const {
3565 if (Constraint.size() != 1)
3566 return std::vector<unsigned>();
3568 switch (Constraint[0]) { // GCC ARM Constraint Letters
3569 default: break;
3570 case 'l':
3571 return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3572 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3574 case 'r':
3575 return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3576 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3577 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
3578 ARM::R12, ARM::LR, 0);
3579 case 'w':
3580 if (VT == MVT::f32)
3581 return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
3582 ARM::S4, ARM::S5, ARM::S6, ARM::S7,
3583 ARM::S8, ARM::S9, ARM::S10, ARM::S11,
3584 ARM::S12,ARM::S13,ARM::S14,ARM::S15,
3585 ARM::S16,ARM::S17,ARM::S18,ARM::S19,
3586 ARM::S20,ARM::S21,ARM::S22,ARM::S23,
3587 ARM::S24,ARM::S25,ARM::S26,ARM::S27,
3588 ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
3589 if (VT == MVT::f64)
3590 return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
3591 ARM::D4, ARM::D5, ARM::D6, ARM::D7,
3592 ARM::D8, ARM::D9, ARM::D10,ARM::D11,
3593 ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
3594 break;
3597 return std::vector<unsigned>();
3600 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3601 /// vector. If it is invalid, don't add anything to Ops.
3602 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3603 char Constraint,
3604 bool hasMemory,
3605 std::vector<SDValue>&Ops,
3606 SelectionDAG &DAG) const {
3607 SDValue Result(0, 0);
3609 switch (Constraint) {
3610 default: break;
3611 case 'I': case 'J': case 'K': case 'L':
3612 case 'M': case 'N': case 'O':
3613 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3614 if (!C)
3615 return;
3617 int64_t CVal64 = C->getSExtValue();
3618 int CVal = (int) CVal64;
3619 // None of these constraints allow values larger than 32 bits. Check
3620 // that the value fits in an int.
3621 if (CVal != CVal64)
3622 return;
3624 switch (Constraint) {
3625 case 'I':
3626 if (Subtarget->isThumb1Only()) {
3627 // This must be a constant between 0 and 255, for ADD
3628 // immediates.
3629 if (CVal >= 0 && CVal <= 255)
3630 break;
3631 } else if (Subtarget->isThumb2()) {
3632 // A constant that can be used as an immediate value in a
3633 // data-processing instruction.
3634 if (ARM_AM::getT2SOImmVal(CVal) != -1)
3635 break;
3636 } else {
3637 // A constant that can be used as an immediate value in a
3638 // data-processing instruction.
3639 if (ARM_AM::getSOImmVal(CVal) != -1)
3640 break;
3642 return;
3644 case 'J':
3645 if (Subtarget->isThumb()) { // FIXME thumb2
3646 // This must be a constant between -255 and -1, for negated ADD
3647 // immediates. This can be used in GCC with an "n" modifier that
3648 // prints the negated value, for use with SUB instructions. It is
3649 // not useful otherwise but is implemented for compatibility.
3650 if (CVal >= -255 && CVal <= -1)
3651 break;
3652 } else {
3653 // This must be a constant between -4095 and 4095. It is not clear
3654 // what this constraint is intended for. Implemented for
3655 // compatibility with GCC.
3656 if (CVal >= -4095 && CVal <= 4095)
3657 break;
3659 return;
3661 case 'K':
3662 if (Subtarget->isThumb1Only()) {
3663 // A 32-bit value where only one byte has a nonzero value. Exclude
3664 // zero to match GCC. This constraint is used by GCC internally for
3665 // constants that can be loaded with a move/shift combination.
3666 // It is not useful otherwise but is implemented for compatibility.
3667 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
3668 break;
3669 } else if (Subtarget->isThumb2()) {
3670 // A constant whose bitwise inverse can be used as an immediate
3671 // value in a data-processing instruction. This can be used in GCC
3672 // with a "B" modifier that prints the inverted value, for use with
3673 // BIC and MVN instructions. It is not useful otherwise but is
3674 // implemented for compatibility.
3675 if (ARM_AM::getT2SOImmVal(~CVal) != -1)
3676 break;
3677 } else {
3678 // A constant whose bitwise inverse can be used as an immediate
3679 // value in a data-processing instruction. This can be used in GCC
3680 // with a "B" modifier that prints the inverted value, for use with
3681 // BIC and MVN instructions. It is not useful otherwise but is
3682 // implemented for compatibility.
3683 if (ARM_AM::getSOImmVal(~CVal) != -1)
3684 break;
3686 return;
3688 case 'L':
3689 if (Subtarget->isThumb1Only()) {
3690 // This must be a constant between -7 and 7,
3691 // for 3-operand ADD/SUB immediate instructions.
3692 if (CVal >= -7 && CVal < 7)
3693 break;
3694 } else if (Subtarget->isThumb2()) {
3695 // A constant whose negation can be used as an immediate value in a
3696 // data-processing instruction. This can be used in GCC with an "n"
3697 // modifier that prints the negated value, for use with SUB
3698 // instructions. It is not useful otherwise but is implemented for
3699 // compatibility.
3700 if (ARM_AM::getT2SOImmVal(-CVal) != -1)
3701 break;
3702 } else {
3703 // A constant whose negation can be used as an immediate value in a
3704 // data-processing instruction. This can be used in GCC with an "n"
3705 // modifier that prints the negated value, for use with SUB
3706 // instructions. It is not useful otherwise but is implemented for
3707 // compatibility.
3708 if (ARM_AM::getSOImmVal(-CVal) != -1)
3709 break;
3711 return;
3713 case 'M':
3714 if (Subtarget->isThumb()) { // FIXME thumb2
3715 // This must be a multiple of 4 between 0 and 1020, for
3716 // ADD sp + immediate.
3717 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
3718 break;
3719 } else {
3720 // A power of two or a constant between 0 and 32. This is used in
3721 // GCC for the shift amount on shifted register operands, but it is
3722 // useful in general for any shift amounts.
3723 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
3724 break;
3726 return;
3728 case 'N':
3729 if (Subtarget->isThumb()) { // FIXME thumb2
3730 // This must be a constant between 0 and 31, for shift amounts.
3731 if (CVal >= 0 && CVal <= 31)
3732 break;
3734 return;
3736 case 'O':
3737 if (Subtarget->isThumb()) { // FIXME thumb2
3738 // This must be a multiple of 4 between -508 and 508, for
3739 // ADD/SUB sp = sp + immediate.
3740 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
3741 break;
3743 return;
3745 Result = DAG.getTargetConstant(CVal, Op.getValueType());
3746 break;
3749 if (Result.getNode()) {
3750 Ops.push_back(Result);
3751 return;
3753 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
3754 Ops, DAG);