1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
13 //===----------------------------------------------------------------------===//
15 #include "CPPTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instruction.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/PassManager.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FormattedStream.h"
32 #include "llvm/Support/Streams.h"
33 #include "llvm/Target/TargetRegistry.h"
34 #include "llvm/Config/config.h"
40 static cl::opt
<std::string
>
41 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
42 cl::value_desc("function name"));
55 static cl::opt
<WhatToGenerate
> GenerationType("cppgen", cl::Optional
,
56 cl::desc("Choose what kind of output to generate"),
59 clEnumValN(GenProgram
, "program", "Generate a complete program"),
60 clEnumValN(GenModule
, "module", "Generate a module definition"),
61 clEnumValN(GenContents
, "contents", "Generate contents of a module"),
62 clEnumValN(GenFunction
, "function", "Generate a function definition"),
63 clEnumValN(GenFunctions
,"functions", "Generate all function definitions"),
64 clEnumValN(GenInline
, "inline", "Generate an inline function"),
65 clEnumValN(GenVariable
, "variable", "Generate a variable definition"),
66 clEnumValN(GenType
, "type", "Generate a type definition"),
71 static cl::opt
<std::string
> NameToGenerate("cppfor", cl::Optional
,
72 cl::desc("Specify the name of the thing to generate"),
75 extern "C" void LLVMInitializeCppBackendTarget() {
76 // Register the target.
77 RegisterTargetMachine
<CPPTargetMachine
> X(TheCppBackendTarget
);
81 typedef std::vector
<const Type
*> TypeList
;
82 typedef std::map
<const Type
*,std::string
> TypeMap
;
83 typedef std::map
<const Value
*,std::string
> ValueMap
;
84 typedef std::set
<std::string
> NameSet
;
85 typedef std::set
<const Type
*> TypeSet
;
86 typedef std::set
<const Value
*> ValueSet
;
87 typedef std::map
<const Value
*,std::string
> ForwardRefMap
;
89 /// CppWriter - This class is the main chunk of code that converts an LLVM
90 /// module to a C++ translation unit.
91 class CppWriter
: public ModulePass
{
92 formatted_raw_ostream
&Out
;
93 const Module
*TheModule
;
97 TypeMap UnresolvedTypes
;
100 TypeSet DefinedTypes
;
101 ValueSet DefinedValues
;
102 ForwardRefMap ForwardRefs
;
107 explicit CppWriter(formatted_raw_ostream
&o
) :
108 ModulePass(&ID
), Out(o
), uniqueNum(0), is_inline(false) {}
110 virtual const char *getPassName() const { return "C++ backend"; }
112 bool runOnModule(Module
&M
);
114 void printProgram(const std::string
& fname
, const std::string
& modName
);
115 void printModule(const std::string
& fname
, const std::string
& modName
);
116 void printContents(const std::string
& fname
, const std::string
& modName
);
117 void printFunction(const std::string
& fname
, const std::string
& funcName
);
118 void printFunctions();
119 void printInline(const std::string
& fname
, const std::string
& funcName
);
120 void printVariable(const std::string
& fname
, const std::string
& varName
);
121 void printType(const std::string
& fname
, const std::string
& typeName
);
123 void error(const std::string
& msg
);
126 void printLinkageType(GlobalValue::LinkageTypes LT
);
127 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes
);
128 void printCallingConv(unsigned cc
);
129 void printEscapedString(const std::string
& str
);
130 void printCFP(const ConstantFP
* CFP
);
132 std::string
getCppName(const Type
* val
);
133 inline void printCppName(const Type
* val
);
135 std::string
getCppName(const Value
* val
);
136 inline void printCppName(const Value
* val
);
138 void printAttributes(const AttrListPtr
&PAL
, const std::string
&name
);
139 bool printTypeInternal(const Type
* Ty
);
140 inline void printType(const Type
* Ty
);
141 void printTypes(const Module
* M
);
143 void printConstant(const Constant
*CPV
);
144 void printConstants(const Module
* M
);
146 void printVariableUses(const GlobalVariable
*GV
);
147 void printVariableHead(const GlobalVariable
*GV
);
148 void printVariableBody(const GlobalVariable
*GV
);
150 void printFunctionUses(const Function
*F
);
151 void printFunctionHead(const Function
*F
);
152 void printFunctionBody(const Function
*F
);
153 void printInstruction(const Instruction
*I
, const std::string
& bbname
);
154 std::string
getOpName(Value
*);
156 void printModuleBody();
159 static unsigned indent_level
= 0;
160 inline formatted_raw_ostream
& nl(formatted_raw_ostream
& Out
, int delta
= 0) {
162 if (delta
>= 0 || indent_level
>= unsigned(-delta
))
163 indent_level
+= delta
;
164 for (unsigned i
= 0; i
< indent_level
; ++i
)
169 inline void in() { indent_level
++; }
170 inline void out() { if (indent_level
>0) indent_level
--; }
173 sanitize(std::string
& str
) {
174 for (size_t i
= 0; i
< str
.length(); ++i
)
175 if (!isalnum(str
[i
]) && str
[i
] != '_')
180 getTypePrefix(const Type
* Ty
) {
181 switch (Ty
->getTypeID()) {
182 case Type::VoidTyID
: return "void_";
183 case Type::IntegerTyID
:
184 return std::string("int") + utostr(cast
<IntegerType
>(Ty
)->getBitWidth()) +
186 case Type::FloatTyID
: return "float_";
187 case Type::DoubleTyID
: return "double_";
188 case Type::LabelTyID
: return "label_";
189 case Type::FunctionTyID
: return "func_";
190 case Type::StructTyID
: return "struct_";
191 case Type::ArrayTyID
: return "array_";
192 case Type::PointerTyID
: return "ptr_";
193 case Type::VectorTyID
: return "packed_";
194 case Type::OpaqueTyID
: return "opaque_";
195 default: return "other_";
200 // Looks up the type in the symbol table and returns a pointer to its name or
201 // a null pointer if it wasn't found. Note that this isn't the same as the
202 // Mode::getTypeName function which will return an empty string, not a null
203 // pointer if the name is not found.
204 inline const std::string
*
205 findTypeName(const TypeSymbolTable
& ST
, const Type
* Ty
) {
206 TypeSymbolTable::const_iterator TI
= ST
.begin();
207 TypeSymbolTable::const_iterator TE
= ST
.end();
208 for (;TI
!= TE
; ++TI
)
209 if (TI
->second
== Ty
)
214 void CppWriter::error(const std::string
& msg
) {
215 llvm_report_error(msg
);
218 // printCFP - Print a floating point constant .. very carefully :)
219 // This makes sure that conversion to/from floating yields the same binary
220 // result so that we don't lose precision.
221 void CppWriter::printCFP(const ConstantFP
*CFP
) {
223 APFloat APF
= APFloat(CFP
->getValueAPF()); // copy
224 if (CFP
->getType() == Type::getFloatTy(CFP
->getContext()))
225 APF
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
, &ignored
);
226 Out
<< "ConstantFP::get(";
230 sprintf(Buffer
, "%A", APF
.convertToDouble());
231 if ((!strncmp(Buffer
, "0x", 2) ||
232 !strncmp(Buffer
, "-0x", 3) ||
233 !strncmp(Buffer
, "+0x", 3)) &&
234 APF
.bitwiseIsEqual(APFloat(atof(Buffer
)))) {
235 if (CFP
->getType() == Type::getDoubleTy(CFP
->getContext()))
236 Out
<< "BitsToDouble(" << Buffer
<< ")";
238 Out
<< "BitsToFloat((float)" << Buffer
<< ")";
242 std::string StrVal
= ftostr(CFP
->getValueAPF());
244 while (StrVal
[0] == ' ')
245 StrVal
.erase(StrVal
.begin());
247 // Check to make sure that the stringized number is not some string like
248 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
249 if (((StrVal
[0] >= '0' && StrVal
[0] <= '9') ||
250 ((StrVal
[0] == '-' || StrVal
[0] == '+') &&
251 (StrVal
[1] >= '0' && StrVal
[1] <= '9'))) &&
252 (CFP
->isExactlyValue(atof(StrVal
.c_str())))) {
253 if (CFP
->getType() == Type::getDoubleTy(CFP
->getContext()))
256 Out
<< StrVal
<< "f";
257 } else if (CFP
->getType() == Type::getDoubleTy(CFP
->getContext()))
258 Out
<< "BitsToDouble(0x"
259 << utohexstr(CFP
->getValueAPF().bitcastToAPInt().getZExtValue())
260 << "ULL) /* " << StrVal
<< " */";
262 Out
<< "BitsToFloat(0x"
263 << utohexstr((uint32_t)CFP
->getValueAPF().
264 bitcastToAPInt().getZExtValue())
265 << "U) /* " << StrVal
<< " */";
273 void CppWriter::printCallingConv(unsigned cc
){
274 // Print the calling convention.
276 case CallingConv::C
: Out
<< "CallingConv::C"; break;
277 case CallingConv::Fast
: Out
<< "CallingConv::Fast"; break;
278 case CallingConv::Cold
: Out
<< "CallingConv::Cold"; break;
279 case CallingConv::FirstTargetCC
: Out
<< "CallingConv::FirstTargetCC"; break;
280 default: Out
<< cc
; break;
284 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT
) {
286 case GlobalValue::InternalLinkage
:
287 Out
<< "GlobalValue::InternalLinkage"; break;
288 case GlobalValue::PrivateLinkage
:
289 Out
<< "GlobalValue::PrivateLinkage"; break;
290 case GlobalValue::LinkerPrivateLinkage
:
291 Out
<< "GlobalValue::LinkerPrivateLinkage"; break;
292 case GlobalValue::AvailableExternallyLinkage
:
293 Out
<< "GlobalValue::AvailableExternallyLinkage "; break;
294 case GlobalValue::LinkOnceAnyLinkage
:
295 Out
<< "GlobalValue::LinkOnceAnyLinkage "; break;
296 case GlobalValue::LinkOnceODRLinkage
:
297 Out
<< "GlobalValue::LinkOnceODRLinkage "; break;
298 case GlobalValue::WeakAnyLinkage
:
299 Out
<< "GlobalValue::WeakAnyLinkage"; break;
300 case GlobalValue::WeakODRLinkage
:
301 Out
<< "GlobalValue::WeakODRLinkage"; break;
302 case GlobalValue::AppendingLinkage
:
303 Out
<< "GlobalValue::AppendingLinkage"; break;
304 case GlobalValue::ExternalLinkage
:
305 Out
<< "GlobalValue::ExternalLinkage"; break;
306 case GlobalValue::DLLImportLinkage
:
307 Out
<< "GlobalValue::DLLImportLinkage"; break;
308 case GlobalValue::DLLExportLinkage
:
309 Out
<< "GlobalValue::DLLExportLinkage"; break;
310 case GlobalValue::ExternalWeakLinkage
:
311 Out
<< "GlobalValue::ExternalWeakLinkage"; break;
312 case GlobalValue::GhostLinkage
:
313 Out
<< "GlobalValue::GhostLinkage"; break;
314 case GlobalValue::CommonLinkage
:
315 Out
<< "GlobalValue::CommonLinkage"; break;
319 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType
) {
321 default: llvm_unreachable("Unknown GVar visibility");
322 case GlobalValue::DefaultVisibility
:
323 Out
<< "GlobalValue::DefaultVisibility";
325 case GlobalValue::HiddenVisibility
:
326 Out
<< "GlobalValue::HiddenVisibility";
328 case GlobalValue::ProtectedVisibility
:
329 Out
<< "GlobalValue::ProtectedVisibility";
334 // printEscapedString - Print each character of the specified string, escaping
335 // it if it is not printable or if it is an escape char.
336 void CppWriter::printEscapedString(const std::string
&Str
) {
337 for (unsigned i
= 0, e
= Str
.size(); i
!= e
; ++i
) {
338 unsigned char C
= Str
[i
];
339 if (isprint(C
) && C
!= '"' && C
!= '\\') {
343 << (char) ((C
/16 < 10) ? ( C
/16 +'0') : ( C
/16 -10+'A'))
344 << (char)(((C
&15) < 10) ? ((C
&15)+'0') : ((C
&15)-10+'A'));
349 std::string
CppWriter::getCppName(const Type
* Ty
) {
350 // First, handle the primitive types .. easy
351 if (Ty
->isPrimitiveType() || Ty
->isInteger()) {
352 switch (Ty
->getTypeID()) {
353 case Type::VoidTyID
: return "Type::getVoidTy(getGlobalContext())";
354 case Type::IntegerTyID
: {
355 unsigned BitWidth
= cast
<IntegerType
>(Ty
)->getBitWidth();
356 return "IntegerType::get(getGlobalContext(), " + utostr(BitWidth
) + ")";
358 case Type::X86_FP80TyID
: return "Type::getX86_FP80Ty(getGlobalContext())";
359 case Type::FloatTyID
: return "Type::getFloatTy(getGlobalContext())";
360 case Type::DoubleTyID
: return "Type::getDoubleTy(getGlobalContext())";
361 case Type::LabelTyID
: return "Type::getLabelTy(getGlobalContext())";
363 error("Invalid primitive type");
366 // shouldn't be returned, but make it sensible
367 return "Type::getVoidTy(getGlobalContext())";
370 // Now, see if we've seen the type before and return that
371 TypeMap::iterator I
= TypeNames
.find(Ty
);
372 if (I
!= TypeNames
.end())
375 // Okay, let's build a new name for this type. Start with a prefix
376 const char* prefix
= 0;
377 switch (Ty
->getTypeID()) {
378 case Type::FunctionTyID
: prefix
= "FuncTy_"; break;
379 case Type::StructTyID
: prefix
= "StructTy_"; break;
380 case Type::ArrayTyID
: prefix
= "ArrayTy_"; break;
381 case Type::PointerTyID
: prefix
= "PointerTy_"; break;
382 case Type::OpaqueTyID
: prefix
= "OpaqueTy_"; break;
383 case Type::VectorTyID
: prefix
= "VectorTy_"; break;
384 default: prefix
= "OtherTy_"; break; // prevent breakage
387 // See if the type has a name in the symboltable and build accordingly
388 const std::string
* tName
= findTypeName(TheModule
->getTypeSymbolTable(), Ty
);
391 name
= std::string(prefix
) + *tName
;
393 name
= std::string(prefix
) + utostr(uniqueNum
++);
397 return TypeNames
[Ty
] = name
;
400 void CppWriter::printCppName(const Type
* Ty
) {
401 printEscapedString(getCppName(Ty
));
404 std::string
CppWriter::getCppName(const Value
* val
) {
406 ValueMap::iterator I
= ValueNames
.find(val
);
407 if (I
!= ValueNames
.end() && I
->first
== val
)
410 if (const GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(val
)) {
411 name
= std::string("gvar_") +
412 getTypePrefix(GV
->getType()->getElementType());
413 } else if (isa
<Function
>(val
)) {
414 name
= std::string("func_");
415 } else if (const Constant
* C
= dyn_cast
<Constant
>(val
)) {
416 name
= std::string("const_") + getTypePrefix(C
->getType());
417 } else if (const Argument
* Arg
= dyn_cast
<Argument
>(val
)) {
419 unsigned argNum
= std::distance(Arg
->getParent()->arg_begin(),
420 Function::const_arg_iterator(Arg
)) + 1;
421 name
= std::string("arg_") + utostr(argNum
);
422 NameSet::iterator NI
= UsedNames
.find(name
);
423 if (NI
!= UsedNames
.end())
424 name
+= std::string("_") + utostr(uniqueNum
++);
425 UsedNames
.insert(name
);
426 return ValueNames
[val
] = name
;
428 name
= getTypePrefix(val
->getType());
431 name
= getTypePrefix(val
->getType());
434 name
+= val
->getName();
436 name
+= utostr(uniqueNum
++);
438 NameSet::iterator NI
= UsedNames
.find(name
);
439 if (NI
!= UsedNames
.end())
440 name
+= std::string("_") + utostr(uniqueNum
++);
441 UsedNames
.insert(name
);
442 return ValueNames
[val
] = name
;
445 void CppWriter::printCppName(const Value
* val
) {
446 printEscapedString(getCppName(val
));
449 void CppWriter::printAttributes(const AttrListPtr
&PAL
,
450 const std::string
&name
) {
451 Out
<< "AttrListPtr " << name
<< "_PAL;";
453 if (!PAL
.isEmpty()) {
454 Out
<< '{'; in(); nl(Out
);
455 Out
<< "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out
);
456 Out
<< "AttributeWithIndex PAWI;"; nl(Out
);
457 for (unsigned i
= 0; i
< PAL
.getNumSlots(); ++i
) {
458 unsigned index
= PAL
.getSlot(i
).Index
;
459 Attributes attrs
= PAL
.getSlot(i
).Attrs
;
460 Out
<< "PAWI.Index = " << index
<< "U; PAWI.Attrs = 0 ";
461 #define HANDLE_ATTR(X) \
462 if (attrs & Attribute::X) \
463 Out << " | Attribute::" #X; \
464 attrs &= ~Attribute::X;
468 HANDLE_ATTR(NoReturn
);
470 HANDLE_ATTR(StructRet
);
471 HANDLE_ATTR(NoUnwind
);
472 HANDLE_ATTR(NoAlias
);
475 HANDLE_ATTR(ReadNone
);
476 HANDLE_ATTR(ReadOnly
);
477 HANDLE_ATTR(NoInline
);
478 HANDLE_ATTR(AlwaysInline
);
479 HANDLE_ATTR(OptimizeForSize
);
480 HANDLE_ATTR(StackProtect
);
481 HANDLE_ATTR(StackProtectReq
);
482 HANDLE_ATTR(NoCapture
);
484 assert(attrs
== 0 && "Unhandled attribute!");
487 Out
<< "Attrs.push_back(PAWI);";
490 Out
<< name
<< "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
497 bool CppWriter::printTypeInternal(const Type
* Ty
) {
498 // We don't print definitions for primitive types
499 if (Ty
->isPrimitiveType() || Ty
->isInteger())
502 // If we already defined this type, we don't need to define it again.
503 if (DefinedTypes
.find(Ty
) != DefinedTypes
.end())
506 // Everything below needs the name for the type so get it now.
507 std::string
typeName(getCppName(Ty
));
509 // Search the type stack for recursion. If we find it, then generate this
510 // as an OpaqueType, but make sure not to do this multiple times because
511 // the type could appear in multiple places on the stack. Once the opaque
512 // definition is issued, it must not be re-issued. Consequently we have to
513 // check the UnresolvedTypes list as well.
514 TypeList::const_iterator TI
= std::find(TypeStack
.begin(), TypeStack
.end(),
516 if (TI
!= TypeStack
.end()) {
517 TypeMap::const_iterator I
= UnresolvedTypes
.find(Ty
);
518 if (I
== UnresolvedTypes
.end()) {
519 Out
<< "PATypeHolder " << typeName
;
520 Out
<< "_fwd = OpaqueType::get(getGlobalContext());";
522 UnresolvedTypes
[Ty
] = typeName
;
527 // We're going to print a derived type which, by definition, contains other
528 // types. So, push this one we're printing onto the type stack to assist with
529 // recursive definitions.
530 TypeStack
.push_back(Ty
);
532 // Print the type definition
533 switch (Ty
->getTypeID()) {
534 case Type::FunctionTyID
: {
535 const FunctionType
* FT
= cast
<FunctionType
>(Ty
);
536 Out
<< "std::vector<const Type*>" << typeName
<< "_args;";
538 FunctionType::param_iterator PI
= FT
->param_begin();
539 FunctionType::param_iterator PE
= FT
->param_end();
540 for (; PI
!= PE
; ++PI
) {
541 const Type
* argTy
= static_cast<const Type
*>(*PI
);
542 bool isForward
= printTypeInternal(argTy
);
543 std::string
argName(getCppName(argTy
));
544 Out
<< typeName
<< "_args.push_back(" << argName
;
550 bool isForward
= printTypeInternal(FT
->getReturnType());
551 std::string
retTypeName(getCppName(FT
->getReturnType()));
552 Out
<< "FunctionType* " << typeName
<< " = FunctionType::get(";
553 in(); nl(Out
) << "/*Result=*/" << retTypeName
;
557 nl(Out
) << "/*Params=*/" << typeName
<< "_args,";
558 nl(Out
) << "/*isVarArg=*/" << (FT
->isVarArg() ? "true" : "false") << ");";
563 case Type::StructTyID
: {
564 const StructType
* ST
= cast
<StructType
>(Ty
);
565 Out
<< "std::vector<const Type*>" << typeName
<< "_fields;";
567 StructType::element_iterator EI
= ST
->element_begin();
568 StructType::element_iterator EE
= ST
->element_end();
569 for (; EI
!= EE
; ++EI
) {
570 const Type
* fieldTy
= static_cast<const Type
*>(*EI
);
571 bool isForward
= printTypeInternal(fieldTy
);
572 std::string
fieldName(getCppName(fieldTy
));
573 Out
<< typeName
<< "_fields.push_back(" << fieldName
;
579 Out
<< "StructType* " << typeName
<< " = StructType::get("
580 << "mod->getContext(), "
581 << typeName
<< "_fields, /*isPacked=*/"
582 << (ST
->isPacked() ? "true" : "false") << ");";
586 case Type::ArrayTyID
: {
587 const ArrayType
* AT
= cast
<ArrayType
>(Ty
);
588 const Type
* ET
= AT
->getElementType();
589 bool isForward
= printTypeInternal(ET
);
590 std::string
elemName(getCppName(ET
));
591 Out
<< "ArrayType* " << typeName
<< " = ArrayType::get("
592 << elemName
<< (isForward
? "_fwd" : "")
593 << ", " << utostr(AT
->getNumElements()) << ");";
597 case Type::PointerTyID
: {
598 const PointerType
* PT
= cast
<PointerType
>(Ty
);
599 const Type
* ET
= PT
->getElementType();
600 bool isForward
= printTypeInternal(ET
);
601 std::string
elemName(getCppName(ET
));
602 Out
<< "PointerType* " << typeName
<< " = PointerType::get("
603 << elemName
<< (isForward
? "_fwd" : "")
604 << ", " << utostr(PT
->getAddressSpace()) << ");";
608 case Type::VectorTyID
: {
609 const VectorType
* PT
= cast
<VectorType
>(Ty
);
610 const Type
* ET
= PT
->getElementType();
611 bool isForward
= printTypeInternal(ET
);
612 std::string
elemName(getCppName(ET
));
613 Out
<< "VectorType* " << typeName
<< " = VectorType::get("
614 << elemName
<< (isForward
? "_fwd" : "")
615 << ", " << utostr(PT
->getNumElements()) << ");";
619 case Type::OpaqueTyID
: {
620 Out
<< "OpaqueType* " << typeName
;
621 Out
<< " = OpaqueType::get(getGlobalContext());";
626 error("Invalid TypeID");
629 // If the type had a name, make sure we recreate it.
630 const std::string
* progTypeName
=
631 findTypeName(TheModule
->getTypeSymbolTable(),Ty
);
633 Out
<< "mod->addTypeName(\"" << *progTypeName
<< "\", "
638 // Pop us off the type stack
639 TypeStack
.pop_back();
641 // Indicate that this type is now defined.
642 DefinedTypes
.insert(Ty
);
644 // Early resolve as many unresolved types as possible. Search the unresolved
645 // types map for the type we just printed. Now that its definition is complete
646 // we can resolve any previous references to it. This prevents a cascade of
648 TypeMap::iterator I
= UnresolvedTypes
.find(Ty
);
649 if (I
!= UnresolvedTypes
.end()) {
650 Out
<< "cast<OpaqueType>(" << I
->second
651 << "_fwd.get())->refineAbstractTypeTo(" << I
->second
<< ");";
653 Out
<< I
->second
<< " = cast<";
654 switch (Ty
->getTypeID()) {
655 case Type::FunctionTyID
: Out
<< "FunctionType"; break;
656 case Type::ArrayTyID
: Out
<< "ArrayType"; break;
657 case Type::StructTyID
: Out
<< "StructType"; break;
658 case Type::VectorTyID
: Out
<< "VectorType"; break;
659 case Type::PointerTyID
: Out
<< "PointerType"; break;
660 case Type::OpaqueTyID
: Out
<< "OpaqueType"; break;
661 default: Out
<< "NoSuchDerivedType"; break;
663 Out
<< ">(" << I
->second
<< "_fwd.get());";
665 UnresolvedTypes
.erase(I
);
668 // Finally, separate the type definition from other with a newline.
671 // We weren't a recursive type
675 // Prints a type definition. Returns true if it could not resolve all the
676 // types in the definition but had to use a forward reference.
677 void CppWriter::printType(const Type
* Ty
) {
678 assert(TypeStack
.empty());
680 printTypeInternal(Ty
);
681 assert(TypeStack
.empty());
684 void CppWriter::printTypes(const Module
* M
) {
685 // Walk the symbol table and print out all its types
686 const TypeSymbolTable
& symtab
= M
->getTypeSymbolTable();
687 for (TypeSymbolTable::const_iterator TI
= symtab
.begin(), TE
= symtab
.end();
690 // For primitive types and types already defined, just add a name
691 TypeMap::const_iterator TNI
= TypeNames
.find(TI
->second
);
692 if (TI
->second
->isInteger() || TI
->second
->isPrimitiveType() ||
693 TNI
!= TypeNames
.end()) {
694 Out
<< "mod->addTypeName(\"";
695 printEscapedString(TI
->first
);
696 Out
<< "\", " << getCppName(TI
->second
) << ");";
698 // For everything else, define the type
700 printType(TI
->second
);
704 // Add all of the global variables to the value table...
705 for (Module::const_global_iterator I
= TheModule
->global_begin(),
706 E
= TheModule
->global_end(); I
!= E
; ++I
) {
707 if (I
->hasInitializer())
708 printType(I
->getInitializer()->getType());
709 printType(I
->getType());
712 // Add all the functions to the table
713 for (Module::const_iterator FI
= TheModule
->begin(), FE
= TheModule
->end();
715 printType(FI
->getReturnType());
716 printType(FI
->getFunctionType());
717 // Add all the function arguments
718 for (Function::const_arg_iterator AI
= FI
->arg_begin(),
719 AE
= FI
->arg_end(); AI
!= AE
; ++AI
) {
720 printType(AI
->getType());
723 // Add all of the basic blocks and instructions
724 for (Function::const_iterator BB
= FI
->begin(),
725 E
= FI
->end(); BB
!= E
; ++BB
) {
726 printType(BB
->getType());
727 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!=E
;
729 printType(I
->getType());
730 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
)
731 printType(I
->getOperand(i
)->getType());
738 // printConstant - Print out a constant pool entry...
739 void CppWriter::printConstant(const Constant
*CV
) {
740 // First, if the constant is actually a GlobalValue (variable or function)
741 // or its already in the constant list then we've printed it already and we
743 if (isa
<GlobalValue
>(CV
) || ValueNames
.find(CV
) != ValueNames
.end())
746 std::string
constName(getCppName(CV
));
747 std::string
typeName(getCppName(CV
->getType()));
749 if (isa
<GlobalValue
>(CV
)) {
750 // Skip variables and functions, we emit them elsewhere
754 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
755 std::string constValue
= CI
->getValue().toString(10, true);
756 Out
<< "ConstantInt* " << constName
757 << " = ConstantInt::get(getGlobalContext(), APInt("
758 << cast
<IntegerType
>(CI
->getType())->getBitWidth()
759 << ", StringRef(\"" << constValue
<< "\"), 10));";
760 } else if (isa
<ConstantAggregateZero
>(CV
)) {
761 Out
<< "ConstantAggregateZero* " << constName
762 << " = ConstantAggregateZero::get(" << typeName
<< ");";
763 } else if (isa
<ConstantPointerNull
>(CV
)) {
764 Out
<< "ConstantPointerNull* " << constName
765 << " = ConstantPointerNull::get(" << typeName
<< ");";
766 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
767 Out
<< "ConstantFP* " << constName
<< " = ";
770 } else if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(CV
)) {
771 if (CA
->isString() &&
772 CA
->getType()->getElementType() ==
773 Type::getInt8Ty(CA
->getContext())) {
774 Out
<< "Constant* " << constName
<<
775 " = ConstantArray::get(getGlobalContext(), \"";
776 std::string tmp
= CA
->getAsString();
777 bool nullTerminate
= false;
778 if (tmp
[tmp
.length()-1] == 0) {
779 tmp
.erase(tmp
.length()-1);
780 nullTerminate
= true;
782 printEscapedString(tmp
);
783 // Determine if we want null termination or not.
785 Out
<< "\", true"; // Indicate that the null terminator should be
788 Out
<< "\", false";// No null terminator
791 Out
<< "std::vector<Constant*> " << constName
<< "_elems;";
793 unsigned N
= CA
->getNumOperands();
794 for (unsigned i
= 0; i
< N
; ++i
) {
795 printConstant(CA
->getOperand(i
)); // recurse to print operands
796 Out
<< constName
<< "_elems.push_back("
797 << getCppName(CA
->getOperand(i
)) << ");";
800 Out
<< "Constant* " << constName
<< " = ConstantArray::get("
801 << typeName
<< ", " << constName
<< "_elems);";
803 } else if (const ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(CV
)) {
804 Out
<< "std::vector<Constant*> " << constName
<< "_fields;";
806 unsigned N
= CS
->getNumOperands();
807 for (unsigned i
= 0; i
< N
; i
++) {
808 printConstant(CS
->getOperand(i
));
809 Out
<< constName
<< "_fields.push_back("
810 << getCppName(CS
->getOperand(i
)) << ");";
813 Out
<< "Constant* " << constName
<< " = ConstantStruct::get("
814 << typeName
<< ", " << constName
<< "_fields);";
815 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
816 Out
<< "std::vector<Constant*> " << constName
<< "_elems;";
818 unsigned N
= CP
->getNumOperands();
819 for (unsigned i
= 0; i
< N
; ++i
) {
820 printConstant(CP
->getOperand(i
));
821 Out
<< constName
<< "_elems.push_back("
822 << getCppName(CP
->getOperand(i
)) << ");";
825 Out
<< "Constant* " << constName
<< " = ConstantVector::get("
826 << typeName
<< ", " << constName
<< "_elems);";
827 } else if (isa
<UndefValue
>(CV
)) {
828 Out
<< "UndefValue* " << constName
<< " = UndefValue::get("
830 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
831 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
832 Out
<< "std::vector<Constant*> " << constName
<< "_indices;";
834 printConstant(CE
->getOperand(0));
835 for (unsigned i
= 1; i
< CE
->getNumOperands(); ++i
) {
836 printConstant(CE
->getOperand(i
));
837 Out
<< constName
<< "_indices.push_back("
838 << getCppName(CE
->getOperand(i
)) << ");";
841 Out
<< "Constant* " << constName
842 << " = ConstantExpr::getGetElementPtr("
843 << getCppName(CE
->getOperand(0)) << ", "
844 << "&" << constName
<< "_indices[0], "
845 << constName
<< "_indices.size()"
847 } else if (CE
->isCast()) {
848 printConstant(CE
->getOperand(0));
849 Out
<< "Constant* " << constName
<< " = ConstantExpr::getCast(";
850 switch (CE
->getOpcode()) {
851 default: llvm_unreachable("Invalid cast opcode");
852 case Instruction::Trunc
: Out
<< "Instruction::Trunc"; break;
853 case Instruction::ZExt
: Out
<< "Instruction::ZExt"; break;
854 case Instruction::SExt
: Out
<< "Instruction::SExt"; break;
855 case Instruction::FPTrunc
: Out
<< "Instruction::FPTrunc"; break;
856 case Instruction::FPExt
: Out
<< "Instruction::FPExt"; break;
857 case Instruction::FPToUI
: Out
<< "Instruction::FPToUI"; break;
858 case Instruction::FPToSI
: Out
<< "Instruction::FPToSI"; break;
859 case Instruction::UIToFP
: Out
<< "Instruction::UIToFP"; break;
860 case Instruction::SIToFP
: Out
<< "Instruction::SIToFP"; break;
861 case Instruction::PtrToInt
: Out
<< "Instruction::PtrToInt"; break;
862 case Instruction::IntToPtr
: Out
<< "Instruction::IntToPtr"; break;
863 case Instruction::BitCast
: Out
<< "Instruction::BitCast"; break;
865 Out
<< ", " << getCppName(CE
->getOperand(0)) << ", "
866 << getCppName(CE
->getType()) << ");";
868 unsigned N
= CE
->getNumOperands();
869 for (unsigned i
= 0; i
< N
; ++i
) {
870 printConstant(CE
->getOperand(i
));
872 Out
<< "Constant* " << constName
<< " = ConstantExpr::";
873 switch (CE
->getOpcode()) {
874 case Instruction::Add
: Out
<< "getAdd("; break;
875 case Instruction::FAdd
: Out
<< "getFAdd("; break;
876 case Instruction::Sub
: Out
<< "getSub("; break;
877 case Instruction::FSub
: Out
<< "getFSub("; break;
878 case Instruction::Mul
: Out
<< "getMul("; break;
879 case Instruction::FMul
: Out
<< "getFMul("; break;
880 case Instruction::UDiv
: Out
<< "getUDiv("; break;
881 case Instruction::SDiv
: Out
<< "getSDiv("; break;
882 case Instruction::FDiv
: Out
<< "getFDiv("; break;
883 case Instruction::URem
: Out
<< "getURem("; break;
884 case Instruction::SRem
: Out
<< "getSRem("; break;
885 case Instruction::FRem
: Out
<< "getFRem("; break;
886 case Instruction::And
: Out
<< "getAnd("; break;
887 case Instruction::Or
: Out
<< "getOr("; break;
888 case Instruction::Xor
: Out
<< "getXor("; break;
889 case Instruction::ICmp
:
890 Out
<< "getICmp(ICmpInst::ICMP_";
891 switch (CE
->getPredicate()) {
892 case ICmpInst::ICMP_EQ
: Out
<< "EQ"; break;
893 case ICmpInst::ICMP_NE
: Out
<< "NE"; break;
894 case ICmpInst::ICMP_SLT
: Out
<< "SLT"; break;
895 case ICmpInst::ICMP_ULT
: Out
<< "ULT"; break;
896 case ICmpInst::ICMP_SGT
: Out
<< "SGT"; break;
897 case ICmpInst::ICMP_UGT
: Out
<< "UGT"; break;
898 case ICmpInst::ICMP_SLE
: Out
<< "SLE"; break;
899 case ICmpInst::ICMP_ULE
: Out
<< "ULE"; break;
900 case ICmpInst::ICMP_SGE
: Out
<< "SGE"; break;
901 case ICmpInst::ICMP_UGE
: Out
<< "UGE"; break;
902 default: error("Invalid ICmp Predicate");
905 case Instruction::FCmp
:
906 Out
<< "getFCmp(FCmpInst::FCMP_";
907 switch (CE
->getPredicate()) {
908 case FCmpInst::FCMP_FALSE
: Out
<< "FALSE"; break;
909 case FCmpInst::FCMP_ORD
: Out
<< "ORD"; break;
910 case FCmpInst::FCMP_UNO
: Out
<< "UNO"; break;
911 case FCmpInst::FCMP_OEQ
: Out
<< "OEQ"; break;
912 case FCmpInst::FCMP_UEQ
: Out
<< "UEQ"; break;
913 case FCmpInst::FCMP_ONE
: Out
<< "ONE"; break;
914 case FCmpInst::FCMP_UNE
: Out
<< "UNE"; break;
915 case FCmpInst::FCMP_OLT
: Out
<< "OLT"; break;
916 case FCmpInst::FCMP_ULT
: Out
<< "ULT"; break;
917 case FCmpInst::FCMP_OGT
: Out
<< "OGT"; break;
918 case FCmpInst::FCMP_UGT
: Out
<< "UGT"; break;
919 case FCmpInst::FCMP_OLE
: Out
<< "OLE"; break;
920 case FCmpInst::FCMP_ULE
: Out
<< "ULE"; break;
921 case FCmpInst::FCMP_OGE
: Out
<< "OGE"; break;
922 case FCmpInst::FCMP_UGE
: Out
<< "UGE"; break;
923 case FCmpInst::FCMP_TRUE
: Out
<< "TRUE"; break;
924 default: error("Invalid FCmp Predicate");
927 case Instruction::Shl
: Out
<< "getShl("; break;
928 case Instruction::LShr
: Out
<< "getLShr("; break;
929 case Instruction::AShr
: Out
<< "getAShr("; break;
930 case Instruction::Select
: Out
<< "getSelect("; break;
931 case Instruction::ExtractElement
: Out
<< "getExtractElement("; break;
932 case Instruction::InsertElement
: Out
<< "getInsertElement("; break;
933 case Instruction::ShuffleVector
: Out
<< "getShuffleVector("; break;
935 error("Invalid constant expression");
938 Out
<< getCppName(CE
->getOperand(0));
939 for (unsigned i
= 1; i
< CE
->getNumOperands(); ++i
)
940 Out
<< ", " << getCppName(CE
->getOperand(i
));
944 error("Bad Constant");
945 Out
<< "Constant* " << constName
<< " = 0; ";
950 void CppWriter::printConstants(const Module
* M
) {
951 // Traverse all the global variables looking for constant initializers
952 for (Module::const_global_iterator I
= TheModule
->global_begin(),
953 E
= TheModule
->global_end(); I
!= E
; ++I
)
954 if (I
->hasInitializer())
955 printConstant(I
->getInitializer());
957 // Traverse the LLVM functions looking for constants
958 for (Module::const_iterator FI
= TheModule
->begin(), FE
= TheModule
->end();
960 // Add all of the basic blocks and instructions
961 for (Function::const_iterator BB
= FI
->begin(),
962 E
= FI
->end(); BB
!= E
; ++BB
) {
963 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!=E
;
965 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
) {
966 if (Constant
* C
= dyn_cast
<Constant
>(I
->getOperand(i
))) {
975 void CppWriter::printVariableUses(const GlobalVariable
*GV
) {
976 nl(Out
) << "// Type Definitions";
978 printType(GV
->getType());
979 if (GV
->hasInitializer()) {
980 Constant
* Init
= GV
->getInitializer();
981 printType(Init
->getType());
982 if (Function
* F
= dyn_cast
<Function
>(Init
)) {
983 nl(Out
)<< "/ Function Declarations"; nl(Out
);
984 printFunctionHead(F
);
985 } else if (GlobalVariable
* gv
= dyn_cast
<GlobalVariable
>(Init
)) {
986 nl(Out
) << "// Global Variable Declarations"; nl(Out
);
987 printVariableHead(gv
);
989 nl(Out
) << "// Constant Definitions"; nl(Out
);
992 if (GlobalVariable
* gv
= dyn_cast
<GlobalVariable
>(Init
)) {
993 nl(Out
) << "// Global Variable Definitions"; nl(Out
);
994 printVariableBody(gv
);
999 void CppWriter::printVariableHead(const GlobalVariable
*GV
) {
1000 nl(Out
) << "GlobalVariable* " << getCppName(GV
);
1002 Out
<< " = mod->getGlobalVariable(getGlobalContext(), ";
1003 printEscapedString(GV
->getName());
1004 Out
<< ", " << getCppName(GV
->getType()->getElementType()) << ",true)";
1005 nl(Out
) << "if (!" << getCppName(GV
) << ") {";
1006 in(); nl(Out
) << getCppName(GV
);
1008 Out
<< " = new GlobalVariable(/*Module=*/*mod, ";
1009 nl(Out
) << "/*Type=*/";
1010 printCppName(GV
->getType()->getElementType());
1012 nl(Out
) << "/*isConstant=*/" << (GV
->isConstant()?"true":"false");
1014 nl(Out
) << "/*Linkage=*/";
1015 printLinkageType(GV
->getLinkage());
1017 nl(Out
) << "/*Initializer=*/0, ";
1018 if (GV
->hasInitializer()) {
1019 Out
<< "// has initializer, specified below";
1021 nl(Out
) << "/*Name=*/\"";
1022 printEscapedString(GV
->getName());
1026 if (GV
->hasSection()) {
1028 Out
<< "->setSection(\"";
1029 printEscapedString(GV
->getSection());
1033 if (GV
->getAlignment()) {
1035 Out
<< "->setAlignment(" << utostr(GV
->getAlignment()) << ");";
1038 if (GV
->getVisibility() != GlobalValue::DefaultVisibility
) {
1040 Out
<< "->setVisibility(";
1041 printVisibilityType(GV
->getVisibility());
1046 out(); Out
<< "}"; nl(Out
);
1050 void CppWriter::printVariableBody(const GlobalVariable
*GV
) {
1051 if (GV
->hasInitializer()) {
1053 Out
<< "->setInitializer(";
1054 Out
<< getCppName(GV
->getInitializer()) << ");";
1059 std::string
CppWriter::getOpName(Value
* V
) {
1060 if (!isa
<Instruction
>(V
) || DefinedValues
.find(V
) != DefinedValues
.end())
1061 return getCppName(V
);
1063 // See if its alread in the map of forward references, if so just return the
1064 // name we already set up for it
1065 ForwardRefMap::const_iterator I
= ForwardRefs
.find(V
);
1066 if (I
!= ForwardRefs
.end())
1069 // This is a new forward reference. Generate a unique name for it
1070 std::string
result(std::string("fwdref_") + utostr(uniqueNum
++));
1072 // Yes, this is a hack. An Argument is the smallest instantiable value that
1073 // we can make as a placeholder for the real value. We'll replace these
1074 // Argument instances later.
1075 Out
<< "Argument* " << result
<< " = new Argument("
1076 << getCppName(V
->getType()) << ");";
1078 ForwardRefs
[V
] = result
;
1082 // printInstruction - This member is called for each Instruction in a function.
1083 void CppWriter::printInstruction(const Instruction
*I
,
1084 const std::string
& bbname
) {
1085 std::string
iName(getCppName(I
));
1087 // Before we emit this instruction, we need to take care of generating any
1088 // forward references. So, we get the names of all the operands in advance
1089 std::string
* opNames
= new std::string
[I
->getNumOperands()];
1090 for (unsigned i
= 0; i
< I
->getNumOperands(); i
++) {
1091 opNames
[i
] = getOpName(I
->getOperand(i
));
1094 switch (I
->getOpcode()) {
1096 error("Invalid instruction");
1099 case Instruction::Ret
: {
1100 const ReturnInst
* ret
= cast
<ReturnInst
>(I
);
1101 Out
<< "ReturnInst::Create(getGlobalContext(), "
1102 << (ret
->getReturnValue() ? opNames
[0] + ", " : "") << bbname
<< ");";
1105 case Instruction::Br
: {
1106 const BranchInst
* br
= cast
<BranchInst
>(I
);
1107 Out
<< "BranchInst::Create(" ;
1108 if (br
->getNumOperands() == 3 ) {
1109 Out
<< opNames
[2] << ", "
1110 << opNames
[1] << ", "
1111 << opNames
[0] << ", ";
1113 } else if (br
->getNumOperands() == 1) {
1114 Out
<< opNames
[0] << ", ";
1116 error("Branch with 2 operands?");
1118 Out
<< bbname
<< ");";
1121 case Instruction::Switch
: {
1122 const SwitchInst
* sw
= cast
<SwitchInst
>(I
);
1123 Out
<< "SwitchInst* " << iName
<< " = SwitchInst::Create("
1124 << opNames
[0] << ", "
1125 << opNames
[1] << ", "
1126 << sw
->getNumCases() << ", " << bbname
<< ");";
1128 for (unsigned i
= 2; i
< sw
->getNumOperands(); i
+= 2 ) {
1129 Out
<< iName
<< "->addCase("
1130 << opNames
[i
] << ", "
1131 << opNames
[i
+1] << ");";
1136 case Instruction::Invoke
: {
1137 const InvokeInst
* inv
= cast
<InvokeInst
>(I
);
1138 Out
<< "std::vector<Value*> " << iName
<< "_params;";
1140 for (unsigned i
= 3; i
< inv
->getNumOperands(); ++i
) {
1141 Out
<< iName
<< "_params.push_back("
1142 << opNames
[i
] << ");";
1145 Out
<< "InvokeInst *" << iName
<< " = InvokeInst::Create("
1146 << opNames
[0] << ", "
1147 << opNames
[1] << ", "
1148 << opNames
[2] << ", "
1149 << iName
<< "_params.begin(), " << iName
<< "_params.end(), \"";
1150 printEscapedString(inv
->getName());
1151 Out
<< "\", " << bbname
<< ");";
1152 nl(Out
) << iName
<< "->setCallingConv(";
1153 printCallingConv(inv
->getCallingConv());
1155 printAttributes(inv
->getAttributes(), iName
);
1156 Out
<< iName
<< "->setAttributes(" << iName
<< "_PAL);";
1160 case Instruction::Unwind
: {
1161 Out
<< "new UnwindInst("
1165 case Instruction::Unreachable
:{
1166 Out
<< "new UnreachableInst("
1170 case Instruction::Add
:
1171 case Instruction::FAdd
:
1172 case Instruction::Sub
:
1173 case Instruction::FSub
:
1174 case Instruction::Mul
:
1175 case Instruction::FMul
:
1176 case Instruction::UDiv
:
1177 case Instruction::SDiv
:
1178 case Instruction::FDiv
:
1179 case Instruction::URem
:
1180 case Instruction::SRem
:
1181 case Instruction::FRem
:
1182 case Instruction::And
:
1183 case Instruction::Or
:
1184 case Instruction::Xor
:
1185 case Instruction::Shl
:
1186 case Instruction::LShr
:
1187 case Instruction::AShr
:{
1188 Out
<< "BinaryOperator* " << iName
<< " = BinaryOperator::Create(";
1189 switch (I
->getOpcode()) {
1190 case Instruction::Add
: Out
<< "Instruction::Add"; break;
1191 case Instruction::FAdd
: Out
<< "Instruction::FAdd"; break;
1192 case Instruction::Sub
: Out
<< "Instruction::Sub"; break;
1193 case Instruction::FSub
: Out
<< "Instruction::FSub"; break;
1194 case Instruction::Mul
: Out
<< "Instruction::Mul"; break;
1195 case Instruction::FMul
: Out
<< "Instruction::FMul"; break;
1196 case Instruction::UDiv
:Out
<< "Instruction::UDiv"; break;
1197 case Instruction::SDiv
:Out
<< "Instruction::SDiv"; break;
1198 case Instruction::FDiv
:Out
<< "Instruction::FDiv"; break;
1199 case Instruction::URem
:Out
<< "Instruction::URem"; break;
1200 case Instruction::SRem
:Out
<< "Instruction::SRem"; break;
1201 case Instruction::FRem
:Out
<< "Instruction::FRem"; break;
1202 case Instruction::And
: Out
<< "Instruction::And"; break;
1203 case Instruction::Or
: Out
<< "Instruction::Or"; break;
1204 case Instruction::Xor
: Out
<< "Instruction::Xor"; break;
1205 case Instruction::Shl
: Out
<< "Instruction::Shl"; break;
1206 case Instruction::LShr
:Out
<< "Instruction::LShr"; break;
1207 case Instruction::AShr
:Out
<< "Instruction::AShr"; break;
1208 default: Out
<< "Instruction::BadOpCode"; break;
1210 Out
<< ", " << opNames
[0] << ", " << opNames
[1] << ", \"";
1211 printEscapedString(I
->getName());
1212 Out
<< "\", " << bbname
<< ");";
1215 case Instruction::FCmp
: {
1216 Out
<< "FCmpInst* " << iName
<< " = new FCmpInst(";
1217 switch (cast
<FCmpInst
>(I
)->getPredicate()) {
1218 case FCmpInst::FCMP_FALSE
: Out
<< "FCmpInst::FCMP_FALSE"; break;
1219 case FCmpInst::FCMP_OEQ
: Out
<< "FCmpInst::FCMP_OEQ"; break;
1220 case FCmpInst::FCMP_OGT
: Out
<< "FCmpInst::FCMP_OGT"; break;
1221 case FCmpInst::FCMP_OGE
: Out
<< "FCmpInst::FCMP_OGE"; break;
1222 case FCmpInst::FCMP_OLT
: Out
<< "FCmpInst::FCMP_OLT"; break;
1223 case FCmpInst::FCMP_OLE
: Out
<< "FCmpInst::FCMP_OLE"; break;
1224 case FCmpInst::FCMP_ONE
: Out
<< "FCmpInst::FCMP_ONE"; break;
1225 case FCmpInst::FCMP_ORD
: Out
<< "FCmpInst::FCMP_ORD"; break;
1226 case FCmpInst::FCMP_UNO
: Out
<< "FCmpInst::FCMP_UNO"; break;
1227 case FCmpInst::FCMP_UEQ
: Out
<< "FCmpInst::FCMP_UEQ"; break;
1228 case FCmpInst::FCMP_UGT
: Out
<< "FCmpInst::FCMP_UGT"; break;
1229 case FCmpInst::FCMP_UGE
: Out
<< "FCmpInst::FCMP_UGE"; break;
1230 case FCmpInst::FCMP_ULT
: Out
<< "FCmpInst::FCMP_ULT"; break;
1231 case FCmpInst::FCMP_ULE
: Out
<< "FCmpInst::FCMP_ULE"; break;
1232 case FCmpInst::FCMP_UNE
: Out
<< "FCmpInst::FCMP_UNE"; break;
1233 case FCmpInst::FCMP_TRUE
: Out
<< "FCmpInst::FCMP_TRUE"; break;
1234 default: Out
<< "FCmpInst::BAD_ICMP_PREDICATE"; break;
1236 Out
<< ", " << opNames
[0] << ", " << opNames
[1] << ", \"";
1237 printEscapedString(I
->getName());
1238 Out
<< "\", " << bbname
<< ");";
1241 case Instruction::ICmp
: {
1242 Out
<< "ICmpInst* " << iName
<< " = new ICmpInst(";
1243 switch (cast
<ICmpInst
>(I
)->getPredicate()) {
1244 case ICmpInst::ICMP_EQ
: Out
<< "ICmpInst::ICMP_EQ"; break;
1245 case ICmpInst::ICMP_NE
: Out
<< "ICmpInst::ICMP_NE"; break;
1246 case ICmpInst::ICMP_ULE
: Out
<< "ICmpInst::ICMP_ULE"; break;
1247 case ICmpInst::ICMP_SLE
: Out
<< "ICmpInst::ICMP_SLE"; break;
1248 case ICmpInst::ICMP_UGE
: Out
<< "ICmpInst::ICMP_UGE"; break;
1249 case ICmpInst::ICMP_SGE
: Out
<< "ICmpInst::ICMP_SGE"; break;
1250 case ICmpInst::ICMP_ULT
: Out
<< "ICmpInst::ICMP_ULT"; break;
1251 case ICmpInst::ICMP_SLT
: Out
<< "ICmpInst::ICMP_SLT"; break;
1252 case ICmpInst::ICMP_UGT
: Out
<< "ICmpInst::ICMP_UGT"; break;
1253 case ICmpInst::ICMP_SGT
: Out
<< "ICmpInst::ICMP_SGT"; break;
1254 default: Out
<< "ICmpInst::BAD_ICMP_PREDICATE"; break;
1256 Out
<< ", " << opNames
[0] << ", " << opNames
[1] << ", \"";
1257 printEscapedString(I
->getName());
1258 Out
<< "\", " << bbname
<< ");";
1261 case Instruction::Malloc
: {
1262 const MallocInst
* mallocI
= cast
<MallocInst
>(I
);
1263 Out
<< "MallocInst* " << iName
<< " = new MallocInst("
1264 << getCppName(mallocI
->getAllocatedType()) << ", ";
1265 if (mallocI
->isArrayAllocation())
1266 Out
<< opNames
[0] << ", " ;
1268 printEscapedString(mallocI
->getName());
1269 Out
<< "\", " << bbname
<< ");";
1270 if (mallocI
->getAlignment())
1271 nl(Out
) << iName
<< "->setAlignment("
1272 << mallocI
->getAlignment() << ");";
1275 case Instruction::Free
: {
1276 Out
<< "FreeInst* " << iName
<< " = new FreeInst("
1277 << getCppName(I
->getOperand(0)) << ", " << bbname
<< ");";
1280 case Instruction::Alloca
: {
1281 const AllocaInst
* allocaI
= cast
<AllocaInst
>(I
);
1282 Out
<< "AllocaInst* " << iName
<< " = new AllocaInst("
1283 << getCppName(allocaI
->getAllocatedType()) << ", ";
1284 if (allocaI
->isArrayAllocation())
1285 Out
<< opNames
[0] << ", ";
1287 printEscapedString(allocaI
->getName());
1288 Out
<< "\", " << bbname
<< ");";
1289 if (allocaI
->getAlignment())
1290 nl(Out
) << iName
<< "->setAlignment("
1291 << allocaI
->getAlignment() << ");";
1294 case Instruction::Load
:{
1295 const LoadInst
* load
= cast
<LoadInst
>(I
);
1296 Out
<< "LoadInst* " << iName
<< " = new LoadInst("
1297 << opNames
[0] << ", \"";
1298 printEscapedString(load
->getName());
1299 Out
<< "\", " << (load
->isVolatile() ? "true" : "false" )
1300 << ", " << bbname
<< ");";
1303 case Instruction::Store
: {
1304 const StoreInst
* store
= cast
<StoreInst
>(I
);
1305 Out
<< " new StoreInst("
1306 << opNames
[0] << ", "
1307 << opNames
[1] << ", "
1308 << (store
->isVolatile() ? "true" : "false")
1309 << ", " << bbname
<< ");";
1312 case Instruction::GetElementPtr
: {
1313 const GetElementPtrInst
* gep
= cast
<GetElementPtrInst
>(I
);
1314 if (gep
->getNumOperands() <= 2) {
1315 Out
<< "GetElementPtrInst* " << iName
<< " = GetElementPtrInst::Create("
1317 if (gep
->getNumOperands() == 2)
1318 Out
<< ", " << opNames
[1];
1320 Out
<< "std::vector<Value*> " << iName
<< "_indices;";
1322 for (unsigned i
= 1; i
< gep
->getNumOperands(); ++i
) {
1323 Out
<< iName
<< "_indices.push_back("
1324 << opNames
[i
] << ");";
1327 Out
<< "Instruction* " << iName
<< " = GetElementPtrInst::Create("
1328 << opNames
[0] << ", " << iName
<< "_indices.begin(), "
1329 << iName
<< "_indices.end()";
1332 printEscapedString(gep
->getName());
1333 Out
<< "\", " << bbname
<< ");";
1336 case Instruction::PHI
: {
1337 const PHINode
* phi
= cast
<PHINode
>(I
);
1339 Out
<< "PHINode* " << iName
<< " = PHINode::Create("
1340 << getCppName(phi
->getType()) << ", \"";
1341 printEscapedString(phi
->getName());
1342 Out
<< "\", " << bbname
<< ");";
1343 nl(Out
) << iName
<< "->reserveOperandSpace("
1344 << phi
->getNumIncomingValues()
1347 for (unsigned i
= 0; i
< phi
->getNumOperands(); i
+=2) {
1348 Out
<< iName
<< "->addIncoming("
1349 << opNames
[i
] << ", " << opNames
[i
+1] << ");";
1354 case Instruction::Trunc
:
1355 case Instruction::ZExt
:
1356 case Instruction::SExt
:
1357 case Instruction::FPTrunc
:
1358 case Instruction::FPExt
:
1359 case Instruction::FPToUI
:
1360 case Instruction::FPToSI
:
1361 case Instruction::UIToFP
:
1362 case Instruction::SIToFP
:
1363 case Instruction::PtrToInt
:
1364 case Instruction::IntToPtr
:
1365 case Instruction::BitCast
: {
1366 const CastInst
* cst
= cast
<CastInst
>(I
);
1367 Out
<< "CastInst* " << iName
<< " = new ";
1368 switch (I
->getOpcode()) {
1369 case Instruction::Trunc
: Out
<< "TruncInst"; break;
1370 case Instruction::ZExt
: Out
<< "ZExtInst"; break;
1371 case Instruction::SExt
: Out
<< "SExtInst"; break;
1372 case Instruction::FPTrunc
: Out
<< "FPTruncInst"; break;
1373 case Instruction::FPExt
: Out
<< "FPExtInst"; break;
1374 case Instruction::FPToUI
: Out
<< "FPToUIInst"; break;
1375 case Instruction::FPToSI
: Out
<< "FPToSIInst"; break;
1376 case Instruction::UIToFP
: Out
<< "UIToFPInst"; break;
1377 case Instruction::SIToFP
: Out
<< "SIToFPInst"; break;
1378 case Instruction::PtrToInt
: Out
<< "PtrToIntInst"; break;
1379 case Instruction::IntToPtr
: Out
<< "IntToPtrInst"; break;
1380 case Instruction::BitCast
: Out
<< "BitCastInst"; break;
1381 default: assert(!"Unreachable"); break;
1383 Out
<< "(" << opNames
[0] << ", "
1384 << getCppName(cst
->getType()) << ", \"";
1385 printEscapedString(cst
->getName());
1386 Out
<< "\", " << bbname
<< ");";
1389 case Instruction::Call
:{
1390 const CallInst
* call
= cast
<CallInst
>(I
);
1391 if (const InlineAsm
* ila
= dyn_cast
<InlineAsm
>(call
->getCalledValue())) {
1392 Out
<< "InlineAsm* " << getCppName(ila
) << " = InlineAsm::get("
1393 << getCppName(ila
->getFunctionType()) << ", \""
1394 << ila
->getAsmString() << "\", \""
1395 << ila
->getConstraintString() << "\","
1396 << (ila
->hasSideEffects() ? "true" : "false") << ");";
1399 if (call
->getNumOperands() > 2) {
1400 Out
<< "std::vector<Value*> " << iName
<< "_params;";
1402 for (unsigned i
= 1; i
< call
->getNumOperands(); ++i
) {
1403 Out
<< iName
<< "_params.push_back(" << opNames
[i
] << ");";
1406 Out
<< "CallInst* " << iName
<< " = CallInst::Create("
1407 << opNames
[0] << ", " << iName
<< "_params.begin(), "
1408 << iName
<< "_params.end(), \"";
1409 } else if (call
->getNumOperands() == 2) {
1410 Out
<< "CallInst* " << iName
<< " = CallInst::Create("
1411 << opNames
[0] << ", " << opNames
[1] << ", \"";
1413 Out
<< "CallInst* " << iName
<< " = CallInst::Create(" << opNames
[0]
1416 printEscapedString(call
->getName());
1417 Out
<< "\", " << bbname
<< ");";
1418 nl(Out
) << iName
<< "->setCallingConv(";
1419 printCallingConv(call
->getCallingConv());
1421 nl(Out
) << iName
<< "->setTailCall("
1422 << (call
->isTailCall() ? "true":"false");
1424 printAttributes(call
->getAttributes(), iName
);
1425 Out
<< iName
<< "->setAttributes(" << iName
<< "_PAL);";
1429 case Instruction::Select
: {
1430 const SelectInst
* sel
= cast
<SelectInst
>(I
);
1431 Out
<< "SelectInst* " << getCppName(sel
) << " = SelectInst::Create(";
1432 Out
<< opNames
[0] << ", " << opNames
[1] << ", " << opNames
[2] << ", \"";
1433 printEscapedString(sel
->getName());
1434 Out
<< "\", " << bbname
<< ");";
1437 case Instruction::UserOp1
:
1439 case Instruction::UserOp2
: {
1440 /// FIXME: What should be done here?
1443 case Instruction::VAArg
: {
1444 const VAArgInst
* va
= cast
<VAArgInst
>(I
);
1445 Out
<< "VAArgInst* " << getCppName(va
) << " = new VAArgInst("
1446 << opNames
[0] << ", " << getCppName(va
->getType()) << ", \"";
1447 printEscapedString(va
->getName());
1448 Out
<< "\", " << bbname
<< ");";
1451 case Instruction::ExtractElement
: {
1452 const ExtractElementInst
* eei
= cast
<ExtractElementInst
>(I
);
1453 Out
<< "ExtractElementInst* " << getCppName(eei
)
1454 << " = new ExtractElementInst(" << opNames
[0]
1455 << ", " << opNames
[1] << ", \"";
1456 printEscapedString(eei
->getName());
1457 Out
<< "\", " << bbname
<< ");";
1460 case Instruction::InsertElement
: {
1461 const InsertElementInst
* iei
= cast
<InsertElementInst
>(I
);
1462 Out
<< "InsertElementInst* " << getCppName(iei
)
1463 << " = InsertElementInst::Create(" << opNames
[0]
1464 << ", " << opNames
[1] << ", " << opNames
[2] << ", \"";
1465 printEscapedString(iei
->getName());
1466 Out
<< "\", " << bbname
<< ");";
1469 case Instruction::ShuffleVector
: {
1470 const ShuffleVectorInst
* svi
= cast
<ShuffleVectorInst
>(I
);
1471 Out
<< "ShuffleVectorInst* " << getCppName(svi
)
1472 << " = new ShuffleVectorInst(" << opNames
[0]
1473 << ", " << opNames
[1] << ", " << opNames
[2] << ", \"";
1474 printEscapedString(svi
->getName());
1475 Out
<< "\", " << bbname
<< ");";
1478 case Instruction::ExtractValue
: {
1479 const ExtractValueInst
*evi
= cast
<ExtractValueInst
>(I
);
1480 Out
<< "std::vector<unsigned> " << iName
<< "_indices;";
1482 for (unsigned i
= 0; i
< evi
->getNumIndices(); ++i
) {
1483 Out
<< iName
<< "_indices.push_back("
1484 << evi
->idx_begin()[i
] << ");";
1487 Out
<< "ExtractValueInst* " << getCppName(evi
)
1488 << " = ExtractValueInst::Create(" << opNames
[0]
1490 << iName
<< "_indices.begin(), " << iName
<< "_indices.end(), \"";
1491 printEscapedString(evi
->getName());
1492 Out
<< "\", " << bbname
<< ");";
1495 case Instruction::InsertValue
: {
1496 const InsertValueInst
*ivi
= cast
<InsertValueInst
>(I
);
1497 Out
<< "std::vector<unsigned> " << iName
<< "_indices;";
1499 for (unsigned i
= 0; i
< ivi
->getNumIndices(); ++i
) {
1500 Out
<< iName
<< "_indices.push_back("
1501 << ivi
->idx_begin()[i
] << ");";
1504 Out
<< "InsertValueInst* " << getCppName(ivi
)
1505 << " = InsertValueInst::Create(" << opNames
[0]
1506 << ", " << opNames
[1] << ", "
1507 << iName
<< "_indices.begin(), " << iName
<< "_indices.end(), \"";
1508 printEscapedString(ivi
->getName());
1509 Out
<< "\", " << bbname
<< ");";
1513 DefinedValues
.insert(I
);
1518 // Print out the types, constants and declarations needed by one function
1519 void CppWriter::printFunctionUses(const Function
* F
) {
1520 nl(Out
) << "// Type Definitions"; nl(Out
);
1522 // Print the function's return type
1523 printType(F
->getReturnType());
1525 // Print the function's function type
1526 printType(F
->getFunctionType());
1528 // Print the types of each of the function's arguments
1529 for (Function::const_arg_iterator AI
= F
->arg_begin(), AE
= F
->arg_end();
1531 printType(AI
->getType());
1535 // Print type definitions for every type referenced by an instruction and
1536 // make a note of any global values or constants that are referenced
1537 SmallPtrSet
<GlobalValue
*,64> gvs
;
1538 SmallPtrSet
<Constant
*,64> consts
;
1539 for (Function::const_iterator BB
= F
->begin(), BE
= F
->end();
1541 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end();
1543 // Print the type of the instruction itself
1544 printType(I
->getType());
1546 // Print the type of each of the instruction's operands
1547 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
) {
1548 Value
* operand
= I
->getOperand(i
);
1549 printType(operand
->getType());
1551 // If the operand references a GVal or Constant, make a note of it
1552 if (GlobalValue
* GV
= dyn_cast
<GlobalValue
>(operand
)) {
1554 if (GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
))
1555 if (GVar
->hasInitializer())
1556 consts
.insert(GVar
->getInitializer());
1557 } else if (Constant
* C
= dyn_cast
<Constant
>(operand
))
1563 // Print the function declarations for any functions encountered
1564 nl(Out
) << "// Function Declarations"; nl(Out
);
1565 for (SmallPtrSet
<GlobalValue
*,64>::iterator I
= gvs
.begin(), E
= gvs
.end();
1567 if (Function
* Fun
= dyn_cast
<Function
>(*I
)) {
1568 if (!is_inline
|| Fun
!= F
)
1569 printFunctionHead(Fun
);
1573 // Print the global variable declarations for any variables encountered
1574 nl(Out
) << "// Global Variable Declarations"; nl(Out
);
1575 for (SmallPtrSet
<GlobalValue
*,64>::iterator I
= gvs
.begin(), E
= gvs
.end();
1577 if (GlobalVariable
* F
= dyn_cast
<GlobalVariable
>(*I
))
1578 printVariableHead(F
);
1581 // Print the constants found
1582 nl(Out
) << "// Constant Definitions"; nl(Out
);
1583 for (SmallPtrSet
<Constant
*,64>::iterator I
= consts
.begin(),
1584 E
= consts
.end(); I
!= E
; ++I
) {
1588 // Process the global variables definitions now that all the constants have
1589 // been emitted. These definitions just couple the gvars with their constant
1591 nl(Out
) << "// Global Variable Definitions"; nl(Out
);
1592 for (SmallPtrSet
<GlobalValue
*,64>::iterator I
= gvs
.begin(), E
= gvs
.end();
1594 if (GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(*I
))
1595 printVariableBody(GV
);
1599 void CppWriter::printFunctionHead(const Function
* F
) {
1600 nl(Out
) << "Function* " << getCppName(F
);
1602 Out
<< " = mod->getFunction(\"";
1603 printEscapedString(F
->getName());
1604 Out
<< "\", " << getCppName(F
->getFunctionType()) << ");";
1605 nl(Out
) << "if (!" << getCppName(F
) << ") {";
1606 nl(Out
) << getCppName(F
);
1608 Out
<< " = Function::Create(";
1609 nl(Out
,1) << "/*Type=*/" << getCppName(F
->getFunctionType()) << ",";
1610 nl(Out
) << "/*Linkage=*/";
1611 printLinkageType(F
->getLinkage());
1613 nl(Out
) << "/*Name=*/\"";
1614 printEscapedString(F
->getName());
1615 Out
<< "\", mod); " << (F
->isDeclaration()? "// (external, no body)" : "");
1618 Out
<< "->setCallingConv(";
1619 printCallingConv(F
->getCallingConv());
1622 if (F
->hasSection()) {
1624 Out
<< "->setSection(\"" << F
->getSection() << "\");";
1627 if (F
->getAlignment()) {
1629 Out
<< "->setAlignment(" << F
->getAlignment() << ");";
1632 if (F
->getVisibility() != GlobalValue::DefaultVisibility
) {
1634 Out
<< "->setVisibility(";
1635 printVisibilityType(F
->getVisibility());
1641 Out
<< "->setGC(\"" << F
->getGC() << "\");";
1648 printAttributes(F
->getAttributes(), getCppName(F
));
1650 Out
<< "->setAttributes(" << getCppName(F
) << "_PAL);";
1654 void CppWriter::printFunctionBody(const Function
*F
) {
1655 if (F
->isDeclaration())
1656 return; // external functions have no bodies.
1658 // Clear the DefinedValues and ForwardRefs maps because we can't have
1659 // cross-function forward refs
1660 ForwardRefs
.clear();
1661 DefinedValues
.clear();
1663 // Create all the argument values
1665 if (!F
->arg_empty()) {
1666 Out
<< "Function::arg_iterator args = " << getCppName(F
)
1667 << "->arg_begin();";
1670 for (Function::const_arg_iterator AI
= F
->arg_begin(), AE
= F
->arg_end();
1672 Out
<< "Value* " << getCppName(AI
) << " = args++;";
1674 if (AI
->hasName()) {
1675 Out
<< getCppName(AI
) << "->setName(\"" << AI
->getName() << "\");";
1681 // Create all the basic blocks
1683 for (Function::const_iterator BI
= F
->begin(), BE
= F
->end();
1685 std::string
bbname(getCppName(BI
));
1686 Out
<< "BasicBlock* " << bbname
<<
1687 " = BasicBlock::Create(getGlobalContext(), \"";
1689 printEscapedString(BI
->getName());
1690 Out
<< "\"," << getCppName(BI
->getParent()) << ",0);";
1694 // Output all of its basic blocks... for the function
1695 for (Function::const_iterator BI
= F
->begin(), BE
= F
->end();
1697 std::string
bbname(getCppName(BI
));
1698 nl(Out
) << "// Block " << BI
->getName() << " (" << bbname
<< ")";
1701 // Output all of the instructions in the basic block...
1702 for (BasicBlock::const_iterator I
= BI
->begin(), E
= BI
->end();
1704 printInstruction(I
,bbname
);
1708 // Loop over the ForwardRefs and resolve them now that all instructions
1710 if (!ForwardRefs
.empty()) {
1711 nl(Out
) << "// Resolve Forward References";
1715 while (!ForwardRefs
.empty()) {
1716 ForwardRefMap::iterator I
= ForwardRefs
.begin();
1717 Out
<< I
->second
<< "->replaceAllUsesWith("
1718 << getCppName(I
->first
) << "); delete " << I
->second
<< ";";
1720 ForwardRefs
.erase(I
);
1724 void CppWriter::printInline(const std::string
& fname
,
1725 const std::string
& func
) {
1726 const Function
* F
= TheModule
->getFunction(func
);
1728 error(std::string("Function '") + func
+ "' not found in input module");
1731 if (F
->isDeclaration()) {
1732 error(std::string("Function '") + func
+ "' is external!");
1735 nl(Out
) << "BasicBlock* " << fname
<< "(Module* mod, Function *"
1737 unsigned arg_count
= 1;
1738 for (Function::const_arg_iterator AI
= F
->arg_begin(), AE
= F
->arg_end();
1740 Out
<< ", Value* arg_" << arg_count
;
1745 printFunctionUses(F
);
1746 printFunctionBody(F
);
1748 Out
<< "return " << getCppName(F
->begin()) << ";";
1753 void CppWriter::printModuleBody() {
1754 // Print out all the type definitions
1755 nl(Out
) << "// Type Definitions"; nl(Out
);
1756 printTypes(TheModule
);
1758 // Functions can call each other and global variables can reference them so
1759 // define all the functions first before emitting their function bodies.
1760 nl(Out
) << "// Function Declarations"; nl(Out
);
1761 for (Module::const_iterator I
= TheModule
->begin(), E
= TheModule
->end();
1763 printFunctionHead(I
);
1765 // Process the global variables declarations. We can't initialze them until
1766 // after the constants are printed so just print a header for each global
1767 nl(Out
) << "// Global Variable Declarations\n"; nl(Out
);
1768 for (Module::const_global_iterator I
= TheModule
->global_begin(),
1769 E
= TheModule
->global_end(); I
!= E
; ++I
) {
1770 printVariableHead(I
);
1773 // Print out all the constants definitions. Constants don't recurse except
1774 // through GlobalValues. All GlobalValues have been declared at this point
1775 // so we can proceed to generate the constants.
1776 nl(Out
) << "// Constant Definitions"; nl(Out
);
1777 printConstants(TheModule
);
1779 // Process the global variables definitions now that all the constants have
1780 // been emitted. These definitions just couple the gvars with their constant
1782 nl(Out
) << "// Global Variable Definitions"; nl(Out
);
1783 for (Module::const_global_iterator I
= TheModule
->global_begin(),
1784 E
= TheModule
->global_end(); I
!= E
; ++I
) {
1785 printVariableBody(I
);
1788 // Finally, we can safely put out all of the function bodies.
1789 nl(Out
) << "// Function Definitions"; nl(Out
);
1790 for (Module::const_iterator I
= TheModule
->begin(), E
= TheModule
->end();
1792 if (!I
->isDeclaration()) {
1793 nl(Out
) << "// Function: " << I
->getName() << " (" << getCppName(I
)
1797 printFunctionBody(I
);
1804 void CppWriter::printProgram(const std::string
& fname
,
1805 const std::string
& mName
) {
1806 Out
<< "#include <llvm/LLVMContext.h>\n";
1807 Out
<< "#include <llvm/Module.h>\n";
1808 Out
<< "#include <llvm/DerivedTypes.h>\n";
1809 Out
<< "#include <llvm/Constants.h>\n";
1810 Out
<< "#include <llvm/GlobalVariable.h>\n";
1811 Out
<< "#include <llvm/Function.h>\n";
1812 Out
<< "#include <llvm/CallingConv.h>\n";
1813 Out
<< "#include <llvm/BasicBlock.h>\n";
1814 Out
<< "#include <llvm/Instructions.h>\n";
1815 Out
<< "#include <llvm/InlineAsm.h>\n";
1816 Out
<< "#include <llvm/Support/FormattedStream.h>\n";
1817 Out
<< "#include <llvm/Support/MathExtras.h>\n";
1818 Out
<< "#include <llvm/Pass.h>\n";
1819 Out
<< "#include <llvm/PassManager.h>\n";
1820 Out
<< "#include <llvm/ADT/SmallVector.h>\n";
1821 Out
<< "#include <llvm/Analysis/Verifier.h>\n";
1822 Out
<< "#include <llvm/Assembly/PrintModulePass.h>\n";
1823 Out
<< "#include <algorithm>\n";
1824 Out
<< "using namespace llvm;\n\n";
1825 Out
<< "Module* " << fname
<< "();\n\n";
1826 Out
<< "int main(int argc, char**argv) {\n";
1827 Out
<< " Module* Mod = " << fname
<< "();\n";
1828 Out
<< " verifyModule(*Mod, PrintMessageAction);\n";
1829 Out
<< " PassManager PM;\n";
1830 Out
<< " PM.add(createPrintModulePass(&outs()));\n";
1831 Out
<< " PM.run(*Mod);\n";
1832 Out
<< " return 0;\n";
1834 printModule(fname
,mName
);
1837 void CppWriter::printModule(const std::string
& fname
,
1838 const std::string
& mName
) {
1839 nl(Out
) << "Module* " << fname
<< "() {";
1840 nl(Out
,1) << "// Module Construction";
1841 nl(Out
) << "Module* mod = new Module(\"";
1842 printEscapedString(mName
);
1843 Out
<< "\", getGlobalContext());";
1844 if (!TheModule
->getTargetTriple().empty()) {
1845 nl(Out
) << "mod->setDataLayout(\"" << TheModule
->getDataLayout() << "\");";
1847 if (!TheModule
->getTargetTriple().empty()) {
1848 nl(Out
) << "mod->setTargetTriple(\"" << TheModule
->getTargetTriple()
1852 if (!TheModule
->getModuleInlineAsm().empty()) {
1853 nl(Out
) << "mod->setModuleInlineAsm(\"";
1854 printEscapedString(TheModule
->getModuleInlineAsm());
1859 // Loop over the dependent libraries and emit them.
1860 Module::lib_iterator LI
= TheModule
->lib_begin();
1861 Module::lib_iterator LE
= TheModule
->lib_end();
1863 Out
<< "mod->addLibrary(\"" << *LI
<< "\");";
1868 nl(Out
) << "return mod;";
1873 void CppWriter::printContents(const std::string
& fname
,
1874 const std::string
& mName
) {
1875 Out
<< "\nModule* " << fname
<< "(Module *mod) {\n";
1876 Out
<< "\nmod->setModuleIdentifier(\"";
1877 printEscapedString(mName
);
1880 Out
<< "\nreturn mod;\n";
1884 void CppWriter::printFunction(const std::string
& fname
,
1885 const std::string
& funcName
) {
1886 const Function
* F
= TheModule
->getFunction(funcName
);
1888 error(std::string("Function '") + funcName
+ "' not found in input module");
1891 Out
<< "\nFunction* " << fname
<< "(Module *mod) {\n";
1892 printFunctionUses(F
);
1893 printFunctionHead(F
);
1894 printFunctionBody(F
);
1895 Out
<< "return " << getCppName(F
) << ";\n";
1899 void CppWriter::printFunctions() {
1900 const Module::FunctionListType
&funcs
= TheModule
->getFunctionList();
1901 Module::const_iterator I
= funcs
.begin();
1902 Module::const_iterator IE
= funcs
.end();
1904 for (; I
!= IE
; ++I
) {
1905 const Function
&func
= *I
;
1906 if (!func
.isDeclaration()) {
1907 std::string
name("define_");
1908 name
+= func
.getName();
1909 printFunction(name
, func
.getName());
1914 void CppWriter::printVariable(const std::string
& fname
,
1915 const std::string
& varName
) {
1916 const GlobalVariable
* GV
= TheModule
->getNamedGlobal(varName
);
1919 error(std::string("Variable '") + varName
+ "' not found in input module");
1922 Out
<< "\nGlobalVariable* " << fname
<< "(Module *mod) {\n";
1923 printVariableUses(GV
);
1924 printVariableHead(GV
);
1925 printVariableBody(GV
);
1926 Out
<< "return " << getCppName(GV
) << ";\n";
1930 void CppWriter::printType(const std::string
& fname
,
1931 const std::string
& typeName
) {
1932 const Type
* Ty
= TheModule
->getTypeByName(typeName
);
1934 error(std::string("Type '") + typeName
+ "' not found in input module");
1937 Out
<< "\nType* " << fname
<< "(Module *mod) {\n";
1939 Out
<< "return " << getCppName(Ty
) << ";\n";
1943 bool CppWriter::runOnModule(Module
&M
) {
1947 Out
<< "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
1949 // Get the name of the function we're supposed to generate
1950 std::string fname
= FuncName
.getValue();
1952 // Get the name of the thing we are to generate
1953 std::string tgtname
= NameToGenerate
.getValue();
1954 if (GenerationType
== GenModule
||
1955 GenerationType
== GenContents
||
1956 GenerationType
== GenProgram
||
1957 GenerationType
== GenFunctions
) {
1958 if (tgtname
== "!bad!") {
1959 if (M
.getModuleIdentifier() == "-")
1960 tgtname
= "<stdin>";
1962 tgtname
= M
.getModuleIdentifier();
1964 } else if (tgtname
== "!bad!")
1965 error("You must use the -for option with -gen-{function,variable,type}");
1967 switch (WhatToGenerate(GenerationType
)) {
1970 fname
= "makeLLVMModule";
1971 printProgram(fname
,tgtname
);
1975 fname
= "makeLLVMModule";
1976 printModule(fname
,tgtname
);
1980 fname
= "makeLLVMModuleContents";
1981 printContents(fname
,tgtname
);
1985 fname
= "makeLLVMFunction";
1986 printFunction(fname
,tgtname
);
1993 fname
= "makeLLVMInline";
1994 printInline(fname
,tgtname
);
1998 fname
= "makeLLVMVariable";
1999 printVariable(fname
,tgtname
);
2003 fname
= "makeLLVMType";
2004 printType(fname
,tgtname
);
2007 error("Invalid generation option");
2014 char CppWriter::ID
= 0;
2016 //===----------------------------------------------------------------------===//
2017 // External Interface declaration
2018 //===----------------------------------------------------------------------===//
2020 bool CPPTargetMachine::addPassesToEmitWholeFile(PassManager
&PM
,
2021 formatted_raw_ostream
&o
,
2022 CodeGenFileType FileType
,
2023 CodeGenOpt::Level OptLevel
) {
2024 if (FileType
!= TargetMachine::AssemblyFile
) return true;
2025 PM
.add(new CppWriter(o
));