1 //===- MipsInstrFPU.td - Mips FPU Instruction Information -------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the Mips implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 //===----------------------------------------------------------------------===//
15 // Floating Point Instructions
16 // ------------------------
18 // - 32 64-bit registers (default mode)
19 // - 16 even 32-bit registers (32-bit compatible mode) for
20 // single and double access.
22 // - 16 even 32-bit registers - single and double (aliased)
23 // - 32 32-bit registers (within single-only mode)
24 //===----------------------------------------------------------------------===//
26 // Floating Point Compare and Branch
27 def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisSameAs<0, 2>, SDTCisInt<0>,
28 SDTCisVT<1, OtherVT>]>;
29 def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<0>,
31 def SDT_MipsFPSelectCC : SDTypeProfile<1, 4, [SDTCisInt<1>, SDTCisInt<4>,
32 SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>]>;
34 def MipsFPRound : SDNode<"MipsISD::FPRound", SDTFPRoundOp, [SDNPOptInFlag]>;
35 def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
37 def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp>;
38 def MipsFPSelectCC : SDNode<"MipsISD::FPSelectCC", SDT_MipsFPSelectCC>;
40 // Operand for printing out a condition code.
41 let PrintMethod = "printFCCOperand" in
42 def condcode : Operand<i32>;
44 //===----------------------------------------------------------------------===//
45 // Feature predicates.
46 //===----------------------------------------------------------------------===//
48 def In32BitMode : Predicate<"!Subtarget.isFP64bit()">;
49 def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">;
50 def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
52 //===----------------------------------------------------------------------===//
53 // Instruction Class Templates
55 // A set of multiclasses is used to address the register usage.
57 // S32 - single precision in 16 32bit even fp registers
58 // single precision in 32 32bit fp registers in SingleOnly mode
59 // S64 - single precision in 32 64bit fp registers (In64BitMode)
60 // D32 - double precision in 16 32bit even fp registers
61 // D64 - double precision in 32 64bit fp registers (In64BitMode)
63 // Only S32 and D32 are supported right now.
64 //===----------------------------------------------------------------------===//
66 multiclass FFR1_1<bits<6> funct, string asmstr>
68 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
69 !strconcat(asmstr, ".s $fd, $fs"), []>;
71 def _D32 : FFR<0x11, funct, 0x1, (outs FGR32:$fd), (ins AFGR64:$fs),
72 !strconcat(asmstr, ".d $fd, $fs"), []>, Requires<[In32BitMode]>;
75 multiclass FFR1_2<bits<6> funct, string asmstr, SDNode FOp>
77 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd), (ins FGR32:$fs),
78 !strconcat(asmstr, ".s $fd, $fs"),
79 [(set FGR32:$fd, (FOp FGR32:$fs))]>;
81 def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd), (ins AFGR64:$fs),
82 !strconcat(asmstr, ".d $fd, $fs"),
83 [(set AFGR64:$fd, (FOp AFGR64:$fs))]>, Requires<[In32BitMode]>;
86 class FFR1_3<bits<6> funct, bits<5> fmt, RegisterClass RcSrc,
87 RegisterClass RcDst, string asmstr>:
88 FFR<0x11, funct, fmt, (outs RcSrc:$fd), (ins RcDst:$fs),
89 !strconcat(asmstr, " $fd, $fs"), []>;
92 multiclass FFR1_4<bits<6> funct, string asmstr, SDNode FOp> {
93 def _S32 : FFR<0x11, funct, 0x0, (outs FGR32:$fd),
94 (ins FGR32:$fs, FGR32:$ft),
95 !strconcat(asmstr, ".s $fd, $fs, $ft"),
96 [(set FGR32:$fd, (FOp FGR32:$fs, FGR32:$ft))]>;
98 def _D32 : FFR<0x11, funct, 0x1, (outs AFGR64:$fd),
99 (ins AFGR64:$fs, AFGR64:$ft),
100 !strconcat(asmstr, ".d $fd, $fs, $ft"),
101 [(set AFGR64:$fd, (FOp AFGR64:$fs, AFGR64:$ft))]>,
102 Requires<[In32BitMode]>;
105 //===----------------------------------------------------------------------===//
106 // Floating Point Instructions
107 //===----------------------------------------------------------------------===//
110 defm FLOOR_W : FFR1_1<0b001111, "floor.w">;
111 defm CEIL_W : FFR1_1<0b001110, "ceil.w">;
112 defm ROUND_W : FFR1_1<0b001100, "round.w">;
113 defm TRUNC_W : FFR1_1<0b001101, "trunc.w">;
114 defm CVTW : FFR1_1<0b100100, "cvt.w">;
115 defm FMOV : FFR1_1<0b000110, "mov">;
117 defm FABS : FFR1_2<0b000101, "abs", fabs>;
118 defm FNEG : FFR1_2<0b000111, "neg", fneg>;
119 defm FSQRT : FFR1_2<0b000100, "sqrt", fsqrt>;
121 /// Convert to Single Precison
122 def CVTS_W32 : FFR1_3<0b100000, 0x2, FGR32, FGR32, "cvt.s.w">;
124 let Predicates = [IsNotSingleFloat] in {
125 /// Ceil to long signed integer
126 def CEIL_LS : FFR1_3<0b001010, 0x0, FGR32, FGR32, "ceil.l">;
127 def CEIL_LD : FFR1_3<0b001010, 0x1, AFGR64, AFGR64, "ceil.l">;
129 /// Round to long signed integer
130 def ROUND_LS : FFR1_3<0b001000, 0x0, FGR32, FGR32, "round.l">;
131 def ROUND_LD : FFR1_3<0b001000, 0x1, AFGR64, AFGR64, "round.l">;
133 /// Floor to long signed integer
134 def FLOOR_LS : FFR1_3<0b001011, 0x0, FGR32, FGR32, "floor.l">;
135 def FLOOR_LD : FFR1_3<0b001011, 0x1, AFGR64, AFGR64, "floor.l">;
137 /// Trunc to long signed integer
138 def TRUNC_LS : FFR1_3<0b001001, 0x0, FGR32, FGR32, "trunc.l">;
139 def TRUNC_LD : FFR1_3<0b001001, 0x1, AFGR64, AFGR64, "trunc.l">;
141 /// Convert to long signed integer
142 def CVTL_S : FFR1_3<0b100101, 0x0, FGR32, FGR32, "cvt.l">;
143 def CVTL_D : FFR1_3<0b100101, 0x1, AFGR64, AFGR64, "cvt.l">;
145 /// Convert to Double Precison
146 def CVTD_S32 : FFR1_3<0b100001, 0x0, AFGR64, FGR32, "cvt.d.s">;
147 def CVTD_W32 : FFR1_3<0b100001, 0x2, AFGR64, FGR32, "cvt.d.w">;
148 def CVTD_L32 : FFR1_3<0b100001, 0x3, AFGR64, AFGR64, "cvt.d.l">;
150 /// Convert to Single Precison
151 def CVTS_D32 : FFR1_3<0b100000, 0x1, FGR32, AFGR64, "cvt.s.d">;
152 def CVTS_L32 : FFR1_3<0b100000, 0x3, FGR32, AFGR64, "cvt.s.l">;
156 // The odd-numbered registers are only referenced when doing loads,
157 // stores, and moves between floating-point and integer registers.
158 // When defining instructions, we reference all 32-bit registers,
159 // regardless of register aliasing.
161 /// Move Control Registers From/To CPU Registers
162 def CFC1 : FFR<0x11, 0x0, 0x2, (outs CPURegs:$rt), (ins CCR:$fs),
163 "cfc1 $rt, $fs", []>;
165 def CTC1 : FFR<0x11, 0x0, 0x6, (outs CCR:$rt), (ins CPURegs:$fs),
166 "ctc1 $fs, $rt", []>;
168 def MFC1 : FFR<0x11, 0x00, 0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
169 "mfc1 $rt, $fs", []>;
171 def MTC1 : FFR<0x11, 0x00, 0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
172 "mtc1 $rt, $fs", []>;
175 /// Floating Point Memory Instructions
176 let Predicates = [IsNotSingleFloat] in {
177 def LDC1 : FFI<0b110101, (outs AFGR64:$ft), (ins mem:$addr),
178 "ldc1 $ft, $addr", [(set AFGR64:$ft, (load addr:$addr))]>;
180 def SDC1 : FFI<0b111101, (outs), (ins AFGR64:$ft, mem:$addr),
181 "sdc1 $ft, $addr", [(store AFGR64:$ft, addr:$addr)]>;
184 // LWC1 and SWC1 can always be emited with odd registers.
185 def LWC1 : FFI<0b110001, (outs FGR32:$ft), (ins mem:$addr), "lwc1 $ft, $addr",
186 [(set FGR32:$ft, (load addr:$addr))]>;
187 def SWC1 : FFI<0b111001, (outs), (ins FGR32:$ft, mem:$addr), "swc1 $ft, $addr",
188 [(store FGR32:$ft, addr:$addr)]>;
190 /// Floating-point Aritmetic
191 defm FADD : FFR1_4<0x10, "add", fadd>;
192 defm FDIV : FFR1_4<0x03, "div", fdiv>;
193 defm FMUL : FFR1_4<0x02, "mul", fmul>;
194 defm FSUB : FFR1_4<0x01, "sub", fsub>;
196 //===----------------------------------------------------------------------===//
197 // Floating Point Branch Codes
198 //===----------------------------------------------------------------------===//
199 // Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
200 // They must be kept in synch.
201 def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
202 def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
203 def MIPS_BRANCH_FL : PatLeaf<(i32 2)>;
204 def MIPS_BRANCH_TL : PatLeaf<(i32 3)>;
206 /// Floating Point Branch of False/True (Likely)
207 let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in {
208 class FBRANCH<PatLeaf op, string asmstr> : FFI<0x11, (outs),
209 (ins brtarget:$dst), !strconcat(asmstr, " $dst"),
210 [(MipsFPBrcond op, bb:$dst, FCR31)]>;
212 def BC1F : FBRANCH<MIPS_BRANCH_F, "bc1f">;
213 def BC1T : FBRANCH<MIPS_BRANCH_T, "bc1t">;
214 def BC1FL : FBRANCH<MIPS_BRANCH_FL, "bc1fl">;
215 def BC1TL : FBRANCH<MIPS_BRANCH_TL, "bc1tl">;
217 //===----------------------------------------------------------------------===//
218 // Floating Point Flag Conditions
219 //===----------------------------------------------------------------------===//
220 // Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
221 // They must be kept in synch.
222 def MIPS_FCOND_F : PatLeaf<(i32 0)>;
223 def MIPS_FCOND_UN : PatLeaf<(i32 1)>;
224 def MIPS_FCOND_EQ : PatLeaf<(i32 2)>;
225 def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>;
226 def MIPS_FCOND_OLT : PatLeaf<(i32 4)>;
227 def MIPS_FCOND_ULT : PatLeaf<(i32 5)>;
228 def MIPS_FCOND_OLE : PatLeaf<(i32 6)>;
229 def MIPS_FCOND_ULE : PatLeaf<(i32 7)>;
230 def MIPS_FCOND_SF : PatLeaf<(i32 8)>;
231 def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
232 def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>;
233 def MIPS_FCOND_NGL : PatLeaf<(i32 11)>;
234 def MIPS_FCOND_LT : PatLeaf<(i32 12)>;
235 def MIPS_FCOND_NGE : PatLeaf<(i32 13)>;
236 def MIPS_FCOND_LE : PatLeaf<(i32 14)>;
237 def MIPS_FCOND_NGT : PatLeaf<(i32 15)>;
239 /// Floating Point Compare
240 let hasDelaySlot = 1, Defs=[FCR31] in {
241 def FCMP_S32 : FCC<0x0, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
242 "c.$cc.s $fs, $ft", [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc),
245 def FCMP_D32 : FCC<0x1, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
246 "c.$cc.d $fs, $ft", [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc),
247 (implicit FCR31)]>, Requires<[In32BitMode]>;
250 //===----------------------------------------------------------------------===//
251 // Floating Point Pseudo-Instructions
252 //===----------------------------------------------------------------------===//
254 // For some explanation, see Select_CC at MipsInstrInfo.td. We also embedd a
255 // condiciton code to enable easy handling by the Custom Inserter.
256 let usesCustomDAGSchedInserter = 1, Uses=[FCR31] in {
257 class PseudoFPSelCC<RegisterClass RC, string asmstr> :
258 MipsPseudo<(outs RC:$dst),
259 (ins CPURegs:$CmpRes, RC:$T, RC:$F, condcode:$cc), asmstr,
260 [(set RC:$dst, (MipsFPSelectCC CPURegs:$CmpRes, RC:$T, RC:$F,
264 // The values to be selected are fp but the condition test is with integers.
265 def Select_CC_S32 : PseudoSelCC<FGR32, "# MipsSelect_CC_S32_f32">;
266 def Select_CC_D32 : PseudoSelCC<AFGR64, "# MipsSelect_CC_D32_f32">,
267 Requires<[In32BitMode]>;
269 // The values to be selected are int but the condition test is done with fp.
270 def Select_FCC : PseudoFPSelCC<CPURegs, "# MipsSelect_FCC">;
272 // The values to be selected and the condition test is done with fp.
273 def Select_FCC_S32 : PseudoFPSelCC<FGR32, "# MipsSelect_FCC_S32_f32">;
274 def Select_FCC_D32 : PseudoFPSelCC<AFGR64, "# MipsSelect_FCC_D32_f32">,
275 Requires<[In32BitMode]>;
277 def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
278 "# MOVCCRToCCR", []>;
280 //===----------------------------------------------------------------------===//
281 // Floating Point Patterns
282 //===----------------------------------------------------------------------===//
283 def fpimm0 : PatLeaf<(fpimm), [{
284 return N->isExactlyValue(+0.0);
287 def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
289 def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVTS_W32 (MTC1 CPURegs:$src))>;
290 def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVTD_W32 (MTC1 CPURegs:$src))>;
292 def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S32 FGR32:$src))>;
294 def : Pat<(i32 (bitconvert FGR32:$src)), (MFC1 FGR32:$src)>;
295 def : Pat<(f32 (bitconvert CPURegs:$src)), (MTC1 CPURegs:$src)>;
297 let Predicates = [In32BitMode] in {
298 def : Pat<(f32 (fround AFGR64:$src)), (CVTS_D32 AFGR64:$src)>;
299 def : Pat<(f64 (fextend FGR32:$src)), (CVTD_S32 FGR32:$src)>;
302 // MipsFPRound is only emitted for MipsI targets.
303 def : Pat<(f32 (MipsFPRound AFGR64:$src)), (CVTW_D32 AFGR64:$src)>;