1 //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86JITInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "X86Relocations.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/CodeGen/MachineCodeEmitter.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/ObjectCodeEmitter.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/Function.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetOptions.h"
39 STATISTIC(NumEmitted
, "Number of machine instructions emitted");
42 template<class CodeEmitter
>
43 class VISIBILITY_HIDDEN Emitter
: public MachineFunctionPass
{
44 const X86InstrInfo
*II
;
48 intptr_t PICBaseOffset
;
53 explicit Emitter(X86TargetMachine
&tm
, CodeEmitter
&mce
)
54 : MachineFunctionPass(&ID
), II(0), TD(0), TM(tm
),
55 MCE(mce
), PICBaseOffset(0), Is64BitMode(false),
56 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
57 Emitter(X86TargetMachine
&tm
, CodeEmitter
&mce
,
58 const X86InstrInfo
&ii
, const TargetData
&td
, bool is64
)
59 : MachineFunctionPass(&ID
), II(&ii
), TD(&td
), TM(tm
),
60 MCE(mce
), PICBaseOffset(0), Is64BitMode(is64
),
61 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
63 bool runOnMachineFunction(MachineFunction
&MF
);
65 virtual const char *getPassName() const {
66 return "X86 Machine Code Emitter";
69 void emitInstruction(const MachineInstr
&MI
,
70 const TargetInstrDesc
*Desc
);
72 void getAnalysisUsage(AnalysisUsage
&AU
) const {
74 AU
.addRequired
<MachineModuleInfo
>();
75 MachineFunctionPass::getAnalysisUsage(AU
);
79 void emitPCRelativeBlockAddress(MachineBasicBlock
*MBB
);
80 void emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
81 intptr_t Disp
= 0, intptr_t PCAdj
= 0,
82 bool NeedStub
= false, bool Indirect
= false);
83 void emitExternalSymbolAddress(const char *ES
, unsigned Reloc
);
84 void emitConstPoolAddress(unsigned CPI
, unsigned Reloc
, intptr_t Disp
= 0,
86 void emitJumpTableAddress(unsigned JTI
, unsigned Reloc
,
89 void emitDisplacementField(const MachineOperand
*RelocOp
, int DispVal
,
90 intptr_t Adj
= 0, bool IsPCRel
= true);
92 void emitRegModRMByte(unsigned ModRMReg
, unsigned RegOpcodeField
);
93 void emitRegModRMByte(unsigned RegOpcodeField
);
94 void emitSIBByte(unsigned SS
, unsigned Index
, unsigned Base
);
95 void emitConstant(uint64_t Val
, unsigned Size
);
97 void emitMemModRMByte(const MachineInstr
&MI
,
98 unsigned Op
, unsigned RegOpcodeField
,
101 unsigned getX86RegNum(unsigned RegNo
) const;
104 template<class CodeEmitter
>
105 char Emitter
<CodeEmitter
>::ID
= 0;
108 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
109 /// to the specified templated MachineCodeEmitter object.
111 FunctionPass
*llvm::createX86CodeEmitterPass(X86TargetMachine
&TM
,
112 MachineCodeEmitter
&MCE
) {
113 return new Emitter
<MachineCodeEmitter
>(TM
, MCE
);
115 FunctionPass
*llvm::createX86JITCodeEmitterPass(X86TargetMachine
&TM
,
116 JITCodeEmitter
&JCE
) {
117 return new Emitter
<JITCodeEmitter
>(TM
, JCE
);
119 FunctionPass
*llvm::createX86ObjectCodeEmitterPass(X86TargetMachine
&TM
,
120 ObjectCodeEmitter
&OCE
) {
121 return new Emitter
<ObjectCodeEmitter
>(TM
, OCE
);
124 template<class CodeEmitter
>
125 bool Emitter
<CodeEmitter
>::runOnMachineFunction(MachineFunction
&MF
) {
127 MCE
.setModuleInfo(&getAnalysis
<MachineModuleInfo
>());
129 II
= TM
.getInstrInfo();
130 TD
= TM
.getTargetData();
131 Is64BitMode
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
132 IsPIC
= TM
.getRelocationModel() == Reloc::PIC_
;
135 DEBUG(errs() << "JITTing function '"
136 << MF
.getFunction()->getName() << "'\n");
137 MCE
.startFunction(MF
);
138 for (MachineFunction::iterator MBB
= MF
.begin(), E
= MF
.end();
140 MCE
.StartMachineBasicBlock(MBB
);
141 for (MachineBasicBlock::const_iterator I
= MBB
->begin(), E
= MBB
->end();
143 const TargetInstrDesc
&Desc
= I
->getDesc();
144 emitInstruction(*I
, &Desc
);
145 // MOVPC32r is basically a call plus a pop instruction.
146 if (Desc
.getOpcode() == X86::MOVPC32r
)
147 emitInstruction(*I
, &II
->get(X86::POP32r
));
148 NumEmitted
++; // Keep track of the # of mi's emitted
151 } while (MCE
.finishFunction(MF
));
156 /// emitPCRelativeBlockAddress - This method keeps track of the information
157 /// necessary to resolve the address of this block later and emits a dummy
160 template<class CodeEmitter
>
161 void Emitter
<CodeEmitter
>::emitPCRelativeBlockAddress(MachineBasicBlock
*MBB
) {
162 // Remember where this reference was and where it is to so we can
163 // deal with it later.
164 MCE
.addRelocation(MachineRelocation::getBB(MCE
.getCurrentPCOffset(),
165 X86::reloc_pcrel_word
, MBB
));
169 /// emitGlobalAddress - Emit the specified address to the code stream assuming
170 /// this is part of a "take the address of a global" instruction.
172 template<class CodeEmitter
>
173 void Emitter
<CodeEmitter
>::emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
174 intptr_t Disp
/* = 0 */,
175 intptr_t PCAdj
/* = 0 */,
176 bool NeedStub
/* = false */,
177 bool Indirect
/* = false */) {
178 intptr_t RelocCST
= Disp
;
179 if (Reloc
== X86::reloc_picrel_word
)
180 RelocCST
= PICBaseOffset
;
181 else if (Reloc
== X86::reloc_pcrel_word
)
183 MachineRelocation MR
= Indirect
184 ? MachineRelocation::getIndirectSymbol(MCE
.getCurrentPCOffset(), Reloc
,
185 GV
, RelocCST
, NeedStub
)
186 : MachineRelocation::getGV(MCE
.getCurrentPCOffset(), Reloc
,
187 GV
, RelocCST
, NeedStub
);
188 MCE
.addRelocation(MR
);
189 // The relocated value will be added to the displacement
190 if (Reloc
== X86::reloc_absolute_dword
)
191 MCE
.emitDWordLE(Disp
);
193 MCE
.emitWordLE((int32_t)Disp
);
196 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
197 /// be emitted to the current location in the function, and allow it to be PC
199 template<class CodeEmitter
>
200 void Emitter
<CodeEmitter
>::emitExternalSymbolAddress(const char *ES
,
202 intptr_t RelocCST
= (Reloc
== X86::reloc_picrel_word
) ? PICBaseOffset
: 0;
203 MCE
.addRelocation(MachineRelocation::getExtSym(MCE
.getCurrentPCOffset(),
204 Reloc
, ES
, RelocCST
));
205 if (Reloc
== X86::reloc_absolute_dword
)
211 /// emitConstPoolAddress - Arrange for the address of an constant pool
212 /// to be emitted to the current location in the function, and allow it to be PC
214 template<class CodeEmitter
>
215 void Emitter
<CodeEmitter
>::emitConstPoolAddress(unsigned CPI
, unsigned Reloc
,
216 intptr_t Disp
/* = 0 */,
217 intptr_t PCAdj
/* = 0 */) {
218 intptr_t RelocCST
= 0;
219 if (Reloc
== X86::reloc_picrel_word
)
220 RelocCST
= PICBaseOffset
;
221 else if (Reloc
== X86::reloc_pcrel_word
)
223 MCE
.addRelocation(MachineRelocation::getConstPool(MCE
.getCurrentPCOffset(),
224 Reloc
, CPI
, RelocCST
));
225 // The relocated value will be added to the displacement
226 if (Reloc
== X86::reloc_absolute_dword
)
227 MCE
.emitDWordLE(Disp
);
229 MCE
.emitWordLE((int32_t)Disp
);
232 /// emitJumpTableAddress - Arrange for the address of a jump table to
233 /// be emitted to the current location in the function, and allow it to be PC
235 template<class CodeEmitter
>
236 void Emitter
<CodeEmitter
>::emitJumpTableAddress(unsigned JTI
, unsigned Reloc
,
237 intptr_t PCAdj
/* = 0 */) {
238 intptr_t RelocCST
= 0;
239 if (Reloc
== X86::reloc_picrel_word
)
240 RelocCST
= PICBaseOffset
;
241 else if (Reloc
== X86::reloc_pcrel_word
)
243 MCE
.addRelocation(MachineRelocation::getJumpTable(MCE
.getCurrentPCOffset(),
244 Reloc
, JTI
, RelocCST
));
245 // The relocated value will be added to the displacement
246 if (Reloc
== X86::reloc_absolute_dword
)
252 template<class CodeEmitter
>
253 unsigned Emitter
<CodeEmitter
>::getX86RegNum(unsigned RegNo
) const {
254 return II
->getRegisterInfo().getX86RegNum(RegNo
);
257 inline static unsigned char ModRMByte(unsigned Mod
, unsigned RegOpcode
,
259 assert(Mod
< 4 && RegOpcode
< 8 && RM
< 8 && "ModRM Fields out of range!");
260 return RM
| (RegOpcode
<< 3) | (Mod
<< 6);
263 template<class CodeEmitter
>
264 void Emitter
<CodeEmitter
>::emitRegModRMByte(unsigned ModRMReg
,
265 unsigned RegOpcodeFld
){
266 MCE
.emitByte(ModRMByte(3, RegOpcodeFld
, getX86RegNum(ModRMReg
)));
269 template<class CodeEmitter
>
270 void Emitter
<CodeEmitter
>::emitRegModRMByte(unsigned RegOpcodeFld
) {
271 MCE
.emitByte(ModRMByte(3, RegOpcodeFld
, 0));
274 template<class CodeEmitter
>
275 void Emitter
<CodeEmitter
>::emitSIBByte(unsigned SS
,
278 // SIB byte is in the same format as the ModRMByte...
279 MCE
.emitByte(ModRMByte(SS
, Index
, Base
));
282 template<class CodeEmitter
>
283 void Emitter
<CodeEmitter
>::emitConstant(uint64_t Val
, unsigned Size
) {
284 // Output the constant in little endian byte order...
285 for (unsigned i
= 0; i
!= Size
; ++i
) {
286 MCE
.emitByte(Val
& 255);
291 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
292 /// sign-extended field.
293 static bool isDisp8(int Value
) {
294 return Value
== (signed char)Value
;
297 static bool gvNeedsNonLazyPtr(const MachineOperand
&GVOp
,
298 const TargetMachine
&TM
) {
299 // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
300 // mechanism as 32-bit mode.
301 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit() &&
302 !TM
.getSubtarget
<X86Subtarget
>().isTargetDarwin())
305 // Return true if this is a reference to a stub containing the address of the
306 // global, not the global itself.
307 return isGlobalStubReference(GVOp
.getTargetFlags());
310 template<class CodeEmitter
>
311 void Emitter
<CodeEmitter
>::emitDisplacementField(const MachineOperand
*RelocOp
,
313 intptr_t Adj
/* = 0 */,
314 bool IsPCRel
/* = true */) {
315 // If this is a simple integer displacement that doesn't require a relocation,
318 emitConstant(DispVal
, 4);
322 // Otherwise, this is something that requires a relocation. Emit it as such
324 if (RelocOp
->isGlobal()) {
325 // In 64-bit static small code model, we could potentially emit absolute.
326 // But it's probably not beneficial. If the MCE supports using RIP directly
327 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
328 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
329 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
330 unsigned rt
= Is64BitMode
?
331 (IsPCRel
? X86::reloc_pcrel_word
: X86::reloc_absolute_word_sext
)
332 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
333 bool NeedStub
= isa
<Function
>(RelocOp
->getGlobal());
334 bool Indirect
= gvNeedsNonLazyPtr(*RelocOp
, TM
);
335 emitGlobalAddress(RelocOp
->getGlobal(), rt
, RelocOp
->getOffset(),
336 Adj
, NeedStub
, Indirect
);
337 } else if (RelocOp
->isCPI()) {
338 unsigned rt
= Is64BitMode
?
339 (IsPCRel
? X86::reloc_pcrel_word
: X86::reloc_absolute_word_sext
)
340 : (IsPCRel
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
341 emitConstPoolAddress(RelocOp
->getIndex(), rt
,
342 RelocOp
->getOffset(), Adj
);
343 } else if (RelocOp
->isJTI()) {
344 unsigned rt
= Is64BitMode
?
345 (IsPCRel
? X86::reloc_pcrel_word
: X86::reloc_absolute_word_sext
)
346 : (IsPCRel
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
347 emitJumpTableAddress(RelocOp
->getIndex(), rt
, Adj
);
349 llvm_unreachable("Unknown value to relocate!");
353 template<class CodeEmitter
>
354 void Emitter
<CodeEmitter
>::emitMemModRMByte(const MachineInstr
&MI
,
355 unsigned Op
, unsigned RegOpcodeField
,
357 const MachineOperand
&Op3
= MI
.getOperand(Op
+3);
359 const MachineOperand
*DispForReloc
= 0;
361 // Figure out what sort of displacement we have to handle here.
362 if (Op3
.isGlobal()) {
364 } else if (Op3
.isCPI()) {
365 if (!MCE
.earlyResolveAddresses() || Is64BitMode
|| IsPIC
) {
368 DispVal
+= MCE
.getConstantPoolEntryAddress(Op3
.getIndex());
369 DispVal
+= Op3
.getOffset();
371 } else if (Op3
.isJTI()) {
372 if (!MCE
.earlyResolveAddresses() || Is64BitMode
|| IsPIC
) {
375 DispVal
+= MCE
.getJumpTableEntryAddress(Op3
.getIndex());
378 DispVal
= Op3
.getImm();
381 const MachineOperand
&Base
= MI
.getOperand(Op
);
382 const MachineOperand
&Scale
= MI
.getOperand(Op
+1);
383 const MachineOperand
&IndexReg
= MI
.getOperand(Op
+2);
385 unsigned BaseReg
= Base
.getReg();
387 // Indicate that the displacement will use an pcrel or absolute reference
388 // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
389 // while others, unless explicit asked to use RIP, use absolute references.
390 bool IsPCRel
= MCE
.earlyResolveAddresses() ? true : false;
392 // Is a SIB byte needed?
393 // If no BaseReg, issue a RIP relative instruction only if the MCE can
394 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
395 // 2-7) and absolute references.
396 if ((!Is64BitMode
|| DispForReloc
|| BaseReg
!= 0) &&
397 IndexReg
.getReg() == 0 &&
398 ((BaseReg
== 0 && MCE
.earlyResolveAddresses()) || BaseReg
== X86::RIP
||
399 (BaseReg
!= 0 && getX86RegNum(BaseReg
) != N86::ESP
))) {
400 if (BaseReg
== 0 || BaseReg
== X86::RIP
) { // Just a displacement?
401 // Emit special case [disp32] encoding
402 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 5));
403 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
, true);
405 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
406 if (!DispForReloc
&& DispVal
== 0 && BaseRegNo
!= N86::EBP
) {
407 // Emit simple indirect register encoding... [EAX] f.e.
408 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, BaseRegNo
));
409 } else if (!DispForReloc
&& isDisp8(DispVal
)) {
410 // Emit the disp8 encoding... [REG+disp8]
411 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, BaseRegNo
));
412 emitConstant(DispVal
, 1);
414 // Emit the most general non-SIB encoding: [REG+disp32]
415 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, BaseRegNo
));
416 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
, IsPCRel
);
420 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
421 assert(IndexReg
.getReg() != X86::ESP
&&
422 IndexReg
.getReg() != X86::RSP
&& "Cannot use ESP as index reg!");
424 bool ForceDisp32
= false;
425 bool ForceDisp8
= false;
427 // If there is no base register, we emit the special case SIB byte with
428 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
429 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
431 } else if (DispForReloc
) {
432 // Emit the normal disp32 encoding.
433 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
435 } else if (DispVal
== 0 && getX86RegNum(BaseReg
) != N86::EBP
) {
436 // Emit no displacement ModR/M byte
437 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
438 } else if (isDisp8(DispVal
)) {
439 // Emit the disp8 encoding...
440 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, 4));
441 ForceDisp8
= true; // Make sure to force 8 bit disp if Base=EBP
443 // Emit the normal disp32 encoding...
444 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
447 // Calculate what the SS field value should be...
448 static const unsigned SSTable
[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
449 unsigned SS
= SSTable
[Scale
.getImm()];
452 // Handle the SIB byte for the case where there is no base, see Intel
453 // Manual 2A, table 2-7. The displacement has already been output.
455 if (IndexReg
.getReg())
456 IndexRegNo
= getX86RegNum(IndexReg
.getReg());
457 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
459 emitSIBByte(SS
, IndexRegNo
, 5);
461 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
463 if (IndexReg
.getReg())
464 IndexRegNo
= getX86RegNum(IndexReg
.getReg());
466 IndexRegNo
= 4; // For example [ESP+1*<noreg>+4]
467 emitSIBByte(SS
, IndexRegNo
, BaseRegNo
);
470 // Do we need to output a displacement?
472 emitConstant(DispVal
, 1);
473 } else if (DispVal
!= 0 || ForceDisp32
) {
474 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
, IsPCRel
);
479 template<class CodeEmitter
>
480 void Emitter
<CodeEmitter
>::emitInstruction(
481 const MachineInstr
&MI
,
482 const TargetInstrDesc
*Desc
) {
485 MCE
.processDebugLoc(MI
.getDebugLoc());
487 unsigned Opcode
= Desc
->Opcode
;
489 // Emit the lock opcode prefix as needed.
490 if (Desc
->TSFlags
& X86II::LOCK
) MCE
.emitByte(0xF0);
492 // Emit segment override opcode prefix as needed.
493 switch (Desc
->TSFlags
& X86II::SegOvrMask
) {
500 default: llvm_unreachable("Invalid segment!");
501 case 0: break; // No segment override!
504 // Emit the repeat opcode prefix as needed.
505 if ((Desc
->TSFlags
& X86II::Op0Mask
) == X86II::REP
) MCE
.emitByte(0xF3);
507 // Emit the operand size opcode prefix as needed.
508 if (Desc
->TSFlags
& X86II::OpSize
) MCE
.emitByte(0x66);
510 // Emit the address size opcode prefix as needed.
511 if (Desc
->TSFlags
& X86II::AdSize
) MCE
.emitByte(0x67);
513 bool Need0FPrefix
= false;
514 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
515 case X86II::TB
: // Two-byte opcode prefix
516 case X86II::T8
: // 0F 38
517 case X86II::TA
: // 0F 3A
520 case X86II::TF
: // F2 0F 38
524 case X86II::REP
: break; // already handled.
525 case X86II::XS
: // F3 0F
529 case X86II::XD
: // F2 0F
533 case X86II::D8
: case X86II::D9
: case X86II::DA
: case X86II::DB
:
534 case X86II::DC
: case X86II::DD
: case X86II::DE
: case X86II::DF
:
536 (((Desc
->TSFlags
& X86II::Op0Mask
)-X86II::D8
)
537 >> X86II::Op0Shift
));
538 break; // Two-byte opcode prefix
539 default: llvm_unreachable("Invalid prefix!");
540 case 0: break; // No prefix!
545 unsigned REX
= X86InstrInfo::determineREX(MI
);
547 MCE
.emitByte(0x40 | REX
);
550 // 0x0F escape code must be emitted just before the opcode.
554 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
555 case X86II::TF
: // F2 0F 38
556 case X86II::T8
: // 0F 38
559 case X86II::TA
: // 0F 3A
564 // If this is a two-address instruction, skip one of the register operands.
565 unsigned NumOps
= Desc
->getNumOperands();
567 if (NumOps
> 1 && Desc
->getOperandConstraint(1, TOI::TIED_TO
) != -1)
569 else if (NumOps
> 2 && Desc
->getOperandConstraint(NumOps
-1, TOI::TIED_TO
)== 0)
570 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
573 unsigned char BaseOpcode
= II
->getBaseOpcodeFor(Desc
);
574 switch (Desc
->TSFlags
& X86II::FormMask
) {
575 default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
577 // Remember the current PC offset, this is the PIC relocation
581 llvm_unreachable("psuedo instructions should be removed before code emission");
583 case TargetInstrInfo::INLINEASM
: {
584 // We allow inline assembler nodes with empty bodies - they can
585 // implicitly define registers, which is ok for JIT.
586 if (MI
.getOperand(0).getSymbolName()[0]) {
587 llvm_report_error("JIT does not support inline asm!");
591 case TargetInstrInfo::DBG_LABEL
:
592 case TargetInstrInfo::EH_LABEL
:
593 MCE
.emitLabel(MI
.getOperand(0).getImm());
595 case TargetInstrInfo::IMPLICIT_DEF
:
596 case TargetInstrInfo::DECLARE
:
598 case X86::FP_REG_KILL
:
600 case X86::MOVPC32r
: {
601 // This emits the "call" portion of this pseudo instruction.
602 MCE
.emitByte(BaseOpcode
);
603 emitConstant(0, X86InstrInfo::sizeOfImm(Desc
));
604 // Remember PIC base.
605 PICBaseOffset
= (intptr_t) MCE
.getCurrentPCOffset();
606 X86JITInfo
*JTI
= TM
.getJITInfo();
607 JTI
->setPICBase(MCE
.getCurrentPCValue());
614 MCE
.emitByte(BaseOpcode
);
616 if (CurOp
!= NumOps
) {
617 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
619 DEBUG(errs() << "RawFrm CurOp " << CurOp
<< "\n");
620 DEBUG(errs() << "isMBB " << MO
.isMBB() << "\n");
621 DEBUG(errs() << "isGlobal " << MO
.isGlobal() << "\n");
622 DEBUG(errs() << "isSymbol " << MO
.isSymbol() << "\n");
623 DEBUG(errs() << "isImm " << MO
.isImm() << "\n");
626 emitPCRelativeBlockAddress(MO
.getMBB());
627 } else if (MO
.isGlobal()) {
628 // Assume undefined functions may be outside the Small codespace.
631 (TM
.getCodeModel() == CodeModel::Large
||
632 TM
.getSubtarget
<X86Subtarget
>().isTargetDarwin())) ||
633 Opcode
== X86::TAILJMPd
;
634 emitGlobalAddress(MO
.getGlobal(), X86::reloc_pcrel_word
,
635 MO
.getOffset(), 0, NeedStub
);
636 } else if (MO
.isSymbol()) {
637 emitExternalSymbolAddress(MO
.getSymbolName(), X86::reloc_pcrel_word
);
638 } else if (MO
.isImm()) {
639 if (Opcode
== X86::CALLpcrel32
|| Opcode
== X86::CALL64pcrel32
) {
640 // Fix up immediate operand for pc relative calls.
641 intptr_t Imm
= (intptr_t)MO
.getImm();
642 Imm
= Imm
- MCE
.getCurrentPCValue() - 4;
643 emitConstant(Imm
, X86InstrInfo::sizeOfImm(Desc
));
645 emitConstant(MO
.getImm(), X86InstrInfo::sizeOfImm(Desc
));
647 llvm_unreachable("Unknown RawFrm operand!");
652 case X86II::AddRegFrm
:
653 MCE
.emitByte(BaseOpcode
+ getX86RegNum(MI
.getOperand(CurOp
++).getReg()));
655 if (CurOp
!= NumOps
) {
656 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
657 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
659 emitConstant(MO1
.getImm(), Size
);
661 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
662 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
663 if (Opcode
== X86::MOV64ri64i32
)
664 rt
= X86::reloc_absolute_word
; // FIXME: add X86II flag?
665 // This should not occur on Darwin for relocatable objects.
666 if (Opcode
== X86::MOV64ri
)
667 rt
= X86::reloc_absolute_dword
; // FIXME: add X86II flag?
668 if (MO1
.isGlobal()) {
669 bool NeedStub
= isa
<Function
>(MO1
.getGlobal());
670 bool Indirect
= gvNeedsNonLazyPtr(MO1
, TM
);
671 emitGlobalAddress(MO1
.getGlobal(), rt
, MO1
.getOffset(), 0,
673 } else if (MO1
.isSymbol())
674 emitExternalSymbolAddress(MO1
.getSymbolName(), rt
);
675 else if (MO1
.isCPI())
676 emitConstPoolAddress(MO1
.getIndex(), rt
);
677 else if (MO1
.isJTI())
678 emitJumpTableAddress(MO1
.getIndex(), rt
);
683 case X86II::MRMDestReg
: {
684 MCE
.emitByte(BaseOpcode
);
685 emitRegModRMByte(MI
.getOperand(CurOp
).getReg(),
686 getX86RegNum(MI
.getOperand(CurOp
+1).getReg()));
689 emitConstant(MI
.getOperand(CurOp
++).getImm(), X86InstrInfo::sizeOfImm(Desc
));
692 case X86II::MRMDestMem
: {
693 MCE
.emitByte(BaseOpcode
);
694 emitMemModRMByte(MI
, CurOp
,
695 getX86RegNum(MI
.getOperand(CurOp
+ X86AddrNumOperands
)
697 CurOp
+= X86AddrNumOperands
+ 1;
699 emitConstant(MI
.getOperand(CurOp
++).getImm(), X86InstrInfo::sizeOfImm(Desc
));
703 case X86II::MRMSrcReg
:
704 MCE
.emitByte(BaseOpcode
);
705 emitRegModRMByte(MI
.getOperand(CurOp
+1).getReg(),
706 getX86RegNum(MI
.getOperand(CurOp
).getReg()));
709 emitConstant(MI
.getOperand(CurOp
++).getImm(),
710 X86InstrInfo::sizeOfImm(Desc
));
713 case X86II::MRMSrcMem
: {
714 // FIXME: Maybe lea should have its own form?
716 if (Opcode
== X86::LEA64r
|| Opcode
== X86::LEA64_32r
||
717 Opcode
== X86::LEA16r
|| Opcode
== X86::LEA32r
)
718 AddrOperands
= X86AddrNumOperands
- 1; // No segment register
720 AddrOperands
= X86AddrNumOperands
;
722 intptr_t PCAdj
= (CurOp
+ AddrOperands
+ 1 != NumOps
) ?
723 X86InstrInfo::sizeOfImm(Desc
) : 0;
725 MCE
.emitByte(BaseOpcode
);
726 emitMemModRMByte(MI
, CurOp
+1, getX86RegNum(MI
.getOperand(CurOp
).getReg()),
728 CurOp
+= AddrOperands
+ 1;
730 emitConstant(MI
.getOperand(CurOp
++).getImm(),
731 X86InstrInfo::sizeOfImm(Desc
));
735 case X86II::MRM0r
: case X86II::MRM1r
:
736 case X86II::MRM2r
: case X86II::MRM3r
:
737 case X86II::MRM4r
: case X86II::MRM5r
:
738 case X86II::MRM6r
: case X86II::MRM7r
: {
739 MCE
.emitByte(BaseOpcode
);
741 // Special handling of lfence, mfence, monitor, and mwait.
742 if (Desc
->getOpcode() == X86::LFENCE
||
743 Desc
->getOpcode() == X86::MFENCE
||
744 Desc
->getOpcode() == X86::MONITOR
||
745 Desc
->getOpcode() == X86::MWAIT
) {
746 emitRegModRMByte((Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0r
);
748 switch (Desc
->getOpcode()) {
758 emitRegModRMByte(MI
.getOperand(CurOp
++).getReg(),
759 (Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0r
);
762 if (CurOp
!= NumOps
) {
763 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
764 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
766 emitConstant(MO1
.getImm(), Size
);
768 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
769 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
770 if (Opcode
== X86::MOV64ri32
)
771 rt
= X86::reloc_absolute_word_sext
; // FIXME: add X86II flag?
772 if (MO1
.isGlobal()) {
773 bool NeedStub
= isa
<Function
>(MO1
.getGlobal());
774 bool Indirect
= gvNeedsNonLazyPtr(MO1
, TM
);
775 emitGlobalAddress(MO1
.getGlobal(), rt
, MO1
.getOffset(), 0,
777 } else if (MO1
.isSymbol())
778 emitExternalSymbolAddress(MO1
.getSymbolName(), rt
);
779 else if (MO1
.isCPI())
780 emitConstPoolAddress(MO1
.getIndex(), rt
);
781 else if (MO1
.isJTI())
782 emitJumpTableAddress(MO1
.getIndex(), rt
);
788 case X86II::MRM0m
: case X86II::MRM1m
:
789 case X86II::MRM2m
: case X86II::MRM3m
:
790 case X86II::MRM4m
: case X86II::MRM5m
:
791 case X86II::MRM6m
: case X86II::MRM7m
: {
792 intptr_t PCAdj
= (CurOp
+ X86AddrNumOperands
!= NumOps
) ?
793 (MI
.getOperand(CurOp
+X86AddrNumOperands
).isImm() ?
794 X86InstrInfo::sizeOfImm(Desc
) : 4) : 0;
796 MCE
.emitByte(BaseOpcode
);
797 emitMemModRMByte(MI
, CurOp
, (Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0m
,
799 CurOp
+= X86AddrNumOperands
;
801 if (CurOp
!= NumOps
) {
802 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
803 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
805 emitConstant(MO
.getImm(), Size
);
807 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
808 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
809 if (Opcode
== X86::MOV64mi32
)
810 rt
= X86::reloc_absolute_word_sext
; // FIXME: add X86II flag?
812 bool NeedStub
= isa
<Function
>(MO
.getGlobal());
813 bool Indirect
= gvNeedsNonLazyPtr(MO
, TM
);
814 emitGlobalAddress(MO
.getGlobal(), rt
, MO
.getOffset(), 0,
816 } else if (MO
.isSymbol())
817 emitExternalSymbolAddress(MO
.getSymbolName(), rt
);
819 emitConstPoolAddress(MO
.getIndex(), rt
);
821 emitJumpTableAddress(MO
.getIndex(), rt
);
827 case X86II::MRMInitReg
:
828 MCE
.emitByte(BaseOpcode
);
829 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
830 emitRegModRMByte(MI
.getOperand(CurOp
).getReg(),
831 getX86RegNum(MI
.getOperand(CurOp
).getReg()));
836 if (!Desc
->isVariadic() && CurOp
!= NumOps
) {
838 errs() << "Cannot encode: " << MI
<< "\n";