Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / Target / X86 / X86CodeEmitter.cpp
blob3dd3c6b519d0e7e9b931794c0ea017611e52cb6a
1 //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86JITInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "X86Relocations.h"
21 #include "X86.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/CodeGen/MachineCodeEmitter.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/ObjectCodeEmitter.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/Function.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetOptions.h"
37 using namespace llvm;
39 STATISTIC(NumEmitted, "Number of machine instructions emitted");
41 namespace {
42 template<class CodeEmitter>
43 class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
44 const X86InstrInfo *II;
45 const TargetData *TD;
46 X86TargetMachine &TM;
47 CodeEmitter &MCE;
48 intptr_t PICBaseOffset;
49 bool Is64BitMode;
50 bool IsPIC;
51 public:
52 static char ID;
53 explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
54 : MachineFunctionPass(&ID), II(0), TD(0), TM(tm),
55 MCE(mce), PICBaseOffset(0), Is64BitMode(false),
56 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
57 Emitter(X86TargetMachine &tm, CodeEmitter &mce,
58 const X86InstrInfo &ii, const TargetData &td, bool is64)
59 : MachineFunctionPass(&ID), II(&ii), TD(&td), TM(tm),
60 MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
61 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
63 bool runOnMachineFunction(MachineFunction &MF);
65 virtual const char *getPassName() const {
66 return "X86 Machine Code Emitter";
69 void emitInstruction(const MachineInstr &MI,
70 const TargetInstrDesc *Desc);
72 void getAnalysisUsage(AnalysisUsage &AU) const {
73 AU.setPreservesAll();
74 AU.addRequired<MachineModuleInfo>();
75 MachineFunctionPass::getAnalysisUsage(AU);
78 private:
79 void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
80 void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
81 intptr_t Disp = 0, intptr_t PCAdj = 0,
82 bool NeedStub = false, bool Indirect = false);
83 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
84 void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
85 intptr_t PCAdj = 0);
86 void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
87 intptr_t PCAdj = 0);
89 void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
90 intptr_t Adj = 0, bool IsPCRel = true);
92 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
93 void emitRegModRMByte(unsigned RegOpcodeField);
94 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
95 void emitConstant(uint64_t Val, unsigned Size);
97 void emitMemModRMByte(const MachineInstr &MI,
98 unsigned Op, unsigned RegOpcodeField,
99 intptr_t PCAdj = 0);
101 unsigned getX86RegNum(unsigned RegNo) const;
104 template<class CodeEmitter>
105 char Emitter<CodeEmitter>::ID = 0;
108 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
109 /// to the specified templated MachineCodeEmitter object.
111 FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM,
112 MachineCodeEmitter &MCE) {
113 return new Emitter<MachineCodeEmitter>(TM, MCE);
115 FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
116 JITCodeEmitter &JCE) {
117 return new Emitter<JITCodeEmitter>(TM, JCE);
119 FunctionPass *llvm::createX86ObjectCodeEmitterPass(X86TargetMachine &TM,
120 ObjectCodeEmitter &OCE) {
121 return new Emitter<ObjectCodeEmitter>(TM, OCE);
124 template<class CodeEmitter>
125 bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
127 MCE.setModuleInfo(&getAnalysis<MachineModuleInfo>());
129 II = TM.getInstrInfo();
130 TD = TM.getTargetData();
131 Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
132 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
134 do {
135 DEBUG(errs() << "JITTing function '"
136 << MF.getFunction()->getName() << "'\n");
137 MCE.startFunction(MF);
138 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
139 MBB != E; ++MBB) {
140 MCE.StartMachineBasicBlock(MBB);
141 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
142 I != E; ++I) {
143 const TargetInstrDesc &Desc = I->getDesc();
144 emitInstruction(*I, &Desc);
145 // MOVPC32r is basically a call plus a pop instruction.
146 if (Desc.getOpcode() == X86::MOVPC32r)
147 emitInstruction(*I, &II->get(X86::POP32r));
148 NumEmitted++; // Keep track of the # of mi's emitted
151 } while (MCE.finishFunction(MF));
153 return false;
156 /// emitPCRelativeBlockAddress - This method keeps track of the information
157 /// necessary to resolve the address of this block later and emits a dummy
158 /// value.
160 template<class CodeEmitter>
161 void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
162 // Remember where this reference was and where it is to so we can
163 // deal with it later.
164 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
165 X86::reloc_pcrel_word, MBB));
166 MCE.emitWordLE(0);
169 /// emitGlobalAddress - Emit the specified address to the code stream assuming
170 /// this is part of a "take the address of a global" instruction.
172 template<class CodeEmitter>
173 void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
174 intptr_t Disp /* = 0 */,
175 intptr_t PCAdj /* = 0 */,
176 bool NeedStub /* = false */,
177 bool Indirect /* = false */) {
178 intptr_t RelocCST = Disp;
179 if (Reloc == X86::reloc_picrel_word)
180 RelocCST = PICBaseOffset;
181 else if (Reloc == X86::reloc_pcrel_word)
182 RelocCST = PCAdj;
183 MachineRelocation MR = Indirect
184 ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
185 GV, RelocCST, NeedStub)
186 : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
187 GV, RelocCST, NeedStub);
188 MCE.addRelocation(MR);
189 // The relocated value will be added to the displacement
190 if (Reloc == X86::reloc_absolute_dword)
191 MCE.emitDWordLE(Disp);
192 else
193 MCE.emitWordLE((int32_t)Disp);
196 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
197 /// be emitted to the current location in the function, and allow it to be PC
198 /// relative.
199 template<class CodeEmitter>
200 void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
201 unsigned Reloc) {
202 intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
203 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
204 Reloc, ES, RelocCST));
205 if (Reloc == X86::reloc_absolute_dword)
206 MCE.emitDWordLE(0);
207 else
208 MCE.emitWordLE(0);
211 /// emitConstPoolAddress - Arrange for the address of an constant pool
212 /// to be emitted to the current location in the function, and allow it to be PC
213 /// relative.
214 template<class CodeEmitter>
215 void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
216 intptr_t Disp /* = 0 */,
217 intptr_t PCAdj /* = 0 */) {
218 intptr_t RelocCST = 0;
219 if (Reloc == X86::reloc_picrel_word)
220 RelocCST = PICBaseOffset;
221 else if (Reloc == X86::reloc_pcrel_word)
222 RelocCST = PCAdj;
223 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
224 Reloc, CPI, RelocCST));
225 // The relocated value will be added to the displacement
226 if (Reloc == X86::reloc_absolute_dword)
227 MCE.emitDWordLE(Disp);
228 else
229 MCE.emitWordLE((int32_t)Disp);
232 /// emitJumpTableAddress - Arrange for the address of a jump table to
233 /// be emitted to the current location in the function, and allow it to be PC
234 /// relative.
235 template<class CodeEmitter>
236 void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
237 intptr_t PCAdj /* = 0 */) {
238 intptr_t RelocCST = 0;
239 if (Reloc == X86::reloc_picrel_word)
240 RelocCST = PICBaseOffset;
241 else if (Reloc == X86::reloc_pcrel_word)
242 RelocCST = PCAdj;
243 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
244 Reloc, JTI, RelocCST));
245 // The relocated value will be added to the displacement
246 if (Reloc == X86::reloc_absolute_dword)
247 MCE.emitDWordLE(0);
248 else
249 MCE.emitWordLE(0);
252 template<class CodeEmitter>
253 unsigned Emitter<CodeEmitter>::getX86RegNum(unsigned RegNo) const {
254 return II->getRegisterInfo().getX86RegNum(RegNo);
257 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
258 unsigned RM) {
259 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
260 return RM | (RegOpcode << 3) | (Mod << 6);
263 template<class CodeEmitter>
264 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
265 unsigned RegOpcodeFld){
266 MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
269 template<class CodeEmitter>
270 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
271 MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
274 template<class CodeEmitter>
275 void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
276 unsigned Index,
277 unsigned Base) {
278 // SIB byte is in the same format as the ModRMByte...
279 MCE.emitByte(ModRMByte(SS, Index, Base));
282 template<class CodeEmitter>
283 void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
284 // Output the constant in little endian byte order...
285 for (unsigned i = 0; i != Size; ++i) {
286 MCE.emitByte(Val & 255);
287 Val >>= 8;
291 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
292 /// sign-extended field.
293 static bool isDisp8(int Value) {
294 return Value == (signed char)Value;
297 static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
298 const TargetMachine &TM) {
299 // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
300 // mechanism as 32-bit mode.
301 if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
302 !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
303 return false;
305 // Return true if this is a reference to a stub containing the address of the
306 // global, not the global itself.
307 return isGlobalStubReference(GVOp.getTargetFlags());
310 template<class CodeEmitter>
311 void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
312 int DispVal,
313 intptr_t Adj /* = 0 */,
314 bool IsPCRel /* = true */) {
315 // If this is a simple integer displacement that doesn't require a relocation,
316 // emit it now.
317 if (!RelocOp) {
318 emitConstant(DispVal, 4);
319 return;
322 // Otherwise, this is something that requires a relocation. Emit it as such
323 // now.
324 if (RelocOp->isGlobal()) {
325 // In 64-bit static small code model, we could potentially emit absolute.
326 // But it's probably not beneficial. If the MCE supports using RIP directly
327 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
328 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
329 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
330 unsigned rt = Is64BitMode ?
331 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
332 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
333 bool NeedStub = isa<Function>(RelocOp->getGlobal());
334 bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
335 emitGlobalAddress(RelocOp->getGlobal(), rt, RelocOp->getOffset(),
336 Adj, NeedStub, Indirect);
337 } else if (RelocOp->isCPI()) {
338 unsigned rt = Is64BitMode ?
339 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
340 : (IsPCRel ? X86::reloc_picrel_word : X86::reloc_absolute_word);
341 emitConstPoolAddress(RelocOp->getIndex(), rt,
342 RelocOp->getOffset(), Adj);
343 } else if (RelocOp->isJTI()) {
344 unsigned rt = Is64BitMode ?
345 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
346 : (IsPCRel ? X86::reloc_picrel_word : X86::reloc_absolute_word);
347 emitJumpTableAddress(RelocOp->getIndex(), rt, Adj);
348 } else {
349 llvm_unreachable("Unknown value to relocate!");
353 template<class CodeEmitter>
354 void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
355 unsigned Op, unsigned RegOpcodeField,
356 intptr_t PCAdj) {
357 const MachineOperand &Op3 = MI.getOperand(Op+3);
358 int DispVal = 0;
359 const MachineOperand *DispForReloc = 0;
361 // Figure out what sort of displacement we have to handle here.
362 if (Op3.isGlobal()) {
363 DispForReloc = &Op3;
364 } else if (Op3.isCPI()) {
365 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
366 DispForReloc = &Op3;
367 } else {
368 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
369 DispVal += Op3.getOffset();
371 } else if (Op3.isJTI()) {
372 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
373 DispForReloc = &Op3;
374 } else {
375 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
377 } else {
378 DispVal = Op3.getImm();
381 const MachineOperand &Base = MI.getOperand(Op);
382 const MachineOperand &Scale = MI.getOperand(Op+1);
383 const MachineOperand &IndexReg = MI.getOperand(Op+2);
385 unsigned BaseReg = Base.getReg();
387 // Indicate that the displacement will use an pcrel or absolute reference
388 // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
389 // while others, unless explicit asked to use RIP, use absolute references.
390 bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
392 // Is a SIB byte needed?
393 // If no BaseReg, issue a RIP relative instruction only if the MCE can
394 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
395 // 2-7) and absolute references.
396 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
397 IndexReg.getReg() == 0 &&
398 ((BaseReg == 0 && MCE.earlyResolveAddresses()) || BaseReg == X86::RIP ||
399 (BaseReg != 0 && getX86RegNum(BaseReg) != N86::ESP))) {
400 if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement?
401 // Emit special case [disp32] encoding
402 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
403 emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
404 } else {
405 unsigned BaseRegNo = getX86RegNum(BaseReg);
406 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
407 // Emit simple indirect register encoding... [EAX] f.e.
408 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
409 } else if (!DispForReloc && isDisp8(DispVal)) {
410 // Emit the disp8 encoding... [REG+disp8]
411 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
412 emitConstant(DispVal, 1);
413 } else {
414 // Emit the most general non-SIB encoding: [REG+disp32]
415 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
416 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
420 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
421 assert(IndexReg.getReg() != X86::ESP &&
422 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
424 bool ForceDisp32 = false;
425 bool ForceDisp8 = false;
426 if (BaseReg == 0) {
427 // If there is no base register, we emit the special case SIB byte with
428 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
429 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
430 ForceDisp32 = true;
431 } else if (DispForReloc) {
432 // Emit the normal disp32 encoding.
433 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
434 ForceDisp32 = true;
435 } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) {
436 // Emit no displacement ModR/M byte
437 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
438 } else if (isDisp8(DispVal)) {
439 // Emit the disp8 encoding...
440 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
441 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
442 } else {
443 // Emit the normal disp32 encoding...
444 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
447 // Calculate what the SS field value should be...
448 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
449 unsigned SS = SSTable[Scale.getImm()];
451 if (BaseReg == 0) {
452 // Handle the SIB byte for the case where there is no base, see Intel
453 // Manual 2A, table 2-7. The displacement has already been output.
454 unsigned IndexRegNo;
455 if (IndexReg.getReg())
456 IndexRegNo = getX86RegNum(IndexReg.getReg());
457 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
458 IndexRegNo = 4;
459 emitSIBByte(SS, IndexRegNo, 5);
460 } else {
461 unsigned BaseRegNo = getX86RegNum(BaseReg);
462 unsigned IndexRegNo;
463 if (IndexReg.getReg())
464 IndexRegNo = getX86RegNum(IndexReg.getReg());
465 else
466 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
467 emitSIBByte(SS, IndexRegNo, BaseRegNo);
470 // Do we need to output a displacement?
471 if (ForceDisp8) {
472 emitConstant(DispVal, 1);
473 } else if (DispVal != 0 || ForceDisp32) {
474 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
479 template<class CodeEmitter>
480 void Emitter<CodeEmitter>::emitInstruction(
481 const MachineInstr &MI,
482 const TargetInstrDesc *Desc) {
483 DEBUG(errs() << MI);
485 MCE.processDebugLoc(MI.getDebugLoc());
487 unsigned Opcode = Desc->Opcode;
489 // Emit the lock opcode prefix as needed.
490 if (Desc->TSFlags & X86II::LOCK) MCE.emitByte(0xF0);
492 // Emit segment override opcode prefix as needed.
493 switch (Desc->TSFlags & X86II::SegOvrMask) {
494 case X86II::FS:
495 MCE.emitByte(0x64);
496 break;
497 case X86II::GS:
498 MCE.emitByte(0x65);
499 break;
500 default: llvm_unreachable("Invalid segment!");
501 case 0: break; // No segment override!
504 // Emit the repeat opcode prefix as needed.
505 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
507 // Emit the operand size opcode prefix as needed.
508 if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66);
510 // Emit the address size opcode prefix as needed.
511 if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67);
513 bool Need0FPrefix = false;
514 switch (Desc->TSFlags & X86II::Op0Mask) {
515 case X86II::TB: // Two-byte opcode prefix
516 case X86II::T8: // 0F 38
517 case X86II::TA: // 0F 3A
518 Need0FPrefix = true;
519 break;
520 case X86II::TF: // F2 0F 38
521 MCE.emitByte(0xF2);
522 Need0FPrefix = true;
523 break;
524 case X86II::REP: break; // already handled.
525 case X86II::XS: // F3 0F
526 MCE.emitByte(0xF3);
527 Need0FPrefix = true;
528 break;
529 case X86II::XD: // F2 0F
530 MCE.emitByte(0xF2);
531 Need0FPrefix = true;
532 break;
533 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
534 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
535 MCE.emitByte(0xD8+
536 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
537 >> X86II::Op0Shift));
538 break; // Two-byte opcode prefix
539 default: llvm_unreachable("Invalid prefix!");
540 case 0: break; // No prefix!
543 if (Is64BitMode) {
544 // REX prefix
545 unsigned REX = X86InstrInfo::determineREX(MI);
546 if (REX)
547 MCE.emitByte(0x40 | REX);
550 // 0x0F escape code must be emitted just before the opcode.
551 if (Need0FPrefix)
552 MCE.emitByte(0x0F);
554 switch (Desc->TSFlags & X86II::Op0Mask) {
555 case X86II::TF: // F2 0F 38
556 case X86II::T8: // 0F 38
557 MCE.emitByte(0x38);
558 break;
559 case X86II::TA: // 0F 3A
560 MCE.emitByte(0x3A);
561 break;
564 // If this is a two-address instruction, skip one of the register operands.
565 unsigned NumOps = Desc->getNumOperands();
566 unsigned CurOp = 0;
567 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
568 ++CurOp;
569 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
570 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
571 --NumOps;
573 unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc);
574 switch (Desc->TSFlags & X86II::FormMask) {
575 default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
576 case X86II::Pseudo:
577 // Remember the current PC offset, this is the PIC relocation
578 // base address.
579 switch (Opcode) {
580 default:
581 llvm_unreachable("psuedo instructions should be removed before code emission");
582 break;
583 case TargetInstrInfo::INLINEASM: {
584 // We allow inline assembler nodes with empty bodies - they can
585 // implicitly define registers, which is ok for JIT.
586 if (MI.getOperand(0).getSymbolName()[0]) {
587 llvm_report_error("JIT does not support inline asm!");
589 break;
591 case TargetInstrInfo::DBG_LABEL:
592 case TargetInstrInfo::EH_LABEL:
593 MCE.emitLabel(MI.getOperand(0).getImm());
594 break;
595 case TargetInstrInfo::IMPLICIT_DEF:
596 case TargetInstrInfo::DECLARE:
597 case X86::DWARF_LOC:
598 case X86::FP_REG_KILL:
599 break;
600 case X86::MOVPC32r: {
601 // This emits the "call" portion of this pseudo instruction.
602 MCE.emitByte(BaseOpcode);
603 emitConstant(0, X86InstrInfo::sizeOfImm(Desc));
604 // Remember PIC base.
605 PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
606 X86JITInfo *JTI = TM.getJITInfo();
607 JTI->setPICBase(MCE.getCurrentPCValue());
608 break;
611 CurOp = NumOps;
612 break;
613 case X86II::RawFrm:
614 MCE.emitByte(BaseOpcode);
616 if (CurOp != NumOps) {
617 const MachineOperand &MO = MI.getOperand(CurOp++);
619 DEBUG(errs() << "RawFrm CurOp " << CurOp << "\n");
620 DEBUG(errs() << "isMBB " << MO.isMBB() << "\n");
621 DEBUG(errs() << "isGlobal " << MO.isGlobal() << "\n");
622 DEBUG(errs() << "isSymbol " << MO.isSymbol() << "\n");
623 DEBUG(errs() << "isImm " << MO.isImm() << "\n");
625 if (MO.isMBB()) {
626 emitPCRelativeBlockAddress(MO.getMBB());
627 } else if (MO.isGlobal()) {
628 // Assume undefined functions may be outside the Small codespace.
629 bool NeedStub =
630 (Is64BitMode &&
631 (TM.getCodeModel() == CodeModel::Large ||
632 TM.getSubtarget<X86Subtarget>().isTargetDarwin())) ||
633 Opcode == X86::TAILJMPd;
634 emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
635 MO.getOffset(), 0, NeedStub);
636 } else if (MO.isSymbol()) {
637 emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
638 } else if (MO.isImm()) {
639 if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
640 // Fix up immediate operand for pc relative calls.
641 intptr_t Imm = (intptr_t)MO.getImm();
642 Imm = Imm - MCE.getCurrentPCValue() - 4;
643 emitConstant(Imm, X86InstrInfo::sizeOfImm(Desc));
644 } else
645 emitConstant(MO.getImm(), X86InstrInfo::sizeOfImm(Desc));
646 } else {
647 llvm_unreachable("Unknown RawFrm operand!");
650 break;
652 case X86II::AddRegFrm:
653 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
655 if (CurOp != NumOps) {
656 const MachineOperand &MO1 = MI.getOperand(CurOp++);
657 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
658 if (MO1.isImm())
659 emitConstant(MO1.getImm(), Size);
660 else {
661 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
662 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
663 if (Opcode == X86::MOV64ri64i32)
664 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
665 // This should not occur on Darwin for relocatable objects.
666 if (Opcode == X86::MOV64ri)
667 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
668 if (MO1.isGlobal()) {
669 bool NeedStub = isa<Function>(MO1.getGlobal());
670 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
671 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
672 NeedStub, Indirect);
673 } else if (MO1.isSymbol())
674 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
675 else if (MO1.isCPI())
676 emitConstPoolAddress(MO1.getIndex(), rt);
677 else if (MO1.isJTI())
678 emitJumpTableAddress(MO1.getIndex(), rt);
681 break;
683 case X86II::MRMDestReg: {
684 MCE.emitByte(BaseOpcode);
685 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
686 getX86RegNum(MI.getOperand(CurOp+1).getReg()));
687 CurOp += 2;
688 if (CurOp != NumOps)
689 emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
690 break;
692 case X86II::MRMDestMem: {
693 MCE.emitByte(BaseOpcode);
694 emitMemModRMByte(MI, CurOp,
695 getX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)
696 .getReg()));
697 CurOp += X86AddrNumOperands + 1;
698 if (CurOp != NumOps)
699 emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
700 break;
703 case X86II::MRMSrcReg:
704 MCE.emitByte(BaseOpcode);
705 emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
706 getX86RegNum(MI.getOperand(CurOp).getReg()));
707 CurOp += 2;
708 if (CurOp != NumOps)
709 emitConstant(MI.getOperand(CurOp++).getImm(),
710 X86InstrInfo::sizeOfImm(Desc));
711 break;
713 case X86II::MRMSrcMem: {
714 // FIXME: Maybe lea should have its own form?
715 int AddrOperands;
716 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
717 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
718 AddrOperands = X86AddrNumOperands - 1; // No segment register
719 else
720 AddrOperands = X86AddrNumOperands;
722 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
723 X86InstrInfo::sizeOfImm(Desc) : 0;
725 MCE.emitByte(BaseOpcode);
726 emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
727 PCAdj);
728 CurOp += AddrOperands + 1;
729 if (CurOp != NumOps)
730 emitConstant(MI.getOperand(CurOp++).getImm(),
731 X86InstrInfo::sizeOfImm(Desc));
732 break;
735 case X86II::MRM0r: case X86II::MRM1r:
736 case X86II::MRM2r: case X86II::MRM3r:
737 case X86II::MRM4r: case X86II::MRM5r:
738 case X86II::MRM6r: case X86II::MRM7r: {
739 MCE.emitByte(BaseOpcode);
741 // Special handling of lfence, mfence, monitor, and mwait.
742 if (Desc->getOpcode() == X86::LFENCE ||
743 Desc->getOpcode() == X86::MFENCE ||
744 Desc->getOpcode() == X86::MONITOR ||
745 Desc->getOpcode() == X86::MWAIT) {
746 emitRegModRMByte((Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
748 switch (Desc->getOpcode()) {
749 default: break;
750 case X86::MONITOR:
751 MCE.emitByte(0xC8);
752 break;
753 case X86::MWAIT:
754 MCE.emitByte(0xC9);
755 break;
757 } else {
758 emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
759 (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
762 if (CurOp != NumOps) {
763 const MachineOperand &MO1 = MI.getOperand(CurOp++);
764 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
765 if (MO1.isImm())
766 emitConstant(MO1.getImm(), Size);
767 else {
768 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
769 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
770 if (Opcode == X86::MOV64ri32)
771 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
772 if (MO1.isGlobal()) {
773 bool NeedStub = isa<Function>(MO1.getGlobal());
774 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
775 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
776 NeedStub, Indirect);
777 } else if (MO1.isSymbol())
778 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
779 else if (MO1.isCPI())
780 emitConstPoolAddress(MO1.getIndex(), rt);
781 else if (MO1.isJTI())
782 emitJumpTableAddress(MO1.getIndex(), rt);
785 break;
788 case X86II::MRM0m: case X86II::MRM1m:
789 case X86II::MRM2m: case X86II::MRM3m:
790 case X86II::MRM4m: case X86II::MRM5m:
791 case X86II::MRM6m: case X86II::MRM7m: {
792 intptr_t PCAdj = (CurOp + X86AddrNumOperands != NumOps) ?
793 (MI.getOperand(CurOp+X86AddrNumOperands).isImm() ?
794 X86InstrInfo::sizeOfImm(Desc) : 4) : 0;
796 MCE.emitByte(BaseOpcode);
797 emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
798 PCAdj);
799 CurOp += X86AddrNumOperands;
801 if (CurOp != NumOps) {
802 const MachineOperand &MO = MI.getOperand(CurOp++);
803 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
804 if (MO.isImm())
805 emitConstant(MO.getImm(), Size);
806 else {
807 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
808 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
809 if (Opcode == X86::MOV64mi32)
810 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
811 if (MO.isGlobal()) {
812 bool NeedStub = isa<Function>(MO.getGlobal());
813 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
814 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
815 NeedStub, Indirect);
816 } else if (MO.isSymbol())
817 emitExternalSymbolAddress(MO.getSymbolName(), rt);
818 else if (MO.isCPI())
819 emitConstPoolAddress(MO.getIndex(), rt);
820 else if (MO.isJTI())
821 emitJumpTableAddress(MO.getIndex(), rt);
824 break;
827 case X86II::MRMInitReg:
828 MCE.emitByte(BaseOpcode);
829 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
830 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
831 getX86RegNum(MI.getOperand(CurOp).getReg()));
832 ++CurOp;
833 break;
836 if (!Desc->isVariadic() && CurOp != NumOps) {
837 #ifndef NDEBUG
838 errs() << "Cannot encode: " << MI << "\n";
839 #endif
840 llvm_unreachable(0);