1 //===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the X86 implementation of the TargetRegisterInfo class.
11 // This file is responsible for the frame pointer elimination optimization
14 //===----------------------------------------------------------------------===//
17 #include "X86RegisterInfo.h"
18 #include "X86InstrBuilder.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Function.h"
24 #include "llvm/Type.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineLocation.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/Target/TargetAsmInfo.h"
34 #include "llvm/Target/TargetFrameInfo.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/ADT/BitVector.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
45 X86RegisterInfo::X86RegisterInfo(X86TargetMachine
&tm
,
46 const TargetInstrInfo
&tii
)
47 : X86GenRegisterInfo(tm
.getSubtarget
<X86Subtarget
>().is64Bit() ?
48 X86::ADJCALLSTACKDOWN64
:
49 X86::ADJCALLSTACKDOWN32
,
50 tm
.getSubtarget
<X86Subtarget
>().is64Bit() ?
51 X86::ADJCALLSTACKUP64
:
52 X86::ADJCALLSTACKUP32
),
54 // Cache some information.
55 const X86Subtarget
*Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
56 Is64Bit
= Subtarget
->is64Bit();
57 IsWin64
= Subtarget
->isTargetWin64();
58 StackAlign
= TM
.getFrameInfo()->getStackAlignment();
70 // getDwarfRegNum - This function maps LLVM register identifiers to the
71 // Dwarf specific numbering, used in debug info and exception tables.
73 int X86RegisterInfo::getDwarfRegNum(unsigned RegNo
, bool isEH
) const {
74 const X86Subtarget
*Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
75 unsigned Flavour
= DWARFFlavour::X86_64
;
76 if (!Subtarget
->is64Bit()) {
77 if (Subtarget
->isTargetDarwin()) {
79 Flavour
= DWARFFlavour::X86_32_DarwinEH
;
81 Flavour
= DWARFFlavour::X86_32_Generic
;
82 } else if (Subtarget
->isTargetCygMing()) {
83 // Unsupported by now, just quick fallback
84 Flavour
= DWARFFlavour::X86_32_Generic
;
86 Flavour
= DWARFFlavour::X86_32_Generic
;
90 return X86GenRegisterInfo::getDwarfRegNumFull(RegNo
, Flavour
);
93 // getX86RegNum - This function maps LLVM register identifiers to their X86
94 // specific numbering, which is used in various places encoding instructions.
96 unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo
) {
98 case X86::RAX
: case X86::EAX
: case X86::AX
: case X86::AL
: return N86::EAX
;
99 case X86::RCX
: case X86::ECX
: case X86::CX
: case X86::CL
: return N86::ECX
;
100 case X86::RDX
: case X86::EDX
: case X86::DX
: case X86::DL
: return N86::EDX
;
101 case X86::RBX
: case X86::EBX
: case X86::BX
: case X86::BL
: return N86::EBX
;
102 case X86::RSP
: case X86::ESP
: case X86::SP
: case X86::SPL
: case X86::AH
:
104 case X86::RBP
: case X86::EBP
: case X86::BP
: case X86::BPL
: case X86::CH
:
106 case X86::RSI
: case X86::ESI
: case X86::SI
: case X86::SIL
: case X86::DH
:
108 case X86::RDI
: case X86::EDI
: case X86::DI
: case X86::DIL
: case X86::BH
:
111 case X86::R8
: case X86::R8D
: case X86::R8W
: case X86::R8B
:
113 case X86::R9
: case X86::R9D
: case X86::R9W
: case X86::R9B
:
115 case X86::R10
: case X86::R10D
: case X86::R10W
: case X86::R10B
:
117 case X86::R11
: case X86::R11D
: case X86::R11W
: case X86::R11B
:
119 case X86::R12
: case X86::R12D
: case X86::R12W
: case X86::R12B
:
121 case X86::R13
: case X86::R13D
: case X86::R13W
: case X86::R13B
:
123 case X86::R14
: case X86::R14D
: case X86::R14W
: case X86::R14B
:
125 case X86::R15
: case X86::R15D
: case X86::R15W
: case X86::R15B
:
128 case X86::ST0
: case X86::ST1
: case X86::ST2
: case X86::ST3
:
129 case X86::ST4
: case X86::ST5
: case X86::ST6
: case X86::ST7
:
130 return RegNo
-X86::ST0
;
132 case X86::XMM0
: case X86::XMM8
: case X86::MM0
:
134 case X86::XMM1
: case X86::XMM9
: case X86::MM1
:
136 case X86::XMM2
: case X86::XMM10
: case X86::MM2
:
138 case X86::XMM3
: case X86::XMM11
: case X86::MM3
:
140 case X86::XMM4
: case X86::XMM12
: case X86::MM4
:
142 case X86::XMM5
: case X86::XMM13
: case X86::MM5
:
144 case X86::XMM6
: case X86::XMM14
: case X86::MM6
:
146 case X86::XMM7
: case X86::XMM15
: case X86::MM7
:
150 assert(isVirtualRegister(RegNo
) && "Unknown physical register!");
151 llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
156 const TargetRegisterClass
*
157 X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass
*A
,
158 const TargetRegisterClass
*B
,
159 unsigned SubIdx
) const {
164 if (B
== &X86::GR8RegClass
) {
165 if (A
->getSize() == 2 || A
->getSize() == 4 || A
->getSize() == 8)
167 } else if (B
== &X86::GR8_ABCD_LRegClass
|| B
== &X86::GR8_ABCD_HRegClass
) {
168 if (A
== &X86::GR64RegClass
|| A
== &X86::GR64_ABCDRegClass
||
169 A
== &X86::GR64_NOREXRegClass
||
170 A
== &X86::GR64_NOSPRegClass
||
171 A
== &X86::GR64_NOREX_NOSPRegClass
)
172 return &X86::GR64_ABCDRegClass
;
173 else if (A
== &X86::GR32RegClass
|| A
== &X86::GR32_ABCDRegClass
||
174 A
== &X86::GR32_NOREXRegClass
||
175 A
== &X86::GR32_NOSPRegClass
)
176 return &X86::GR32_ABCDRegClass
;
177 else if (A
== &X86::GR16RegClass
|| A
== &X86::GR16_ABCDRegClass
||
178 A
== &X86::GR16_NOREXRegClass
)
179 return &X86::GR16_ABCDRegClass
;
180 } else if (B
== &X86::GR8_NOREXRegClass
) {
181 if (A
== &X86::GR64RegClass
|| A
== &X86::GR64_NOREXRegClass
||
182 A
== &X86::GR64_NOSPRegClass
|| A
== &X86::GR64_NOREX_NOSPRegClass
)
183 return &X86::GR64_NOREXRegClass
;
184 else if (A
== &X86::GR64_ABCDRegClass
)
185 return &X86::GR64_ABCDRegClass
;
186 else if (A
== &X86::GR32RegClass
|| A
== &X86::GR32_NOREXRegClass
||
187 A
== &X86::GR32_NOSPRegClass
)
188 return &X86::GR32_NOREXRegClass
;
189 else if (A
== &X86::GR32_ABCDRegClass
)
190 return &X86::GR32_ABCDRegClass
;
191 else if (A
== &X86::GR16RegClass
|| A
== &X86::GR16_NOREXRegClass
)
192 return &X86::GR16_NOREXRegClass
;
193 else if (A
== &X86::GR16_ABCDRegClass
)
194 return &X86::GR16_ABCDRegClass
;
199 if (B
== &X86::GR8_ABCD_HRegClass
) {
200 if (A
== &X86::GR64RegClass
|| A
== &X86::GR64_ABCDRegClass
||
201 A
== &X86::GR64_NOREXRegClass
||
202 A
== &X86::GR64_NOSPRegClass
||
203 A
== &X86::GR64_NOREX_NOSPRegClass
)
204 return &X86::GR64_ABCDRegClass
;
205 else if (A
== &X86::GR32RegClass
|| A
== &X86::GR32_ABCDRegClass
||
206 A
== &X86::GR32_NOREXRegClass
|| A
== &X86::GR32_NOSPRegClass
)
207 return &X86::GR32_ABCDRegClass
;
208 else if (A
== &X86::GR16RegClass
|| A
== &X86::GR16_ABCDRegClass
||
209 A
== &X86::GR16_NOREXRegClass
)
210 return &X86::GR16_ABCDRegClass
;
215 if (B
== &X86::GR16RegClass
) {
216 if (A
->getSize() == 4 || A
->getSize() == 8)
218 } else if (B
== &X86::GR16_ABCDRegClass
) {
219 if (A
== &X86::GR64RegClass
|| A
== &X86::GR64_ABCDRegClass
||
220 A
== &X86::GR64_NOREXRegClass
||
221 A
== &X86::GR64_NOSPRegClass
||
222 A
== &X86::GR64_NOREX_NOSPRegClass
)
223 return &X86::GR64_ABCDRegClass
;
224 else if (A
== &X86::GR32RegClass
|| A
== &X86::GR32_ABCDRegClass
||
225 A
== &X86::GR32_NOREXRegClass
|| A
== &X86::GR32_NOSPRegClass
)
226 return &X86::GR32_ABCDRegClass
;
227 } else if (B
== &X86::GR16_NOREXRegClass
) {
228 if (A
== &X86::GR64RegClass
|| A
== &X86::GR64_NOREXRegClass
||
229 A
== &X86::GR64_NOSPRegClass
|| A
== &X86::GR64_NOREX_NOSPRegClass
)
230 return &X86::GR64_NOREXRegClass
;
231 else if (A
== &X86::GR64_ABCDRegClass
)
232 return &X86::GR64_ABCDRegClass
;
233 else if (A
== &X86::GR32RegClass
|| A
== &X86::GR32_NOREXRegClass
||
234 A
== &X86::GR32_NOSPRegClass
)
235 return &X86::GR32_NOREXRegClass
;
236 else if (A
== &X86::GR32_ABCDRegClass
)
237 return &X86::GR64_ABCDRegClass
;
242 if (B
== &X86::GR32RegClass
|| B
== &X86::GR32_NOSPRegClass
) {
243 if (A
->getSize() == 8)
245 } else if (B
== &X86::GR32_ABCDRegClass
) {
246 if (A
== &X86::GR64RegClass
|| A
== &X86::GR64_ABCDRegClass
||
247 A
== &X86::GR64_NOREXRegClass
||
248 A
== &X86::GR64_NOSPRegClass
||
249 A
== &X86::GR64_NOREX_NOSPRegClass
)
250 return &X86::GR64_ABCDRegClass
;
251 } else if (B
== &X86::GR32_NOREXRegClass
) {
252 if (A
== &X86::GR64RegClass
|| A
== &X86::GR64_NOREXRegClass
||
253 A
== &X86::GR64_NOSPRegClass
|| A
== &X86::GR64_NOREX_NOSPRegClass
)
254 return &X86::GR64_NOREXRegClass
;
255 else if (A
== &X86::GR64_ABCDRegClass
)
256 return &X86::GR64_ABCDRegClass
;
263 const TargetRegisterClass
*X86RegisterInfo::
264 getPointerRegClass(unsigned Kind
) const {
266 default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
267 case 0: // Normal GPRs.
268 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
269 return &X86::GR64RegClass
;
270 return &X86::GR32RegClass
;
271 case 1: // Normal GRPs except the stack pointer (for encoding reasons).
272 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
273 return &X86::GR64_NOSPRegClass
;
274 return &X86::GR32_NOSPRegClass
;
278 const TargetRegisterClass
*
279 X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass
*RC
) const {
280 if (RC
== &X86::CCRRegClass
) {
282 return &X86::GR64RegClass
;
284 return &X86::GR32RegClass
;
290 X86RegisterInfo::getCalleeSavedRegs(const MachineFunction
*MF
) const {
291 bool callsEHReturn
= false;
294 const MachineFrameInfo
*MFI
= MF
->getFrameInfo();
295 const MachineModuleInfo
*MMI
= MFI
->getMachineModuleInfo();
296 callsEHReturn
= (MMI
? MMI
->callsEHReturn() : false);
299 static const unsigned CalleeSavedRegs32Bit
[] = {
300 X86::ESI
, X86::EDI
, X86::EBX
, X86::EBP
, 0
303 static const unsigned CalleeSavedRegs32EHRet
[] = {
304 X86::EAX
, X86::EDX
, X86::ESI
, X86::EDI
, X86::EBX
, X86::EBP
, 0
307 static const unsigned CalleeSavedRegs64Bit
[] = {
308 X86::RBX
, X86::R12
, X86::R13
, X86::R14
, X86::R15
, X86::RBP
, 0
311 static const unsigned CalleeSavedRegs64EHRet
[] = {
312 X86::RAX
, X86::RDX
, X86::RBX
, X86::R12
,
313 X86::R13
, X86::R14
, X86::R15
, X86::RBP
, 0
316 static const unsigned CalleeSavedRegsWin64
[] = {
317 X86::RBX
, X86::RBP
, X86::RDI
, X86::RSI
,
318 X86::R12
, X86::R13
, X86::R14
, X86::R15
,
319 X86::XMM6
, X86::XMM7
, X86::XMM8
, X86::XMM9
,
320 X86::XMM10
, X86::XMM11
, X86::XMM12
, X86::XMM13
,
321 X86::XMM14
, X86::XMM15
, 0
326 return CalleeSavedRegsWin64
;
328 return (callsEHReturn
? CalleeSavedRegs64EHRet
: CalleeSavedRegs64Bit
);
330 return (callsEHReturn
? CalleeSavedRegs32EHRet
: CalleeSavedRegs32Bit
);
334 const TargetRegisterClass
* const*
335 X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction
*MF
) const {
336 bool callsEHReturn
= false;
339 const MachineFrameInfo
*MFI
= MF
->getFrameInfo();
340 const MachineModuleInfo
*MMI
= MFI
->getMachineModuleInfo();
341 callsEHReturn
= (MMI
? MMI
->callsEHReturn() : false);
344 static const TargetRegisterClass
* const CalleeSavedRegClasses32Bit
[] = {
345 &X86::GR32RegClass
, &X86::GR32RegClass
,
346 &X86::GR32RegClass
, &X86::GR32RegClass
, 0
348 static const TargetRegisterClass
* const CalleeSavedRegClasses32EHRet
[] = {
349 &X86::GR32RegClass
, &X86::GR32RegClass
,
350 &X86::GR32RegClass
, &X86::GR32RegClass
,
351 &X86::GR32RegClass
, &X86::GR32RegClass
, 0
353 static const TargetRegisterClass
* const CalleeSavedRegClasses64Bit
[] = {
354 &X86::GR64RegClass
, &X86::GR64RegClass
,
355 &X86::GR64RegClass
, &X86::GR64RegClass
,
356 &X86::GR64RegClass
, &X86::GR64RegClass
, 0
358 static const TargetRegisterClass
* const CalleeSavedRegClasses64EHRet
[] = {
359 &X86::GR64RegClass
, &X86::GR64RegClass
,
360 &X86::GR64RegClass
, &X86::GR64RegClass
,
361 &X86::GR64RegClass
, &X86::GR64RegClass
,
362 &X86::GR64RegClass
, &X86::GR64RegClass
, 0
364 static const TargetRegisterClass
* const CalleeSavedRegClassesWin64
[] = {
365 &X86::GR64RegClass
, &X86::GR64RegClass
,
366 &X86::GR64RegClass
, &X86::GR64RegClass
,
367 &X86::GR64RegClass
, &X86::GR64RegClass
,
368 &X86::GR64RegClass
, &X86::GR64RegClass
,
369 &X86::VR128RegClass
, &X86::VR128RegClass
,
370 &X86::VR128RegClass
, &X86::VR128RegClass
,
371 &X86::VR128RegClass
, &X86::VR128RegClass
,
372 &X86::VR128RegClass
, &X86::VR128RegClass
,
373 &X86::VR128RegClass
, &X86::VR128RegClass
, 0
378 return CalleeSavedRegClassesWin64
;
380 return (callsEHReturn
?
381 CalleeSavedRegClasses64EHRet
: CalleeSavedRegClasses64Bit
);
383 return (callsEHReturn
?
384 CalleeSavedRegClasses32EHRet
: CalleeSavedRegClasses32Bit
);
388 BitVector
X86RegisterInfo::getReservedRegs(const MachineFunction
&MF
) const {
389 BitVector
Reserved(getNumRegs());
390 // Set the stack-pointer register and its aliases as reserved.
391 Reserved
.set(X86::RSP
);
392 Reserved
.set(X86::ESP
);
393 Reserved
.set(X86::SP
);
394 Reserved
.set(X86::SPL
);
395 // Set the frame-pointer register and its aliases as reserved if needed.
397 Reserved
.set(X86::RBP
);
398 Reserved
.set(X86::EBP
);
399 Reserved
.set(X86::BP
);
400 Reserved
.set(X86::BPL
);
402 // Mark the x87 stack registers as reserved, since they don't
403 // behave normally with respect to liveness. We don't fully
404 // model the effects of x87 stack pushes and pops after
406 Reserved
.set(X86::ST0
);
407 Reserved
.set(X86::ST1
);
408 Reserved
.set(X86::ST2
);
409 Reserved
.set(X86::ST3
);
410 Reserved
.set(X86::ST4
);
411 Reserved
.set(X86::ST5
);
412 Reserved
.set(X86::ST6
);
413 Reserved
.set(X86::ST7
);
417 //===----------------------------------------------------------------------===//
418 // Stack Frame Processing methods
419 //===----------------------------------------------------------------------===//
421 static unsigned calculateMaxStackAlignment(const MachineFrameInfo
*FFI
) {
422 unsigned MaxAlign
= 0;
423 for (int i
= FFI
->getObjectIndexBegin(),
424 e
= FFI
->getObjectIndexEnd(); i
!= e
; ++i
) {
425 if (FFI
->isDeadObjectIndex(i
))
427 unsigned Align
= FFI
->getObjectAlignment(i
);
428 MaxAlign
= std::max(MaxAlign
, Align
);
434 // hasFP - Return true if the specified function should have a dedicated frame
435 // pointer register. This is true if the function has variable sized allocas or
436 // if frame pointer elimination is disabled.
438 bool X86RegisterInfo::hasFP(const MachineFunction
&MF
) const {
439 const MachineFrameInfo
*MFI
= MF
.getFrameInfo();
440 const MachineModuleInfo
*MMI
= MFI
->getMachineModuleInfo();
442 return (NoFramePointerElim
||
443 needsStackRealignment(MF
) ||
444 MFI
->hasVarSizedObjects() ||
445 MFI
->isFrameAddressTaken() ||
446 MF
.getInfo
<X86MachineFunctionInfo
>()->getForceFramePointer() ||
447 (MMI
&& MMI
->callsUnwindInit()));
450 bool X86RegisterInfo::needsStackRealignment(const MachineFunction
&MF
) const {
451 const MachineFrameInfo
*MFI
= MF
.getFrameInfo();
453 // FIXME: Currently we don't support stack realignment for functions with
454 // variable-sized allocas
455 return (RealignStack
&&
456 (MFI
->getMaxAlignment() > StackAlign
&&
457 !MFI
->hasVarSizedObjects()));
460 bool X86RegisterInfo::hasReservedCallFrame(MachineFunction
&MF
) const {
461 return !MF
.getFrameInfo()->hasVarSizedObjects();
464 bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction
&MF
, unsigned Reg
,
465 int &FrameIdx
) const {
466 if (Reg
== FramePtr
&& hasFP(MF
)) {
467 FrameIdx
= MF
.getFrameInfo()->getObjectIndexBegin();
475 X86RegisterInfo::getFrameIndexOffset(MachineFunction
&MF
, int FI
) const {
476 const TargetFrameInfo
&TFI
= *MF
.getTarget().getFrameInfo();
477 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
479 int Offset
= MFI
->getObjectOffset(FI
) - TFI
.getOffsetOfLocalArea();
480 uint64_t StackSize
= MFI
->getStackSize();
482 if (needsStackRealignment(MF
)) {
484 // Skip the saved EBP
487 unsigned Align
= MFI
->getObjectAlignment(FI
);
488 assert( (-(Offset
+ StackSize
)) % Align
== 0);
490 return Offset
+ StackSize
;
493 // FIXME: Support tail calls
496 return Offset
+ StackSize
;
498 // Skip the saved EBP
501 // Skip the RETADDR move area
502 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
503 int TailCallReturnAddrDelta
= X86FI
->getTCReturnAddrDelta();
504 if (TailCallReturnAddrDelta
< 0) Offset
-= TailCallReturnAddrDelta
;
510 void X86RegisterInfo::
511 eliminateCallFramePseudoInstr(MachineFunction
&MF
, MachineBasicBlock
&MBB
,
512 MachineBasicBlock::iterator I
) const {
513 if (!hasReservedCallFrame(MF
)) {
514 // If the stack pointer can be changed after prologue, turn the
515 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
516 // adjcallstackdown instruction into 'add ESP, <amt>'
517 // TODO: consider using push / pop instead of sub + store / add
518 MachineInstr
*Old
= I
;
519 uint64_t Amount
= Old
->getOperand(0).getImm();
521 // We need to keep the stack aligned properly. To do this, we round the
522 // amount of space needed for the outgoing arguments up to the next
523 // alignment boundary.
524 Amount
= (Amount
+StackAlign
-1)/StackAlign
*StackAlign
;
526 MachineInstr
*New
= 0;
527 if (Old
->getOpcode() == getCallFrameSetupOpcode()) {
528 New
= BuildMI(MF
, Old
->getDebugLoc(),
529 TII
.get(Is64Bit
? X86::SUB64ri32
: X86::SUB32ri
),
530 StackPtr
).addReg(StackPtr
).addImm(Amount
);
532 assert(Old
->getOpcode() == getCallFrameDestroyOpcode());
533 // factor out the amount the callee already popped.
534 uint64_t CalleeAmt
= Old
->getOperand(1).getImm();
537 unsigned Opc
= (Amount
< 128) ?
538 (Is64Bit
? X86::ADD64ri8
: X86::ADD32ri8
) :
539 (Is64Bit
? X86::ADD64ri32
: X86::ADD32ri
);
540 New
= BuildMI(MF
, Old
->getDebugLoc(), TII
.get(Opc
), StackPtr
)
541 .addReg(StackPtr
).addImm(Amount
);
546 // The EFLAGS implicit def is dead.
547 New
->getOperand(3).setIsDead();
549 // Replace the pseudo instruction with a new instruction...
553 } else if (I
->getOpcode() == getCallFrameDestroyOpcode()) {
554 // If we are performing frame pointer elimination and if the callee pops
555 // something off the stack pointer, add it back. We do this until we have
556 // more advanced stack pointer tracking ability.
557 if (uint64_t CalleeAmt
= I
->getOperand(1).getImm()) {
558 unsigned Opc
= (CalleeAmt
< 128) ?
559 (Is64Bit
? X86::SUB64ri8
: X86::SUB32ri8
) :
560 (Is64Bit
? X86::SUB64ri32
: X86::SUB32ri
);
561 MachineInstr
*Old
= I
;
563 BuildMI(MF
, Old
->getDebugLoc(), TII
.get(Opc
),
564 StackPtr
).addReg(StackPtr
).addImm(CalleeAmt
);
565 // The EFLAGS implicit def is dead.
566 New
->getOperand(3).setIsDead();
575 void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II
,
576 int SPAdj
, RegScavenger
*RS
) const{
577 assert(SPAdj
== 0 && "Unexpected");
580 MachineInstr
&MI
= *II
;
581 MachineFunction
&MF
= *MI
.getParent()->getParent();
582 while (!MI
.getOperand(i
).isFI()) {
584 assert(i
< MI
.getNumOperands() && "Instr doesn't have FrameIndex operand!");
587 int FrameIndex
= MI
.getOperand(i
).getIndex();
590 if (needsStackRealignment(MF
))
591 BasePtr
= (FrameIndex
< 0 ? FramePtr
: StackPtr
);
593 BasePtr
= (hasFP(MF
) ? FramePtr
: StackPtr
);
595 // This must be part of a four operand memory reference. Replace the
596 // FrameIndex with base register with EBP. Add an offset to the offset.
597 MI
.getOperand(i
).ChangeToRegister(BasePtr
, false);
599 // Now add the frame object offset to the offset from EBP.
600 if (MI
.getOperand(i
+3).isImm()) {
601 // Offset is a 32-bit integer.
602 int Offset
= getFrameIndexOffset(MF
, FrameIndex
) +
603 (int)(MI
.getOperand(i
+3).getImm());
605 MI
.getOperand(i
+3).ChangeToImmediate(Offset
);
607 // Offset is symbolic. This is extremely rare.
608 uint64_t Offset
= getFrameIndexOffset(MF
, FrameIndex
) +
609 (uint64_t)MI
.getOperand(i
+3).getOffset();
610 MI
.getOperand(i
+3).setOffset(Offset
);
615 X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction
&MF
,
616 RegScavenger
*RS
) const {
617 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
619 // Calculate and set max stack object alignment early, so we can decide
620 // whether we will need stack realignment (and thus FP).
621 unsigned MaxAlign
= std::max(MFI
->getMaxAlignment(),
622 calculateMaxStackAlignment(MFI
));
624 MFI
->setMaxAlignment(MaxAlign
);
626 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
627 int32_t TailCallReturnAddrDelta
= X86FI
->getTCReturnAddrDelta();
628 if (TailCallReturnAddrDelta
< 0) {
629 // create RETURNADDR area
638 MFI
->CreateFixedObject(-TailCallReturnAddrDelta
,
639 (-1*SlotSize
)+TailCallReturnAddrDelta
);
643 assert((TailCallReturnAddrDelta
<= 0) &&
644 "The Delta should always be zero or negative");
645 const TargetFrameInfo
&TFI
= *MF
.getTarget().getFrameInfo();
646 // Create a frame entry for the EBP register that must be saved.
647 int FrameIdx
= MFI
->CreateFixedObject(SlotSize
,
649 TFI
.getOffsetOfLocalArea() +
650 TailCallReturnAddrDelta
);
651 assert(FrameIdx
== MFI
->getObjectIndexBegin() &&
652 "Slot for EBP register must be last in order to be found!");
657 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
658 /// stack pointer by a constant value.
660 void emitSPUpdate(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&MBBI
,
661 unsigned StackPtr
, int64_t NumBytes
, bool Is64Bit
,
662 const TargetInstrInfo
&TII
) {
663 bool isSub
= NumBytes
< 0;
664 uint64_t Offset
= isSub
? -NumBytes
: NumBytes
;
667 (Is64Bit
? X86::SUB64ri8
: X86::SUB32ri8
) :
668 (Is64Bit
? X86::SUB64ri32
: X86::SUB32ri
))
670 (Is64Bit
? X86::ADD64ri8
: X86::ADD32ri8
) :
671 (Is64Bit
? X86::ADD64ri32
: X86::ADD32ri
));
672 uint64_t Chunk
= (1LL << 31) - 1;
673 DebugLoc DL
= (MBBI
!= MBB
.end() ? MBBI
->getDebugLoc() :
674 DebugLoc::getUnknownLoc());
677 uint64_t ThisVal
= (Offset
> Chunk
) ? Chunk
: Offset
;
679 BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), StackPtr
)
680 .addReg(StackPtr
).addImm(ThisVal
);
681 // The EFLAGS implicit def is dead.
682 MI
->getOperand(3).setIsDead();
687 // mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
689 void mergeSPUpdatesUp(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&MBBI
,
690 unsigned StackPtr
, uint64_t *NumBytes
= NULL
) {
691 if (MBBI
== MBB
.begin()) return;
693 MachineBasicBlock::iterator PI
= prior(MBBI
);
694 unsigned Opc
= PI
->getOpcode();
695 if ((Opc
== X86::ADD64ri32
|| Opc
== X86::ADD64ri8
||
696 Opc
== X86::ADD32ri
|| Opc
== X86::ADD32ri8
) &&
697 PI
->getOperand(0).getReg() == StackPtr
) {
699 *NumBytes
+= PI
->getOperand(2).getImm();
701 } else if ((Opc
== X86::SUB64ri32
|| Opc
== X86::SUB64ri8
||
702 Opc
== X86::SUB32ri
|| Opc
== X86::SUB32ri8
) &&
703 PI
->getOperand(0).getReg() == StackPtr
) {
705 *NumBytes
-= PI
->getOperand(2).getImm();
710 // mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
712 void mergeSPUpdatesDown(MachineBasicBlock
&MBB
,
713 MachineBasicBlock::iterator
&MBBI
,
714 unsigned StackPtr
, uint64_t *NumBytes
= NULL
) {
717 if (MBBI
== MBB
.end()) return;
719 MachineBasicBlock::iterator NI
= next(MBBI
);
720 if (NI
== MBB
.end()) return;
722 unsigned Opc
= NI
->getOpcode();
723 if ((Opc
== X86::ADD64ri32
|| Opc
== X86::ADD64ri8
||
724 Opc
== X86::ADD32ri
|| Opc
== X86::ADD32ri8
) &&
725 NI
->getOperand(0).getReg() == StackPtr
) {
727 *NumBytes
-= NI
->getOperand(2).getImm();
730 } else if ((Opc
== X86::SUB64ri32
|| Opc
== X86::SUB64ri8
||
731 Opc
== X86::SUB32ri
|| Opc
== X86::SUB32ri8
) &&
732 NI
->getOperand(0).getReg() == StackPtr
) {
734 *NumBytes
+= NI
->getOperand(2).getImm();
740 /// mergeSPUpdates - Checks the instruction before/after the passed
741 /// instruction. If it is an ADD/SUB instruction it is deleted
742 /// argument and the stack adjustment is returned as a positive value for ADD
743 /// and a negative for SUB.
744 static int mergeSPUpdates(MachineBasicBlock
&MBB
,
745 MachineBasicBlock::iterator
&MBBI
,
747 bool doMergeWithPrevious
) {
749 if ((doMergeWithPrevious
&& MBBI
== MBB
.begin()) ||
750 (!doMergeWithPrevious
&& MBBI
== MBB
.end()))
755 MachineBasicBlock::iterator PI
= doMergeWithPrevious
? prior(MBBI
) : MBBI
;
756 MachineBasicBlock::iterator NI
= doMergeWithPrevious
? 0 : next(MBBI
);
757 unsigned Opc
= PI
->getOpcode();
758 if ((Opc
== X86::ADD64ri32
|| Opc
== X86::ADD64ri8
||
759 Opc
== X86::ADD32ri
|| Opc
== X86::ADD32ri8
) &&
760 PI
->getOperand(0).getReg() == StackPtr
){
761 Offset
+= PI
->getOperand(2).getImm();
763 if (!doMergeWithPrevious
) MBBI
= NI
;
764 } else if ((Opc
== X86::SUB64ri32
|| Opc
== X86::SUB64ri8
||
765 Opc
== X86::SUB32ri
|| Opc
== X86::SUB32ri8
) &&
766 PI
->getOperand(0).getReg() == StackPtr
) {
767 Offset
-= PI
->getOperand(2).getImm();
769 if (!doMergeWithPrevious
) MBBI
= NI
;
775 void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction
&MF
,
777 unsigned FramePtr
) const {
778 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
779 MachineModuleInfo
*MMI
= MFI
->getMachineModuleInfo();
782 // Add callee saved registers to move list.
783 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
->getCalleeSavedInfo();
784 if (CSI
.empty()) return;
786 std::vector
<MachineMove
> &Moves
= MMI
->getFrameMoves();
787 const TargetData
*TD
= MF
.getTarget().getTargetData();
788 bool HasFP
= hasFP(MF
);
790 // Calculate amount of bytes used for return address storing
792 (MF
.getTarget().getFrameInfo()->getStackGrowthDirection() ==
793 TargetFrameInfo::StackGrowsUp
?
794 TD
->getPointerSize() : -TD
->getPointerSize());
796 // FIXME: This is dirty hack. The code itself is pretty mess right now.
797 // It should be rewritten from scratch and generalized sometimes.
799 // Determine maximum offset (minumum due to stack growth)
800 int64_t MaxOffset
= 0;
801 for (std::vector
<CalleeSavedInfo
>::const_iterator
802 I
= CSI
.begin(), E
= CSI
.end(); I
!= E
; ++I
)
803 MaxOffset
= std::min(MaxOffset
,
804 MFI
->getObjectOffset(I
->getFrameIdx()));
806 // Calculate offsets.
807 int64_t saveAreaOffset
= (HasFP
? 3 : 2) * stackGrowth
;
808 for (std::vector
<CalleeSavedInfo
>::const_iterator
809 I
= CSI
.begin(), E
= CSI
.end(); I
!= E
; ++I
) {
810 int64_t Offset
= MFI
->getObjectOffset(I
->getFrameIdx());
811 unsigned Reg
= I
->getReg();
812 Offset
= MaxOffset
- Offset
+ saveAreaOffset
;
814 // Don't output a new machine move if we're re-saving the frame
815 // pointer. This happens when the PrologEpilogInserter has inserted an extra
816 // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
817 // generates one when frame pointers are used. If we generate a "machine
818 // move" for this extra "PUSH", the linker will lose track of the fact that
819 // the frame pointer should have the value of the first "PUSH" when it's
822 // FIXME: This looks inelegant. It's possibly correct, but it's covering up
823 // another bug. I.e., one where we generate a prolog like this:
831 // The immediate re-push of EBP is unnecessary. At the least, it's an
832 // optimization bug. EBP can be used as a scratch register in certain
833 // cases, but probably not when we have a frame pointer.
834 if (HasFP
&& FramePtr
== Reg
)
837 MachineLocation
CSDst(MachineLocation::VirtualFP
, Offset
);
838 MachineLocation
CSSrc(Reg
);
839 Moves
.push_back(MachineMove(LabelId
, CSDst
, CSSrc
));
843 void X86RegisterInfo::emitPrologue(MachineFunction
&MF
) const {
844 MachineBasicBlock
&MBB
= MF
.front(); // Prolog goes in entry BB
845 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
846 const Function
* Fn
= MF
.getFunction();
847 const X86Subtarget
* Subtarget
= &MF
.getTarget().getSubtarget
<X86Subtarget
>();
848 MachineModuleInfo
*MMI
= MFI
->getMachineModuleInfo();
849 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
850 MachineBasicBlock::iterator MBBI
= MBB
.begin();
851 bool needsFrameMoves
= (MMI
&& MMI
->hasDebugInfo()) ||
852 !Fn
->doesNotThrow() ||
853 UnwindTablesMandatory
;
854 bool HasFP
= hasFP(MF
);
857 // Get the number of bytes to allocate from the FrameInfo.
858 uint64_t StackSize
= MFI
->getStackSize();
860 // Get desired stack alignment
861 uint64_t MaxAlign
= MFI
->getMaxAlignment();
863 // Add RETADDR move area to callee saved frame size.
864 int TailCallReturnAddrDelta
= X86FI
->getTCReturnAddrDelta();
865 if (TailCallReturnAddrDelta
< 0)
866 X86FI
->setCalleeSavedFrameSize(
867 X86FI
->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta
));
869 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
870 // function, and use up to 128 bytes of stack space, don't have a frame
871 // pointer, calls, or dynamic alloca then we do not need to adjust the
872 // stack pointer (we fit in the Red Zone).
873 bool DisableRedZone
= Fn
->hasFnAttr(Attribute::NoRedZone
);
874 if (Is64Bit
&& !DisableRedZone
&&
875 !needsStackRealignment(MF
) &&
876 !MFI
->hasVarSizedObjects() && // No dynamic alloca.
877 !MFI
->hasCalls() && // No calls.
878 !Subtarget
->isTargetWin64()) { // Win64 has no Red Zone
879 uint64_t MinSize
= X86FI
->getCalleeSavedFrameSize();
880 if (HasFP
) MinSize
+= SlotSize
;
881 StackSize
= std::max(MinSize
,
882 StackSize
> 128 ? StackSize
- 128 : 0);
883 MFI
->setStackSize(StackSize
);
884 } else if (Subtarget
->isTargetWin64()) {
885 // We need to always allocate 32 bytes as register spill area.
886 // FIXME: we might reuse these 32 bytes for leaf functions.
888 MFI
->setStackSize(StackSize
);
891 // Insert stack pointer adjustment for later moving of return addr. Only
892 // applies to tail call optimized functions where the callee argument stack
893 // size is bigger than the callers.
894 if (TailCallReturnAddrDelta
< 0) {
896 BuildMI(MBB
, MBBI
, DL
, TII
.get(Is64Bit
? X86::SUB64ri32
: X86::SUB32ri
),
897 StackPtr
).addReg(StackPtr
).addImm(-TailCallReturnAddrDelta
);
898 // The EFLAGS implicit def is dead.
899 MI
->getOperand(3).setIsDead();
902 // uint64_t StackSize = MFI->getStackSize();
903 std::vector
<MachineMove
> &Moves
= MMI
->getFrameMoves();
904 const TargetData
*TD
= MF
.getTarget().getTargetData();
906 (MF
.getTarget().getFrameInfo()->getStackGrowthDirection() ==
907 TargetFrameInfo::StackGrowsUp
?
908 TD
->getPointerSize() : -TD
->getPointerSize());
910 uint64_t NumBytes
= 0;
912 // Calculate required stack adjustment
913 uint64_t FrameSize
= StackSize
- SlotSize
;
914 if (needsStackRealignment(MF
))
915 FrameSize
= (FrameSize
+ MaxAlign
- 1)/MaxAlign
*MaxAlign
;
917 NumBytes
= FrameSize
- X86FI
->getCalleeSavedFrameSize();
919 // Get the offset of the stack slot for the EBP register, which is
920 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
921 // Update the frame offset adjustment.
922 MFI
->setOffsetAdjustment(-NumBytes
);
924 // Save EBP/RBP into the appropriate stack slot...
925 BuildMI(MBB
, MBBI
, DL
, TII
.get(Is64Bit
? X86::PUSH64r
: X86::PUSH32r
))
926 .addReg(FramePtr
, RegState::Kill
);
928 if (needsFrameMoves
) {
929 // Mark effective beginning of when frame pointer becomes valid.
930 unsigned FrameLabelId
= MMI
->NextLabelID();
931 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::DBG_LABEL
)).addImm(FrameLabelId
);
933 // Define the current CFA rule to use the provided offset.
935 MachineLocation
SPDst(MachineLocation::VirtualFP
);
936 MachineLocation
SPSrc(MachineLocation::VirtualFP
,
937 HasFP
? 2 * stackGrowth
:
938 -StackSize
+ stackGrowth
);
939 Moves
.push_back(MachineMove(FrameLabelId
, SPDst
, SPSrc
));
941 // FIXME: Verify & implement for FP
942 MachineLocation
SPDst(StackPtr
);
943 MachineLocation
SPSrc(StackPtr
, stackGrowth
);
944 Moves
.push_back(MachineMove(FrameLabelId
, SPDst
, SPSrc
));
947 // Change the rule for the FramePtr to be an "offset" rule.
948 MachineLocation
FPDst(MachineLocation::VirtualFP
, 2 * stackGrowth
);
949 MachineLocation
FPSrc(FramePtr
);
950 Moves
.push_back(MachineMove(FrameLabelId
, FPDst
, FPSrc
));
953 // Update EBP with the new base value...
954 BuildMI(MBB
, MBBI
, DL
,
955 TII
.get(Is64Bit
? X86::MOV64rr
: X86::MOV32rr
), FramePtr
)
958 if (needsFrameMoves
) {
959 unsigned FrameLabelId
= MMI
->NextLabelID();
960 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::DBG_LABEL
)).addImm(FrameLabelId
);
962 // Define the current CFA to use the EBP/RBP register.
963 MachineLocation
FPDst(FramePtr
);
964 MachineLocation
FPSrc(MachineLocation::VirtualFP
);
965 Moves
.push_back(MachineMove(FrameLabelId
, FPDst
, FPSrc
));
968 // Mark the FramePtr as live-in in every block except the entry.
969 for (MachineFunction::iterator I
= next(MF
.begin()), E
= MF
.end();
971 I
->addLiveIn(FramePtr
);
974 if (needsStackRealignment(MF
)) {
976 BuildMI(MBB
, MBBI
, DL
,
977 TII
.get(Is64Bit
? X86::AND64ri32
: X86::AND32ri
),
978 StackPtr
).addReg(StackPtr
).addImm(-MaxAlign
);
980 // The EFLAGS implicit def is dead.
981 MI
->getOperand(3).setIsDead();
984 NumBytes
= StackSize
- X86FI
->getCalleeSavedFrameSize();
987 // Skip the callee-saved push instructions.
988 bool RegsSaved
= false;
989 while (MBBI
!= MBB
.end() &&
990 (MBBI
->getOpcode() == X86::PUSH32r
||
991 MBBI
->getOpcode() == X86::PUSH64r
)) {
996 if (RegsSaved
&& needsFrameMoves
) {
997 // Mark end of callee-saved push instructions.
998 unsigned LabelId
= MMI
->NextLabelID();
999 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::DBG_LABEL
)).addImm(LabelId
);
1001 // Emit DWARF info specifying the offsets of the callee-saved registers.
1002 emitCalleeSavedFrameMoves(MF
, LabelId
, HasFP
? FramePtr
: StackPtr
);
1005 if (MBBI
!= MBB
.end())
1006 DL
= MBBI
->getDebugLoc();
1008 // Adjust stack pointer: ESP -= numbytes.
1009 if (NumBytes
>= 4096 && Subtarget
->isTargetCygMing()) {
1010 // Check, whether EAX is livein for this function.
1011 bool isEAXAlive
= false;
1012 for (MachineRegisterInfo::livein_iterator
1013 II
= MF
.getRegInfo().livein_begin(),
1014 EE
= MF
.getRegInfo().livein_end(); (II
!= EE
) && !isEAXAlive
; ++II
) {
1015 unsigned Reg
= II
->first
;
1016 isEAXAlive
= (Reg
== X86::EAX
|| Reg
== X86::AX
||
1017 Reg
== X86::AH
|| Reg
== X86::AL
);
1020 // Function prologue calls _alloca to probe the stack when allocating more
1021 // than 4k bytes in one go. Touching the stack at 4K increments is necessary
1022 // to ensure that the guard pages used by the OS virtual memory manager are
1023 // allocated in correct sequence.
1025 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32ri
), X86::EAX
)
1027 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::CALLpcrel32
))
1028 .addExternalSymbol("_alloca");
1031 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::PUSH32r
))
1032 .addReg(X86::EAX
, RegState::Kill
);
1034 // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
1035 // allocated bytes for EAX.
1036 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32ri
), X86::EAX
)
1037 .addImm(NumBytes
- 4);
1038 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::CALLpcrel32
))
1039 .addExternalSymbol("_alloca");
1042 MachineInstr
*MI
= addRegOffset(BuildMI(MF
, DL
, TII
.get(X86::MOV32rm
),
1044 StackPtr
, false, NumBytes
- 4);
1045 MBB
.insert(MBBI
, MI
);
1047 } else if (NumBytes
) {
1048 // If there is an SUB32ri of ESP immediately before this instruction, merge
1049 // the two. This can be the case when tail call elimination is enabled and
1050 // the callee has more arguments then the caller.
1051 NumBytes
-= mergeSPUpdates(MBB
, MBBI
, StackPtr
, true);
1053 // If there is an ADD32ri or SUB32ri of ESP immediately after this
1054 // instruction, merge the two instructions.
1055 mergeSPUpdatesDown(MBB
, MBBI
, StackPtr
, &NumBytes
);
1058 emitSPUpdate(MBB
, MBBI
, StackPtr
, -(int64_t)NumBytes
, Is64Bit
, TII
);
1061 if (!HasFP
&& needsFrameMoves
) {
1062 // Mark end of stack pointer adjustment.
1063 unsigned LabelId
= MMI
->NextLabelID();
1064 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::DBG_LABEL
)).addImm(LabelId
);
1066 // Define the current CFA rule to use the provided offset.
1068 MachineLocation
SPDst(MachineLocation::VirtualFP
);
1069 MachineLocation
SPSrc(MachineLocation::VirtualFP
,
1070 -StackSize
+ stackGrowth
);
1071 Moves
.push_back(MachineMove(LabelId
, SPDst
, SPSrc
));
1073 // FIXME: Verify & implement for FP
1074 MachineLocation
SPDst(StackPtr
);
1075 MachineLocation
SPSrc(StackPtr
, stackGrowth
);
1076 Moves
.push_back(MachineMove(LabelId
, SPDst
, SPSrc
));
1081 void X86RegisterInfo::emitEpilogue(MachineFunction
&MF
,
1082 MachineBasicBlock
&MBB
) const {
1083 const MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1084 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
1085 MachineBasicBlock::iterator MBBI
= prior(MBB
.end());
1086 unsigned RetOpcode
= MBBI
->getOpcode();
1087 DebugLoc DL
= MBBI
->getDebugLoc();
1089 switch (RetOpcode
) {
1092 case X86::TCRETURNdi
:
1093 case X86::TCRETURNri
:
1094 case X86::TCRETURNri64
:
1095 case X86::TCRETURNdi64
:
1096 case X86::EH_RETURN
:
1097 case X86::EH_RETURN64
:
1100 case X86::TAILJMPm
: break; // These are ok
1102 llvm_unreachable("Can only insert epilog into returning blocks");
1105 // Get the number of bytes to allocate from the FrameInfo
1106 uint64_t StackSize
= MFI
->getStackSize();
1107 uint64_t MaxAlign
= MFI
->getMaxAlignment();
1108 unsigned CSSize
= X86FI
->getCalleeSavedFrameSize();
1109 uint64_t NumBytes
= 0;
1112 // Calculate required stack adjustment
1113 uint64_t FrameSize
= StackSize
- SlotSize
;
1114 if (needsStackRealignment(MF
))
1115 FrameSize
= (FrameSize
+ MaxAlign
- 1)/MaxAlign
*MaxAlign
;
1117 NumBytes
= FrameSize
- CSSize
;
1120 BuildMI(MBB
, MBBI
, DL
,
1121 TII
.get(Is64Bit
? X86::POP64r
: X86::POP32r
), FramePtr
);
1123 NumBytes
= StackSize
- CSSize
;
1126 // Skip the callee-saved pop instructions.
1127 MachineBasicBlock::iterator LastCSPop
= MBBI
;
1128 while (MBBI
!= MBB
.begin()) {
1129 MachineBasicBlock::iterator PI
= prior(MBBI
);
1130 unsigned Opc
= PI
->getOpcode();
1131 if (Opc
!= X86::POP32r
&& Opc
!= X86::POP64r
&&
1132 !PI
->getDesc().isTerminator())
1137 DL
= MBBI
->getDebugLoc();
1139 // If there is an ADD32ri or SUB32ri of ESP immediately before this
1140 // instruction, merge the two instructions.
1141 if (NumBytes
|| MFI
->hasVarSizedObjects())
1142 mergeSPUpdatesUp(MBB
, MBBI
, StackPtr
, &NumBytes
);
1144 // If dynamic alloca is used, then reset esp to point to the last callee-saved
1145 // slot before popping them off! Same applies for the case, when stack was
1147 if (needsStackRealignment(MF
)) {
1148 // We cannot use LEA here, because stack pointer was realigned. We need to
1149 // deallocate local frame back
1151 emitSPUpdate(MBB
, MBBI
, StackPtr
, NumBytes
, Is64Bit
, TII
);
1152 MBBI
= prior(LastCSPop
);
1155 BuildMI(MBB
, MBBI
, DL
,
1156 TII
.get(Is64Bit
? X86::MOV64rr
: X86::MOV32rr
),
1157 StackPtr
).addReg(FramePtr
);
1158 } else if (MFI
->hasVarSizedObjects()) {
1160 unsigned Opc
= Is64Bit
? X86::LEA64r
: X86::LEA32r
;
1161 MachineInstr
*MI
= addLeaRegOffset(BuildMI(MF
, DL
, TII
.get(Opc
), StackPtr
),
1162 FramePtr
, false, -CSSize
);
1163 MBB
.insert(MBBI
, MI
);
1165 BuildMI(MBB
, MBBI
, DL
, TII
.get(Is64Bit
? X86::MOV64rr
: X86::MOV32rr
),
1166 StackPtr
).addReg(FramePtr
);
1169 // adjust stack pointer back: ESP += numbytes
1171 emitSPUpdate(MBB
, MBBI
, StackPtr
, NumBytes
, Is64Bit
, TII
);
1174 // We're returning from function via eh_return.
1175 if (RetOpcode
== X86::EH_RETURN
|| RetOpcode
== X86::EH_RETURN64
) {
1176 MBBI
= prior(MBB
.end());
1177 MachineOperand
&DestAddr
= MBBI
->getOperand(0);
1178 assert(DestAddr
.isReg() && "Offset should be in register!");
1179 BuildMI(MBB
, MBBI
, DL
,
1180 TII
.get(Is64Bit
? X86::MOV64rr
: X86::MOV32rr
),
1181 StackPtr
).addReg(DestAddr
.getReg());
1182 // Tail call return: adjust the stack pointer and jump to callee
1183 } else if (RetOpcode
== X86::TCRETURNri
|| RetOpcode
== X86::TCRETURNdi
||
1184 RetOpcode
== X86::TCRETURNri64
|| RetOpcode
== X86::TCRETURNdi64
) {
1185 MBBI
= prior(MBB
.end());
1186 MachineOperand
&JumpTarget
= MBBI
->getOperand(0);
1187 MachineOperand
&StackAdjust
= MBBI
->getOperand(1);
1188 assert(StackAdjust
.isImm() && "Expecting immediate value.");
1190 // Adjust stack pointer.
1191 int StackAdj
= StackAdjust
.getImm();
1192 int MaxTCDelta
= X86FI
->getTCReturnAddrDelta();
1194 assert(MaxTCDelta
<= 0 && "MaxTCDelta should never be positive");
1195 // Incoporate the retaddr area.
1196 Offset
= StackAdj
-MaxTCDelta
;
1197 assert(Offset
>= 0 && "Offset should never be negative");
1200 // Check for possible merge with preceeding ADD instruction.
1201 Offset
+= mergeSPUpdates(MBB
, MBBI
, StackPtr
, true);
1202 emitSPUpdate(MBB
, MBBI
, StackPtr
, Offset
, Is64Bit
, TII
);
1205 // Jump to label or value in register.
1206 if (RetOpcode
== X86::TCRETURNdi
|| RetOpcode
== X86::TCRETURNdi64
)
1207 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::TAILJMPd
)).
1208 addGlobalAddress(JumpTarget
.getGlobal(), JumpTarget
.getOffset());
1209 else if (RetOpcode
== X86::TCRETURNri64
)
1210 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::TAILJMPr64
), JumpTarget
.getReg());
1212 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::TAILJMPr
), JumpTarget
.getReg());
1214 // Delete the pseudo instruction TCRETURN.
1216 } else if ((RetOpcode
== X86::RET
|| RetOpcode
== X86::RETI
) &&
1217 (X86FI
->getTCReturnAddrDelta() < 0)) {
1218 // Add the return addr area delta back since we are not tail calling.
1219 int delta
= -1*X86FI
->getTCReturnAddrDelta();
1220 MBBI
= prior(MBB
.end());
1221 // Check for possible merge with preceeding ADD instruction.
1222 delta
+= mergeSPUpdates(MBB
, MBBI
, StackPtr
, true);
1223 emitSPUpdate(MBB
, MBBI
, StackPtr
, delta
, Is64Bit
, TII
);
1227 unsigned X86RegisterInfo::getRARegister() const {
1229 return X86::RIP
; // Should have dwarf #16
1231 return X86::EIP
; // Should have dwarf #8
1234 unsigned X86RegisterInfo::getFrameRegister(MachineFunction
&MF
) const {
1235 return hasFP(MF
) ? FramePtr
: StackPtr
;
1238 void X86RegisterInfo::getInitialFrameState(std::vector
<MachineMove
> &Moves
)
1240 // Calculate amount of bytes used for return address storing
1241 int stackGrowth
= (Is64Bit
? -8 : -4);
1243 // Initial state of the frame pointer is esp+4.
1244 MachineLocation
Dst(MachineLocation::VirtualFP
);
1245 MachineLocation
Src(StackPtr
, stackGrowth
);
1246 Moves
.push_back(MachineMove(0, Dst
, Src
));
1248 // Add return address to move list
1249 MachineLocation
CSDst(StackPtr
, stackGrowth
);
1250 MachineLocation
CSSrc(getRARegister());
1251 Moves
.push_back(MachineMove(0, CSDst
, CSSrc
));
1254 unsigned X86RegisterInfo::getEHExceptionRegister() const {
1255 llvm_unreachable("What is the exception register");
1259 unsigned X86RegisterInfo::getEHHandlerRegister() const {
1260 llvm_unreachable("What is the exception handler register");
1265 unsigned getX86SubSuperRegister(unsigned Reg
, EVT VT
, bool High
) {
1266 switch (VT
.getSimpleVT().SimpleTy
) {
1267 default: return Reg
;
1272 case X86::AH
: case X86::AL
: case X86::AX
: case X86::EAX
: case X86::RAX
:
1274 case X86::DH
: case X86::DL
: case X86::DX
: case X86::EDX
: case X86::RDX
:
1276 case X86::CH
: case X86::CL
: case X86::CX
: case X86::ECX
: case X86::RCX
:
1278 case X86::BH
: case X86::BL
: case X86::BX
: case X86::EBX
: case X86::RBX
:
1284 case X86::AH
: case X86::AL
: case X86::AX
: case X86::EAX
: case X86::RAX
:
1286 case X86::DH
: case X86::DL
: case X86::DX
: case X86::EDX
: case X86::RDX
:
1288 case X86::CH
: case X86::CL
: case X86::CX
: case X86::ECX
: case X86::RCX
:
1290 case X86::BH
: case X86::BL
: case X86::BX
: case X86::EBX
: case X86::RBX
:
1292 case X86::SIL
: case X86::SI
: case X86::ESI
: case X86::RSI
:
1294 case X86::DIL
: case X86::DI
: case X86::EDI
: case X86::RDI
:
1296 case X86::BPL
: case X86::BP
: case X86::EBP
: case X86::RBP
:
1298 case X86::SPL
: case X86::SP
: case X86::ESP
: case X86::RSP
:
1300 case X86::R8B
: case X86::R8W
: case X86::R8D
: case X86::R8
:
1302 case X86::R9B
: case X86::R9W
: case X86::R9D
: case X86::R9
:
1304 case X86::R10B
: case X86::R10W
: case X86::R10D
: case X86::R10
:
1306 case X86::R11B
: case X86::R11W
: case X86::R11D
: case X86::R11
:
1308 case X86::R12B
: case X86::R12W
: case X86::R12D
: case X86::R12
:
1310 case X86::R13B
: case X86::R13W
: case X86::R13D
: case X86::R13
:
1312 case X86::R14B
: case X86::R14W
: case X86::R14D
: case X86::R14
:
1314 case X86::R15B
: case X86::R15W
: case X86::R15D
: case X86::R15
:
1320 default: return Reg
;
1321 case X86::AH
: case X86::AL
: case X86::AX
: case X86::EAX
: case X86::RAX
:
1323 case X86::DH
: case X86::DL
: case X86::DX
: case X86::EDX
: case X86::RDX
:
1325 case X86::CH
: case X86::CL
: case X86::CX
: case X86::ECX
: case X86::RCX
:
1327 case X86::BH
: case X86::BL
: case X86::BX
: case X86::EBX
: case X86::RBX
:
1329 case X86::SIL
: case X86::SI
: case X86::ESI
: case X86::RSI
:
1331 case X86::DIL
: case X86::DI
: case X86::EDI
: case X86::RDI
:
1333 case X86::BPL
: case X86::BP
: case X86::EBP
: case X86::RBP
:
1335 case X86::SPL
: case X86::SP
: case X86::ESP
: case X86::RSP
:
1337 case X86::R8B
: case X86::R8W
: case X86::R8D
: case X86::R8
:
1339 case X86::R9B
: case X86::R9W
: case X86::R9D
: case X86::R9
:
1341 case X86::R10B
: case X86::R10W
: case X86::R10D
: case X86::R10
:
1343 case X86::R11B
: case X86::R11W
: case X86::R11D
: case X86::R11
:
1345 case X86::R12B
: case X86::R12W
: case X86::R12D
: case X86::R12
:
1347 case X86::R13B
: case X86::R13W
: case X86::R13D
: case X86::R13
:
1349 case X86::R14B
: case X86::R14W
: case X86::R14D
: case X86::R14
:
1351 case X86::R15B
: case X86::R15W
: case X86::R15D
: case X86::R15
:
1356 default: return Reg
;
1357 case X86::AH
: case X86::AL
: case X86::AX
: case X86::EAX
: case X86::RAX
:
1359 case X86::DH
: case X86::DL
: case X86::DX
: case X86::EDX
: case X86::RDX
:
1361 case X86::CH
: case X86::CL
: case X86::CX
: case X86::ECX
: case X86::RCX
:
1363 case X86::BH
: case X86::BL
: case X86::BX
: case X86::EBX
: case X86::RBX
:
1365 case X86::SIL
: case X86::SI
: case X86::ESI
: case X86::RSI
:
1367 case X86::DIL
: case X86::DI
: case X86::EDI
: case X86::RDI
:
1369 case X86::BPL
: case X86::BP
: case X86::EBP
: case X86::RBP
:
1371 case X86::SPL
: case X86::SP
: case X86::ESP
: case X86::RSP
:
1373 case X86::R8B
: case X86::R8W
: case X86::R8D
: case X86::R8
:
1375 case X86::R9B
: case X86::R9W
: case X86::R9D
: case X86::R9
:
1377 case X86::R10B
: case X86::R10W
: case X86::R10D
: case X86::R10
:
1379 case X86::R11B
: case X86::R11W
: case X86::R11D
: case X86::R11
:
1381 case X86::R12B
: case X86::R12W
: case X86::R12D
: case X86::R12
:
1383 case X86::R13B
: case X86::R13W
: case X86::R13D
: case X86::R13
:
1385 case X86::R14B
: case X86::R14W
: case X86::R14D
: case X86::R14
:
1387 case X86::R15B
: case X86::R15W
: case X86::R15D
: case X86::R15
:
1392 default: return Reg
;
1393 case X86::AH
: case X86::AL
: case X86::AX
: case X86::EAX
: case X86::RAX
:
1395 case X86::DH
: case X86::DL
: case X86::DX
: case X86::EDX
: case X86::RDX
:
1397 case X86::CH
: case X86::CL
: case X86::CX
: case X86::ECX
: case X86::RCX
:
1399 case X86::BH
: case X86::BL
: case X86::BX
: case X86::EBX
: case X86::RBX
:
1401 case X86::SIL
: case X86::SI
: case X86::ESI
: case X86::RSI
:
1403 case X86::DIL
: case X86::DI
: case X86::EDI
: case X86::RDI
:
1405 case X86::BPL
: case X86::BP
: case X86::EBP
: case X86::RBP
:
1407 case X86::SPL
: case X86::SP
: case X86::ESP
: case X86::RSP
:
1409 case X86::R8B
: case X86::R8W
: case X86::R8D
: case X86::R8
:
1411 case X86::R9B
: case X86::R9W
: case X86::R9D
: case X86::R9
:
1413 case X86::R10B
: case X86::R10W
: case X86::R10D
: case X86::R10
:
1415 case X86::R11B
: case X86::R11W
: case X86::R11D
: case X86::R11
:
1417 case X86::R12B
: case X86::R12W
: case X86::R12D
: case X86::R12
:
1419 case X86::R13B
: case X86::R13W
: case X86::R13D
: case X86::R13
:
1421 case X86::R14B
: case X86::R14W
: case X86::R14D
: case X86::R14
:
1423 case X86::R15B
: case X86::R15W
: case X86::R15D
: case X86::R15
:
1432 #include "X86GenRegisterInfo.inc"
1435 struct VISIBILITY_HIDDEN MSAC
: public MachineFunctionPass
{
1437 MSAC() : MachineFunctionPass(&ID
) {}
1439 virtual bool runOnMachineFunction(MachineFunction
&MF
) {
1440 MachineFrameInfo
*FFI
= MF
.getFrameInfo();
1441 MachineRegisterInfo
&RI
= MF
.getRegInfo();
1443 // Calculate max stack alignment of all already allocated stack objects.
1444 unsigned MaxAlign
= calculateMaxStackAlignment(FFI
);
1446 // Be over-conservative: scan over all vreg defs and find, whether vector
1447 // registers are used. If yes - there is probability, that vector register
1448 // will be spilled and thus stack needs to be aligned properly.
1449 for (unsigned RegNum
= TargetRegisterInfo::FirstVirtualRegister
;
1450 RegNum
< RI
.getLastVirtReg(); ++RegNum
)
1451 MaxAlign
= std::max(MaxAlign
, RI
.getRegClass(RegNum
)->getAlignment());
1453 if (FFI
->getMaxAlignment() == MaxAlign
)
1456 FFI
->setMaxAlignment(MaxAlign
);
1460 virtual const char *getPassName() const {
1461 return "X86 Maximal Stack Alignment Calculator";
1464 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
1465 AU
.setPreservesCFG();
1466 MachineFunctionPass::getAnalysisUsage(AU
);
1474 llvm::createX86MaxStackAlignmentCalculatorPass() { return new MSAC(); }