Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / Target / X86 / X86RegisterInfo.cpp
blob757451635bdde9573cde6d9245d1e94d03f1bffd
1 //===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetRegisterInfo class.
11 // This file is responsible for the frame pointer elimination optimization
12 // on X86.
14 //===----------------------------------------------------------------------===//
16 #include "X86.h"
17 #include "X86RegisterInfo.h"
18 #include "X86InstrBuilder.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Function.h"
24 #include "llvm/Type.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineLocation.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/Target/TargetAsmInfo.h"
34 #include "llvm/Target/TargetFrameInfo.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/ADT/BitVector.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace llvm;
45 X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
46 const TargetInstrInfo &tii)
47 : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
48 X86::ADJCALLSTACKDOWN64 :
49 X86::ADJCALLSTACKDOWN32,
50 tm.getSubtarget<X86Subtarget>().is64Bit() ?
51 X86::ADJCALLSTACKUP64 :
52 X86::ADJCALLSTACKUP32),
53 TM(tm), TII(tii) {
54 // Cache some information.
55 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
56 Is64Bit = Subtarget->is64Bit();
57 IsWin64 = Subtarget->isTargetWin64();
58 StackAlign = TM.getFrameInfo()->getStackAlignment();
59 if (Is64Bit) {
60 SlotSize = 8;
61 StackPtr = X86::RSP;
62 FramePtr = X86::RBP;
63 } else {
64 SlotSize = 4;
65 StackPtr = X86::ESP;
66 FramePtr = X86::EBP;
70 // getDwarfRegNum - This function maps LLVM register identifiers to the
71 // Dwarf specific numbering, used in debug info and exception tables.
73 int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
74 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
75 unsigned Flavour = DWARFFlavour::X86_64;
76 if (!Subtarget->is64Bit()) {
77 if (Subtarget->isTargetDarwin()) {
78 if (isEH)
79 Flavour = DWARFFlavour::X86_32_DarwinEH;
80 else
81 Flavour = DWARFFlavour::X86_32_Generic;
82 } else if (Subtarget->isTargetCygMing()) {
83 // Unsupported by now, just quick fallback
84 Flavour = DWARFFlavour::X86_32_Generic;
85 } else {
86 Flavour = DWARFFlavour::X86_32_Generic;
90 return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
93 // getX86RegNum - This function maps LLVM register identifiers to their X86
94 // specific numbering, which is used in various places encoding instructions.
96 unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
97 switch(RegNo) {
98 case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
99 case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
100 case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
101 case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
102 case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
103 return N86::ESP;
104 case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
105 return N86::EBP;
106 case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
107 return N86::ESI;
108 case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
109 return N86::EDI;
111 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
112 return N86::EAX;
113 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
114 return N86::ECX;
115 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
116 return N86::EDX;
117 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
118 return N86::EBX;
119 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
120 return N86::ESP;
121 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
122 return N86::EBP;
123 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
124 return N86::ESI;
125 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
126 return N86::EDI;
128 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
129 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
130 return RegNo-X86::ST0;
132 case X86::XMM0: case X86::XMM8: case X86::MM0:
133 return 0;
134 case X86::XMM1: case X86::XMM9: case X86::MM1:
135 return 1;
136 case X86::XMM2: case X86::XMM10: case X86::MM2:
137 return 2;
138 case X86::XMM3: case X86::XMM11: case X86::MM3:
139 return 3;
140 case X86::XMM4: case X86::XMM12: case X86::MM4:
141 return 4;
142 case X86::XMM5: case X86::XMM13: case X86::MM5:
143 return 5;
144 case X86::XMM6: case X86::XMM14: case X86::MM6:
145 return 6;
146 case X86::XMM7: case X86::XMM15: case X86::MM7:
147 return 7;
149 default:
150 assert(isVirtualRegister(RegNo) && "Unknown physical register!");
151 llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
152 return 0;
156 const TargetRegisterClass *
157 X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
158 const TargetRegisterClass *B,
159 unsigned SubIdx) const {
160 switch (SubIdx) {
161 default: return 0;
162 case 1:
163 // 8-bit
164 if (B == &X86::GR8RegClass) {
165 if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8)
166 return A;
167 } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) {
168 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
169 A == &X86::GR64_NOREXRegClass ||
170 A == &X86::GR64_NOSPRegClass ||
171 A == &X86::GR64_NOREX_NOSPRegClass)
172 return &X86::GR64_ABCDRegClass;
173 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
174 A == &X86::GR32_NOREXRegClass ||
175 A == &X86::GR32_NOSPRegClass)
176 return &X86::GR32_ABCDRegClass;
177 else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
178 A == &X86::GR16_NOREXRegClass)
179 return &X86::GR16_ABCDRegClass;
180 } else if (B == &X86::GR8_NOREXRegClass) {
181 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
182 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
183 return &X86::GR64_NOREXRegClass;
184 else if (A == &X86::GR64_ABCDRegClass)
185 return &X86::GR64_ABCDRegClass;
186 else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
187 A == &X86::GR32_NOSPRegClass)
188 return &X86::GR32_NOREXRegClass;
189 else if (A == &X86::GR32_ABCDRegClass)
190 return &X86::GR32_ABCDRegClass;
191 else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass)
192 return &X86::GR16_NOREXRegClass;
193 else if (A == &X86::GR16_ABCDRegClass)
194 return &X86::GR16_ABCDRegClass;
196 break;
197 case 2:
198 // 8-bit hi
199 if (B == &X86::GR8_ABCD_HRegClass) {
200 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
201 A == &X86::GR64_NOREXRegClass ||
202 A == &X86::GR64_NOSPRegClass ||
203 A == &X86::GR64_NOREX_NOSPRegClass)
204 return &X86::GR64_ABCDRegClass;
205 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
206 A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
207 return &X86::GR32_ABCDRegClass;
208 else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
209 A == &X86::GR16_NOREXRegClass)
210 return &X86::GR16_ABCDRegClass;
212 break;
213 case 3:
214 // 16-bit
215 if (B == &X86::GR16RegClass) {
216 if (A->getSize() == 4 || A->getSize() == 8)
217 return A;
218 } else if (B == &X86::GR16_ABCDRegClass) {
219 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
220 A == &X86::GR64_NOREXRegClass ||
221 A == &X86::GR64_NOSPRegClass ||
222 A == &X86::GR64_NOREX_NOSPRegClass)
223 return &X86::GR64_ABCDRegClass;
224 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
225 A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
226 return &X86::GR32_ABCDRegClass;
227 } else if (B == &X86::GR16_NOREXRegClass) {
228 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
229 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
230 return &X86::GR64_NOREXRegClass;
231 else if (A == &X86::GR64_ABCDRegClass)
232 return &X86::GR64_ABCDRegClass;
233 else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
234 A == &X86::GR32_NOSPRegClass)
235 return &X86::GR32_NOREXRegClass;
236 else if (A == &X86::GR32_ABCDRegClass)
237 return &X86::GR64_ABCDRegClass;
239 break;
240 case 4:
241 // 32-bit
242 if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) {
243 if (A->getSize() == 8)
244 return A;
245 } else if (B == &X86::GR32_ABCDRegClass) {
246 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
247 A == &X86::GR64_NOREXRegClass ||
248 A == &X86::GR64_NOSPRegClass ||
249 A == &X86::GR64_NOREX_NOSPRegClass)
250 return &X86::GR64_ABCDRegClass;
251 } else if (B == &X86::GR32_NOREXRegClass) {
252 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
253 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
254 return &X86::GR64_NOREXRegClass;
255 else if (A == &X86::GR64_ABCDRegClass)
256 return &X86::GR64_ABCDRegClass;
258 break;
260 return 0;
263 const TargetRegisterClass *X86RegisterInfo::
264 getPointerRegClass(unsigned Kind) const {
265 switch (Kind) {
266 default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
267 case 0: // Normal GPRs.
268 if (TM.getSubtarget<X86Subtarget>().is64Bit())
269 return &X86::GR64RegClass;
270 return &X86::GR32RegClass;
271 case 1: // Normal GRPs except the stack pointer (for encoding reasons).
272 if (TM.getSubtarget<X86Subtarget>().is64Bit())
273 return &X86::GR64_NOSPRegClass;
274 return &X86::GR32_NOSPRegClass;
278 const TargetRegisterClass *
279 X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
280 if (RC == &X86::CCRRegClass) {
281 if (Is64Bit)
282 return &X86::GR64RegClass;
283 else
284 return &X86::GR32RegClass;
286 return NULL;
289 const unsigned *
290 X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
291 bool callsEHReturn = false;
293 if (MF) {
294 const MachineFrameInfo *MFI = MF->getFrameInfo();
295 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
296 callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
299 static const unsigned CalleeSavedRegs32Bit[] = {
300 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0
303 static const unsigned CalleeSavedRegs32EHRet[] = {
304 X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0
307 static const unsigned CalleeSavedRegs64Bit[] = {
308 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
311 static const unsigned CalleeSavedRegs64EHRet[] = {
312 X86::RAX, X86::RDX, X86::RBX, X86::R12,
313 X86::R13, X86::R14, X86::R15, X86::RBP, 0
316 static const unsigned CalleeSavedRegsWin64[] = {
317 X86::RBX, X86::RBP, X86::RDI, X86::RSI,
318 X86::R12, X86::R13, X86::R14, X86::R15,
319 X86::XMM6, X86::XMM7, X86::XMM8, X86::XMM9,
320 X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
321 X86::XMM14, X86::XMM15, 0
324 if (Is64Bit) {
325 if (IsWin64)
326 return CalleeSavedRegsWin64;
327 else
328 return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
329 } else {
330 return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
334 const TargetRegisterClass* const*
335 X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
336 bool callsEHReturn = false;
338 if (MF) {
339 const MachineFrameInfo *MFI = MF->getFrameInfo();
340 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
341 callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
344 static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
345 &X86::GR32RegClass, &X86::GR32RegClass,
346 &X86::GR32RegClass, &X86::GR32RegClass, 0
348 static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
349 &X86::GR32RegClass, &X86::GR32RegClass,
350 &X86::GR32RegClass, &X86::GR32RegClass,
351 &X86::GR32RegClass, &X86::GR32RegClass, 0
353 static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
354 &X86::GR64RegClass, &X86::GR64RegClass,
355 &X86::GR64RegClass, &X86::GR64RegClass,
356 &X86::GR64RegClass, &X86::GR64RegClass, 0
358 static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = {
359 &X86::GR64RegClass, &X86::GR64RegClass,
360 &X86::GR64RegClass, &X86::GR64RegClass,
361 &X86::GR64RegClass, &X86::GR64RegClass,
362 &X86::GR64RegClass, &X86::GR64RegClass, 0
364 static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = {
365 &X86::GR64RegClass, &X86::GR64RegClass,
366 &X86::GR64RegClass, &X86::GR64RegClass,
367 &X86::GR64RegClass, &X86::GR64RegClass,
368 &X86::GR64RegClass, &X86::GR64RegClass,
369 &X86::VR128RegClass, &X86::VR128RegClass,
370 &X86::VR128RegClass, &X86::VR128RegClass,
371 &X86::VR128RegClass, &X86::VR128RegClass,
372 &X86::VR128RegClass, &X86::VR128RegClass,
373 &X86::VR128RegClass, &X86::VR128RegClass, 0
376 if (Is64Bit) {
377 if (IsWin64)
378 return CalleeSavedRegClassesWin64;
379 else
380 return (callsEHReturn ?
381 CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit);
382 } else {
383 return (callsEHReturn ?
384 CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit);
388 BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
389 BitVector Reserved(getNumRegs());
390 // Set the stack-pointer register and its aliases as reserved.
391 Reserved.set(X86::RSP);
392 Reserved.set(X86::ESP);
393 Reserved.set(X86::SP);
394 Reserved.set(X86::SPL);
395 // Set the frame-pointer register and its aliases as reserved if needed.
396 if (hasFP(MF)) {
397 Reserved.set(X86::RBP);
398 Reserved.set(X86::EBP);
399 Reserved.set(X86::BP);
400 Reserved.set(X86::BPL);
402 // Mark the x87 stack registers as reserved, since they don't
403 // behave normally with respect to liveness. We don't fully
404 // model the effects of x87 stack pushes and pops after
405 // stackification.
406 Reserved.set(X86::ST0);
407 Reserved.set(X86::ST1);
408 Reserved.set(X86::ST2);
409 Reserved.set(X86::ST3);
410 Reserved.set(X86::ST4);
411 Reserved.set(X86::ST5);
412 Reserved.set(X86::ST6);
413 Reserved.set(X86::ST7);
414 return Reserved;
417 //===----------------------------------------------------------------------===//
418 // Stack Frame Processing methods
419 //===----------------------------------------------------------------------===//
421 static unsigned calculateMaxStackAlignment(const MachineFrameInfo *FFI) {
422 unsigned MaxAlign = 0;
423 for (int i = FFI->getObjectIndexBegin(),
424 e = FFI->getObjectIndexEnd(); i != e; ++i) {
425 if (FFI->isDeadObjectIndex(i))
426 continue;
427 unsigned Align = FFI->getObjectAlignment(i);
428 MaxAlign = std::max(MaxAlign, Align);
431 return MaxAlign;
434 // hasFP - Return true if the specified function should have a dedicated frame
435 // pointer register. This is true if the function has variable sized allocas or
436 // if frame pointer elimination is disabled.
438 bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
439 const MachineFrameInfo *MFI = MF.getFrameInfo();
440 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
442 return (NoFramePointerElim ||
443 needsStackRealignment(MF) ||
444 MFI->hasVarSizedObjects() ||
445 MFI->isFrameAddressTaken() ||
446 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
447 (MMI && MMI->callsUnwindInit()));
450 bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
451 const MachineFrameInfo *MFI = MF.getFrameInfo();
453 // FIXME: Currently we don't support stack realignment for functions with
454 // variable-sized allocas
455 return (RealignStack &&
456 (MFI->getMaxAlignment() > StackAlign &&
457 !MFI->hasVarSizedObjects()));
460 bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
461 return !MF.getFrameInfo()->hasVarSizedObjects();
464 bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
465 int &FrameIdx) const {
466 if (Reg == FramePtr && hasFP(MF)) {
467 FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
468 return true;
470 return false;
475 X86RegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const {
476 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
477 MachineFrameInfo *MFI = MF.getFrameInfo();
479 int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea();
480 uint64_t StackSize = MFI->getStackSize();
482 if (needsStackRealignment(MF)) {
483 if (FI < 0)
484 // Skip the saved EBP
485 Offset += SlotSize;
486 else {
487 unsigned Align = MFI->getObjectAlignment(FI);
488 assert( (-(Offset + StackSize)) % Align == 0);
489 Align = 0;
490 return Offset + StackSize;
493 // FIXME: Support tail calls
494 } else {
495 if (!hasFP(MF))
496 return Offset + StackSize;
498 // Skip the saved EBP
499 Offset += SlotSize;
501 // Skip the RETADDR move area
502 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
503 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
504 if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta;
507 return Offset;
510 void X86RegisterInfo::
511 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
512 MachineBasicBlock::iterator I) const {
513 if (!hasReservedCallFrame(MF)) {
514 // If the stack pointer can be changed after prologue, turn the
515 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
516 // adjcallstackdown instruction into 'add ESP, <amt>'
517 // TODO: consider using push / pop instead of sub + store / add
518 MachineInstr *Old = I;
519 uint64_t Amount = Old->getOperand(0).getImm();
520 if (Amount != 0) {
521 // We need to keep the stack aligned properly. To do this, we round the
522 // amount of space needed for the outgoing arguments up to the next
523 // alignment boundary.
524 Amount = (Amount+StackAlign-1)/StackAlign*StackAlign;
526 MachineInstr *New = 0;
527 if (Old->getOpcode() == getCallFrameSetupOpcode()) {
528 New = BuildMI(MF, Old->getDebugLoc(),
529 TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri),
530 StackPtr).addReg(StackPtr).addImm(Amount);
531 } else {
532 assert(Old->getOpcode() == getCallFrameDestroyOpcode());
533 // factor out the amount the callee already popped.
534 uint64_t CalleeAmt = Old->getOperand(1).getImm();
535 Amount -= CalleeAmt;
536 if (Amount) {
537 unsigned Opc = (Amount < 128) ?
538 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
539 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
540 New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr)
541 .addReg(StackPtr).addImm(Amount);
545 if (New) {
546 // The EFLAGS implicit def is dead.
547 New->getOperand(3).setIsDead();
549 // Replace the pseudo instruction with a new instruction...
550 MBB.insert(I, New);
553 } else if (I->getOpcode() == getCallFrameDestroyOpcode()) {
554 // If we are performing frame pointer elimination and if the callee pops
555 // something off the stack pointer, add it back. We do this until we have
556 // more advanced stack pointer tracking ability.
557 if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
558 unsigned Opc = (CalleeAmt < 128) ?
559 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
560 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
561 MachineInstr *Old = I;
562 MachineInstr *New =
563 BuildMI(MF, Old->getDebugLoc(), TII.get(Opc),
564 StackPtr).addReg(StackPtr).addImm(CalleeAmt);
565 // The EFLAGS implicit def is dead.
566 New->getOperand(3).setIsDead();
568 MBB.insert(I, New);
572 MBB.erase(I);
575 void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
576 int SPAdj, RegScavenger *RS) const{
577 assert(SPAdj == 0 && "Unexpected");
579 unsigned i = 0;
580 MachineInstr &MI = *II;
581 MachineFunction &MF = *MI.getParent()->getParent();
582 while (!MI.getOperand(i).isFI()) {
583 ++i;
584 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
587 int FrameIndex = MI.getOperand(i).getIndex();
589 unsigned BasePtr;
590 if (needsStackRealignment(MF))
591 BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
592 else
593 BasePtr = (hasFP(MF) ? FramePtr : StackPtr);
595 // This must be part of a four operand memory reference. Replace the
596 // FrameIndex with base register with EBP. Add an offset to the offset.
597 MI.getOperand(i).ChangeToRegister(BasePtr, false);
599 // Now add the frame object offset to the offset from EBP.
600 if (MI.getOperand(i+3).isImm()) {
601 // Offset is a 32-bit integer.
602 int Offset = getFrameIndexOffset(MF, FrameIndex) +
603 (int)(MI.getOperand(i+3).getImm());
605 MI.getOperand(i+3).ChangeToImmediate(Offset);
606 } else {
607 // Offset is symbolic. This is extremely rare.
608 uint64_t Offset = getFrameIndexOffset(MF, FrameIndex) +
609 (uint64_t)MI.getOperand(i+3).getOffset();
610 MI.getOperand(i+3).setOffset(Offset);
614 void
615 X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
616 RegScavenger *RS) const {
617 MachineFrameInfo *MFI = MF.getFrameInfo();
619 // Calculate and set max stack object alignment early, so we can decide
620 // whether we will need stack realignment (and thus FP).
621 unsigned MaxAlign = std::max(MFI->getMaxAlignment(),
622 calculateMaxStackAlignment(MFI));
624 MFI->setMaxAlignment(MaxAlign);
626 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
627 int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
628 if (TailCallReturnAddrDelta < 0) {
629 // create RETURNADDR area
630 // arg
631 // arg
632 // RETADDR
633 // { ...
634 // RETADDR area
635 // ...
636 // }
637 // [EBP]
638 MFI->CreateFixedObject(-TailCallReturnAddrDelta,
639 (-1*SlotSize)+TailCallReturnAddrDelta);
642 if (hasFP(MF)) {
643 assert((TailCallReturnAddrDelta <= 0) &&
644 "The Delta should always be zero or negative");
645 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
646 // Create a frame entry for the EBP register that must be saved.
647 int FrameIdx = MFI->CreateFixedObject(SlotSize,
648 -(int)SlotSize +
649 TFI.getOffsetOfLocalArea() +
650 TailCallReturnAddrDelta);
651 assert(FrameIdx == MFI->getObjectIndexBegin() &&
652 "Slot for EBP register must be last in order to be found!");
653 FrameIdx = 0;
657 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
658 /// stack pointer by a constant value.
659 static
660 void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
661 unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
662 const TargetInstrInfo &TII) {
663 bool isSub = NumBytes < 0;
664 uint64_t Offset = isSub ? -NumBytes : NumBytes;
665 unsigned Opc = isSub
666 ? ((Offset < 128) ?
667 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
668 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
669 : ((Offset < 128) ?
670 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
671 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
672 uint64_t Chunk = (1LL << 31) - 1;
673 DebugLoc DL = (MBBI != MBB.end() ? MBBI->getDebugLoc() :
674 DebugLoc::getUnknownLoc());
676 while (Offset) {
677 uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
678 MachineInstr *MI =
679 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
680 .addReg(StackPtr).addImm(ThisVal);
681 // The EFLAGS implicit def is dead.
682 MI->getOperand(3).setIsDead();
683 Offset -= ThisVal;
687 // mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
688 static
689 void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
690 unsigned StackPtr, uint64_t *NumBytes = NULL) {
691 if (MBBI == MBB.begin()) return;
693 MachineBasicBlock::iterator PI = prior(MBBI);
694 unsigned Opc = PI->getOpcode();
695 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
696 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
697 PI->getOperand(0).getReg() == StackPtr) {
698 if (NumBytes)
699 *NumBytes += PI->getOperand(2).getImm();
700 MBB.erase(PI);
701 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
702 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
703 PI->getOperand(0).getReg() == StackPtr) {
704 if (NumBytes)
705 *NumBytes -= PI->getOperand(2).getImm();
706 MBB.erase(PI);
710 // mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
711 static
712 void mergeSPUpdatesDown(MachineBasicBlock &MBB,
713 MachineBasicBlock::iterator &MBBI,
714 unsigned StackPtr, uint64_t *NumBytes = NULL) {
715 return;
717 if (MBBI == MBB.end()) return;
719 MachineBasicBlock::iterator NI = next(MBBI);
720 if (NI == MBB.end()) return;
722 unsigned Opc = NI->getOpcode();
723 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
724 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
725 NI->getOperand(0).getReg() == StackPtr) {
726 if (NumBytes)
727 *NumBytes -= NI->getOperand(2).getImm();
728 MBB.erase(NI);
729 MBBI = NI;
730 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
731 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
732 NI->getOperand(0).getReg() == StackPtr) {
733 if (NumBytes)
734 *NumBytes += NI->getOperand(2).getImm();
735 MBB.erase(NI);
736 MBBI = NI;
740 /// mergeSPUpdates - Checks the instruction before/after the passed
741 /// instruction. If it is an ADD/SUB instruction it is deleted
742 /// argument and the stack adjustment is returned as a positive value for ADD
743 /// and a negative for SUB.
744 static int mergeSPUpdates(MachineBasicBlock &MBB,
745 MachineBasicBlock::iterator &MBBI,
746 unsigned StackPtr,
747 bool doMergeWithPrevious) {
749 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
750 (!doMergeWithPrevious && MBBI == MBB.end()))
751 return 0;
753 int Offset = 0;
755 MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
756 MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
757 unsigned Opc = PI->getOpcode();
758 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
759 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
760 PI->getOperand(0).getReg() == StackPtr){
761 Offset += PI->getOperand(2).getImm();
762 MBB.erase(PI);
763 if (!doMergeWithPrevious) MBBI = NI;
764 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
765 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
766 PI->getOperand(0).getReg() == StackPtr) {
767 Offset -= PI->getOperand(2).getImm();
768 MBB.erase(PI);
769 if (!doMergeWithPrevious) MBBI = NI;
772 return Offset;
775 void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF,
776 unsigned LabelId,
777 unsigned FramePtr) const {
778 MachineFrameInfo *MFI = MF.getFrameInfo();
779 MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
780 if (!MMI) return;
782 // Add callee saved registers to move list.
783 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
784 if (CSI.empty()) return;
786 std::vector<MachineMove> &Moves = MMI->getFrameMoves();
787 const TargetData *TD = MF.getTarget().getTargetData();
788 bool HasFP = hasFP(MF);
790 // Calculate amount of bytes used for return address storing
791 int stackGrowth =
792 (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
793 TargetFrameInfo::StackGrowsUp ?
794 TD->getPointerSize() : -TD->getPointerSize());
796 // FIXME: This is dirty hack. The code itself is pretty mess right now.
797 // It should be rewritten from scratch and generalized sometimes.
799 // Determine maximum offset (minumum due to stack growth)
800 int64_t MaxOffset = 0;
801 for (std::vector<CalleeSavedInfo>::const_iterator
802 I = CSI.begin(), E = CSI.end(); I != E; ++I)
803 MaxOffset = std::min(MaxOffset,
804 MFI->getObjectOffset(I->getFrameIdx()));
806 // Calculate offsets.
807 int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
808 for (std::vector<CalleeSavedInfo>::const_iterator
809 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
810 int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
811 unsigned Reg = I->getReg();
812 Offset = MaxOffset - Offset + saveAreaOffset;
814 // Don't output a new machine move if we're re-saving the frame
815 // pointer. This happens when the PrologEpilogInserter has inserted an extra
816 // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
817 // generates one when frame pointers are used. If we generate a "machine
818 // move" for this extra "PUSH", the linker will lose track of the fact that
819 // the frame pointer should have the value of the first "PUSH" when it's
820 // trying to unwind.
822 // FIXME: This looks inelegant. It's possibly correct, but it's covering up
823 // another bug. I.e., one where we generate a prolog like this:
825 // pushl %ebp
826 // movl %esp, %ebp
827 // pushl %ebp
828 // pushl %esi
829 // ...
831 // The immediate re-push of EBP is unnecessary. At the least, it's an
832 // optimization bug. EBP can be used as a scratch register in certain
833 // cases, but probably not when we have a frame pointer.
834 if (HasFP && FramePtr == Reg)
835 continue;
837 MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
838 MachineLocation CSSrc(Reg);
839 Moves.push_back(MachineMove(LabelId, CSDst, CSSrc));
843 void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
844 MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
845 MachineFrameInfo *MFI = MF.getFrameInfo();
846 const Function* Fn = MF.getFunction();
847 const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
848 MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
849 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
850 MachineBasicBlock::iterator MBBI = MBB.begin();
851 bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) ||
852 !Fn->doesNotThrow() ||
853 UnwindTablesMandatory;
854 bool HasFP = hasFP(MF);
855 DebugLoc DL;
857 // Get the number of bytes to allocate from the FrameInfo.
858 uint64_t StackSize = MFI->getStackSize();
860 // Get desired stack alignment
861 uint64_t MaxAlign = MFI->getMaxAlignment();
863 // Add RETADDR move area to callee saved frame size.
864 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
865 if (TailCallReturnAddrDelta < 0)
866 X86FI->setCalleeSavedFrameSize(
867 X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta));
869 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
870 // function, and use up to 128 bytes of stack space, don't have a frame
871 // pointer, calls, or dynamic alloca then we do not need to adjust the
872 // stack pointer (we fit in the Red Zone).
873 bool DisableRedZone = Fn->hasFnAttr(Attribute::NoRedZone);
874 if (Is64Bit && !DisableRedZone &&
875 !needsStackRealignment(MF) &&
876 !MFI->hasVarSizedObjects() && // No dynamic alloca.
877 !MFI->hasCalls() && // No calls.
878 !Subtarget->isTargetWin64()) { // Win64 has no Red Zone
879 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
880 if (HasFP) MinSize += SlotSize;
881 StackSize = std::max(MinSize,
882 StackSize > 128 ? StackSize - 128 : 0);
883 MFI->setStackSize(StackSize);
884 } else if (Subtarget->isTargetWin64()) {
885 // We need to always allocate 32 bytes as register spill area.
886 // FIXME: we might reuse these 32 bytes for leaf functions.
887 StackSize += 32;
888 MFI->setStackSize(StackSize);
891 // Insert stack pointer adjustment for later moving of return addr. Only
892 // applies to tail call optimized functions where the callee argument stack
893 // size is bigger than the callers.
894 if (TailCallReturnAddrDelta < 0) {
895 MachineInstr *MI =
896 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
897 StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta);
898 // The EFLAGS implicit def is dead.
899 MI->getOperand(3).setIsDead();
902 // uint64_t StackSize = MFI->getStackSize();
903 std::vector<MachineMove> &Moves = MMI->getFrameMoves();
904 const TargetData *TD = MF.getTarget().getTargetData();
905 int stackGrowth =
906 (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
907 TargetFrameInfo::StackGrowsUp ?
908 TD->getPointerSize() : -TD->getPointerSize());
910 uint64_t NumBytes = 0;
911 if (HasFP) {
912 // Calculate required stack adjustment
913 uint64_t FrameSize = StackSize - SlotSize;
914 if (needsStackRealignment(MF))
915 FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
917 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
919 // Get the offset of the stack slot for the EBP register, which is
920 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
921 // Update the frame offset adjustment.
922 MFI->setOffsetAdjustment(-NumBytes);
924 // Save EBP/RBP into the appropriate stack slot...
925 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
926 .addReg(FramePtr, RegState::Kill);
928 if (needsFrameMoves) {
929 // Mark effective beginning of when frame pointer becomes valid.
930 unsigned FrameLabelId = MMI->NextLabelID();
931 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
933 // Define the current CFA rule to use the provided offset.
934 if (StackSize) {
935 MachineLocation SPDst(MachineLocation::VirtualFP);
936 MachineLocation SPSrc(MachineLocation::VirtualFP,
937 HasFP ? 2 * stackGrowth :
938 -StackSize + stackGrowth);
939 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
940 } else {
941 // FIXME: Verify & implement for FP
942 MachineLocation SPDst(StackPtr);
943 MachineLocation SPSrc(StackPtr, stackGrowth);
944 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
947 // Change the rule for the FramePtr to be an "offset" rule.
948 MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
949 MachineLocation FPSrc(FramePtr);
950 Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
953 // Update EBP with the new base value...
954 BuildMI(MBB, MBBI, DL,
955 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
956 .addReg(StackPtr);
958 if (needsFrameMoves) {
959 unsigned FrameLabelId = MMI->NextLabelID();
960 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
962 // Define the current CFA to use the EBP/RBP register.
963 MachineLocation FPDst(FramePtr);
964 MachineLocation FPSrc(MachineLocation::VirtualFP);
965 Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
968 // Mark the FramePtr as live-in in every block except the entry.
969 for (MachineFunction::iterator I = next(MF.begin()), E = MF.end();
970 I != E; ++I)
971 I->addLiveIn(FramePtr);
973 // Realign stack
974 if (needsStackRealignment(MF)) {
975 MachineInstr *MI =
976 BuildMI(MBB, MBBI, DL,
977 TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri),
978 StackPtr).addReg(StackPtr).addImm(-MaxAlign);
980 // The EFLAGS implicit def is dead.
981 MI->getOperand(3).setIsDead();
983 } else {
984 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
987 // Skip the callee-saved push instructions.
988 bool RegsSaved = false;
989 while (MBBI != MBB.end() &&
990 (MBBI->getOpcode() == X86::PUSH32r ||
991 MBBI->getOpcode() == X86::PUSH64r)) {
992 RegsSaved = true;
993 ++MBBI;
996 if (RegsSaved && needsFrameMoves) {
997 // Mark end of callee-saved push instructions.
998 unsigned LabelId = MMI->NextLabelID();
999 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
1001 // Emit DWARF info specifying the offsets of the callee-saved registers.
1002 emitCalleeSavedFrameMoves(MF, LabelId, HasFP ? FramePtr : StackPtr);
1005 if (MBBI != MBB.end())
1006 DL = MBBI->getDebugLoc();
1008 // Adjust stack pointer: ESP -= numbytes.
1009 if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
1010 // Check, whether EAX is livein for this function.
1011 bool isEAXAlive = false;
1012 for (MachineRegisterInfo::livein_iterator
1013 II = MF.getRegInfo().livein_begin(),
1014 EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) {
1015 unsigned Reg = II->first;
1016 isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
1017 Reg == X86::AH || Reg == X86::AL);
1020 // Function prologue calls _alloca to probe the stack when allocating more
1021 // than 4k bytes in one go. Touching the stack at 4K increments is necessary
1022 // to ensure that the guard pages used by the OS virtual memory manager are
1023 // allocated in correct sequence.
1024 if (!isEAXAlive) {
1025 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1026 .addImm(NumBytes);
1027 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
1028 .addExternalSymbol("_alloca");
1029 } else {
1030 // Save EAX
1031 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1032 .addReg(X86::EAX, RegState::Kill);
1034 // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
1035 // allocated bytes for EAX.
1036 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1037 .addImm(NumBytes - 4);
1038 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
1039 .addExternalSymbol("_alloca");
1041 // Restore EAX
1042 MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
1043 X86::EAX),
1044 StackPtr, false, NumBytes - 4);
1045 MBB.insert(MBBI, MI);
1047 } else if (NumBytes) {
1048 // If there is an SUB32ri of ESP immediately before this instruction, merge
1049 // the two. This can be the case when tail call elimination is enabled and
1050 // the callee has more arguments then the caller.
1051 NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
1053 // If there is an ADD32ri or SUB32ri of ESP immediately after this
1054 // instruction, merge the two instructions.
1055 mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
1057 if (NumBytes)
1058 emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
1061 if (!HasFP && needsFrameMoves) {
1062 // Mark end of stack pointer adjustment.
1063 unsigned LabelId = MMI->NextLabelID();
1064 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
1066 // Define the current CFA rule to use the provided offset.
1067 if (StackSize) {
1068 MachineLocation SPDst(MachineLocation::VirtualFP);
1069 MachineLocation SPSrc(MachineLocation::VirtualFP,
1070 -StackSize + stackGrowth);
1071 Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
1072 } else {
1073 // FIXME: Verify & implement for FP
1074 MachineLocation SPDst(StackPtr);
1075 MachineLocation SPSrc(StackPtr, stackGrowth);
1076 Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
1081 void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
1082 MachineBasicBlock &MBB) const {
1083 const MachineFrameInfo *MFI = MF.getFrameInfo();
1084 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1085 MachineBasicBlock::iterator MBBI = prior(MBB.end());
1086 unsigned RetOpcode = MBBI->getOpcode();
1087 DebugLoc DL = MBBI->getDebugLoc();
1089 switch (RetOpcode) {
1090 case X86::RET:
1091 case X86::RETI:
1092 case X86::TCRETURNdi:
1093 case X86::TCRETURNri:
1094 case X86::TCRETURNri64:
1095 case X86::TCRETURNdi64:
1096 case X86::EH_RETURN:
1097 case X86::EH_RETURN64:
1098 case X86::TAILJMPd:
1099 case X86::TAILJMPr:
1100 case X86::TAILJMPm: break; // These are ok
1101 default:
1102 llvm_unreachable("Can only insert epilog into returning blocks");
1105 // Get the number of bytes to allocate from the FrameInfo
1106 uint64_t StackSize = MFI->getStackSize();
1107 uint64_t MaxAlign = MFI->getMaxAlignment();
1108 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1109 uint64_t NumBytes = 0;
1111 if (hasFP(MF)) {
1112 // Calculate required stack adjustment
1113 uint64_t FrameSize = StackSize - SlotSize;
1114 if (needsStackRealignment(MF))
1115 FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
1117 NumBytes = FrameSize - CSSize;
1119 // pop EBP.
1120 BuildMI(MBB, MBBI, DL,
1121 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1122 } else {
1123 NumBytes = StackSize - CSSize;
1126 // Skip the callee-saved pop instructions.
1127 MachineBasicBlock::iterator LastCSPop = MBBI;
1128 while (MBBI != MBB.begin()) {
1129 MachineBasicBlock::iterator PI = prior(MBBI);
1130 unsigned Opc = PI->getOpcode();
1131 if (Opc != X86::POP32r && Opc != X86::POP64r &&
1132 !PI->getDesc().isTerminator())
1133 break;
1134 --MBBI;
1137 DL = MBBI->getDebugLoc();
1139 // If there is an ADD32ri or SUB32ri of ESP immediately before this
1140 // instruction, merge the two instructions.
1141 if (NumBytes || MFI->hasVarSizedObjects())
1142 mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
1144 // If dynamic alloca is used, then reset esp to point to the last callee-saved
1145 // slot before popping them off! Same applies for the case, when stack was
1146 // realigned
1147 if (needsStackRealignment(MF)) {
1148 // We cannot use LEA here, because stack pointer was realigned. We need to
1149 // deallocate local frame back
1150 if (CSSize) {
1151 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1152 MBBI = prior(LastCSPop);
1155 BuildMI(MBB, MBBI, DL,
1156 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1157 StackPtr).addReg(FramePtr);
1158 } else if (MFI->hasVarSizedObjects()) {
1159 if (CSSize) {
1160 unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
1161 MachineInstr *MI = addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
1162 FramePtr, false, -CSSize);
1163 MBB.insert(MBBI, MI);
1164 } else
1165 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1166 StackPtr).addReg(FramePtr);
1168 } else {
1169 // adjust stack pointer back: ESP += numbytes
1170 if (NumBytes)
1171 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1174 // We're returning from function via eh_return.
1175 if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1176 MBBI = prior(MBB.end());
1177 MachineOperand &DestAddr = MBBI->getOperand(0);
1178 assert(DestAddr.isReg() && "Offset should be in register!");
1179 BuildMI(MBB, MBBI, DL,
1180 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1181 StackPtr).addReg(DestAddr.getReg());
1182 // Tail call return: adjust the stack pointer and jump to callee
1183 } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1184 RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
1185 MBBI = prior(MBB.end());
1186 MachineOperand &JumpTarget = MBBI->getOperand(0);
1187 MachineOperand &StackAdjust = MBBI->getOperand(1);
1188 assert(StackAdjust.isImm() && "Expecting immediate value.");
1190 // Adjust stack pointer.
1191 int StackAdj = StackAdjust.getImm();
1192 int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1193 int Offset = 0;
1194 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1195 // Incoporate the retaddr area.
1196 Offset = StackAdj-MaxTCDelta;
1197 assert(Offset >= 0 && "Offset should never be negative");
1199 if (Offset) {
1200 // Check for possible merge with preceeding ADD instruction.
1201 Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1202 emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
1205 // Jump to label or value in register.
1206 if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
1207 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPd)).
1208 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1209 else if (RetOpcode== X86::TCRETURNri64)
1210 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
1211 else
1212 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg());
1214 // Delete the pseudo instruction TCRETURN.
1215 MBB.erase(MBBI);
1216 } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1217 (X86FI->getTCReturnAddrDelta() < 0)) {
1218 // Add the return addr area delta back since we are not tail calling.
1219 int delta = -1*X86FI->getTCReturnAddrDelta();
1220 MBBI = prior(MBB.end());
1221 // Check for possible merge with preceeding ADD instruction.
1222 delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1223 emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
1227 unsigned X86RegisterInfo::getRARegister() const {
1228 if (Is64Bit)
1229 return X86::RIP; // Should have dwarf #16
1230 else
1231 return X86::EIP; // Should have dwarf #8
1234 unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
1235 return hasFP(MF) ? FramePtr : StackPtr;
1238 void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
1239 const {
1240 // Calculate amount of bytes used for return address storing
1241 int stackGrowth = (Is64Bit ? -8 : -4);
1243 // Initial state of the frame pointer is esp+4.
1244 MachineLocation Dst(MachineLocation::VirtualFP);
1245 MachineLocation Src(StackPtr, stackGrowth);
1246 Moves.push_back(MachineMove(0, Dst, Src));
1248 // Add return address to move list
1249 MachineLocation CSDst(StackPtr, stackGrowth);
1250 MachineLocation CSSrc(getRARegister());
1251 Moves.push_back(MachineMove(0, CSDst, CSSrc));
1254 unsigned X86RegisterInfo::getEHExceptionRegister() const {
1255 llvm_unreachable("What is the exception register");
1256 return 0;
1259 unsigned X86RegisterInfo::getEHHandlerRegister() const {
1260 llvm_unreachable("What is the exception handler register");
1261 return 0;
1264 namespace llvm {
1265 unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
1266 switch (VT.getSimpleVT().SimpleTy) {
1267 default: return Reg;
1268 case MVT::i8:
1269 if (High) {
1270 switch (Reg) {
1271 default: return 0;
1272 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1273 return X86::AH;
1274 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1275 return X86::DH;
1276 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1277 return X86::CH;
1278 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1279 return X86::BH;
1281 } else {
1282 switch (Reg) {
1283 default: return 0;
1284 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1285 return X86::AL;
1286 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1287 return X86::DL;
1288 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1289 return X86::CL;
1290 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1291 return X86::BL;
1292 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1293 return X86::SIL;
1294 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1295 return X86::DIL;
1296 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1297 return X86::BPL;
1298 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1299 return X86::SPL;
1300 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1301 return X86::R8B;
1302 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1303 return X86::R9B;
1304 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1305 return X86::R10B;
1306 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1307 return X86::R11B;
1308 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1309 return X86::R12B;
1310 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1311 return X86::R13B;
1312 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1313 return X86::R14B;
1314 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1315 return X86::R15B;
1318 case MVT::i16:
1319 switch (Reg) {
1320 default: return Reg;
1321 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1322 return X86::AX;
1323 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1324 return X86::DX;
1325 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1326 return X86::CX;
1327 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1328 return X86::BX;
1329 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1330 return X86::SI;
1331 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1332 return X86::DI;
1333 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1334 return X86::BP;
1335 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1336 return X86::SP;
1337 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1338 return X86::R8W;
1339 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1340 return X86::R9W;
1341 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1342 return X86::R10W;
1343 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1344 return X86::R11W;
1345 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1346 return X86::R12W;
1347 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1348 return X86::R13W;
1349 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1350 return X86::R14W;
1351 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1352 return X86::R15W;
1354 case MVT::i32:
1355 switch (Reg) {
1356 default: return Reg;
1357 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1358 return X86::EAX;
1359 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1360 return X86::EDX;
1361 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1362 return X86::ECX;
1363 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1364 return X86::EBX;
1365 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1366 return X86::ESI;
1367 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1368 return X86::EDI;
1369 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1370 return X86::EBP;
1371 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1372 return X86::ESP;
1373 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1374 return X86::R8D;
1375 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1376 return X86::R9D;
1377 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1378 return X86::R10D;
1379 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1380 return X86::R11D;
1381 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1382 return X86::R12D;
1383 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1384 return X86::R13D;
1385 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1386 return X86::R14D;
1387 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1388 return X86::R15D;
1390 case MVT::i64:
1391 switch (Reg) {
1392 default: return Reg;
1393 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1394 return X86::RAX;
1395 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1396 return X86::RDX;
1397 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1398 return X86::RCX;
1399 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1400 return X86::RBX;
1401 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1402 return X86::RSI;
1403 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1404 return X86::RDI;
1405 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1406 return X86::RBP;
1407 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1408 return X86::RSP;
1409 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1410 return X86::R8;
1411 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1412 return X86::R9;
1413 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1414 return X86::R10;
1415 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1416 return X86::R11;
1417 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1418 return X86::R12;
1419 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1420 return X86::R13;
1421 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1422 return X86::R14;
1423 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1424 return X86::R15;
1428 return Reg;
1432 #include "X86GenRegisterInfo.inc"
1434 namespace {
1435 struct VISIBILITY_HIDDEN MSAC : public MachineFunctionPass {
1436 static char ID;
1437 MSAC() : MachineFunctionPass(&ID) {}
1439 virtual bool runOnMachineFunction(MachineFunction &MF) {
1440 MachineFrameInfo *FFI = MF.getFrameInfo();
1441 MachineRegisterInfo &RI = MF.getRegInfo();
1443 // Calculate max stack alignment of all already allocated stack objects.
1444 unsigned MaxAlign = calculateMaxStackAlignment(FFI);
1446 // Be over-conservative: scan over all vreg defs and find, whether vector
1447 // registers are used. If yes - there is probability, that vector register
1448 // will be spilled and thus stack needs to be aligned properly.
1449 for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister;
1450 RegNum < RI.getLastVirtReg(); ++RegNum)
1451 MaxAlign = std::max(MaxAlign, RI.getRegClass(RegNum)->getAlignment());
1453 if (FFI->getMaxAlignment() == MaxAlign)
1454 return false;
1456 FFI->setMaxAlignment(MaxAlign);
1457 return true;
1460 virtual const char *getPassName() const {
1461 return "X86 Maximal Stack Alignment Calculator";
1464 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1465 AU.setPreservesCFG();
1466 MachineFunctionPass::getAnalysisUsage(AU);
1470 char MSAC::ID = 0;
1473 FunctionPass*
1474 llvm::createX86MaxStackAlignmentCalculatorPass() { return new MSAC(); }