1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AsmAnnotationWriter.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/InlineAsm.h"
24 #include "llvm/Instruction.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Metadata.h"
28 #include "llvm/Module.h"
29 #include "llvm/ValueSymbolTable.h"
30 #include "llvm/TypeSymbolTable.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/Support/CFG.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/FormattedStream.h"
43 // Make virtual table appear in this compilation unit.
44 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
46 //===----------------------------------------------------------------------===//
48 //===----------------------------------------------------------------------===//
50 static const Module
*getModuleFromVal(const Value
*V
) {
51 if (const Argument
*MA
= dyn_cast
<Argument
>(V
))
52 return MA
->getParent() ? MA
->getParent()->getParent() : 0;
54 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
55 return BB
->getParent() ? BB
->getParent()->getParent() : 0;
57 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
58 const Function
*M
= I
->getParent() ? I
->getParent()->getParent() : 0;
59 return M
? M
->getParent() : 0;
62 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
))
63 return GV
->getParent();
67 // PrintEscapedString - Print each character of the specified string, escaping
68 // it if it is not printable or if it is an escape char.
69 static void PrintEscapedString(const StringRef
&Name
,
71 for (unsigned i
= 0, e
= Name
.size(); i
!= e
; ++i
) {
72 unsigned char C
= Name
[i
];
73 if (isprint(C
) && C
!= '\\' && C
!= '"')
76 Out
<< '\\' << hexdigit(C
>> 4) << hexdigit(C
& 0x0F);
87 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
88 /// prefixed with % (if the string only contains simple characters) or is
89 /// surrounded with ""'s (if it has special chars in it). Print it out.
90 static void PrintLLVMName(raw_ostream
&OS
, const StringRef
&Name
,
92 assert(Name
.data() && "Cannot get empty name!");
94 default: llvm_unreachable("Bad prefix!");
96 case GlobalPrefix
: OS
<< '@'; break;
97 case LabelPrefix
: break;
98 case LocalPrefix
: OS
<< '%'; break;
101 // Scan the name to see if it needs quotes first.
102 bool NeedsQuotes
= isdigit(Name
[0]);
104 for (unsigned i
= 0, e
= Name
.size(); i
!= e
; ++i
) {
106 if (!isalnum(C
) && C
!= '-' && C
!= '.' && C
!= '_') {
113 // If we didn't need any quotes, just write out the name in one blast.
119 // Okay, we need quotes. Output the quotes and escape any scary characters as
122 PrintEscapedString(Name
, OS
);
126 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
127 /// prefixed with % (if the string only contains simple characters) or is
128 /// surrounded with ""'s (if it has special chars in it). Print it out.
129 static void PrintLLVMName(raw_ostream
&OS
, const Value
*V
) {
130 PrintLLVMName(OS
, V
->getName(),
131 isa
<GlobalValue
>(V
) ? GlobalPrefix
: LocalPrefix
);
134 //===----------------------------------------------------------------------===//
135 // TypePrinting Class: Type printing machinery
136 //===----------------------------------------------------------------------===//
138 static DenseMap
<const Type
*, std::string
> &getTypeNamesMap(void *M
) {
139 return *static_cast<DenseMap
<const Type
*, std::string
>*>(M
);
142 void TypePrinting::clear() {
143 getTypeNamesMap(TypeNames
).clear();
146 bool TypePrinting::hasTypeName(const Type
*Ty
) const {
147 return getTypeNamesMap(TypeNames
).count(Ty
);
150 void TypePrinting::addTypeName(const Type
*Ty
, const std::string
&N
) {
151 getTypeNamesMap(TypeNames
).insert(std::make_pair(Ty
, N
));
155 TypePrinting::TypePrinting() {
156 TypeNames
= new DenseMap
<const Type
*, std::string
>();
159 TypePrinting::~TypePrinting() {
160 delete &getTypeNamesMap(TypeNames
);
163 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
164 /// use of type names or up references to shorten the type name where possible.
165 void TypePrinting::CalcTypeName(const Type
*Ty
,
166 SmallVectorImpl
<const Type
*> &TypeStack
,
167 raw_ostream
&OS
, bool IgnoreTopLevelName
) {
168 // Check to see if the type is named.
169 if (!IgnoreTopLevelName
) {
170 DenseMap
<const Type
*, std::string
> &TM
= getTypeNamesMap(TypeNames
);
171 DenseMap
<const Type
*, std::string
>::iterator I
= TM
.find(Ty
);
178 // Check to see if the Type is already on the stack...
179 unsigned Slot
= 0, CurSize
= TypeStack
.size();
180 while (Slot
< CurSize
&& TypeStack
[Slot
] != Ty
) ++Slot
; // Scan for type
182 // This is another base case for the recursion. In this case, we know
183 // that we have looped back to a type that we have previously visited.
184 // Generate the appropriate upreference to handle this.
185 if (Slot
< CurSize
) {
186 OS
<< '\\' << unsigned(CurSize
-Slot
); // Here's the upreference
190 TypeStack
.push_back(Ty
); // Recursive case: Add us to the stack..
192 switch (Ty
->getTypeID()) {
193 case Type::VoidTyID
: OS
<< "void"; break;
194 case Type::FloatTyID
: OS
<< "float"; break;
195 case Type::DoubleTyID
: OS
<< "double"; break;
196 case Type::X86_FP80TyID
: OS
<< "x86_fp80"; break;
197 case Type::FP128TyID
: OS
<< "fp128"; break;
198 case Type::PPC_FP128TyID
: OS
<< "ppc_fp128"; break;
199 case Type::LabelTyID
: OS
<< "label"; break;
200 case Type::MetadataTyID
: OS
<< "metadata"; break;
201 case Type::IntegerTyID
:
202 OS
<< 'i' << cast
<IntegerType
>(Ty
)->getBitWidth();
205 case Type::FunctionTyID
: {
206 const FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
207 CalcTypeName(FTy
->getReturnType(), TypeStack
, OS
);
209 for (FunctionType::param_iterator I
= FTy
->param_begin(),
210 E
= FTy
->param_end(); I
!= E
; ++I
) {
211 if (I
!= FTy
->param_begin())
213 CalcTypeName(*I
, TypeStack
, OS
);
215 if (FTy
->isVarArg()) {
216 if (FTy
->getNumParams()) OS
<< ", ";
222 case Type::StructTyID
: {
223 const StructType
*STy
= cast
<StructType
>(Ty
);
227 for (StructType::element_iterator I
= STy
->element_begin(),
228 E
= STy
->element_end(); I
!= E
; ++I
) {
229 CalcTypeName(*I
, TypeStack
, OS
);
230 if (next(I
) != STy
->element_end())
239 case Type::PointerTyID
: {
240 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
241 CalcTypeName(PTy
->getElementType(), TypeStack
, OS
);
242 if (unsigned AddressSpace
= PTy
->getAddressSpace())
243 OS
<< " addrspace(" << AddressSpace
<< ')';
247 case Type::ArrayTyID
: {
248 const ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
249 OS
<< '[' << ATy
->getNumElements() << " x ";
250 CalcTypeName(ATy
->getElementType(), TypeStack
, OS
);
254 case Type::VectorTyID
: {
255 const VectorType
*PTy
= cast
<VectorType
>(Ty
);
256 OS
<< "<" << PTy
->getNumElements() << " x ";
257 CalcTypeName(PTy
->getElementType(), TypeStack
, OS
);
261 case Type::OpaqueTyID
:
265 OS
<< "<unrecognized-type>";
269 TypeStack
.pop_back(); // Remove self from stack.
272 /// printTypeInt - The internal guts of printing out a type that has a
273 /// potentially named portion.
275 void TypePrinting::print(const Type
*Ty
, raw_ostream
&OS
,
276 bool IgnoreTopLevelName
) {
277 // Check to see if the type is named.
278 DenseMap
<const Type
*, std::string
> &TM
= getTypeNamesMap(TypeNames
);
279 if (!IgnoreTopLevelName
) {
280 DenseMap
<const Type
*, std::string
>::iterator I
= TM
.find(Ty
);
287 // Otherwise we have a type that has not been named but is a derived type.
288 // Carefully recurse the type hierarchy to print out any contained symbolic
290 SmallVector
<const Type
*, 16> TypeStack
;
291 std::string TypeName
;
293 raw_string_ostream
TypeOS(TypeName
);
294 CalcTypeName(Ty
, TypeStack
, TypeOS
, IgnoreTopLevelName
);
297 // Cache type name for later use.
298 if (!IgnoreTopLevelName
)
299 TM
.insert(std::make_pair(Ty
, TypeOS
.str()));
304 // To avoid walking constant expressions multiple times and other IR
305 // objects, we keep several helper maps.
306 DenseSet
<const Value
*> VisitedConstants
;
307 DenseSet
<const Type
*> VisitedTypes
;
310 std::vector
<const Type
*> &NumberedTypes
;
312 TypeFinder(TypePrinting
&tp
, std::vector
<const Type
*> &numberedTypes
)
313 : TP(tp
), NumberedTypes(numberedTypes
) {}
315 void Run(const Module
&M
) {
316 // Get types from the type symbol table. This gets opaque types referened
317 // only through derived named types.
318 const TypeSymbolTable
&ST
= M
.getTypeSymbolTable();
319 for (TypeSymbolTable::const_iterator TI
= ST
.begin(), E
= ST
.end();
321 IncorporateType(TI
->second
);
323 // Get types from global variables.
324 for (Module::const_global_iterator I
= M
.global_begin(),
325 E
= M
.global_end(); I
!= E
; ++I
) {
326 IncorporateType(I
->getType());
327 if (I
->hasInitializer())
328 IncorporateValue(I
->getInitializer());
331 // Get types from aliases.
332 for (Module::const_alias_iterator I
= M
.alias_begin(),
333 E
= M
.alias_end(); I
!= E
; ++I
) {
334 IncorporateType(I
->getType());
335 IncorporateValue(I
->getAliasee());
338 // Get types from functions.
339 for (Module::const_iterator FI
= M
.begin(), E
= M
.end(); FI
!= E
; ++FI
) {
340 IncorporateType(FI
->getType());
342 for (Function::const_iterator BB
= FI
->begin(), E
= FI
->end();
344 for (BasicBlock::const_iterator II
= BB
->begin(),
345 E
= BB
->end(); II
!= E
; ++II
) {
346 const Instruction
&I
= *II
;
347 // Incorporate the type of the instruction and all its operands.
348 IncorporateType(I
.getType());
349 for (User::const_op_iterator OI
= I
.op_begin(), OE
= I
.op_end();
351 IncorporateValue(*OI
);
357 void IncorporateType(const Type
*Ty
) {
358 // Check to see if we're already visited this type.
359 if (!VisitedTypes
.insert(Ty
).second
)
362 // If this is a structure or opaque type, add a name for the type.
363 if (((isa
<StructType
>(Ty
) && cast
<StructType
>(Ty
)->getNumElements())
364 || isa
<OpaqueType
>(Ty
)) && !TP
.hasTypeName(Ty
)) {
365 TP
.addTypeName(Ty
, "%"+utostr(unsigned(NumberedTypes
.size())));
366 NumberedTypes
.push_back(Ty
);
369 // Recursively walk all contained types.
370 for (Type::subtype_iterator I
= Ty
->subtype_begin(),
371 E
= Ty
->subtype_end(); I
!= E
; ++I
)
375 /// IncorporateValue - This method is used to walk operand lists finding
376 /// types hiding in constant expressions and other operands that won't be
377 /// walked in other ways. GlobalValues, basic blocks, instructions, and
378 /// inst operands are all explicitly enumerated.
379 void IncorporateValue(const Value
*V
) {
380 if (V
== 0 || !isa
<Constant
>(V
) || isa
<GlobalValue
>(V
)) return;
383 if (!VisitedConstants
.insert(V
).second
)
387 IncorporateType(V
->getType());
389 // Look in operands for types.
390 const Constant
*C
= cast
<Constant
>(V
);
391 for (Constant::const_op_iterator I
= C
->op_begin(),
392 E
= C
->op_end(); I
!= E
;++I
)
393 IncorporateValue(*I
);
396 } // end anonymous namespace
399 /// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
400 /// the specified module to the TypePrinter and all numbered types to it and the
401 /// NumberedTypes table.
402 static void AddModuleTypesToPrinter(TypePrinting
&TP
,
403 std::vector
<const Type
*> &NumberedTypes
,
407 // If the module has a symbol table, take all global types and stuff their
408 // names into the TypeNames map.
409 const TypeSymbolTable
&ST
= M
->getTypeSymbolTable();
410 for (TypeSymbolTable::const_iterator TI
= ST
.begin(), E
= ST
.end();
412 const Type
*Ty
= cast
<Type
>(TI
->second
);
414 // As a heuristic, don't insert pointer to primitive types, because
415 // they are used too often to have a single useful name.
416 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
417 const Type
*PETy
= PTy
->getElementType();
418 if ((PETy
->isPrimitiveType() || PETy
->isInteger()) &&
419 !isa
<OpaqueType
>(PETy
))
423 // Likewise don't insert primitives either.
424 if (Ty
->isInteger() || Ty
->isPrimitiveType())
427 // Get the name as a string and insert it into TypeNames.
429 raw_string_ostream
NameROS(NameStr
);
430 formatted_raw_ostream
NameOS(NameROS
);
431 PrintLLVMName(NameOS
, TI
->first
, LocalPrefix
);
433 TP
.addTypeName(Ty
, NameStr
);
436 // Walk the entire module to find references to unnamed structure and opaque
437 // types. This is required for correctness by opaque types (because multiple
438 // uses of an unnamed opaque type needs to be referred to by the same ID) and
439 // it shrinks complex recursive structure types substantially in some cases.
440 TypeFinder(TP
, NumberedTypes
).Run(*M
);
444 /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
445 /// type, iff there is an entry in the modules symbol table for the specified
446 /// type or one of it's component types.
448 void llvm::WriteTypeSymbolic(raw_ostream
&OS
, const Type
*Ty
, const Module
*M
) {
449 TypePrinting Printer
;
450 std::vector
<const Type
*> NumberedTypes
;
451 AddModuleTypesToPrinter(Printer
, NumberedTypes
, M
);
452 Printer
.print(Ty
, OS
);
455 //===----------------------------------------------------------------------===//
456 // SlotTracker Class: Enumerate slot numbers for unnamed values
457 //===----------------------------------------------------------------------===//
461 /// This class provides computation of slot numbers for LLVM Assembly writing.
465 /// ValueMap - A mapping of Values to slot numbers.
466 typedef DenseMap
<const Value
*, unsigned> ValueMap
;
469 /// TheModule - The module for which we are holding slot numbers.
470 const Module
* TheModule
;
472 /// TheFunction - The function for which we are holding slot numbers.
473 const Function
* TheFunction
;
474 bool FunctionProcessed
;
476 /// TheMDNode - The MDNode for which we are holding slot numbers.
477 const MDNode
*TheMDNode
;
479 /// TheNamedMDNode - The MDNode for which we are holding slot numbers.
480 const NamedMDNode
*TheNamedMDNode
;
482 /// mMap - The TypePlanes map for the module level data.
486 /// fMap - The TypePlanes map for the function level data.
490 /// mdnMap - Map for MDNodes.
494 /// Construct from a module
495 explicit SlotTracker(const Module
*M
);
496 /// Construct from a function, starting out in incorp state.
497 explicit SlotTracker(const Function
*F
);
498 /// Construct from a mdnode.
499 explicit SlotTracker(const MDNode
*N
);
500 /// Construct from a named mdnode.
501 explicit SlotTracker(const NamedMDNode
*N
);
503 /// Return the slot number of the specified value in it's type
504 /// plane. If something is not in the SlotTracker, return -1.
505 int getLocalSlot(const Value
*V
);
506 int getGlobalSlot(const GlobalValue
*V
);
507 int getMetadataSlot(const MDNode
*N
);
509 /// If you'd like to deal with a function instead of just a module, use
510 /// this method to get its data into the SlotTracker.
511 void incorporateFunction(const Function
*F
) {
513 FunctionProcessed
= false;
516 /// After calling incorporateFunction, use this method to remove the
517 /// most recently incorporated function from the SlotTracker. This
518 /// will reset the state of the machine back to just the module contents.
519 void purgeFunction();
521 /// MDNode map iterators.
522 ValueMap::iterator
mdnBegin() { return mdnMap
.begin(); }
523 ValueMap::iterator
mdnEnd() { return mdnMap
.end(); }
524 unsigned mdnSize() const { return mdnMap
.size(); }
525 bool mdnEmpty() const { return mdnMap
.empty(); }
527 /// This function does the actual initialization.
528 inline void initialize();
530 // Implementation Details
532 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
533 void CreateModuleSlot(const GlobalValue
*V
);
535 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
536 void CreateMetadataSlot(const MDNode
*N
);
538 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
539 void CreateFunctionSlot(const Value
*V
);
541 /// Add all of the module level global variables (and their initializers)
542 /// and function declarations, but not the contents of those functions.
543 void processModule();
545 /// Add all of the functions arguments, basic blocks, and instructions.
546 void processFunction();
548 /// Add all MDNode operands.
549 void processMDNode();
551 /// Add all MDNode operands.
552 void processNamedMDNode();
554 SlotTracker(const SlotTracker
&); // DO NOT IMPLEMENT
555 void operator=(const SlotTracker
&); // DO NOT IMPLEMENT
558 } // end anonymous namespace
561 static SlotTracker
*createSlotTracker(const Value
*V
) {
562 if (const Argument
*FA
= dyn_cast
<Argument
>(V
))
563 return new SlotTracker(FA
->getParent());
565 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
566 return new SlotTracker(I
->getParent()->getParent());
568 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
569 return new SlotTracker(BB
->getParent());
571 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
572 return new SlotTracker(GV
->getParent());
574 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
575 return new SlotTracker(GA
->getParent());
577 if (const Function
*Func
= dyn_cast
<Function
>(V
))
578 return new SlotTracker(Func
);
584 #define ST_DEBUG(X) errs() << X
589 // Module level constructor. Causes the contents of the Module (sans functions)
590 // to be added to the slot table.
591 SlotTracker::SlotTracker(const Module
*M
)
592 : TheModule(M
), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
593 TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
596 // Function level constructor. Causes the contents of the Module and the one
597 // function provided to be added to the slot table.
598 SlotTracker::SlotTracker(const Function
*F
)
599 : TheModule(F
? F
->getParent() : 0), TheFunction(F
), FunctionProcessed(false),
600 TheMDNode(0), TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
603 // Constructor to handle single MDNode.
604 SlotTracker::SlotTracker(const MDNode
*C
)
605 : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C
),
606 TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
609 // Constructor to handle single NamedMDNode.
610 SlotTracker::SlotTracker(const NamedMDNode
*N
)
611 : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
612 TheNamedMDNode(N
), mNext(0), fNext(0), mdnNext(0) {
615 inline void SlotTracker::initialize() {
618 TheModule
= 0; ///< Prevent re-processing next time we're called.
621 if (TheFunction
&& !FunctionProcessed
)
628 processNamedMDNode();
631 // Iterate through all the global variables, functions, and global
632 // variable initializers and create slots for them.
633 void SlotTracker::processModule() {
634 ST_DEBUG("begin processModule!\n");
636 // Add all of the unnamed global variables to the value table.
637 for (Module::const_global_iterator I
= TheModule
->global_begin(),
638 E
= TheModule
->global_end(); I
!= E
; ++I
) {
641 if (I
->hasInitializer()) {
642 if (MDNode
*N
= dyn_cast
<MDNode
>(I
->getInitializer()))
643 CreateMetadataSlot(N
);
647 // Add metadata used by named metadata.
648 for (Module::const_named_metadata_iterator
649 I
= TheModule
->named_metadata_begin(),
650 E
= TheModule
->named_metadata_end(); I
!= E
; ++I
) {
651 const NamedMDNode
*NMD
= I
;
652 for (unsigned i
= 0, e
= NMD
->getNumElements(); i
!= e
; ++i
) {
653 MDNode
*MD
= dyn_cast_or_null
<MDNode
>(NMD
->getElement(i
));
655 CreateMetadataSlot(MD
);
659 // Add all the unnamed functions to the table.
660 for (Module::const_iterator I
= TheModule
->begin(), E
= TheModule
->end();
665 ST_DEBUG("end processModule!\n");
668 // Process the arguments, basic blocks, and instructions of a function.
669 void SlotTracker::processFunction() {
670 ST_DEBUG("begin processFunction!\n");
673 // Add all the function arguments with no names.
674 for(Function::const_arg_iterator AI
= TheFunction
->arg_begin(),
675 AE
= TheFunction
->arg_end(); AI
!= AE
; ++AI
)
677 CreateFunctionSlot(AI
);
679 ST_DEBUG("Inserting Instructions:\n");
681 // Add all of the basic blocks and instructions with no names.
682 for (Function::const_iterator BB
= TheFunction
->begin(),
683 E
= TheFunction
->end(); BB
!= E
; ++BB
) {
685 CreateFunctionSlot(BB
);
686 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;
688 if (I
->getType() != Type::getVoidTy(TheFunction
->getContext()) &&
690 CreateFunctionSlot(I
);
691 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
692 if (MDNode
*N
= dyn_cast
<MDNode
>(I
->getOperand(i
)))
693 CreateMetadataSlot(N
);
697 FunctionProcessed
= true;
699 ST_DEBUG("end processFunction!\n");
702 /// processMDNode - Process TheMDNode.
703 void SlotTracker::processMDNode() {
704 ST_DEBUG("begin processMDNode!\n");
706 CreateMetadataSlot(TheMDNode
);
708 ST_DEBUG("end processMDNode!\n");
711 /// processNamedMDNode - Process TheNamedMDNode.
712 void SlotTracker::processNamedMDNode() {
713 ST_DEBUG("begin processNamedMDNode!\n");
715 for (unsigned i
= 0, e
= TheNamedMDNode
->getNumElements(); i
!= e
; ++i
) {
716 MDNode
*MD
= dyn_cast_or_null
<MDNode
>(TheNamedMDNode
->getElement(i
));
718 CreateMetadataSlot(MD
);
721 ST_DEBUG("end processNamedMDNode!\n");
724 /// Clean up after incorporating a function. This is the only way to get out of
725 /// the function incorporation state that affects get*Slot/Create*Slot. Function
726 /// incorporation state is indicated by TheFunction != 0.
727 void SlotTracker::purgeFunction() {
728 ST_DEBUG("begin purgeFunction!\n");
729 fMap
.clear(); // Simply discard the function level map
731 FunctionProcessed
= false;
732 ST_DEBUG("end purgeFunction!\n");
735 /// getGlobalSlot - Get the slot number of a global value.
736 int SlotTracker::getGlobalSlot(const GlobalValue
*V
) {
737 // Check for uninitialized state and do lazy initialization.
740 // Find the type plane in the module map
741 ValueMap::iterator MI
= mMap
.find(V
);
742 return MI
== mMap
.end() ? -1 : (int)MI
->second
;
745 /// getGlobalSlot - Get the slot number of a MDNode.
746 int SlotTracker::getMetadataSlot(const MDNode
*N
) {
747 // Check for uninitialized state and do lazy initialization.
750 // Find the type plane in the module map
751 ValueMap::iterator MI
= mdnMap
.find(N
);
752 return MI
== mdnMap
.end() ? -1 : (int)MI
->second
;
756 /// getLocalSlot - Get the slot number for a value that is local to a function.
757 int SlotTracker::getLocalSlot(const Value
*V
) {
758 assert(!isa
<Constant
>(V
) && "Can't get a constant or global slot with this!");
760 // Check for uninitialized state and do lazy initialization.
763 ValueMap::iterator FI
= fMap
.find(V
);
764 return FI
== fMap
.end() ? -1 : (int)FI
->second
;
768 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
769 void SlotTracker::CreateModuleSlot(const GlobalValue
*V
) {
770 assert(V
&& "Can't insert a null Value into SlotTracker!");
771 assert(V
->getType() != Type::getVoidTy(V
->getContext()) &&
772 "Doesn't need a slot!");
773 assert(!V
->hasName() && "Doesn't need a slot!");
775 unsigned DestSlot
= mNext
++;
778 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
780 // G = Global, F = Function, A = Alias, o = other
781 ST_DEBUG((isa
<GlobalVariable
>(V
) ? 'G' :
782 (isa
<Function
>(V
) ? 'F' :
783 (isa
<GlobalAlias
>(V
) ? 'A' : 'o'))) << "]\n");
786 /// CreateSlot - Create a new slot for the specified value if it has no name.
787 void SlotTracker::CreateFunctionSlot(const Value
*V
) {
788 assert(V
->getType() != Type::getVoidTy(TheFunction
->getContext()) &&
789 !V
->hasName() && "Doesn't need a slot!");
791 unsigned DestSlot
= fNext
++;
794 // G = Global, F = Function, o = other
795 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
796 DestSlot
<< " [o]\n");
799 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
800 void SlotTracker::CreateMetadataSlot(const MDNode
*N
) {
801 assert(N
&& "Can't insert a null Value into SlotTracker!");
803 ValueMap::iterator I
= mdnMap
.find(N
);
804 if (I
!= mdnMap
.end())
807 unsigned DestSlot
= mdnNext
++;
808 mdnMap
[N
] = DestSlot
;
810 for (MDNode::const_elem_iterator MDI
= N
->elem_begin(),
811 MDE
= N
->elem_end(); MDI
!= MDE
; ++MDI
) {
812 const Value
*TV
= *MDI
;
814 if (const MDNode
*N2
= dyn_cast
<MDNode
>(TV
))
815 CreateMetadataSlot(N2
);
819 //===----------------------------------------------------------------------===//
820 // AsmWriter Implementation
821 //===----------------------------------------------------------------------===//
823 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
824 TypePrinting
*TypePrinter
,
825 SlotTracker
*Machine
);
829 static const char *getPredicateText(unsigned predicate
) {
830 const char * pred
= "unknown";
832 case FCmpInst::FCMP_FALSE
: pred
= "false"; break;
833 case FCmpInst::FCMP_OEQ
: pred
= "oeq"; break;
834 case FCmpInst::FCMP_OGT
: pred
= "ogt"; break;
835 case FCmpInst::FCMP_OGE
: pred
= "oge"; break;
836 case FCmpInst::FCMP_OLT
: pred
= "olt"; break;
837 case FCmpInst::FCMP_OLE
: pred
= "ole"; break;
838 case FCmpInst::FCMP_ONE
: pred
= "one"; break;
839 case FCmpInst::FCMP_ORD
: pred
= "ord"; break;
840 case FCmpInst::FCMP_UNO
: pred
= "uno"; break;
841 case FCmpInst::FCMP_UEQ
: pred
= "ueq"; break;
842 case FCmpInst::FCMP_UGT
: pred
= "ugt"; break;
843 case FCmpInst::FCMP_UGE
: pred
= "uge"; break;
844 case FCmpInst::FCMP_ULT
: pred
= "ult"; break;
845 case FCmpInst::FCMP_ULE
: pred
= "ule"; break;
846 case FCmpInst::FCMP_UNE
: pred
= "une"; break;
847 case FCmpInst::FCMP_TRUE
: pred
= "true"; break;
848 case ICmpInst::ICMP_EQ
: pred
= "eq"; break;
849 case ICmpInst::ICMP_NE
: pred
= "ne"; break;
850 case ICmpInst::ICMP_SGT
: pred
= "sgt"; break;
851 case ICmpInst::ICMP_SGE
: pred
= "sge"; break;
852 case ICmpInst::ICMP_SLT
: pred
= "slt"; break;
853 case ICmpInst::ICMP_SLE
: pred
= "sle"; break;
854 case ICmpInst::ICMP_UGT
: pred
= "ugt"; break;
855 case ICmpInst::ICMP_UGE
: pred
= "uge"; break;
856 case ICmpInst::ICMP_ULT
: pred
= "ult"; break;
857 case ICmpInst::ICMP_ULE
: pred
= "ule"; break;
862 static void WriteMDNodes(formatted_raw_ostream
&Out
, TypePrinting
&TypePrinter
,
863 SlotTracker
&Machine
) {
864 SmallVector
<const MDNode
*, 16> Nodes
;
865 Nodes
.resize(Machine
.mdnSize());
866 for (SlotTracker::ValueMap::iterator I
=
867 Machine
.mdnBegin(), E
= Machine
.mdnEnd(); I
!= E
; ++I
)
868 Nodes
[I
->second
] = cast
<MDNode
>(I
->first
);
870 for (unsigned i
= 0, e
= Nodes
.size(); i
!= e
; ++i
) {
871 Out
<< '!' << i
<< " = metadata ";
872 const MDNode
*Node
= Nodes
[i
];
874 for (MDNode::const_elem_iterator NI
= Node
->elem_begin(),
875 NE
= Node
->elem_end(); NI
!= NE
;) {
876 const Value
*V
= *NI
;
879 else if (const MDNode
*N
= dyn_cast
<MDNode
>(V
)) {
881 Out
<< '!' << Machine
.getMetadataSlot(N
);
884 TypePrinter
.print((*NI
)->getType(), Out
);
886 WriteAsOperandInternal(Out
, *NI
, &TypePrinter
, &Machine
);
895 static void WriteOptimizationInfo(raw_ostream
&Out
, const User
*U
) {
896 if (const OverflowingBinaryOperator
*OBO
=
897 dyn_cast
<OverflowingBinaryOperator
>(U
)) {
898 if (OBO
->hasNoUnsignedOverflow())
900 if (OBO
->hasNoSignedOverflow())
902 } else if (const SDivOperator
*Div
= dyn_cast
<SDivOperator
>(U
)) {
905 } else if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(U
)) {
906 if (GEP
->isInBounds())
911 static void WriteConstantInt(raw_ostream
&Out
, const Constant
*CV
,
912 TypePrinting
&TypePrinter
, SlotTracker
*Machine
) {
913 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
914 if (CI
->getType() == Type::getInt1Ty(CV
->getContext())) {
915 Out
<< (CI
->getZExtValue() ? "true" : "false");
918 Out
<< CI
->getValue();
922 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
923 if (&CFP
->getValueAPF().getSemantics() == &APFloat::IEEEdouble
||
924 &CFP
->getValueAPF().getSemantics() == &APFloat::IEEEsingle
) {
925 // We would like to output the FP constant value in exponential notation,
926 // but we cannot do this if doing so will lose precision. Check here to
927 // make sure that we only output it in exponential format if we can parse
928 // the value back and get the same value.
931 bool isDouble
= &CFP
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
;
932 double Val
= isDouble
? CFP
->getValueAPF().convertToDouble() :
933 CFP
->getValueAPF().convertToFloat();
934 std::string StrVal
= ftostr(CFP
->getValueAPF());
936 // Check to make sure that the stringized number is not some string like
937 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
938 // that the string matches the "[-+]?[0-9]" regex.
940 if ((StrVal
[0] >= '0' && StrVal
[0] <= '9') ||
941 ((StrVal
[0] == '-' || StrVal
[0] == '+') &&
942 (StrVal
[1] >= '0' && StrVal
[1] <= '9'))) {
943 // Reparse stringized version!
944 if (atof(StrVal
.c_str()) == Val
) {
949 // Otherwise we could not reparse it to exactly the same value, so we must
950 // output the string in hexadecimal format! Note that loading and storing
951 // floating point types changes the bits of NaNs on some hosts, notably
952 // x86, so we must not use these types.
953 assert(sizeof(double) == sizeof(uint64_t) &&
954 "assuming that double is 64 bits!");
956 APFloat apf
= CFP
->getValueAPF();
957 // Floats are represented in ASCII IR as double, convert.
959 apf
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
,
962 utohex_buffer(uint64_t(apf
.bitcastToAPInt().getZExtValue()),
967 // Some form of long double. These appear as a magic letter identifying
968 // the type, then a fixed number of hex digits.
970 if (&CFP
->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended
) {
972 // api needed to prevent premature destruction
973 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
974 const uint64_t* p
= api
.getRawData();
975 uint64_t word
= p
[1];
977 int width
= api
.getBitWidth();
978 for (int j
=0; j
<width
; j
+=4, shiftcount
-=4) {
979 unsigned int nibble
= (word
>>shiftcount
) & 15;
981 Out
<< (unsigned char)(nibble
+ '0');
983 Out
<< (unsigned char)(nibble
- 10 + 'A');
984 if (shiftcount
== 0 && j
+4 < width
) {
988 shiftcount
= width
-j
-4;
992 } else if (&CFP
->getValueAPF().getSemantics() == &APFloat::IEEEquad
)
994 else if (&CFP
->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble
)
997 llvm_unreachable("Unsupported floating point type");
998 // api needed to prevent premature destruction
999 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
1000 const uint64_t* p
= api
.getRawData();
1003 int width
= api
.getBitWidth();
1004 for (int j
=0; j
<width
; j
+=4, shiftcount
-=4) {
1005 unsigned int nibble
= (word
>>shiftcount
) & 15;
1007 Out
<< (unsigned char)(nibble
+ '0');
1009 Out
<< (unsigned char)(nibble
- 10 + 'A');
1010 if (shiftcount
== 0 && j
+4 < width
) {
1014 shiftcount
= width
-j
-4;
1020 if (isa
<ConstantAggregateZero
>(CV
)) {
1021 Out
<< "zeroinitializer";
1025 if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(CV
)) {
1026 // As a special case, print the array as a string if it is an array of
1027 // i8 with ConstantInt values.
1029 const Type
*ETy
= CA
->getType()->getElementType();
1030 if (CA
->isString()) {
1032 PrintEscapedString(CA
->getAsString(), Out
);
1034 } else { // Cannot output in string format...
1036 if (CA
->getNumOperands()) {
1037 TypePrinter
.print(ETy
, Out
);
1039 WriteAsOperandInternal(Out
, CA
->getOperand(0),
1040 &TypePrinter
, Machine
);
1041 for (unsigned i
= 1, e
= CA
->getNumOperands(); i
!= e
; ++i
) {
1043 TypePrinter
.print(ETy
, Out
);
1045 WriteAsOperandInternal(Out
, CA
->getOperand(i
), &TypePrinter
, Machine
);
1053 if (const ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(CV
)) {
1054 if (CS
->getType()->isPacked())
1057 unsigned N
= CS
->getNumOperands();
1060 TypePrinter
.print(CS
->getOperand(0)->getType(), Out
);
1063 WriteAsOperandInternal(Out
, CS
->getOperand(0), &TypePrinter
, Machine
);
1065 for (unsigned i
= 1; i
< N
; i
++) {
1067 TypePrinter
.print(CS
->getOperand(i
)->getType(), Out
);
1070 WriteAsOperandInternal(Out
, CS
->getOperand(i
), &TypePrinter
, Machine
);
1076 if (CS
->getType()->isPacked())
1081 if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
1082 const Type
*ETy
= CP
->getType()->getElementType();
1083 assert(CP
->getNumOperands() > 0 &&
1084 "Number of operands for a PackedConst must be > 0");
1086 TypePrinter
.print(ETy
, Out
);
1088 WriteAsOperandInternal(Out
, CP
->getOperand(0), &TypePrinter
, Machine
);
1089 for (unsigned i
= 1, e
= CP
->getNumOperands(); i
!= e
; ++i
) {
1091 TypePrinter
.print(ETy
, Out
);
1093 WriteAsOperandInternal(Out
, CP
->getOperand(i
), &TypePrinter
, Machine
);
1099 if (isa
<ConstantPointerNull
>(CV
)) {
1104 if (isa
<UndefValue
>(CV
)) {
1109 if (const MDNode
*Node
= dyn_cast
<MDNode
>(CV
)) {
1110 Out
<< "!" << Machine
->getMetadataSlot(Node
);
1114 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
1115 Out
<< CE
->getOpcodeName();
1116 WriteOptimizationInfo(Out
, CE
);
1117 if (CE
->isCompare())
1118 Out
<< ' ' << getPredicateText(CE
->getPredicate());
1121 for (User::const_op_iterator OI
=CE
->op_begin(); OI
!= CE
->op_end(); ++OI
) {
1122 TypePrinter
.print((*OI
)->getType(), Out
);
1124 WriteAsOperandInternal(Out
, *OI
, &TypePrinter
, Machine
);
1125 if (OI
+1 != CE
->op_end())
1129 if (CE
->hasIndices()) {
1130 const SmallVector
<unsigned, 4> &Indices
= CE
->getIndices();
1131 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
)
1132 Out
<< ", " << Indices
[i
];
1137 TypePrinter
.print(CE
->getType(), Out
);
1144 Out
<< "<placeholder or erroneous Constant>";
1148 /// WriteAsOperand - Write the name of the specified value out to the specified
1149 /// ostream. This can be useful when you just want to print int %reg126, not
1150 /// the whole instruction that generated it.
1152 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
1153 TypePrinting
*TypePrinter
,
1154 SlotTracker
*Machine
) {
1156 PrintLLVMName(Out
, V
);
1160 const Constant
*CV
= dyn_cast
<Constant
>(V
);
1161 if (CV
&& !isa
<GlobalValue
>(CV
)) {
1162 assert(TypePrinter
&& "Constants require TypePrinting!");
1163 WriteConstantInt(Out
, CV
, *TypePrinter
, Machine
);
1167 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
1169 if (IA
->hasSideEffects())
1170 Out
<< "sideeffect ";
1172 PrintEscapedString(IA
->getAsmString(), Out
);
1174 PrintEscapedString(IA
->getConstraintString(), Out
);
1179 if (const MDNode
*N
= dyn_cast
<MDNode
>(V
)) {
1180 Out
<< '!' << Machine
->getMetadataSlot(N
);
1184 if (const MDString
*MDS
= dyn_cast
<MDString
>(V
)) {
1186 PrintEscapedString(MDS
->getString(), Out
);
1194 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
1195 Slot
= Machine
->getGlobalSlot(GV
);
1198 Slot
= Machine
->getLocalSlot(V
);
1201 Machine
= createSlotTracker(V
);
1203 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
1204 Slot
= Machine
->getGlobalSlot(GV
);
1207 Slot
= Machine
->getLocalSlot(V
);
1216 Out
<< Prefix
<< Slot
;
1221 /// WriteAsOperand - Write the name of the specified value out to the specified
1222 /// ostream. This can be useful when you just want to print int %reg126, not
1223 /// the whole instruction that generated it.
1225 void llvm::WriteAsOperand(std::ostream
&Out
, const Value
*V
, bool PrintType
,
1226 const Module
*Context
) {
1227 raw_os_ostream
OS(Out
);
1228 WriteAsOperand(OS
, V
, PrintType
, Context
);
1231 void llvm::WriteAsOperand(raw_ostream
&Out
, const Value
*V
,
1232 bool PrintType
, const Module
*Context
) {
1234 // Fast path: Don't construct and populate a TypePrinting object if we
1235 // won't be needing any types printed.
1237 (!isa
<Constant
>(V
) || V
->hasName() || isa
<GlobalValue
>(V
))) {
1238 WriteAsOperandInternal(Out
, V
, 0, 0);
1242 if (Context
== 0) Context
= getModuleFromVal(V
);
1244 TypePrinting TypePrinter
;
1245 std::vector
<const Type
*> NumberedTypes
;
1246 AddModuleTypesToPrinter(TypePrinter
, NumberedTypes
, Context
);
1248 TypePrinter
.print(V
->getType(), Out
);
1252 WriteAsOperandInternal(Out
, V
, &TypePrinter
, 0);
1257 class AssemblyWriter
{
1258 formatted_raw_ostream
&Out
;
1259 SlotTracker
&Machine
;
1260 const Module
*TheModule
;
1261 TypePrinting TypePrinter
;
1262 AssemblyAnnotationWriter
*AnnotationWriter
;
1263 std::vector
<const Type
*> NumberedTypes
;
1265 // Each MDNode is assigned unique MetadataIDNo.
1266 std::map
<const MDNode
*, unsigned> MDNodes
;
1267 unsigned MetadataIDNo
;
1269 inline AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
,
1271 AssemblyAnnotationWriter
*AAW
)
1272 : Out(o
), Machine(Mac
), TheModule(M
), AnnotationWriter(AAW
), MetadataIDNo(0) {
1273 AddModuleTypesToPrinter(TypePrinter
, NumberedTypes
, M
);
1276 void write(const Module
*M
) { printModule(M
); }
1278 void write(const GlobalValue
*G
) {
1279 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(G
))
1281 else if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(G
))
1283 else if (const Function
*F
= dyn_cast
<Function
>(G
))
1286 llvm_unreachable("Unknown global");
1289 void write(const BasicBlock
*BB
) { printBasicBlock(BB
); }
1290 void write(const Instruction
*I
) { printInstruction(*I
); }
1292 void writeOperand(const Value
*Op
, bool PrintType
);
1293 void writeParamOperand(const Value
*Operand
, Attributes Attrs
);
1295 const Module
* getModule() { return TheModule
; }
1298 void printModule(const Module
*M
);
1299 void printTypeSymbolTable(const TypeSymbolTable
&ST
);
1300 void printGlobal(const GlobalVariable
*GV
);
1301 void printAlias(const GlobalAlias
*GV
);
1302 void printFunction(const Function
*F
);
1303 void printArgument(const Argument
*FA
, Attributes Attrs
);
1304 void printBasicBlock(const BasicBlock
*BB
);
1305 void printInstruction(const Instruction
&I
);
1307 // printInfoComment - Print a little comment after the instruction indicating
1308 // which slot it occupies.
1309 void printInfoComment(const Value
&V
);
1311 } // end of anonymous namespace
1314 void AssemblyWriter::writeOperand(const Value
*Operand
, bool PrintType
) {
1316 Out
<< "<null operand!>";
1319 TypePrinter
.print(Operand
->getType(), Out
);
1322 WriteAsOperandInternal(Out
, Operand
, &TypePrinter
, &Machine
);
1326 void AssemblyWriter::writeParamOperand(const Value
*Operand
,
1329 Out
<< "<null operand!>";
1332 TypePrinter
.print(Operand
->getType(), Out
);
1333 // Print parameter attributes list
1334 if (Attrs
!= Attribute::None
)
1335 Out
<< ' ' << Attribute::getAsString(Attrs
);
1337 // Print the operand
1338 WriteAsOperandInternal(Out
, Operand
, &TypePrinter
, &Machine
);
1342 void AssemblyWriter::printModule(const Module
*M
) {
1343 if (!M
->getModuleIdentifier().empty() &&
1344 // Don't print the ID if it will start a new line (which would
1345 // require a comment char before it).
1346 M
->getModuleIdentifier().find('\n') == std::string::npos
)
1347 Out
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
1349 if (!M
->getDataLayout().empty())
1350 Out
<< "target datalayout = \"" << M
->getDataLayout() << "\"\n";
1351 if (!M
->getTargetTriple().empty())
1352 Out
<< "target triple = \"" << M
->getTargetTriple() << "\"\n";
1354 if (!M
->getModuleInlineAsm().empty()) {
1355 // Split the string into lines, to make it easier to read the .ll file.
1356 std::string Asm
= M
->getModuleInlineAsm();
1358 size_t NewLine
= Asm
.find_first_of('\n', CurPos
);
1360 while (NewLine
!= std::string::npos
) {
1361 // We found a newline, print the portion of the asm string from the
1362 // last newline up to this newline.
1363 Out
<< "module asm \"";
1364 PrintEscapedString(std::string(Asm
.begin()+CurPos
, Asm
.begin()+NewLine
),
1368 NewLine
= Asm
.find_first_of('\n', CurPos
);
1370 Out
<< "module asm \"";
1371 PrintEscapedString(std::string(Asm
.begin()+CurPos
, Asm
.end()), Out
);
1375 // Loop over the dependent libraries and emit them.
1376 Module::lib_iterator LI
= M
->lib_begin();
1377 Module::lib_iterator LE
= M
->lib_end();
1380 Out
<< "deplibs = [ ";
1382 Out
<< '"' << *LI
<< '"';
1390 // Loop over the symbol table, emitting all id'd types.
1391 if (!M
->getTypeSymbolTable().empty() || !NumberedTypes
.empty()) Out
<< '\n';
1392 printTypeSymbolTable(M
->getTypeSymbolTable());
1394 // Output all globals.
1395 if (!M
->global_empty()) Out
<< '\n';
1396 for (Module::const_global_iterator I
= M
->global_begin(), E
= M
->global_end();
1400 // Output all aliases.
1401 if (!M
->alias_empty()) Out
<< "\n";
1402 for (Module::const_alias_iterator I
= M
->alias_begin(), E
= M
->alias_end();
1406 // Output all of the functions.
1407 for (Module::const_iterator I
= M
->begin(), E
= M
->end(); I
!= E
; ++I
)
1410 // Output named metadata.
1411 if (!M
->named_metadata_empty()) Out
<< '\n';
1412 for (Module::const_named_metadata_iterator I
= M
->named_metadata_begin(),
1413 E
= M
->named_metadata_end(); I
!= E
; ++I
) {
1414 const NamedMDNode
*NMD
= I
;
1415 Out
<< "!" << NMD
->getName() << " = !{";
1416 for (unsigned i
= 0, e
= NMD
->getNumElements(); i
!= e
; ++i
) {
1418 MDNode
*MD
= dyn_cast_or_null
<MDNode
>(NMD
->getElement(i
));
1419 Out
<< '!' << Machine
.getMetadataSlot(MD
);
1425 if (!Machine
.mdnEmpty()) Out
<< '\n';
1426 WriteMDNodes(Out
, TypePrinter
, Machine
);
1429 static void PrintLinkage(GlobalValue::LinkageTypes LT
,
1430 formatted_raw_ostream
&Out
) {
1432 case GlobalValue::ExternalLinkage
: break;
1433 case GlobalValue::PrivateLinkage
: Out
<< "private "; break;
1434 case GlobalValue::LinkerPrivateLinkage
: Out
<< "linker_private "; break;
1435 case GlobalValue::InternalLinkage
: Out
<< "internal "; break;
1436 case GlobalValue::LinkOnceAnyLinkage
: Out
<< "linkonce "; break;
1437 case GlobalValue::LinkOnceODRLinkage
: Out
<< "linkonce_odr "; break;
1438 case GlobalValue::WeakAnyLinkage
: Out
<< "weak "; break;
1439 case GlobalValue::WeakODRLinkage
: Out
<< "weak_odr "; break;
1440 case GlobalValue::CommonLinkage
: Out
<< "common "; break;
1441 case GlobalValue::AppendingLinkage
: Out
<< "appending "; break;
1442 case GlobalValue::DLLImportLinkage
: Out
<< "dllimport "; break;
1443 case GlobalValue::DLLExportLinkage
: Out
<< "dllexport "; break;
1444 case GlobalValue::ExternalWeakLinkage
: Out
<< "extern_weak "; break;
1445 case GlobalValue::AvailableExternallyLinkage
:
1446 Out
<< "available_externally ";
1448 case GlobalValue::GhostLinkage
:
1449 llvm_unreachable("GhostLinkage not allowed in AsmWriter!");
1454 static void PrintVisibility(GlobalValue::VisibilityTypes Vis
,
1455 formatted_raw_ostream
&Out
) {
1457 default: llvm_unreachable("Invalid visibility style!");
1458 case GlobalValue::DefaultVisibility
: break;
1459 case GlobalValue::HiddenVisibility
: Out
<< "hidden "; break;
1460 case GlobalValue::ProtectedVisibility
: Out
<< "protected "; break;
1464 void AssemblyWriter::printGlobal(const GlobalVariable
*GV
) {
1465 WriteAsOperandInternal(Out
, GV
, &TypePrinter
, &Machine
);
1468 if (!GV
->hasInitializer() && GV
->hasExternalLinkage())
1471 PrintLinkage(GV
->getLinkage(), Out
);
1472 PrintVisibility(GV
->getVisibility(), Out
);
1474 if (GV
->isThreadLocal()) Out
<< "thread_local ";
1475 if (unsigned AddressSpace
= GV
->getType()->getAddressSpace())
1476 Out
<< "addrspace(" << AddressSpace
<< ") ";
1477 Out
<< (GV
->isConstant() ? "constant " : "global ");
1478 TypePrinter
.print(GV
->getType()->getElementType(), Out
);
1480 if (GV
->hasInitializer()) {
1482 writeOperand(GV
->getInitializer(), false);
1485 if (GV
->hasSection())
1486 Out
<< ", section \"" << GV
->getSection() << '"';
1487 if (GV
->getAlignment())
1488 Out
<< ", align " << GV
->getAlignment();
1490 printInfoComment(*GV
);
1494 void AssemblyWriter::printAlias(const GlobalAlias
*GA
) {
1495 // Don't crash when dumping partially built GA
1497 Out
<< "<<nameless>> = ";
1499 PrintLLVMName(Out
, GA
);
1502 PrintVisibility(GA
->getVisibility(), Out
);
1506 PrintLinkage(GA
->getLinkage(), Out
);
1508 const Constant
*Aliasee
= GA
->getAliasee();
1510 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Aliasee
)) {
1511 TypePrinter
.print(GV
->getType(), Out
);
1513 PrintLLVMName(Out
, GV
);
1514 } else if (const Function
*F
= dyn_cast
<Function
>(Aliasee
)) {
1515 TypePrinter
.print(F
->getFunctionType(), Out
);
1518 WriteAsOperandInternal(Out
, F
, &TypePrinter
, &Machine
);
1519 } else if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(Aliasee
)) {
1520 TypePrinter
.print(GA
->getType(), Out
);
1522 PrintLLVMName(Out
, GA
);
1524 const ConstantExpr
*CE
= cast
<ConstantExpr
>(Aliasee
);
1525 // The only valid GEP is an all zero GEP.
1526 assert((CE
->getOpcode() == Instruction::BitCast
||
1527 CE
->getOpcode() == Instruction::GetElementPtr
) &&
1528 "Unsupported aliasee");
1529 writeOperand(CE
, false);
1532 printInfoComment(*GA
);
1536 void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable
&ST
) {
1537 // Emit all numbered types.
1538 for (unsigned i
= 0, e
= NumberedTypes
.size(); i
!= e
; ++i
) {
1539 Out
<< '%' << i
<< " = type ";
1541 // Make sure we print out at least one level of the type structure, so
1542 // that we do not get %2 = type %2
1543 TypePrinter
.printAtLeastOneLevel(NumberedTypes
[i
], Out
);
1547 // Print the named types.
1548 for (TypeSymbolTable::const_iterator TI
= ST
.begin(), TE
= ST
.end();
1550 PrintLLVMName(Out
, TI
->first
, LocalPrefix
);
1553 // Make sure we print out at least one level of the type structure, so
1554 // that we do not get %FILE = type %FILE
1555 TypePrinter
.printAtLeastOneLevel(TI
->second
, Out
);
1560 /// printFunction - Print all aspects of a function.
1562 void AssemblyWriter::printFunction(const Function
*F
) {
1563 // Print out the return type and name.
1566 if (AnnotationWriter
) AnnotationWriter
->emitFunctionAnnot(F
, Out
);
1568 if (F
->isDeclaration())
1573 PrintLinkage(F
->getLinkage(), Out
);
1574 PrintVisibility(F
->getVisibility(), Out
);
1576 // Print the calling convention.
1577 switch (F
->getCallingConv()) {
1578 case CallingConv::C
: break; // default
1579 case CallingConv::Fast
: Out
<< "fastcc "; break;
1580 case CallingConv::Cold
: Out
<< "coldcc "; break;
1581 case CallingConv::X86_StdCall
: Out
<< "x86_stdcallcc "; break;
1582 case CallingConv::X86_FastCall
: Out
<< "x86_fastcallcc "; break;
1583 case CallingConv::ARM_APCS
: Out
<< "arm_apcscc "; break;
1584 case CallingConv::ARM_AAPCS
: Out
<< "arm_aapcscc "; break;
1585 case CallingConv::ARM_AAPCS_VFP
:Out
<< "arm_aapcs_vfpcc "; break;
1586 default: Out
<< "cc" << F
->getCallingConv() << " "; break;
1589 const FunctionType
*FT
= F
->getFunctionType();
1590 const AttrListPtr
&Attrs
= F
->getAttributes();
1591 Attributes RetAttrs
= Attrs
.getRetAttributes();
1592 if (RetAttrs
!= Attribute::None
)
1593 Out
<< Attribute::getAsString(Attrs
.getRetAttributes()) << ' ';
1594 TypePrinter
.print(F
->getReturnType(), Out
);
1596 WriteAsOperandInternal(Out
, F
, &TypePrinter
, &Machine
);
1598 Machine
.incorporateFunction(F
);
1600 // Loop over the arguments, printing them...
1603 if (!F
->isDeclaration()) {
1604 // If this isn't a declaration, print the argument names as well.
1605 for (Function::const_arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
1607 // Insert commas as we go... the first arg doesn't get a comma
1608 if (I
!= F
->arg_begin()) Out
<< ", ";
1609 printArgument(I
, Attrs
.getParamAttributes(Idx
));
1613 // Otherwise, print the types from the function type.
1614 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
1615 // Insert commas as we go... the first arg doesn't get a comma
1619 TypePrinter
.print(FT
->getParamType(i
), Out
);
1621 Attributes ArgAttrs
= Attrs
.getParamAttributes(i
+1);
1622 if (ArgAttrs
!= Attribute::None
)
1623 Out
<< ' ' << Attribute::getAsString(ArgAttrs
);
1627 // Finish printing arguments...
1628 if (FT
->isVarArg()) {
1629 if (FT
->getNumParams()) Out
<< ", ";
1630 Out
<< "..."; // Output varargs portion of signature!
1633 Attributes FnAttrs
= Attrs
.getFnAttributes();
1634 if (FnAttrs
!= Attribute::None
)
1635 Out
<< ' ' << Attribute::getAsString(Attrs
.getFnAttributes());
1636 if (F
->hasSection())
1637 Out
<< " section \"" << F
->getSection() << '"';
1638 if (F
->getAlignment())
1639 Out
<< " align " << F
->getAlignment();
1641 Out
<< " gc \"" << F
->getGC() << '"';
1642 if (F
->isDeclaration()) {
1647 // Output all of its basic blocks... for the function
1648 for (Function::const_iterator I
= F
->begin(), E
= F
->end(); I
!= E
; ++I
)
1654 Machine
.purgeFunction();
1657 /// printArgument - This member is called for every argument that is passed into
1658 /// the function. Simply print it out
1660 void AssemblyWriter::printArgument(const Argument
*Arg
,
1663 TypePrinter
.print(Arg
->getType(), Out
);
1665 // Output parameter attributes list
1666 if (Attrs
!= Attribute::None
)
1667 Out
<< ' ' << Attribute::getAsString(Attrs
);
1669 // Output name, if available...
1670 if (Arg
->hasName()) {
1672 PrintLLVMName(Out
, Arg
);
1676 /// printBasicBlock - This member is called for each basic block in a method.
1678 void AssemblyWriter::printBasicBlock(const BasicBlock
*BB
) {
1679 if (BB
->hasName()) { // Print out the label if it exists...
1681 PrintLLVMName(Out
, BB
->getName(), LabelPrefix
);
1683 } else if (!BB
->use_empty()) { // Don't print block # of no uses...
1684 Out
<< "\n; <label>:";
1685 int Slot
= Machine
.getLocalSlot(BB
);
1692 if (BB
->getParent() == 0) {
1693 Out
.PadToColumn(50);
1694 Out
<< "; Error: Block without parent!";
1695 } else if (BB
!= &BB
->getParent()->getEntryBlock()) { // Not the entry block?
1696 // Output predecessors for the block...
1697 Out
.PadToColumn(50);
1699 pred_const_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
1702 Out
<< " No predecessors!";
1705 writeOperand(*PI
, false);
1706 for (++PI
; PI
!= PE
; ++PI
) {
1708 writeOperand(*PI
, false);
1715 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockStartAnnot(BB
, Out
);
1717 // Output all of the instructions in the basic block...
1718 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
1719 printInstruction(*I
);
1723 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockEndAnnot(BB
, Out
);
1727 /// printInfoComment - Print a little comment after the instruction indicating
1728 /// which slot it occupies.
1730 void AssemblyWriter::printInfoComment(const Value
&V
) {
1731 if (V
.getType() != Type::getVoidTy(V
.getContext())) {
1732 Out
.PadToColumn(50);
1734 TypePrinter
.print(V
.getType(), Out
);
1735 Out
<< "> [#uses=" << V
.getNumUses() << ']'; // Output # uses
1739 // This member is called for each Instruction in a function..
1740 void AssemblyWriter::printInstruction(const Instruction
&I
) {
1741 if (AnnotationWriter
) AnnotationWriter
->emitInstructionAnnot(&I
, Out
);
1743 // Print out indentation for an instruction.
1746 // Print out name if it exists...
1748 PrintLLVMName(Out
, &I
);
1750 } else if (I
.getType() != Type::getVoidTy(I
.getContext())) {
1751 // Print out the def slot taken.
1752 int SlotNum
= Machine
.getLocalSlot(&I
);
1754 Out
<< "<badref> = ";
1756 Out
<< '%' << SlotNum
<< " = ";
1759 // If this is a volatile load or store, print out the volatile marker.
1760 if ((isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).isVolatile()) ||
1761 (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).isVolatile())) {
1763 } else if (isa
<CallInst
>(I
) && cast
<CallInst
>(I
).isTailCall()) {
1764 // If this is a call, check if it's a tail call.
1768 // Print out the opcode...
1769 Out
<< I
.getOpcodeName();
1771 // Print out optimization information.
1772 WriteOptimizationInfo(Out
, &I
);
1774 // Print out the compare instruction predicates
1775 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
1776 Out
<< ' ' << getPredicateText(CI
->getPredicate());
1778 // Print out the type of the operands...
1779 const Value
*Operand
= I
.getNumOperands() ? I
.getOperand(0) : 0;
1781 // Special case conditional branches to swizzle the condition out to the front
1782 if (isa
<BranchInst
>(I
) && cast
<BranchInst
>(I
).isConditional()) {
1783 BranchInst
&BI(cast
<BranchInst
>(I
));
1785 writeOperand(BI
.getCondition(), true);
1787 writeOperand(BI
.getSuccessor(0), true);
1789 writeOperand(BI
.getSuccessor(1), true);
1791 } else if (isa
<SwitchInst
>(I
)) {
1792 // Special case switch statement to get formatting nice and correct...
1794 writeOperand(Operand
, true);
1796 writeOperand(I
.getOperand(1), true);
1799 for (unsigned op
= 2, Eop
= I
.getNumOperands(); op
< Eop
; op
+= 2) {
1801 writeOperand(I
.getOperand(op
), true);
1803 writeOperand(I
.getOperand(op
+1), true);
1806 } else if (isa
<PHINode
>(I
)) {
1808 TypePrinter
.print(I
.getType(), Out
);
1811 for (unsigned op
= 0, Eop
= I
.getNumOperands(); op
< Eop
; op
+= 2) {
1812 if (op
) Out
<< ", ";
1814 writeOperand(I
.getOperand(op
), false); Out
<< ", ";
1815 writeOperand(I
.getOperand(op
+1), false); Out
<< " ]";
1817 } else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(&I
)) {
1819 writeOperand(I
.getOperand(0), true);
1820 for (const unsigned *i
= EVI
->idx_begin(), *e
= EVI
->idx_end(); i
!= e
; ++i
)
1822 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(&I
)) {
1824 writeOperand(I
.getOperand(0), true); Out
<< ", ";
1825 writeOperand(I
.getOperand(1), true);
1826 for (const unsigned *i
= IVI
->idx_begin(), *e
= IVI
->idx_end(); i
!= e
; ++i
)
1828 } else if (isa
<ReturnInst
>(I
) && !Operand
) {
1830 } else if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
1831 // Print the calling convention being used.
1832 switch (CI
->getCallingConv()) {
1833 case CallingConv::C
: break; // default
1834 case CallingConv::Fast
: Out
<< " fastcc"; break;
1835 case CallingConv::Cold
: Out
<< " coldcc"; break;
1836 case CallingConv::X86_StdCall
: Out
<< " x86_stdcallcc"; break;
1837 case CallingConv::X86_FastCall
: Out
<< " x86_fastcallcc"; break;
1838 case CallingConv::ARM_APCS
: Out
<< " arm_apcscc "; break;
1839 case CallingConv::ARM_AAPCS
: Out
<< " arm_aapcscc "; break;
1840 case CallingConv::ARM_AAPCS_VFP
:Out
<< " arm_aapcs_vfpcc "; break;
1841 default: Out
<< " cc" << CI
->getCallingConv(); break;
1844 const PointerType
*PTy
= cast
<PointerType
>(Operand
->getType());
1845 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
1846 const Type
*RetTy
= FTy
->getReturnType();
1847 const AttrListPtr
&PAL
= CI
->getAttributes();
1849 if (PAL
.getRetAttributes() != Attribute::None
)
1850 Out
<< ' ' << Attribute::getAsString(PAL
.getRetAttributes());
1852 // If possible, print out the short form of the call instruction. We can
1853 // only do this if the first argument is a pointer to a nonvararg function,
1854 // and if the return type is not a pointer to a function.
1857 if (!FTy
->isVarArg() &&
1858 (!isa
<PointerType
>(RetTy
) ||
1859 !isa
<FunctionType
>(cast
<PointerType
>(RetTy
)->getElementType()))) {
1860 TypePrinter
.print(RetTy
, Out
);
1862 writeOperand(Operand
, false);
1864 writeOperand(Operand
, true);
1867 for (unsigned op
= 1, Eop
= I
.getNumOperands(); op
< Eop
; ++op
) {
1870 writeParamOperand(I
.getOperand(op
), PAL
.getParamAttributes(op
));
1873 if (PAL
.getFnAttributes() != Attribute::None
)
1874 Out
<< ' ' << Attribute::getAsString(PAL
.getFnAttributes());
1875 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(&I
)) {
1876 const PointerType
*PTy
= cast
<PointerType
>(Operand
->getType());
1877 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
1878 const Type
*RetTy
= FTy
->getReturnType();
1879 const AttrListPtr
&PAL
= II
->getAttributes();
1881 // Print the calling convention being used.
1882 switch (II
->getCallingConv()) {
1883 case CallingConv::C
: break; // default
1884 case CallingConv::Fast
: Out
<< " fastcc"; break;
1885 case CallingConv::Cold
: Out
<< " coldcc"; break;
1886 case CallingConv::X86_StdCall
: Out
<< " x86_stdcallcc"; break;
1887 case CallingConv::X86_FastCall
: Out
<< " x86_fastcallcc"; break;
1888 case CallingConv::ARM_APCS
: Out
<< " arm_apcscc "; break;
1889 case CallingConv::ARM_AAPCS
: Out
<< " arm_aapcscc "; break;
1890 case CallingConv::ARM_AAPCS_VFP
:Out
<< " arm_aapcs_vfpcc "; break;
1891 default: Out
<< " cc" << II
->getCallingConv(); break;
1894 if (PAL
.getRetAttributes() != Attribute::None
)
1895 Out
<< ' ' << Attribute::getAsString(PAL
.getRetAttributes());
1897 // If possible, print out the short form of the invoke instruction. We can
1898 // only do this if the first argument is a pointer to a nonvararg function,
1899 // and if the return type is not a pointer to a function.
1902 if (!FTy
->isVarArg() &&
1903 (!isa
<PointerType
>(RetTy
) ||
1904 !isa
<FunctionType
>(cast
<PointerType
>(RetTy
)->getElementType()))) {
1905 TypePrinter
.print(RetTy
, Out
);
1907 writeOperand(Operand
, false);
1909 writeOperand(Operand
, true);
1912 for (unsigned op
= 3, Eop
= I
.getNumOperands(); op
< Eop
; ++op
) {
1915 writeParamOperand(I
.getOperand(op
), PAL
.getParamAttributes(op
-2));
1919 if (PAL
.getFnAttributes() != Attribute::None
)
1920 Out
<< ' ' << Attribute::getAsString(PAL
.getFnAttributes());
1923 writeOperand(II
->getNormalDest(), true);
1925 writeOperand(II
->getUnwindDest(), true);
1927 } else if (const AllocationInst
*AI
= dyn_cast
<AllocationInst
>(&I
)) {
1929 TypePrinter
.print(AI
->getType()->getElementType(), Out
);
1930 if (!AI
->getArraySize() || AI
->isArrayAllocation()) {
1932 writeOperand(AI
->getArraySize(), true);
1934 if (AI
->getAlignment()) {
1935 Out
<< ", align " << AI
->getAlignment();
1937 } else if (isa
<CastInst
>(I
)) {
1940 writeOperand(Operand
, true); // Work with broken code
1943 TypePrinter
.print(I
.getType(), Out
);
1944 } else if (isa
<VAArgInst
>(I
)) {
1947 writeOperand(Operand
, true); // Work with broken code
1950 TypePrinter
.print(I
.getType(), Out
);
1951 } else if (Operand
) { // Print the normal way.
1953 // PrintAllTypes - Instructions who have operands of all the same type
1954 // omit the type from all but the first operand. If the instruction has
1955 // different type operands (for example br), then they are all printed.
1956 bool PrintAllTypes
= false;
1957 const Type
*TheType
= Operand
->getType();
1959 // Select, Store and ShuffleVector always print all types.
1960 if (isa
<SelectInst
>(I
) || isa
<StoreInst
>(I
) || isa
<ShuffleVectorInst
>(I
)
1961 || isa
<ReturnInst
>(I
)) {
1962 PrintAllTypes
= true;
1964 for (unsigned i
= 1, E
= I
.getNumOperands(); i
!= E
; ++i
) {
1965 Operand
= I
.getOperand(i
);
1966 // note that Operand shouldn't be null, but the test helps make dump()
1967 // more tolerant of malformed IR
1968 if (Operand
&& Operand
->getType() != TheType
) {
1969 PrintAllTypes
= true; // We have differing types! Print them all!
1975 if (!PrintAllTypes
) {
1977 TypePrinter
.print(TheType
, Out
);
1981 for (unsigned i
= 0, E
= I
.getNumOperands(); i
!= E
; ++i
) {
1983 writeOperand(I
.getOperand(i
), PrintAllTypes
);
1987 // Print post operand alignment for load/store
1988 if (isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).getAlignment()) {
1989 Out
<< ", align " << cast
<LoadInst
>(I
).getAlignment();
1990 } else if (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).getAlignment()) {
1991 Out
<< ", align " << cast
<StoreInst
>(I
).getAlignment();
1994 printInfoComment(I
);
1998 //===----------------------------------------------------------------------===//
1999 // External Interface declarations
2000 //===----------------------------------------------------------------------===//
2002 void Module::print(std::ostream
&o
, AssemblyAnnotationWriter
*AAW
) const {
2003 raw_os_ostream
OS(o
);
2006 void Module::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
) const {
2007 SlotTracker
SlotTable(this);
2008 formatted_raw_ostream
OS(ROS
);
2009 AssemblyWriter
W(OS
, SlotTable
, this, AAW
);
2013 void Type::print(std::ostream
&o
) const {
2014 raw_os_ostream
OS(o
);
2018 void Type::print(raw_ostream
&OS
) const {
2020 OS
<< "<null Type>";
2023 TypePrinting().print(this, OS
);
2026 void Value::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
) const {
2028 ROS
<< "printing a <null> value\n";
2031 formatted_raw_ostream
OS(ROS
);
2032 if (const Instruction
*I
= dyn_cast
<Instruction
>(this)) {
2033 const Function
*F
= I
->getParent() ? I
->getParent()->getParent() : 0;
2034 SlotTracker
SlotTable(F
);
2035 AssemblyWriter
W(OS
, SlotTable
, F
? F
->getParent() : 0, AAW
);
2037 } else if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(this)) {
2038 SlotTracker
SlotTable(BB
->getParent());
2039 AssemblyWriter
W(OS
, SlotTable
,
2040 BB
->getParent() ? BB
->getParent()->getParent() : 0, AAW
);
2042 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(this)) {
2043 SlotTracker
SlotTable(GV
->getParent());
2044 AssemblyWriter
W(OS
, SlotTable
, GV
->getParent(), AAW
);
2046 } else if (const MDString
*MDS
= dyn_cast
<MDString
>(this)) {
2047 TypePrinting TypePrinter
;
2048 TypePrinter
.print(MDS
->getType(), OS
);
2051 PrintEscapedString(MDS
->getString(), OS
);
2053 } else if (const MDNode
*N
= dyn_cast
<MDNode
>(this)) {
2054 SlotTracker
SlotTable(N
);
2055 TypePrinting TypePrinter
;
2056 SlotTable
.initialize();
2057 WriteMDNodes(OS
, TypePrinter
, SlotTable
);
2058 } else if (const NamedMDNode
*N
= dyn_cast
<NamedMDNode
>(this)) {
2059 SlotTracker
SlotTable(N
);
2060 TypePrinting TypePrinter
;
2061 SlotTable
.initialize();
2062 OS
<< "!" << N
->getName() << " = !{";
2063 for (unsigned i
= 0, e
= N
->getNumElements(); i
!= e
; ++i
) {
2065 MDNode
*MD
= dyn_cast_or_null
<MDNode
>(N
->getElement(i
));
2067 OS
<< '!' << SlotTable
.getMetadataSlot(MD
);
2072 WriteMDNodes(OS
, TypePrinter
, SlotTable
);
2073 } else if (const Constant
*C
= dyn_cast
<Constant
>(this)) {
2074 TypePrinting TypePrinter
;
2075 TypePrinter
.print(C
->getType(), OS
);
2077 WriteConstantInt(OS
, C
, TypePrinter
, 0);
2078 } else if (const Argument
*A
= dyn_cast
<Argument
>(this)) {
2079 WriteAsOperand(OS
, this, true,
2080 A
->getParent() ? A
->getParent()->getParent() : 0);
2081 } else if (isa
<InlineAsm
>(this)) {
2082 WriteAsOperand(OS
, this, true, 0);
2084 llvm_unreachable("Unknown value to print out!");
2088 void Value::print(std::ostream
&O
, AssemblyAnnotationWriter
*AAW
) const {
2089 raw_os_ostream
OS(O
);
2093 // Value::dump - allow easy printing of Values from the debugger.
2094 void Value::dump() const { print(errs()); errs() << '\n'; }
2096 // Type::dump - allow easy printing of Types from the debugger.
2097 // This one uses type names from the given context module
2098 void Type::dump(const Module
*Context
) const {
2099 WriteTypeSymbolic(errs(), this, Context
);
2103 // Type::dump - allow easy printing of Types from the debugger.
2104 void Type::dump() const { dump(0); }
2106 // Module::dump() - Allow printing of Modules from the debugger.
2107 void Module::dump() const { print(errs(), 0); }