Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / VMCore / AsmWriter.cpp
blob68a45221acacdb71fc6e932a1dab4f40f7931228
1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AsmAnnotationWriter.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/InlineAsm.h"
24 #include "llvm/Instruction.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Metadata.h"
28 #include "llvm/Module.h"
29 #include "llvm/ValueSymbolTable.h"
30 #include "llvm/TypeSymbolTable.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/Support/CFG.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include <algorithm>
39 #include <cctype>
40 #include <map>
41 using namespace llvm;
43 // Make virtual table appear in this compilation unit.
44 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
46 //===----------------------------------------------------------------------===//
47 // Helper Functions
48 //===----------------------------------------------------------------------===//
50 static const Module *getModuleFromVal(const Value *V) {
51 if (const Argument *MA = dyn_cast<Argument>(V))
52 return MA->getParent() ? MA->getParent()->getParent() : 0;
54 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
55 return BB->getParent() ? BB->getParent()->getParent() : 0;
57 if (const Instruction *I = dyn_cast<Instruction>(V)) {
58 const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
59 return M ? M->getParent() : 0;
62 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
63 return GV->getParent();
64 return 0;
67 // PrintEscapedString - Print each character of the specified string, escaping
68 // it if it is not printable or if it is an escape char.
69 static void PrintEscapedString(const StringRef &Name,
70 raw_ostream &Out) {
71 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
72 unsigned char C = Name[i];
73 if (isprint(C) && C != '\\' && C != '"')
74 Out << C;
75 else
76 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
80 enum PrefixType {
81 GlobalPrefix,
82 LabelPrefix,
83 LocalPrefix,
84 NoPrefix
87 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
88 /// prefixed with % (if the string only contains simple characters) or is
89 /// surrounded with ""'s (if it has special chars in it). Print it out.
90 static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
91 PrefixType Prefix) {
92 assert(Name.data() && "Cannot get empty name!");
93 switch (Prefix) {
94 default: llvm_unreachable("Bad prefix!");
95 case NoPrefix: break;
96 case GlobalPrefix: OS << '@'; break;
97 case LabelPrefix: break;
98 case LocalPrefix: OS << '%'; break;
101 // Scan the name to see if it needs quotes first.
102 bool NeedsQuotes = isdigit(Name[0]);
103 if (!NeedsQuotes) {
104 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
105 char C = Name[i];
106 if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
107 NeedsQuotes = true;
108 break;
113 // If we didn't need any quotes, just write out the name in one blast.
114 if (!NeedsQuotes) {
115 OS << Name;
116 return;
119 // Okay, we need quotes. Output the quotes and escape any scary characters as
120 // needed.
121 OS << '"';
122 PrintEscapedString(Name, OS);
123 OS << '"';
126 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
127 /// prefixed with % (if the string only contains simple characters) or is
128 /// surrounded with ""'s (if it has special chars in it). Print it out.
129 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
130 PrintLLVMName(OS, V->getName(),
131 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
134 //===----------------------------------------------------------------------===//
135 // TypePrinting Class: Type printing machinery
136 //===----------------------------------------------------------------------===//
138 static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
139 return *static_cast<DenseMap<const Type *, std::string>*>(M);
142 void TypePrinting::clear() {
143 getTypeNamesMap(TypeNames).clear();
146 bool TypePrinting::hasTypeName(const Type *Ty) const {
147 return getTypeNamesMap(TypeNames).count(Ty);
150 void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
151 getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
155 TypePrinting::TypePrinting() {
156 TypeNames = new DenseMap<const Type *, std::string>();
159 TypePrinting::~TypePrinting() {
160 delete &getTypeNamesMap(TypeNames);
163 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
164 /// use of type names or up references to shorten the type name where possible.
165 void TypePrinting::CalcTypeName(const Type *Ty,
166 SmallVectorImpl<const Type *> &TypeStack,
167 raw_ostream &OS, bool IgnoreTopLevelName) {
168 // Check to see if the type is named.
169 if (!IgnoreTopLevelName) {
170 DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
171 DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
172 if (I != TM.end()) {
173 OS << I->second;
174 return;
178 // Check to see if the Type is already on the stack...
179 unsigned Slot = 0, CurSize = TypeStack.size();
180 while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
182 // This is another base case for the recursion. In this case, we know
183 // that we have looped back to a type that we have previously visited.
184 // Generate the appropriate upreference to handle this.
185 if (Slot < CurSize) {
186 OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference
187 return;
190 TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
192 switch (Ty->getTypeID()) {
193 case Type::VoidTyID: OS << "void"; break;
194 case Type::FloatTyID: OS << "float"; break;
195 case Type::DoubleTyID: OS << "double"; break;
196 case Type::X86_FP80TyID: OS << "x86_fp80"; break;
197 case Type::FP128TyID: OS << "fp128"; break;
198 case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
199 case Type::LabelTyID: OS << "label"; break;
200 case Type::MetadataTyID: OS << "metadata"; break;
201 case Type::IntegerTyID:
202 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
203 break;
205 case Type::FunctionTyID: {
206 const FunctionType *FTy = cast<FunctionType>(Ty);
207 CalcTypeName(FTy->getReturnType(), TypeStack, OS);
208 OS << " (";
209 for (FunctionType::param_iterator I = FTy->param_begin(),
210 E = FTy->param_end(); I != E; ++I) {
211 if (I != FTy->param_begin())
212 OS << ", ";
213 CalcTypeName(*I, TypeStack, OS);
215 if (FTy->isVarArg()) {
216 if (FTy->getNumParams()) OS << ", ";
217 OS << "...";
219 OS << ')';
220 break;
222 case Type::StructTyID: {
223 const StructType *STy = cast<StructType>(Ty);
224 if (STy->isPacked())
225 OS << '<';
226 OS << "{ ";
227 for (StructType::element_iterator I = STy->element_begin(),
228 E = STy->element_end(); I != E; ++I) {
229 CalcTypeName(*I, TypeStack, OS);
230 if (next(I) != STy->element_end())
231 OS << ',';
232 OS << ' ';
234 OS << '}';
235 if (STy->isPacked())
236 OS << '>';
237 break;
239 case Type::PointerTyID: {
240 const PointerType *PTy = cast<PointerType>(Ty);
241 CalcTypeName(PTy->getElementType(), TypeStack, OS);
242 if (unsigned AddressSpace = PTy->getAddressSpace())
243 OS << " addrspace(" << AddressSpace << ')';
244 OS << '*';
245 break;
247 case Type::ArrayTyID: {
248 const ArrayType *ATy = cast<ArrayType>(Ty);
249 OS << '[' << ATy->getNumElements() << " x ";
250 CalcTypeName(ATy->getElementType(), TypeStack, OS);
251 OS << ']';
252 break;
254 case Type::VectorTyID: {
255 const VectorType *PTy = cast<VectorType>(Ty);
256 OS << "<" << PTy->getNumElements() << " x ";
257 CalcTypeName(PTy->getElementType(), TypeStack, OS);
258 OS << '>';
259 break;
261 case Type::OpaqueTyID:
262 OS << "opaque";
263 break;
264 default:
265 OS << "<unrecognized-type>";
266 break;
269 TypeStack.pop_back(); // Remove self from stack.
272 /// printTypeInt - The internal guts of printing out a type that has a
273 /// potentially named portion.
275 void TypePrinting::print(const Type *Ty, raw_ostream &OS,
276 bool IgnoreTopLevelName) {
277 // Check to see if the type is named.
278 DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
279 if (!IgnoreTopLevelName) {
280 DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
281 if (I != TM.end()) {
282 OS << I->second;
283 return;
287 // Otherwise we have a type that has not been named but is a derived type.
288 // Carefully recurse the type hierarchy to print out any contained symbolic
289 // names.
290 SmallVector<const Type *, 16> TypeStack;
291 std::string TypeName;
293 raw_string_ostream TypeOS(TypeName);
294 CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
295 OS << TypeOS.str();
297 // Cache type name for later use.
298 if (!IgnoreTopLevelName)
299 TM.insert(std::make_pair(Ty, TypeOS.str()));
302 namespace {
303 class TypeFinder {
304 // To avoid walking constant expressions multiple times and other IR
305 // objects, we keep several helper maps.
306 DenseSet<const Value*> VisitedConstants;
307 DenseSet<const Type*> VisitedTypes;
309 TypePrinting &TP;
310 std::vector<const Type*> &NumberedTypes;
311 public:
312 TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
313 : TP(tp), NumberedTypes(numberedTypes) {}
315 void Run(const Module &M) {
316 // Get types from the type symbol table. This gets opaque types referened
317 // only through derived named types.
318 const TypeSymbolTable &ST = M.getTypeSymbolTable();
319 for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
320 TI != E; ++TI)
321 IncorporateType(TI->second);
323 // Get types from global variables.
324 for (Module::const_global_iterator I = M.global_begin(),
325 E = M.global_end(); I != E; ++I) {
326 IncorporateType(I->getType());
327 if (I->hasInitializer())
328 IncorporateValue(I->getInitializer());
331 // Get types from aliases.
332 for (Module::const_alias_iterator I = M.alias_begin(),
333 E = M.alias_end(); I != E; ++I) {
334 IncorporateType(I->getType());
335 IncorporateValue(I->getAliasee());
338 // Get types from functions.
339 for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
340 IncorporateType(FI->getType());
342 for (Function::const_iterator BB = FI->begin(), E = FI->end();
343 BB != E;++BB)
344 for (BasicBlock::const_iterator II = BB->begin(),
345 E = BB->end(); II != E; ++II) {
346 const Instruction &I = *II;
347 // Incorporate the type of the instruction and all its operands.
348 IncorporateType(I.getType());
349 for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
350 OI != OE; ++OI)
351 IncorporateValue(*OI);
356 private:
357 void IncorporateType(const Type *Ty) {
358 // Check to see if we're already visited this type.
359 if (!VisitedTypes.insert(Ty).second)
360 return;
362 // If this is a structure or opaque type, add a name for the type.
363 if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
364 || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
365 TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
366 NumberedTypes.push_back(Ty);
369 // Recursively walk all contained types.
370 for (Type::subtype_iterator I = Ty->subtype_begin(),
371 E = Ty->subtype_end(); I != E; ++I)
372 IncorporateType(*I);
375 /// IncorporateValue - This method is used to walk operand lists finding
376 /// types hiding in constant expressions and other operands that won't be
377 /// walked in other ways. GlobalValues, basic blocks, instructions, and
378 /// inst operands are all explicitly enumerated.
379 void IncorporateValue(const Value *V) {
380 if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
382 // Already visited?
383 if (!VisitedConstants.insert(V).second)
384 return;
386 // Check this type.
387 IncorporateType(V->getType());
389 // Look in operands for types.
390 const Constant *C = cast<Constant>(V);
391 for (Constant::const_op_iterator I = C->op_begin(),
392 E = C->op_end(); I != E;++I)
393 IncorporateValue(*I);
396 } // end anonymous namespace
399 /// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
400 /// the specified module to the TypePrinter and all numbered types to it and the
401 /// NumberedTypes table.
402 static void AddModuleTypesToPrinter(TypePrinting &TP,
403 std::vector<const Type*> &NumberedTypes,
404 const Module *M) {
405 if (M == 0) return;
407 // If the module has a symbol table, take all global types and stuff their
408 // names into the TypeNames map.
409 const TypeSymbolTable &ST = M->getTypeSymbolTable();
410 for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
411 TI != E; ++TI) {
412 const Type *Ty = cast<Type>(TI->second);
414 // As a heuristic, don't insert pointer to primitive types, because
415 // they are used too often to have a single useful name.
416 if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
417 const Type *PETy = PTy->getElementType();
418 if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
419 !isa<OpaqueType>(PETy))
420 continue;
423 // Likewise don't insert primitives either.
424 if (Ty->isInteger() || Ty->isPrimitiveType())
425 continue;
427 // Get the name as a string and insert it into TypeNames.
428 std::string NameStr;
429 raw_string_ostream NameROS(NameStr);
430 formatted_raw_ostream NameOS(NameROS);
431 PrintLLVMName(NameOS, TI->first, LocalPrefix);
432 NameOS.flush();
433 TP.addTypeName(Ty, NameStr);
436 // Walk the entire module to find references to unnamed structure and opaque
437 // types. This is required for correctness by opaque types (because multiple
438 // uses of an unnamed opaque type needs to be referred to by the same ID) and
439 // it shrinks complex recursive structure types substantially in some cases.
440 TypeFinder(TP, NumberedTypes).Run(*M);
444 /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
445 /// type, iff there is an entry in the modules symbol table for the specified
446 /// type or one of it's component types.
448 void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
449 TypePrinting Printer;
450 std::vector<const Type*> NumberedTypes;
451 AddModuleTypesToPrinter(Printer, NumberedTypes, M);
452 Printer.print(Ty, OS);
455 //===----------------------------------------------------------------------===//
456 // SlotTracker Class: Enumerate slot numbers for unnamed values
457 //===----------------------------------------------------------------------===//
459 namespace {
461 /// This class provides computation of slot numbers for LLVM Assembly writing.
463 class SlotTracker {
464 public:
465 /// ValueMap - A mapping of Values to slot numbers.
466 typedef DenseMap<const Value*, unsigned> ValueMap;
468 private:
469 /// TheModule - The module for which we are holding slot numbers.
470 const Module* TheModule;
472 /// TheFunction - The function for which we are holding slot numbers.
473 const Function* TheFunction;
474 bool FunctionProcessed;
476 /// TheMDNode - The MDNode for which we are holding slot numbers.
477 const MDNode *TheMDNode;
479 /// TheNamedMDNode - The MDNode for which we are holding slot numbers.
480 const NamedMDNode *TheNamedMDNode;
482 /// mMap - The TypePlanes map for the module level data.
483 ValueMap mMap;
484 unsigned mNext;
486 /// fMap - The TypePlanes map for the function level data.
487 ValueMap fMap;
488 unsigned fNext;
490 /// mdnMap - Map for MDNodes.
491 ValueMap mdnMap;
492 unsigned mdnNext;
493 public:
494 /// Construct from a module
495 explicit SlotTracker(const Module *M);
496 /// Construct from a function, starting out in incorp state.
497 explicit SlotTracker(const Function *F);
498 /// Construct from a mdnode.
499 explicit SlotTracker(const MDNode *N);
500 /// Construct from a named mdnode.
501 explicit SlotTracker(const NamedMDNode *N);
503 /// Return the slot number of the specified value in it's type
504 /// plane. If something is not in the SlotTracker, return -1.
505 int getLocalSlot(const Value *V);
506 int getGlobalSlot(const GlobalValue *V);
507 int getMetadataSlot(const MDNode *N);
509 /// If you'd like to deal with a function instead of just a module, use
510 /// this method to get its data into the SlotTracker.
511 void incorporateFunction(const Function *F) {
512 TheFunction = F;
513 FunctionProcessed = false;
516 /// After calling incorporateFunction, use this method to remove the
517 /// most recently incorporated function from the SlotTracker. This
518 /// will reset the state of the machine back to just the module contents.
519 void purgeFunction();
521 /// MDNode map iterators.
522 ValueMap::iterator mdnBegin() { return mdnMap.begin(); }
523 ValueMap::iterator mdnEnd() { return mdnMap.end(); }
524 unsigned mdnSize() const { return mdnMap.size(); }
525 bool mdnEmpty() const { return mdnMap.empty(); }
527 /// This function does the actual initialization.
528 inline void initialize();
530 // Implementation Details
531 private:
532 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
533 void CreateModuleSlot(const GlobalValue *V);
535 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
536 void CreateMetadataSlot(const MDNode *N);
538 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
539 void CreateFunctionSlot(const Value *V);
541 /// Add all of the module level global variables (and their initializers)
542 /// and function declarations, but not the contents of those functions.
543 void processModule();
545 /// Add all of the functions arguments, basic blocks, and instructions.
546 void processFunction();
548 /// Add all MDNode operands.
549 void processMDNode();
551 /// Add all MDNode operands.
552 void processNamedMDNode();
554 SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT
555 void operator=(const SlotTracker &); // DO NOT IMPLEMENT
558 } // end anonymous namespace
561 static SlotTracker *createSlotTracker(const Value *V) {
562 if (const Argument *FA = dyn_cast<Argument>(V))
563 return new SlotTracker(FA->getParent());
565 if (const Instruction *I = dyn_cast<Instruction>(V))
566 return new SlotTracker(I->getParent()->getParent());
568 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
569 return new SlotTracker(BB->getParent());
571 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
572 return new SlotTracker(GV->getParent());
574 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
575 return new SlotTracker(GA->getParent());
577 if (const Function *Func = dyn_cast<Function>(V))
578 return new SlotTracker(Func);
580 return 0;
583 #if 0
584 #define ST_DEBUG(X) errs() << X
585 #else
586 #define ST_DEBUG(X)
587 #endif
589 // Module level constructor. Causes the contents of the Module (sans functions)
590 // to be added to the slot table.
591 SlotTracker::SlotTracker(const Module *M)
592 : TheModule(M), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
593 TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
596 // Function level constructor. Causes the contents of the Module and the one
597 // function provided to be added to the slot table.
598 SlotTracker::SlotTracker(const Function *F)
599 : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
600 TheMDNode(0), TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
603 // Constructor to handle single MDNode.
604 SlotTracker::SlotTracker(const MDNode *C)
605 : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C),
606 TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
609 // Constructor to handle single NamedMDNode.
610 SlotTracker::SlotTracker(const NamedMDNode *N)
611 : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
612 TheNamedMDNode(N), mNext(0), fNext(0), mdnNext(0) {
615 inline void SlotTracker::initialize() {
616 if (TheModule) {
617 processModule();
618 TheModule = 0; ///< Prevent re-processing next time we're called.
621 if (TheFunction && !FunctionProcessed)
622 processFunction();
624 if (TheMDNode)
625 processMDNode();
627 if (TheNamedMDNode)
628 processNamedMDNode();
631 // Iterate through all the global variables, functions, and global
632 // variable initializers and create slots for them.
633 void SlotTracker::processModule() {
634 ST_DEBUG("begin processModule!\n");
636 // Add all of the unnamed global variables to the value table.
637 for (Module::const_global_iterator I = TheModule->global_begin(),
638 E = TheModule->global_end(); I != E; ++I) {
639 if (!I->hasName())
640 CreateModuleSlot(I);
641 if (I->hasInitializer()) {
642 if (MDNode *N = dyn_cast<MDNode>(I->getInitializer()))
643 CreateMetadataSlot(N);
647 // Add metadata used by named metadata.
648 for (Module::const_named_metadata_iterator
649 I = TheModule->named_metadata_begin(),
650 E = TheModule->named_metadata_end(); I != E; ++I) {
651 const NamedMDNode *NMD = I;
652 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
653 MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
654 if (MD)
655 CreateMetadataSlot(MD);
659 // Add all the unnamed functions to the table.
660 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
661 I != E; ++I)
662 if (!I->hasName())
663 CreateModuleSlot(I);
665 ST_DEBUG("end processModule!\n");
668 // Process the arguments, basic blocks, and instructions of a function.
669 void SlotTracker::processFunction() {
670 ST_DEBUG("begin processFunction!\n");
671 fNext = 0;
673 // Add all the function arguments with no names.
674 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
675 AE = TheFunction->arg_end(); AI != AE; ++AI)
676 if (!AI->hasName())
677 CreateFunctionSlot(AI);
679 ST_DEBUG("Inserting Instructions:\n");
681 // Add all of the basic blocks and instructions with no names.
682 for (Function::const_iterator BB = TheFunction->begin(),
683 E = TheFunction->end(); BB != E; ++BB) {
684 if (!BB->hasName())
685 CreateFunctionSlot(BB);
686 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
687 ++I) {
688 if (I->getType() != Type::getVoidTy(TheFunction->getContext()) &&
689 !I->hasName())
690 CreateFunctionSlot(I);
691 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
692 if (MDNode *N = dyn_cast<MDNode>(I->getOperand(i)))
693 CreateMetadataSlot(N);
697 FunctionProcessed = true;
699 ST_DEBUG("end processFunction!\n");
702 /// processMDNode - Process TheMDNode.
703 void SlotTracker::processMDNode() {
704 ST_DEBUG("begin processMDNode!\n");
705 mdnNext = 0;
706 CreateMetadataSlot(TheMDNode);
707 TheMDNode = 0;
708 ST_DEBUG("end processMDNode!\n");
711 /// processNamedMDNode - Process TheNamedMDNode.
712 void SlotTracker::processNamedMDNode() {
713 ST_DEBUG("begin processNamedMDNode!\n");
714 mdnNext = 0;
715 for (unsigned i = 0, e = TheNamedMDNode->getNumElements(); i != e; ++i) {
716 MDNode *MD = dyn_cast_or_null<MDNode>(TheNamedMDNode->getElement(i));
717 if (MD)
718 CreateMetadataSlot(MD);
720 TheNamedMDNode = 0;
721 ST_DEBUG("end processNamedMDNode!\n");
724 /// Clean up after incorporating a function. This is the only way to get out of
725 /// the function incorporation state that affects get*Slot/Create*Slot. Function
726 /// incorporation state is indicated by TheFunction != 0.
727 void SlotTracker::purgeFunction() {
728 ST_DEBUG("begin purgeFunction!\n");
729 fMap.clear(); // Simply discard the function level map
730 TheFunction = 0;
731 FunctionProcessed = false;
732 ST_DEBUG("end purgeFunction!\n");
735 /// getGlobalSlot - Get the slot number of a global value.
736 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
737 // Check for uninitialized state and do lazy initialization.
738 initialize();
740 // Find the type plane in the module map
741 ValueMap::iterator MI = mMap.find(V);
742 return MI == mMap.end() ? -1 : (int)MI->second;
745 /// getGlobalSlot - Get the slot number of a MDNode.
746 int SlotTracker::getMetadataSlot(const MDNode *N) {
747 // Check for uninitialized state and do lazy initialization.
748 initialize();
750 // Find the type plane in the module map
751 ValueMap::iterator MI = mdnMap.find(N);
752 return MI == mdnMap.end() ? -1 : (int)MI->second;
756 /// getLocalSlot - Get the slot number for a value that is local to a function.
757 int SlotTracker::getLocalSlot(const Value *V) {
758 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
760 // Check for uninitialized state and do lazy initialization.
761 initialize();
763 ValueMap::iterator FI = fMap.find(V);
764 return FI == fMap.end() ? -1 : (int)FI->second;
768 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
769 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
770 assert(V && "Can't insert a null Value into SlotTracker!");
771 assert(V->getType() != Type::getVoidTy(V->getContext()) &&
772 "Doesn't need a slot!");
773 assert(!V->hasName() && "Doesn't need a slot!");
775 unsigned DestSlot = mNext++;
776 mMap[V] = DestSlot;
778 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
779 DestSlot << " [");
780 // G = Global, F = Function, A = Alias, o = other
781 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
782 (isa<Function>(V) ? 'F' :
783 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
786 /// CreateSlot - Create a new slot for the specified value if it has no name.
787 void SlotTracker::CreateFunctionSlot(const Value *V) {
788 assert(V->getType() != Type::getVoidTy(TheFunction->getContext()) &&
789 !V->hasName() && "Doesn't need a slot!");
791 unsigned DestSlot = fNext++;
792 fMap[V] = DestSlot;
794 // G = Global, F = Function, o = other
795 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
796 DestSlot << " [o]\n");
799 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
800 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
801 assert(N && "Can't insert a null Value into SlotTracker!");
803 ValueMap::iterator I = mdnMap.find(N);
804 if (I != mdnMap.end())
805 return;
807 unsigned DestSlot = mdnNext++;
808 mdnMap[N] = DestSlot;
810 for (MDNode::const_elem_iterator MDI = N->elem_begin(),
811 MDE = N->elem_end(); MDI != MDE; ++MDI) {
812 const Value *TV = *MDI;
813 if (TV)
814 if (const MDNode *N2 = dyn_cast<MDNode>(TV))
815 CreateMetadataSlot(N2);
819 //===----------------------------------------------------------------------===//
820 // AsmWriter Implementation
821 //===----------------------------------------------------------------------===//
823 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
824 TypePrinting *TypePrinter,
825 SlotTracker *Machine);
829 static const char *getPredicateText(unsigned predicate) {
830 const char * pred = "unknown";
831 switch (predicate) {
832 case FCmpInst::FCMP_FALSE: pred = "false"; break;
833 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
834 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
835 case FCmpInst::FCMP_OGE: pred = "oge"; break;
836 case FCmpInst::FCMP_OLT: pred = "olt"; break;
837 case FCmpInst::FCMP_OLE: pred = "ole"; break;
838 case FCmpInst::FCMP_ONE: pred = "one"; break;
839 case FCmpInst::FCMP_ORD: pred = "ord"; break;
840 case FCmpInst::FCMP_UNO: pred = "uno"; break;
841 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
842 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
843 case FCmpInst::FCMP_UGE: pred = "uge"; break;
844 case FCmpInst::FCMP_ULT: pred = "ult"; break;
845 case FCmpInst::FCMP_ULE: pred = "ule"; break;
846 case FCmpInst::FCMP_UNE: pred = "une"; break;
847 case FCmpInst::FCMP_TRUE: pred = "true"; break;
848 case ICmpInst::ICMP_EQ: pred = "eq"; break;
849 case ICmpInst::ICMP_NE: pred = "ne"; break;
850 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
851 case ICmpInst::ICMP_SGE: pred = "sge"; break;
852 case ICmpInst::ICMP_SLT: pred = "slt"; break;
853 case ICmpInst::ICMP_SLE: pred = "sle"; break;
854 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
855 case ICmpInst::ICMP_UGE: pred = "uge"; break;
856 case ICmpInst::ICMP_ULT: pred = "ult"; break;
857 case ICmpInst::ICMP_ULE: pred = "ule"; break;
859 return pred;
862 static void WriteMDNodes(formatted_raw_ostream &Out, TypePrinting &TypePrinter,
863 SlotTracker &Machine) {
864 SmallVector<const MDNode *, 16> Nodes;
865 Nodes.resize(Machine.mdnSize());
866 for (SlotTracker::ValueMap::iterator I =
867 Machine.mdnBegin(), E = Machine.mdnEnd(); I != E; ++I)
868 Nodes[I->second] = cast<MDNode>(I->first);
870 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
871 Out << '!' << i << " = metadata ";
872 const MDNode *Node = Nodes[i];
873 Out << "!{";
874 for (MDNode::const_elem_iterator NI = Node->elem_begin(),
875 NE = Node->elem_end(); NI != NE;) {
876 const Value *V = *NI;
877 if (!V)
878 Out << "null";
879 else if (const MDNode *N = dyn_cast<MDNode>(V)) {
880 Out << "metadata ";
881 Out << '!' << Machine.getMetadataSlot(N);
883 else {
884 TypePrinter.print((*NI)->getType(), Out);
885 Out << ' ';
886 WriteAsOperandInternal(Out, *NI, &TypePrinter, &Machine);
888 if (++NI != NE)
889 Out << ", ";
891 Out << "}\n";
895 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
896 if (const OverflowingBinaryOperator *OBO =
897 dyn_cast<OverflowingBinaryOperator>(U)) {
898 if (OBO->hasNoUnsignedOverflow())
899 Out << " nuw";
900 if (OBO->hasNoSignedOverflow())
901 Out << " nsw";
902 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
903 if (Div->isExact())
904 Out << " exact";
905 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
906 if (GEP->isInBounds())
907 Out << " inbounds";
911 static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
912 TypePrinting &TypePrinter, SlotTracker *Machine) {
913 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
914 if (CI->getType() == Type::getInt1Ty(CV->getContext())) {
915 Out << (CI->getZExtValue() ? "true" : "false");
916 return;
918 Out << CI->getValue();
919 return;
922 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
923 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
924 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
925 // We would like to output the FP constant value in exponential notation,
926 // but we cannot do this if doing so will lose precision. Check here to
927 // make sure that we only output it in exponential format if we can parse
928 // the value back and get the same value.
930 bool ignored;
931 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
932 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
933 CFP->getValueAPF().convertToFloat();
934 std::string StrVal = ftostr(CFP->getValueAPF());
936 // Check to make sure that the stringized number is not some string like
937 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
938 // that the string matches the "[-+]?[0-9]" regex.
940 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
941 ((StrVal[0] == '-' || StrVal[0] == '+') &&
942 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
943 // Reparse stringized version!
944 if (atof(StrVal.c_str()) == Val) {
945 Out << StrVal;
946 return;
949 // Otherwise we could not reparse it to exactly the same value, so we must
950 // output the string in hexadecimal format! Note that loading and storing
951 // floating point types changes the bits of NaNs on some hosts, notably
952 // x86, so we must not use these types.
953 assert(sizeof(double) == sizeof(uint64_t) &&
954 "assuming that double is 64 bits!");
955 char Buffer[40];
956 APFloat apf = CFP->getValueAPF();
957 // Floats are represented in ASCII IR as double, convert.
958 if (!isDouble)
959 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
960 &ignored);
961 Out << "0x" <<
962 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
963 Buffer+40);
964 return;
967 // Some form of long double. These appear as a magic letter identifying
968 // the type, then a fixed number of hex digits.
969 Out << "0x";
970 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
971 Out << 'K';
972 // api needed to prevent premature destruction
973 APInt api = CFP->getValueAPF().bitcastToAPInt();
974 const uint64_t* p = api.getRawData();
975 uint64_t word = p[1];
976 int shiftcount=12;
977 int width = api.getBitWidth();
978 for (int j=0; j<width; j+=4, shiftcount-=4) {
979 unsigned int nibble = (word>>shiftcount) & 15;
980 if (nibble < 10)
981 Out << (unsigned char)(nibble + '0');
982 else
983 Out << (unsigned char)(nibble - 10 + 'A');
984 if (shiftcount == 0 && j+4 < width) {
985 word = *p;
986 shiftcount = 64;
987 if (width-j-4 < 64)
988 shiftcount = width-j-4;
991 return;
992 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
993 Out << 'L';
994 else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
995 Out << 'M';
996 else
997 llvm_unreachable("Unsupported floating point type");
998 // api needed to prevent premature destruction
999 APInt api = CFP->getValueAPF().bitcastToAPInt();
1000 const uint64_t* p = api.getRawData();
1001 uint64_t word = *p;
1002 int shiftcount=60;
1003 int width = api.getBitWidth();
1004 for (int j=0; j<width; j+=4, shiftcount-=4) {
1005 unsigned int nibble = (word>>shiftcount) & 15;
1006 if (nibble < 10)
1007 Out << (unsigned char)(nibble + '0');
1008 else
1009 Out << (unsigned char)(nibble - 10 + 'A');
1010 if (shiftcount == 0 && j+4 < width) {
1011 word = *(++p);
1012 shiftcount = 64;
1013 if (width-j-4 < 64)
1014 shiftcount = width-j-4;
1017 return;
1020 if (isa<ConstantAggregateZero>(CV)) {
1021 Out << "zeroinitializer";
1022 return;
1025 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1026 // As a special case, print the array as a string if it is an array of
1027 // i8 with ConstantInt values.
1029 const Type *ETy = CA->getType()->getElementType();
1030 if (CA->isString()) {
1031 Out << "c\"";
1032 PrintEscapedString(CA->getAsString(), Out);
1033 Out << '"';
1034 } else { // Cannot output in string format...
1035 Out << '[';
1036 if (CA->getNumOperands()) {
1037 TypePrinter.print(ETy, Out);
1038 Out << ' ';
1039 WriteAsOperandInternal(Out, CA->getOperand(0),
1040 &TypePrinter, Machine);
1041 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1042 Out << ", ";
1043 TypePrinter.print(ETy, Out);
1044 Out << ' ';
1045 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
1048 Out << ']';
1050 return;
1053 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1054 if (CS->getType()->isPacked())
1055 Out << '<';
1056 Out << '{';
1057 unsigned N = CS->getNumOperands();
1058 if (N) {
1059 Out << ' ';
1060 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1061 Out << ' ';
1063 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);
1065 for (unsigned i = 1; i < N; i++) {
1066 Out << ", ";
1067 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1068 Out << ' ';
1070 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
1072 Out << ' ';
1075 Out << '}';
1076 if (CS->getType()->isPacked())
1077 Out << '>';
1078 return;
1081 if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1082 const Type *ETy = CP->getType()->getElementType();
1083 assert(CP->getNumOperands() > 0 &&
1084 "Number of operands for a PackedConst must be > 0");
1085 Out << '<';
1086 TypePrinter.print(ETy, Out);
1087 Out << ' ';
1088 WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
1089 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1090 Out << ", ";
1091 TypePrinter.print(ETy, Out);
1092 Out << ' ';
1093 WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
1095 Out << '>';
1096 return;
1099 if (isa<ConstantPointerNull>(CV)) {
1100 Out << "null";
1101 return;
1104 if (isa<UndefValue>(CV)) {
1105 Out << "undef";
1106 return;
1109 if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1110 Out << "!" << Machine->getMetadataSlot(Node);
1111 return;
1114 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1115 Out << CE->getOpcodeName();
1116 WriteOptimizationInfo(Out, CE);
1117 if (CE->isCompare())
1118 Out << ' ' << getPredicateText(CE->getPredicate());
1119 Out << " (";
1121 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1122 TypePrinter.print((*OI)->getType(), Out);
1123 Out << ' ';
1124 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
1125 if (OI+1 != CE->op_end())
1126 Out << ", ";
1129 if (CE->hasIndices()) {
1130 const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1131 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1132 Out << ", " << Indices[i];
1135 if (CE->isCast()) {
1136 Out << " to ";
1137 TypePrinter.print(CE->getType(), Out);
1140 Out << ')';
1141 return;
1144 Out << "<placeholder or erroneous Constant>";
1148 /// WriteAsOperand - Write the name of the specified value out to the specified
1149 /// ostream. This can be useful when you just want to print int %reg126, not
1150 /// the whole instruction that generated it.
1152 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1153 TypePrinting *TypePrinter,
1154 SlotTracker *Machine) {
1155 if (V->hasName()) {
1156 PrintLLVMName(Out, V);
1157 return;
1160 const Constant *CV = dyn_cast<Constant>(V);
1161 if (CV && !isa<GlobalValue>(CV)) {
1162 assert(TypePrinter && "Constants require TypePrinting!");
1163 WriteConstantInt(Out, CV, *TypePrinter, Machine);
1164 return;
1167 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1168 Out << "asm ";
1169 if (IA->hasSideEffects())
1170 Out << "sideeffect ";
1171 Out << '"';
1172 PrintEscapedString(IA->getAsmString(), Out);
1173 Out << "\", \"";
1174 PrintEscapedString(IA->getConstraintString(), Out);
1175 Out << '"';
1176 return;
1179 if (const MDNode *N = dyn_cast<MDNode>(V)) {
1180 Out << '!' << Machine->getMetadataSlot(N);
1181 return;
1184 if (const MDString *MDS = dyn_cast<MDString>(V)) {
1185 Out << "!\"";
1186 PrintEscapedString(MDS->getString(), Out);
1187 Out << '"';
1188 return;
1191 char Prefix = '%';
1192 int Slot;
1193 if (Machine) {
1194 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1195 Slot = Machine->getGlobalSlot(GV);
1196 Prefix = '@';
1197 } else {
1198 Slot = Machine->getLocalSlot(V);
1200 } else {
1201 Machine = createSlotTracker(V);
1202 if (Machine) {
1203 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1204 Slot = Machine->getGlobalSlot(GV);
1205 Prefix = '@';
1206 } else {
1207 Slot = Machine->getLocalSlot(V);
1209 delete Machine;
1210 } else {
1211 Slot = -1;
1215 if (Slot != -1)
1216 Out << Prefix << Slot;
1217 else
1218 Out << "<badref>";
1221 /// WriteAsOperand - Write the name of the specified value out to the specified
1222 /// ostream. This can be useful when you just want to print int %reg126, not
1223 /// the whole instruction that generated it.
1225 void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
1226 const Module *Context) {
1227 raw_os_ostream OS(Out);
1228 WriteAsOperand(OS, V, PrintType, Context);
1231 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1232 bool PrintType, const Module *Context) {
1234 // Fast path: Don't construct and populate a TypePrinting object if we
1235 // won't be needing any types printed.
1236 if (!PrintType &&
1237 (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
1238 WriteAsOperandInternal(Out, V, 0, 0);
1239 return;
1242 if (Context == 0) Context = getModuleFromVal(V);
1244 TypePrinting TypePrinter;
1245 std::vector<const Type*> NumberedTypes;
1246 AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1247 if (PrintType) {
1248 TypePrinter.print(V->getType(), Out);
1249 Out << ' ';
1252 WriteAsOperandInternal(Out, V, &TypePrinter, 0);
1255 namespace {
1257 class AssemblyWriter {
1258 formatted_raw_ostream &Out;
1259 SlotTracker &Machine;
1260 const Module *TheModule;
1261 TypePrinting TypePrinter;
1262 AssemblyAnnotationWriter *AnnotationWriter;
1263 std::vector<const Type*> NumberedTypes;
1265 // Each MDNode is assigned unique MetadataIDNo.
1266 std::map<const MDNode *, unsigned> MDNodes;
1267 unsigned MetadataIDNo;
1268 public:
1269 inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1270 const Module *M,
1271 AssemblyAnnotationWriter *AAW)
1272 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW), MetadataIDNo(0) {
1273 AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1276 void write(const Module *M) { printModule(M); }
1278 void write(const GlobalValue *G) {
1279 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
1280 printGlobal(GV);
1281 else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
1282 printAlias(GA);
1283 else if (const Function *F = dyn_cast<Function>(G))
1284 printFunction(F);
1285 else
1286 llvm_unreachable("Unknown global");
1289 void write(const BasicBlock *BB) { printBasicBlock(BB); }
1290 void write(const Instruction *I) { printInstruction(*I); }
1292 void writeOperand(const Value *Op, bool PrintType);
1293 void writeParamOperand(const Value *Operand, Attributes Attrs);
1295 const Module* getModule() { return TheModule; }
1297 private:
1298 void printModule(const Module *M);
1299 void printTypeSymbolTable(const TypeSymbolTable &ST);
1300 void printGlobal(const GlobalVariable *GV);
1301 void printAlias(const GlobalAlias *GV);
1302 void printFunction(const Function *F);
1303 void printArgument(const Argument *FA, Attributes Attrs);
1304 void printBasicBlock(const BasicBlock *BB);
1305 void printInstruction(const Instruction &I);
1307 // printInfoComment - Print a little comment after the instruction indicating
1308 // which slot it occupies.
1309 void printInfoComment(const Value &V);
1311 } // end of anonymous namespace
1314 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1315 if (Operand == 0) {
1316 Out << "<null operand!>";
1317 } else {
1318 if (PrintType) {
1319 TypePrinter.print(Operand->getType(), Out);
1320 Out << ' ';
1322 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1326 void AssemblyWriter::writeParamOperand(const Value *Operand,
1327 Attributes Attrs) {
1328 if (Operand == 0) {
1329 Out << "<null operand!>";
1330 } else {
1331 // Print the type
1332 TypePrinter.print(Operand->getType(), Out);
1333 // Print parameter attributes list
1334 if (Attrs != Attribute::None)
1335 Out << ' ' << Attribute::getAsString(Attrs);
1336 Out << ' ';
1337 // Print the operand
1338 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1342 void AssemblyWriter::printModule(const Module *M) {
1343 if (!M->getModuleIdentifier().empty() &&
1344 // Don't print the ID if it will start a new line (which would
1345 // require a comment char before it).
1346 M->getModuleIdentifier().find('\n') == std::string::npos)
1347 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1349 if (!M->getDataLayout().empty())
1350 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1351 if (!M->getTargetTriple().empty())
1352 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1354 if (!M->getModuleInlineAsm().empty()) {
1355 // Split the string into lines, to make it easier to read the .ll file.
1356 std::string Asm = M->getModuleInlineAsm();
1357 size_t CurPos = 0;
1358 size_t NewLine = Asm.find_first_of('\n', CurPos);
1359 Out << '\n';
1360 while (NewLine != std::string::npos) {
1361 // We found a newline, print the portion of the asm string from the
1362 // last newline up to this newline.
1363 Out << "module asm \"";
1364 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1365 Out);
1366 Out << "\"\n";
1367 CurPos = NewLine+1;
1368 NewLine = Asm.find_first_of('\n', CurPos);
1370 Out << "module asm \"";
1371 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1372 Out << "\"\n";
1375 // Loop over the dependent libraries and emit them.
1376 Module::lib_iterator LI = M->lib_begin();
1377 Module::lib_iterator LE = M->lib_end();
1378 if (LI != LE) {
1379 Out << '\n';
1380 Out << "deplibs = [ ";
1381 while (LI != LE) {
1382 Out << '"' << *LI << '"';
1383 ++LI;
1384 if (LI != LE)
1385 Out << ", ";
1387 Out << " ]";
1390 // Loop over the symbol table, emitting all id'd types.
1391 if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1392 printTypeSymbolTable(M->getTypeSymbolTable());
1394 // Output all globals.
1395 if (!M->global_empty()) Out << '\n';
1396 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1397 I != E; ++I)
1398 printGlobal(I);
1400 // Output all aliases.
1401 if (!M->alias_empty()) Out << "\n";
1402 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1403 I != E; ++I)
1404 printAlias(I);
1406 // Output all of the functions.
1407 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1408 printFunction(I);
1410 // Output named metadata.
1411 if (!M->named_metadata_empty()) Out << '\n';
1412 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1413 E = M->named_metadata_end(); I != E; ++I) {
1414 const NamedMDNode *NMD = I;
1415 Out << "!" << NMD->getName() << " = !{";
1416 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
1417 if (i) Out << ", ";
1418 MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
1419 Out << '!' << Machine.getMetadataSlot(MD);
1421 Out << "}\n";
1424 // Output metadata.
1425 if (!Machine.mdnEmpty()) Out << '\n';
1426 WriteMDNodes(Out, TypePrinter, Machine);
1429 static void PrintLinkage(GlobalValue::LinkageTypes LT,
1430 formatted_raw_ostream &Out) {
1431 switch (LT) {
1432 case GlobalValue::ExternalLinkage: break;
1433 case GlobalValue::PrivateLinkage: Out << "private "; break;
1434 case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1435 case GlobalValue::InternalLinkage: Out << "internal "; break;
1436 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
1437 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
1438 case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
1439 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
1440 case GlobalValue::CommonLinkage: Out << "common "; break;
1441 case GlobalValue::AppendingLinkage: Out << "appending "; break;
1442 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
1443 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
1444 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1445 case GlobalValue::AvailableExternallyLinkage:
1446 Out << "available_externally ";
1447 break;
1448 case GlobalValue::GhostLinkage:
1449 llvm_unreachable("GhostLinkage not allowed in AsmWriter!");
1454 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1455 formatted_raw_ostream &Out) {
1456 switch (Vis) {
1457 default: llvm_unreachable("Invalid visibility style!");
1458 case GlobalValue::DefaultVisibility: break;
1459 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1460 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1464 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1465 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
1466 Out << " = ";
1468 if (!GV->hasInitializer() && GV->hasExternalLinkage())
1469 Out << "external ";
1471 PrintLinkage(GV->getLinkage(), Out);
1472 PrintVisibility(GV->getVisibility(), Out);
1474 if (GV->isThreadLocal()) Out << "thread_local ";
1475 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1476 Out << "addrspace(" << AddressSpace << ") ";
1477 Out << (GV->isConstant() ? "constant " : "global ");
1478 TypePrinter.print(GV->getType()->getElementType(), Out);
1480 if (GV->hasInitializer()) {
1481 Out << ' ';
1482 writeOperand(GV->getInitializer(), false);
1485 if (GV->hasSection())
1486 Out << ", section \"" << GV->getSection() << '"';
1487 if (GV->getAlignment())
1488 Out << ", align " << GV->getAlignment();
1490 printInfoComment(*GV);
1491 Out << '\n';
1494 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1495 // Don't crash when dumping partially built GA
1496 if (!GA->hasName())
1497 Out << "<<nameless>> = ";
1498 else {
1499 PrintLLVMName(Out, GA);
1500 Out << " = ";
1502 PrintVisibility(GA->getVisibility(), Out);
1504 Out << "alias ";
1506 PrintLinkage(GA->getLinkage(), Out);
1508 const Constant *Aliasee = GA->getAliasee();
1510 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1511 TypePrinter.print(GV->getType(), Out);
1512 Out << ' ';
1513 PrintLLVMName(Out, GV);
1514 } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1515 TypePrinter.print(F->getFunctionType(), Out);
1516 Out << "* ";
1518 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1519 } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1520 TypePrinter.print(GA->getType(), Out);
1521 Out << ' ';
1522 PrintLLVMName(Out, GA);
1523 } else {
1524 const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1525 // The only valid GEP is an all zero GEP.
1526 assert((CE->getOpcode() == Instruction::BitCast ||
1527 CE->getOpcode() == Instruction::GetElementPtr) &&
1528 "Unsupported aliasee");
1529 writeOperand(CE, false);
1532 printInfoComment(*GA);
1533 Out << '\n';
1536 void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1537 // Emit all numbered types.
1538 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1539 Out << '%' << i << " = type ";
1541 // Make sure we print out at least one level of the type structure, so
1542 // that we do not get %2 = type %2
1543 TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1544 Out << '\n';
1547 // Print the named types.
1548 for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1549 TI != TE; ++TI) {
1550 PrintLLVMName(Out, TI->first, LocalPrefix);
1551 Out << " = type ";
1553 // Make sure we print out at least one level of the type structure, so
1554 // that we do not get %FILE = type %FILE
1555 TypePrinter.printAtLeastOneLevel(TI->second, Out);
1556 Out << '\n';
1560 /// printFunction - Print all aspects of a function.
1562 void AssemblyWriter::printFunction(const Function *F) {
1563 // Print out the return type and name.
1564 Out << '\n';
1566 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1568 if (F->isDeclaration())
1569 Out << "declare ";
1570 else
1571 Out << "define ";
1573 PrintLinkage(F->getLinkage(), Out);
1574 PrintVisibility(F->getVisibility(), Out);
1576 // Print the calling convention.
1577 switch (F->getCallingConv()) {
1578 case CallingConv::C: break; // default
1579 case CallingConv::Fast: Out << "fastcc "; break;
1580 case CallingConv::Cold: Out << "coldcc "; break;
1581 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
1582 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1583 case CallingConv::ARM_APCS: Out << "arm_apcscc "; break;
1584 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break;
1585 case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1586 default: Out << "cc" << F->getCallingConv() << " "; break;
1589 const FunctionType *FT = F->getFunctionType();
1590 const AttrListPtr &Attrs = F->getAttributes();
1591 Attributes RetAttrs = Attrs.getRetAttributes();
1592 if (RetAttrs != Attribute::None)
1593 Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1594 TypePrinter.print(F->getReturnType(), Out);
1595 Out << ' ';
1596 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1597 Out << '(';
1598 Machine.incorporateFunction(F);
1600 // Loop over the arguments, printing them...
1602 unsigned Idx = 1;
1603 if (!F->isDeclaration()) {
1604 // If this isn't a declaration, print the argument names as well.
1605 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1606 I != E; ++I) {
1607 // Insert commas as we go... the first arg doesn't get a comma
1608 if (I != F->arg_begin()) Out << ", ";
1609 printArgument(I, Attrs.getParamAttributes(Idx));
1610 Idx++;
1612 } else {
1613 // Otherwise, print the types from the function type.
1614 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1615 // Insert commas as we go... the first arg doesn't get a comma
1616 if (i) Out << ", ";
1618 // Output type...
1619 TypePrinter.print(FT->getParamType(i), Out);
1621 Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1622 if (ArgAttrs != Attribute::None)
1623 Out << ' ' << Attribute::getAsString(ArgAttrs);
1627 // Finish printing arguments...
1628 if (FT->isVarArg()) {
1629 if (FT->getNumParams()) Out << ", ";
1630 Out << "..."; // Output varargs portion of signature!
1632 Out << ')';
1633 Attributes FnAttrs = Attrs.getFnAttributes();
1634 if (FnAttrs != Attribute::None)
1635 Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1636 if (F->hasSection())
1637 Out << " section \"" << F->getSection() << '"';
1638 if (F->getAlignment())
1639 Out << " align " << F->getAlignment();
1640 if (F->hasGC())
1641 Out << " gc \"" << F->getGC() << '"';
1642 if (F->isDeclaration()) {
1643 Out << "\n";
1644 } else {
1645 Out << " {";
1647 // Output all of its basic blocks... for the function
1648 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1649 printBasicBlock(I);
1651 Out << "}\n";
1654 Machine.purgeFunction();
1657 /// printArgument - This member is called for every argument that is passed into
1658 /// the function. Simply print it out
1660 void AssemblyWriter::printArgument(const Argument *Arg,
1661 Attributes Attrs) {
1662 // Output type...
1663 TypePrinter.print(Arg->getType(), Out);
1665 // Output parameter attributes list
1666 if (Attrs != Attribute::None)
1667 Out << ' ' << Attribute::getAsString(Attrs);
1669 // Output name, if available...
1670 if (Arg->hasName()) {
1671 Out << ' ';
1672 PrintLLVMName(Out, Arg);
1676 /// printBasicBlock - This member is called for each basic block in a method.
1678 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1679 if (BB->hasName()) { // Print out the label if it exists...
1680 Out << "\n";
1681 PrintLLVMName(Out, BB->getName(), LabelPrefix);
1682 Out << ':';
1683 } else if (!BB->use_empty()) { // Don't print block # of no uses...
1684 Out << "\n; <label>:";
1685 int Slot = Machine.getLocalSlot(BB);
1686 if (Slot != -1)
1687 Out << Slot;
1688 else
1689 Out << "<badref>";
1692 if (BB->getParent() == 0) {
1693 Out.PadToColumn(50);
1694 Out << "; Error: Block without parent!";
1695 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
1696 // Output predecessors for the block...
1697 Out.PadToColumn(50);
1698 Out << ";";
1699 pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1701 if (PI == PE) {
1702 Out << " No predecessors!";
1703 } else {
1704 Out << " preds = ";
1705 writeOperand(*PI, false);
1706 for (++PI; PI != PE; ++PI) {
1707 Out << ", ";
1708 writeOperand(*PI, false);
1713 Out << "\n";
1715 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1717 // Output all of the instructions in the basic block...
1718 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1719 printInstruction(*I);
1720 Out << '\n';
1723 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1727 /// printInfoComment - Print a little comment after the instruction indicating
1728 /// which slot it occupies.
1730 void AssemblyWriter::printInfoComment(const Value &V) {
1731 if (V.getType() != Type::getVoidTy(V.getContext())) {
1732 Out.PadToColumn(50);
1733 Out << "; <";
1734 TypePrinter.print(V.getType(), Out);
1735 Out << "> [#uses=" << V.getNumUses() << ']'; // Output # uses
1739 // This member is called for each Instruction in a function..
1740 void AssemblyWriter::printInstruction(const Instruction &I) {
1741 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1743 // Print out indentation for an instruction.
1744 Out << " ";
1746 // Print out name if it exists...
1747 if (I.hasName()) {
1748 PrintLLVMName(Out, &I);
1749 Out << " = ";
1750 } else if (I.getType() != Type::getVoidTy(I.getContext())) {
1751 // Print out the def slot taken.
1752 int SlotNum = Machine.getLocalSlot(&I);
1753 if (SlotNum == -1)
1754 Out << "<badref> = ";
1755 else
1756 Out << '%' << SlotNum << " = ";
1759 // If this is a volatile load or store, print out the volatile marker.
1760 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
1761 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1762 Out << "volatile ";
1763 } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1764 // If this is a call, check if it's a tail call.
1765 Out << "tail ";
1768 // Print out the opcode...
1769 Out << I.getOpcodeName();
1771 // Print out optimization information.
1772 WriteOptimizationInfo(Out, &I);
1774 // Print out the compare instruction predicates
1775 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1776 Out << ' ' << getPredicateText(CI->getPredicate());
1778 // Print out the type of the operands...
1779 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1781 // Special case conditional branches to swizzle the condition out to the front
1782 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1783 BranchInst &BI(cast<BranchInst>(I));
1784 Out << ' ';
1785 writeOperand(BI.getCondition(), true);
1786 Out << ", ";
1787 writeOperand(BI.getSuccessor(0), true);
1788 Out << ", ";
1789 writeOperand(BI.getSuccessor(1), true);
1791 } else if (isa<SwitchInst>(I)) {
1792 // Special case switch statement to get formatting nice and correct...
1793 Out << ' ';
1794 writeOperand(Operand , true);
1795 Out << ", ";
1796 writeOperand(I.getOperand(1), true);
1797 Out << " [";
1799 for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1800 Out << "\n ";
1801 writeOperand(I.getOperand(op ), true);
1802 Out << ", ";
1803 writeOperand(I.getOperand(op+1), true);
1805 Out << "\n ]";
1806 } else if (isa<PHINode>(I)) {
1807 Out << ' ';
1808 TypePrinter.print(I.getType(), Out);
1809 Out << ' ';
1811 for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1812 if (op) Out << ", ";
1813 Out << "[ ";
1814 writeOperand(I.getOperand(op ), false); Out << ", ";
1815 writeOperand(I.getOperand(op+1), false); Out << " ]";
1817 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1818 Out << ' ';
1819 writeOperand(I.getOperand(0), true);
1820 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1821 Out << ", " << *i;
1822 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1823 Out << ' ';
1824 writeOperand(I.getOperand(0), true); Out << ", ";
1825 writeOperand(I.getOperand(1), true);
1826 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1827 Out << ", " << *i;
1828 } else if (isa<ReturnInst>(I) && !Operand) {
1829 Out << " void";
1830 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1831 // Print the calling convention being used.
1832 switch (CI->getCallingConv()) {
1833 case CallingConv::C: break; // default
1834 case CallingConv::Fast: Out << " fastcc"; break;
1835 case CallingConv::Cold: Out << " coldcc"; break;
1836 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1837 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1838 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break;
1839 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break;
1840 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1841 default: Out << " cc" << CI->getCallingConv(); break;
1844 const PointerType *PTy = cast<PointerType>(Operand->getType());
1845 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1846 const Type *RetTy = FTy->getReturnType();
1847 const AttrListPtr &PAL = CI->getAttributes();
1849 if (PAL.getRetAttributes() != Attribute::None)
1850 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1852 // If possible, print out the short form of the call instruction. We can
1853 // only do this if the first argument is a pointer to a nonvararg function,
1854 // and if the return type is not a pointer to a function.
1856 Out << ' ';
1857 if (!FTy->isVarArg() &&
1858 (!isa<PointerType>(RetTy) ||
1859 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1860 TypePrinter.print(RetTy, Out);
1861 Out << ' ';
1862 writeOperand(Operand, false);
1863 } else {
1864 writeOperand(Operand, true);
1866 Out << '(';
1867 for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1868 if (op > 1)
1869 Out << ", ";
1870 writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1872 Out << ')';
1873 if (PAL.getFnAttributes() != Attribute::None)
1874 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1875 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1876 const PointerType *PTy = cast<PointerType>(Operand->getType());
1877 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1878 const Type *RetTy = FTy->getReturnType();
1879 const AttrListPtr &PAL = II->getAttributes();
1881 // Print the calling convention being used.
1882 switch (II->getCallingConv()) {
1883 case CallingConv::C: break; // default
1884 case CallingConv::Fast: Out << " fastcc"; break;
1885 case CallingConv::Cold: Out << " coldcc"; break;
1886 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1887 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1888 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break;
1889 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break;
1890 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1891 default: Out << " cc" << II->getCallingConv(); break;
1894 if (PAL.getRetAttributes() != Attribute::None)
1895 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1897 // If possible, print out the short form of the invoke instruction. We can
1898 // only do this if the first argument is a pointer to a nonvararg function,
1899 // and if the return type is not a pointer to a function.
1901 Out << ' ';
1902 if (!FTy->isVarArg() &&
1903 (!isa<PointerType>(RetTy) ||
1904 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1905 TypePrinter.print(RetTy, Out);
1906 Out << ' ';
1907 writeOperand(Operand, false);
1908 } else {
1909 writeOperand(Operand, true);
1911 Out << '(';
1912 for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1913 if (op > 3)
1914 Out << ", ";
1915 writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1918 Out << ')';
1919 if (PAL.getFnAttributes() != Attribute::None)
1920 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1922 Out << "\n to ";
1923 writeOperand(II->getNormalDest(), true);
1924 Out << " unwind ";
1925 writeOperand(II->getUnwindDest(), true);
1927 } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1928 Out << ' ';
1929 TypePrinter.print(AI->getType()->getElementType(), Out);
1930 if (!AI->getArraySize() || AI->isArrayAllocation()) {
1931 Out << ", ";
1932 writeOperand(AI->getArraySize(), true);
1934 if (AI->getAlignment()) {
1935 Out << ", align " << AI->getAlignment();
1937 } else if (isa<CastInst>(I)) {
1938 if (Operand) {
1939 Out << ' ';
1940 writeOperand(Operand, true); // Work with broken code
1942 Out << " to ";
1943 TypePrinter.print(I.getType(), Out);
1944 } else if (isa<VAArgInst>(I)) {
1945 if (Operand) {
1946 Out << ' ';
1947 writeOperand(Operand, true); // Work with broken code
1949 Out << ", ";
1950 TypePrinter.print(I.getType(), Out);
1951 } else if (Operand) { // Print the normal way.
1953 // PrintAllTypes - Instructions who have operands of all the same type
1954 // omit the type from all but the first operand. If the instruction has
1955 // different type operands (for example br), then they are all printed.
1956 bool PrintAllTypes = false;
1957 const Type *TheType = Operand->getType();
1959 // Select, Store and ShuffleVector always print all types.
1960 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1961 || isa<ReturnInst>(I)) {
1962 PrintAllTypes = true;
1963 } else {
1964 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1965 Operand = I.getOperand(i);
1966 // note that Operand shouldn't be null, but the test helps make dump()
1967 // more tolerant of malformed IR
1968 if (Operand && Operand->getType() != TheType) {
1969 PrintAllTypes = true; // We have differing types! Print them all!
1970 break;
1975 if (!PrintAllTypes) {
1976 Out << ' ';
1977 TypePrinter.print(TheType, Out);
1980 Out << ' ';
1981 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1982 if (i) Out << ", ";
1983 writeOperand(I.getOperand(i), PrintAllTypes);
1987 // Print post operand alignment for load/store
1988 if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1989 Out << ", align " << cast<LoadInst>(I).getAlignment();
1990 } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1991 Out << ", align " << cast<StoreInst>(I).getAlignment();
1994 printInfoComment(I);
1998 //===----------------------------------------------------------------------===//
1999 // External Interface declarations
2000 //===----------------------------------------------------------------------===//
2002 void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
2003 raw_os_ostream OS(o);
2004 print(OS, AAW);
2006 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2007 SlotTracker SlotTable(this);
2008 formatted_raw_ostream OS(ROS);
2009 AssemblyWriter W(OS, SlotTable, this, AAW);
2010 W.write(this);
2013 void Type::print(std::ostream &o) const {
2014 raw_os_ostream OS(o);
2015 print(OS);
2018 void Type::print(raw_ostream &OS) const {
2019 if (this == 0) {
2020 OS << "<null Type>";
2021 return;
2023 TypePrinting().print(this, OS);
2026 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2027 if (this == 0) {
2028 ROS << "printing a <null> value\n";
2029 return;
2031 formatted_raw_ostream OS(ROS);
2032 if (const Instruction *I = dyn_cast<Instruction>(this)) {
2033 const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2034 SlotTracker SlotTable(F);
2035 AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2036 W.write(I);
2037 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2038 SlotTracker SlotTable(BB->getParent());
2039 AssemblyWriter W(OS, SlotTable,
2040 BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
2041 W.write(BB);
2042 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2043 SlotTracker SlotTable(GV->getParent());
2044 AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2045 W.write(GV);
2046 } else if (const MDString *MDS = dyn_cast<MDString>(this)) {
2047 TypePrinting TypePrinter;
2048 TypePrinter.print(MDS->getType(), OS);
2049 OS << ' ';
2050 OS << "!\"";
2051 PrintEscapedString(MDS->getString(), OS);
2052 OS << '"';
2053 } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2054 SlotTracker SlotTable(N);
2055 TypePrinting TypePrinter;
2056 SlotTable.initialize();
2057 WriteMDNodes(OS, TypePrinter, SlotTable);
2058 } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
2059 SlotTracker SlotTable(N);
2060 TypePrinting TypePrinter;
2061 SlotTable.initialize();
2062 OS << "!" << N->getName() << " = !{";
2063 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
2064 if (i) OS << ", ";
2065 MDNode *MD = dyn_cast_or_null<MDNode>(N->getElement(i));
2066 if (MD)
2067 OS << '!' << SlotTable.getMetadataSlot(MD);
2068 else
2069 OS << "null";
2071 OS << "}\n";
2072 WriteMDNodes(OS, TypePrinter, SlotTable);
2073 } else if (const Constant *C = dyn_cast<Constant>(this)) {
2074 TypePrinting TypePrinter;
2075 TypePrinter.print(C->getType(), OS);
2076 OS << ' ';
2077 WriteConstantInt(OS, C, TypePrinter, 0);
2078 } else if (const Argument *A = dyn_cast<Argument>(this)) {
2079 WriteAsOperand(OS, this, true,
2080 A->getParent() ? A->getParent()->getParent() : 0);
2081 } else if (isa<InlineAsm>(this)) {
2082 WriteAsOperand(OS, this, true, 0);
2083 } else {
2084 llvm_unreachable("Unknown value to print out!");
2088 void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
2089 raw_os_ostream OS(O);
2090 print(OS, AAW);
2093 // Value::dump - allow easy printing of Values from the debugger.
2094 void Value::dump() const { print(errs()); errs() << '\n'; }
2096 // Type::dump - allow easy printing of Types from the debugger.
2097 // This one uses type names from the given context module
2098 void Type::dump(const Module *Context) const {
2099 WriteTypeSymbolic(errs(), this, Context);
2100 errs() << '\n';
2103 // Type::dump - allow easy printing of Types from the debugger.
2104 void Type::dump() const { dump(0); }
2106 // Module::dump() - Allow printing of Modules from the debugger.
2107 void Module::dump() const { print(errs(), 0); }