Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / VMCore / ConstantFold.cpp
blobeda336a5801e35d1579e845cb270bc37c4aa8da1
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // template-based folder for simple primitive constants like ConstantInt, and
16 // the special case hackery that we use to symbolically evaluate expressions
17 // that use ConstantExprs.
19 //===----------------------------------------------------------------------===//
21 #include "ConstantFold.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/GlobalAlias.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include <limits>
35 using namespace llvm;
37 //===----------------------------------------------------------------------===//
38 // ConstantFold*Instruction Implementations
39 //===----------------------------------------------------------------------===//
41 /// BitCastConstantVector - Convert the specified ConstantVector node to the
42 /// specified vector type. At this point, we know that the elements of the
43 /// input vector constant are all simple integer or FP values.
44 static Constant *BitCastConstantVector(LLVMContext &Context, ConstantVector *CV,
45 const VectorType *DstTy) {
46 // If this cast changes element count then we can't handle it here:
47 // doing so requires endianness information. This should be handled by
48 // Analysis/ConstantFolding.cpp
49 unsigned NumElts = DstTy->getNumElements();
50 if (NumElts != CV->getNumOperands())
51 return 0;
53 // Check to verify that all elements of the input are simple.
54 for (unsigned i = 0; i != NumElts; ++i) {
55 if (!isa<ConstantInt>(CV->getOperand(i)) &&
56 !isa<ConstantFP>(CV->getOperand(i)))
57 return 0;
60 // Bitcast each element now.
61 std::vector<Constant*> Result;
62 const Type *DstEltTy = DstTy->getElementType();
63 for (unsigned i = 0; i != NumElts; ++i)
64 Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
65 DstEltTy));
66 return ConstantVector::get(Result);
69 /// This function determines which opcode to use to fold two constant cast
70 /// expressions together. It uses CastInst::isEliminableCastPair to determine
71 /// the opcode. Consequently its just a wrapper around that function.
72 /// @brief Determine if it is valid to fold a cast of a cast
73 static unsigned
74 foldConstantCastPair(
75 unsigned opc, ///< opcode of the second cast constant expression
76 const ConstantExpr*Op, ///< the first cast constant expression
77 const Type *DstTy ///< desintation type of the first cast
78 ) {
79 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
80 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
81 assert(CastInst::isCast(opc) && "Invalid cast opcode");
83 // The the types and opcodes for the two Cast constant expressions
84 const Type *SrcTy = Op->getOperand(0)->getType();
85 const Type *MidTy = Op->getType();
86 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
87 Instruction::CastOps secondOp = Instruction::CastOps(opc);
89 // Let CastInst::isEliminableCastPair do the heavy lifting.
90 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
91 Type::getInt64Ty(DstTy->getContext()));
94 static Constant *FoldBitCast(LLVMContext &Context,
95 Constant *V, const Type *DestTy) {
96 const Type *SrcTy = V->getType();
97 if (SrcTy == DestTy)
98 return V; // no-op cast
100 // Check to see if we are casting a pointer to an aggregate to a pointer to
101 // the first element. If so, return the appropriate GEP instruction.
102 if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
103 if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
104 if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
105 SmallVector<Value*, 8> IdxList;
106 Value *Zero = Constant::getNullValue(Type::getInt32Ty(Context));
107 IdxList.push_back(Zero);
108 const Type *ElTy = PTy->getElementType();
109 while (ElTy != DPTy->getElementType()) {
110 if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
111 if (STy->getNumElements() == 0) break;
112 ElTy = STy->getElementType(0);
113 IdxList.push_back(Zero);
114 } else if (const SequentialType *STy =
115 dyn_cast<SequentialType>(ElTy)) {
116 if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
117 ElTy = STy->getElementType();
118 IdxList.push_back(Zero);
119 } else {
120 break;
124 if (ElTy == DPTy->getElementType())
125 // This GEP is inbounds because all indices are zero.
126 return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0],
127 IdxList.size());
130 // Handle casts from one vector constant to another. We know that the src
131 // and dest type have the same size (otherwise its an illegal cast).
132 if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
133 if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
134 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
135 "Not cast between same sized vectors!");
136 SrcTy = NULL;
137 // First, check for null. Undef is already handled.
138 if (isa<ConstantAggregateZero>(V))
139 return Constant::getNullValue(DestTy);
141 if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
142 return BitCastConstantVector(Context, CV, DestPTy);
145 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
146 // This allows for other simplifications (although some of them
147 // can only be handled by Analysis/ConstantFolding.cpp).
148 if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
149 return ConstantExpr::getBitCast(
150 ConstantVector::get(&V, 1), DestPTy);
153 // Finally, implement bitcast folding now. The code below doesn't handle
154 // bitcast right.
155 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
156 return ConstantPointerNull::get(cast<PointerType>(DestTy));
158 // Handle integral constant input.
159 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
160 if (DestTy->isInteger())
161 // Integral -> Integral. This is a no-op because the bit widths must
162 // be the same. Consequently, we just fold to V.
163 return V;
165 if (DestTy->isFloatingPoint())
166 return ConstantFP::get(Context, APFloat(CI->getValue(),
167 DestTy != Type::getPPC_FP128Ty(Context)));
169 // Otherwise, can't fold this (vector?)
170 return 0;
173 // Handle ConstantFP input.
174 if (const ConstantFP *FP = dyn_cast<ConstantFP>(V))
175 // FP -> Integral.
176 return ConstantInt::get(Context, FP->getValueAPF().bitcastToAPInt());
178 return 0;
182 Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
183 unsigned opc, const Constant *V,
184 const Type *DestTy) {
185 if (isa<UndefValue>(V)) {
186 // zext(undef) = 0, because the top bits will be zero.
187 // sext(undef) = 0, because the top bits will all be the same.
188 // [us]itofp(undef) = 0, because the result value is bounded.
189 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
190 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
191 return Constant::getNullValue(DestTy);
192 return UndefValue::get(DestTy);
194 // No compile-time operations on this type yet.
195 if (V->getType() == Type::getPPC_FP128Ty(Context) || DestTy == Type::getPPC_FP128Ty(Context))
196 return 0;
198 // If the cast operand is a constant expression, there's a few things we can
199 // do to try to simplify it.
200 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
201 if (CE->isCast()) {
202 // Try hard to fold cast of cast because they are often eliminable.
203 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
204 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
205 } else if (CE->getOpcode() == Instruction::GetElementPtr) {
206 // If all of the indexes in the GEP are null values, there is no pointer
207 // adjustment going on. We might as well cast the source pointer.
208 bool isAllNull = true;
209 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
210 if (!CE->getOperand(i)->isNullValue()) {
211 isAllNull = false;
212 break;
214 if (isAllNull)
215 // This is casting one pointer type to another, always BitCast
216 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
220 // If the cast operand is a constant vector, perform the cast by
221 // operating on each element. In the cast of bitcasts, the element
222 // count may be mismatched; don't attempt to handle that here.
223 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
224 if (isa<VectorType>(DestTy) &&
225 cast<VectorType>(DestTy)->getNumElements() ==
226 CV->getType()->getNumElements()) {
227 std::vector<Constant*> res;
228 const VectorType *DestVecTy = cast<VectorType>(DestTy);
229 const Type *DstEltTy = DestVecTy->getElementType();
230 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
231 res.push_back(ConstantExpr::getCast(opc,
232 CV->getOperand(i), DstEltTy));
233 return ConstantVector::get(DestVecTy, res);
236 // We actually have to do a cast now. Perform the cast according to the
237 // opcode specified.
238 switch (opc) {
239 case Instruction::FPTrunc:
240 case Instruction::FPExt:
241 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
242 bool ignored;
243 APFloat Val = FPC->getValueAPF();
244 Val.convert(DestTy == Type::getFloatTy(Context) ? APFloat::IEEEsingle :
245 DestTy == Type::getDoubleTy(Context) ? APFloat::IEEEdouble :
246 DestTy == Type::getX86_FP80Ty(Context) ? APFloat::x87DoubleExtended :
247 DestTy == Type::getFP128Ty(Context) ? APFloat::IEEEquad :
248 APFloat::Bogus,
249 APFloat::rmNearestTiesToEven, &ignored);
250 return ConstantFP::get(Context, Val);
252 return 0; // Can't fold.
253 case Instruction::FPToUI:
254 case Instruction::FPToSI:
255 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
256 const APFloat &V = FPC->getValueAPF();
257 bool ignored;
258 uint64_t x[2];
259 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
260 (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
261 APFloat::rmTowardZero, &ignored);
262 APInt Val(DestBitWidth, 2, x);
263 return ConstantInt::get(Context, Val);
265 return 0; // Can't fold.
266 case Instruction::IntToPtr: //always treated as unsigned
267 if (V->isNullValue()) // Is it an integral null value?
268 return ConstantPointerNull::get(cast<PointerType>(DestTy));
269 return 0; // Other pointer types cannot be casted
270 case Instruction::PtrToInt: // always treated as unsigned
271 if (V->isNullValue()) // is it a null pointer value?
272 return ConstantInt::get(DestTy, 0);
273 return 0; // Other pointer types cannot be casted
274 case Instruction::UIToFP:
275 case Instruction::SIToFP:
276 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
277 APInt api = CI->getValue();
278 const uint64_t zero[] = {0, 0};
279 APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
280 2, zero));
281 (void)apf.convertFromAPInt(api,
282 opc==Instruction::SIToFP,
283 APFloat::rmNearestTiesToEven);
284 return ConstantFP::get(Context, apf);
286 return 0;
287 case Instruction::ZExt:
288 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
289 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
290 APInt Result(CI->getValue());
291 Result.zext(BitWidth);
292 return ConstantInt::get(Context, Result);
294 return 0;
295 case Instruction::SExt:
296 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
297 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
298 APInt Result(CI->getValue());
299 Result.sext(BitWidth);
300 return ConstantInt::get(Context, Result);
302 return 0;
303 case Instruction::Trunc:
304 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
305 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
306 APInt Result(CI->getValue());
307 Result.trunc(BitWidth);
308 return ConstantInt::get(Context, Result);
310 return 0;
311 case Instruction::BitCast:
312 return FoldBitCast(Context, const_cast<Constant*>(V), DestTy);
313 default:
314 assert(!"Invalid CE CastInst opcode");
315 break;
318 llvm_unreachable("Failed to cast constant expression");
319 return 0;
322 Constant *llvm::ConstantFoldSelectInstruction(LLVMContext&,
323 const Constant *Cond,
324 const Constant *V1,
325 const Constant *V2) {
326 if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
327 return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
329 if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
330 if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
331 if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
332 if (V1 == V2) return const_cast<Constant*>(V1);
333 return 0;
336 Constant *llvm::ConstantFoldExtractElementInstruction(LLVMContext &Context,
337 const Constant *Val,
338 const Constant *Idx) {
339 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
340 return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
341 if (Val->isNullValue()) // ee(zero, x) -> zero
342 return Constant::getNullValue(
343 cast<VectorType>(Val->getType())->getElementType());
345 if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
346 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
347 return CVal->getOperand(CIdx->getZExtValue());
348 } else if (isa<UndefValue>(Idx)) {
349 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
350 return CVal->getOperand(0);
353 return 0;
356 Constant *llvm::ConstantFoldInsertElementInstruction(LLVMContext &Context,
357 const Constant *Val,
358 const Constant *Elt,
359 const Constant *Idx) {
360 const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
361 if (!CIdx) return 0;
362 APInt idxVal = CIdx->getValue();
363 if (isa<UndefValue>(Val)) {
364 // Insertion of scalar constant into vector undef
365 // Optimize away insertion of undef
366 if (isa<UndefValue>(Elt))
367 return const_cast<Constant*>(Val);
368 // Otherwise break the aggregate undef into multiple undefs and do
369 // the insertion
370 unsigned numOps =
371 cast<VectorType>(Val->getType())->getNumElements();
372 std::vector<Constant*> Ops;
373 Ops.reserve(numOps);
374 for (unsigned i = 0; i < numOps; ++i) {
375 const Constant *Op =
376 (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
377 Ops.push_back(const_cast<Constant*>(Op));
379 return ConstantVector::get(Ops);
381 if (isa<ConstantAggregateZero>(Val)) {
382 // Insertion of scalar constant into vector aggregate zero
383 // Optimize away insertion of zero
384 if (Elt->isNullValue())
385 return const_cast<Constant*>(Val);
386 // Otherwise break the aggregate zero into multiple zeros and do
387 // the insertion
388 unsigned numOps =
389 cast<VectorType>(Val->getType())->getNumElements();
390 std::vector<Constant*> Ops;
391 Ops.reserve(numOps);
392 for (unsigned i = 0; i < numOps; ++i) {
393 const Constant *Op =
394 (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
395 Ops.push_back(const_cast<Constant*>(Op));
397 return ConstantVector::get(Ops);
399 if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
400 // Insertion of scalar constant into vector constant
401 std::vector<Constant*> Ops;
402 Ops.reserve(CVal->getNumOperands());
403 for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
404 const Constant *Op =
405 (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
406 Ops.push_back(const_cast<Constant*>(Op));
408 return ConstantVector::get(Ops);
411 return 0;
414 /// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
415 /// return the specified element value. Otherwise return null.
416 static Constant *GetVectorElement(LLVMContext &Context, const Constant *C,
417 unsigned EltNo) {
418 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
419 return CV->getOperand(EltNo);
421 const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
422 if (isa<ConstantAggregateZero>(C))
423 return Constant::getNullValue(EltTy);
424 if (isa<UndefValue>(C))
425 return UndefValue::get(EltTy);
426 return 0;
429 Constant *llvm::ConstantFoldShuffleVectorInstruction(LLVMContext &Context,
430 const Constant *V1,
431 const Constant *V2,
432 const Constant *Mask) {
433 // Undefined shuffle mask -> undefined value.
434 if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
436 unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
437 unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
438 const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
440 // Loop over the shuffle mask, evaluating each element.
441 SmallVector<Constant*, 32> Result;
442 for (unsigned i = 0; i != MaskNumElts; ++i) {
443 Constant *InElt = GetVectorElement(Context, Mask, i);
444 if (InElt == 0) return 0;
446 if (isa<UndefValue>(InElt))
447 InElt = UndefValue::get(EltTy);
448 else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
449 unsigned Elt = CI->getZExtValue();
450 if (Elt >= SrcNumElts*2)
451 InElt = UndefValue::get(EltTy);
452 else if (Elt >= SrcNumElts)
453 InElt = GetVectorElement(Context, V2, Elt - SrcNumElts);
454 else
455 InElt = GetVectorElement(Context, V1, Elt);
456 if (InElt == 0) return 0;
457 } else {
458 // Unknown value.
459 return 0;
461 Result.push_back(InElt);
464 return ConstantVector::get(&Result[0], Result.size());
467 Constant *llvm::ConstantFoldExtractValueInstruction(LLVMContext &Context,
468 const Constant *Agg,
469 const unsigned *Idxs,
470 unsigned NumIdx) {
471 // Base case: no indices, so return the entire value.
472 if (NumIdx == 0)
473 return const_cast<Constant *>(Agg);
475 if (isa<UndefValue>(Agg)) // ev(undef, x) -> undef
476 return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
477 Idxs,
478 Idxs + NumIdx));
480 if (isa<ConstantAggregateZero>(Agg)) // ev(0, x) -> 0
481 return
482 Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
483 Idxs,
484 Idxs + NumIdx));
486 // Otherwise recurse.
487 return ConstantFoldExtractValueInstruction(Context, Agg->getOperand(*Idxs),
488 Idxs+1, NumIdx-1);
491 Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
492 const Constant *Agg,
493 const Constant *Val,
494 const unsigned *Idxs,
495 unsigned NumIdx) {
496 // Base case: no indices, so replace the entire value.
497 if (NumIdx == 0)
498 return const_cast<Constant *>(Val);
500 if (isa<UndefValue>(Agg)) {
501 // Insertion of constant into aggregate undef
502 // Optimize away insertion of undef
503 if (isa<UndefValue>(Val))
504 return const_cast<Constant*>(Agg);
505 // Otherwise break the aggregate undef into multiple undefs and do
506 // the insertion
507 const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
508 unsigned numOps;
509 if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
510 numOps = AR->getNumElements();
511 else
512 numOps = cast<StructType>(AggTy)->getNumElements();
513 std::vector<Constant*> Ops(numOps);
514 for (unsigned i = 0; i < numOps; ++i) {
515 const Type *MemberTy = AggTy->getTypeAtIndex(i);
516 const Constant *Op =
517 (*Idxs == i) ?
518 ConstantFoldInsertValueInstruction(Context, UndefValue::get(MemberTy),
519 Val, Idxs+1, NumIdx-1) :
520 UndefValue::get(MemberTy);
521 Ops[i] = const_cast<Constant*>(Op);
523 if (isa<StructType>(AggTy))
524 return ConstantStruct::get(Context, Ops);
525 else
526 return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
528 if (isa<ConstantAggregateZero>(Agg)) {
529 // Insertion of constant into aggregate zero
530 // Optimize away insertion of zero
531 if (Val->isNullValue())
532 return const_cast<Constant*>(Agg);
533 // Otherwise break the aggregate zero into multiple zeros and do
534 // the insertion
535 const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
536 unsigned numOps;
537 if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
538 numOps = AR->getNumElements();
539 else
540 numOps = cast<StructType>(AggTy)->getNumElements();
541 std::vector<Constant*> Ops(numOps);
542 for (unsigned i = 0; i < numOps; ++i) {
543 const Type *MemberTy = AggTy->getTypeAtIndex(i);
544 const Constant *Op =
545 (*Idxs == i) ?
546 ConstantFoldInsertValueInstruction(Context,
547 Constant::getNullValue(MemberTy),
548 Val, Idxs+1, NumIdx-1) :
549 Constant::getNullValue(MemberTy);
550 Ops[i] = const_cast<Constant*>(Op);
552 if (isa<StructType>(AggTy))
553 return ConstantStruct::get(Context, Ops);
554 else
555 return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
557 if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
558 // Insertion of constant into aggregate constant
559 std::vector<Constant*> Ops(Agg->getNumOperands());
560 for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
561 const Constant *Op =
562 (*Idxs == i) ?
563 ConstantFoldInsertValueInstruction(Context, Agg->getOperand(i),
564 Val, Idxs+1, NumIdx-1) :
565 Agg->getOperand(i);
566 Ops[i] = const_cast<Constant*>(Op);
568 Constant *C;
569 if (isa<StructType>(Agg->getType()))
570 C = ConstantStruct::get(Context, Ops);
571 else
572 C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
573 return C;
576 return 0;
580 Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
581 unsigned Opcode,
582 const Constant *C1,
583 const Constant *C2) {
584 // No compile-time operations on this type yet.
585 if (C1->getType() == Type::getPPC_FP128Ty(Context))
586 return 0;
588 // Handle UndefValue up front
589 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
590 switch (Opcode) {
591 case Instruction::Xor:
592 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
593 // Handle undef ^ undef -> 0 special case. This is a common
594 // idiom (misuse).
595 return Constant::getNullValue(C1->getType());
596 // Fallthrough
597 case Instruction::Add:
598 case Instruction::Sub:
599 return UndefValue::get(C1->getType());
600 case Instruction::Mul:
601 case Instruction::And:
602 return Constant::getNullValue(C1->getType());
603 case Instruction::UDiv:
604 case Instruction::SDiv:
605 case Instruction::URem:
606 case Instruction::SRem:
607 if (!isa<UndefValue>(C2)) // undef / X -> 0
608 return Constant::getNullValue(C1->getType());
609 return const_cast<Constant*>(C2); // X / undef -> undef
610 case Instruction::Or: // X | undef -> -1
611 if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
612 return Constant::getAllOnesValue(PTy);
613 return Constant::getAllOnesValue(C1->getType());
614 case Instruction::LShr:
615 if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
616 return const_cast<Constant*>(C1); // undef lshr undef -> undef
617 return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
618 // undef lshr X -> 0
619 case Instruction::AShr:
620 if (!isa<UndefValue>(C2))
621 return const_cast<Constant*>(C1); // undef ashr X --> undef
622 else if (isa<UndefValue>(C1))
623 return const_cast<Constant*>(C1); // undef ashr undef -> undef
624 else
625 return const_cast<Constant*>(C1); // X ashr undef --> X
626 case Instruction::Shl:
627 // undef << X -> 0 or X << undef -> 0
628 return Constant::getNullValue(C1->getType());
632 // Handle simplifications when the RHS is a constant int.
633 if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
634 switch (Opcode) {
635 case Instruction::Add:
636 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X + 0 == X
637 break;
638 case Instruction::Sub:
639 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X - 0 == X
640 break;
641 case Instruction::Mul:
642 if (CI2->equalsInt(0)) return const_cast<Constant*>(C2); // X * 0 == 0
643 if (CI2->equalsInt(1))
644 return const_cast<Constant*>(C1); // X * 1 == X
645 break;
646 case Instruction::UDiv:
647 case Instruction::SDiv:
648 if (CI2->equalsInt(1))
649 return const_cast<Constant*>(C1); // X / 1 == X
650 if (CI2->equalsInt(0))
651 return UndefValue::get(CI2->getType()); // X / 0 == undef
652 break;
653 case Instruction::URem:
654 case Instruction::SRem:
655 if (CI2->equalsInt(1))
656 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
657 if (CI2->equalsInt(0))
658 return UndefValue::get(CI2->getType()); // X % 0 == undef
659 break;
660 case Instruction::And:
661 if (CI2->isZero()) return const_cast<Constant*>(C2); // X & 0 == 0
662 if (CI2->isAllOnesValue())
663 return const_cast<Constant*>(C1); // X & -1 == X
665 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
666 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
667 if (CE1->getOpcode() == Instruction::ZExt) {
668 unsigned DstWidth = CI2->getType()->getBitWidth();
669 unsigned SrcWidth =
670 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
671 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
672 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
673 return const_cast<Constant*>(C1);
676 // If and'ing the address of a global with a constant, fold it.
677 if (CE1->getOpcode() == Instruction::PtrToInt &&
678 isa<GlobalValue>(CE1->getOperand(0))) {
679 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
681 // Functions are at least 4-byte aligned.
682 unsigned GVAlign = GV->getAlignment();
683 if (isa<Function>(GV))
684 GVAlign = std::max(GVAlign, 4U);
686 if (GVAlign > 1) {
687 unsigned DstWidth = CI2->getType()->getBitWidth();
688 unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
689 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
691 // If checking bits we know are clear, return zero.
692 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
693 return Constant::getNullValue(CI2->getType());
697 break;
698 case Instruction::Or:
699 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X | 0 == X
700 if (CI2->isAllOnesValue())
701 return const_cast<Constant*>(C2); // X | -1 == -1
702 break;
703 case Instruction::Xor:
704 if (CI2->equalsInt(0)) return const_cast<Constant*>(C1); // X ^ 0 == X
705 break;
706 case Instruction::AShr:
707 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
708 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
709 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
710 return ConstantExpr::getLShr(const_cast<Constant*>(C1),
711 const_cast<Constant*>(C2));
712 break;
716 // At this point we know neither constant is an UndefValue.
717 if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
718 if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
719 using namespace APIntOps;
720 const APInt &C1V = CI1->getValue();
721 const APInt &C2V = CI2->getValue();
722 switch (Opcode) {
723 default:
724 break;
725 case Instruction::Add:
726 return ConstantInt::get(Context, C1V + C2V);
727 case Instruction::Sub:
728 return ConstantInt::get(Context, C1V - C2V);
729 case Instruction::Mul:
730 return ConstantInt::get(Context, C1V * C2V);
731 case Instruction::UDiv:
732 assert(!CI2->isNullValue() && "Div by zero handled above");
733 return ConstantInt::get(Context, C1V.udiv(C2V));
734 case Instruction::SDiv:
735 assert(!CI2->isNullValue() && "Div by zero handled above");
736 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
737 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
738 return ConstantInt::get(Context, C1V.sdiv(C2V));
739 case Instruction::URem:
740 assert(!CI2->isNullValue() && "Div by zero handled above");
741 return ConstantInt::get(Context, C1V.urem(C2V));
742 case Instruction::SRem:
743 assert(!CI2->isNullValue() && "Div by zero handled above");
744 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
745 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
746 return ConstantInt::get(Context, C1V.srem(C2V));
747 case Instruction::And:
748 return ConstantInt::get(Context, C1V & C2V);
749 case Instruction::Or:
750 return ConstantInt::get(Context, C1V | C2V);
751 case Instruction::Xor:
752 return ConstantInt::get(Context, C1V ^ C2V);
753 case Instruction::Shl: {
754 uint32_t shiftAmt = C2V.getZExtValue();
755 if (shiftAmt < C1V.getBitWidth())
756 return ConstantInt::get(Context, C1V.shl(shiftAmt));
757 else
758 return UndefValue::get(C1->getType()); // too big shift is undef
760 case Instruction::LShr: {
761 uint32_t shiftAmt = C2V.getZExtValue();
762 if (shiftAmt < C1V.getBitWidth())
763 return ConstantInt::get(Context, C1V.lshr(shiftAmt));
764 else
765 return UndefValue::get(C1->getType()); // too big shift is undef
767 case Instruction::AShr: {
768 uint32_t shiftAmt = C2V.getZExtValue();
769 if (shiftAmt < C1V.getBitWidth())
770 return ConstantInt::get(Context, C1V.ashr(shiftAmt));
771 else
772 return UndefValue::get(C1->getType()); // too big shift is undef
777 switch (Opcode) {
778 case Instruction::SDiv:
779 case Instruction::UDiv:
780 case Instruction::URem:
781 case Instruction::SRem:
782 case Instruction::LShr:
783 case Instruction::AShr:
784 case Instruction::Shl:
785 if (CI1->equalsInt(0)) return const_cast<Constant*>(C1);
786 break;
787 default:
788 break;
790 } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
791 if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
792 APFloat C1V = CFP1->getValueAPF();
793 APFloat C2V = CFP2->getValueAPF();
794 APFloat C3V = C1V; // copy for modification
795 switch (Opcode) {
796 default:
797 break;
798 case Instruction::FAdd:
799 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
800 return ConstantFP::get(Context, C3V);
801 case Instruction::FSub:
802 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
803 return ConstantFP::get(Context, C3V);
804 case Instruction::FMul:
805 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
806 return ConstantFP::get(Context, C3V);
807 case Instruction::FDiv:
808 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
809 return ConstantFP::get(Context, C3V);
810 case Instruction::FRem:
811 (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
812 return ConstantFP::get(Context, C3V);
815 } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
816 const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
817 const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
818 if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
819 (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
820 std::vector<Constant*> Res;
821 const Type* EltTy = VTy->getElementType();
822 const Constant *C1 = 0;
823 const Constant *C2 = 0;
824 switch (Opcode) {
825 default:
826 break;
827 case Instruction::Add:
828 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
829 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
830 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
831 Res.push_back(ConstantExpr::getAdd(const_cast<Constant*>(C1),
832 const_cast<Constant*>(C2)));
834 return ConstantVector::get(Res);
835 case Instruction::FAdd:
836 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
837 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
838 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
839 Res.push_back(ConstantExpr::getFAdd(const_cast<Constant*>(C1),
840 const_cast<Constant*>(C2)));
842 return ConstantVector::get(Res);
843 case Instruction::Sub:
844 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
845 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
846 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
847 Res.push_back(ConstantExpr::getSub(const_cast<Constant*>(C1),
848 const_cast<Constant*>(C2)));
850 return ConstantVector::get(Res);
851 case Instruction::FSub:
852 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
853 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
854 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
855 Res.push_back(ConstantExpr::getFSub(const_cast<Constant*>(C1),
856 const_cast<Constant*>(C2)));
858 return ConstantVector::get(Res);
859 case Instruction::Mul:
860 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
861 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
862 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
863 Res.push_back(ConstantExpr::getMul(const_cast<Constant*>(C1),
864 const_cast<Constant*>(C2)));
866 return ConstantVector::get(Res);
867 case Instruction::FMul:
868 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
869 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
870 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
871 Res.push_back(ConstantExpr::getFMul(const_cast<Constant*>(C1),
872 const_cast<Constant*>(C2)));
874 return ConstantVector::get(Res);
875 case Instruction::UDiv:
876 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
877 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
878 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
879 Res.push_back(ConstantExpr::getUDiv(const_cast<Constant*>(C1),
880 const_cast<Constant*>(C2)));
882 return ConstantVector::get(Res);
883 case Instruction::SDiv:
884 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
885 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
886 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
887 Res.push_back(ConstantExpr::getSDiv(const_cast<Constant*>(C1),
888 const_cast<Constant*>(C2)));
890 return ConstantVector::get(Res);
891 case Instruction::FDiv:
892 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
893 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
894 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
895 Res.push_back(ConstantExpr::getFDiv(const_cast<Constant*>(C1),
896 const_cast<Constant*>(C2)));
898 return ConstantVector::get(Res);
899 case Instruction::URem:
900 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
901 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
902 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
903 Res.push_back(ConstantExpr::getURem(const_cast<Constant*>(C1),
904 const_cast<Constant*>(C2)));
906 return ConstantVector::get(Res);
907 case Instruction::SRem:
908 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
909 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
910 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
911 Res.push_back(ConstantExpr::getSRem(const_cast<Constant*>(C1),
912 const_cast<Constant*>(C2)));
914 return ConstantVector::get(Res);
915 case Instruction::FRem:
916 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
917 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
918 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
919 Res.push_back(ConstantExpr::getFRem(const_cast<Constant*>(C1),
920 const_cast<Constant*>(C2)));
922 return ConstantVector::get(Res);
923 case Instruction::And:
924 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
925 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
926 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
927 Res.push_back(ConstantExpr::getAnd(const_cast<Constant*>(C1),
928 const_cast<Constant*>(C2)));
930 return ConstantVector::get(Res);
931 case Instruction::Or:
932 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
933 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
934 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
935 Res.push_back(ConstantExpr::getOr(const_cast<Constant*>(C1),
936 const_cast<Constant*>(C2)));
938 return ConstantVector::get(Res);
939 case Instruction::Xor:
940 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
941 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
942 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
943 Res.push_back(ConstantExpr::getXor(const_cast<Constant*>(C1),
944 const_cast<Constant*>(C2)));
946 return ConstantVector::get(Res);
947 case Instruction::LShr:
948 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
949 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
950 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
951 Res.push_back(ConstantExpr::getLShr(const_cast<Constant*>(C1),
952 const_cast<Constant*>(C2)));
954 return ConstantVector::get(Res);
955 case Instruction::AShr:
956 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
957 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
958 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
959 Res.push_back(ConstantExpr::getAShr(const_cast<Constant*>(C1),
960 const_cast<Constant*>(C2)));
962 return ConstantVector::get(Res);
963 case Instruction::Shl:
964 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
965 C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
966 C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
967 Res.push_back(ConstantExpr::getShl(const_cast<Constant*>(C1),
968 const_cast<Constant*>(C2)));
970 return ConstantVector::get(Res);
975 if (isa<ConstantExpr>(C1)) {
976 // There are many possible foldings we could do here. We should probably
977 // at least fold add of a pointer with an integer into the appropriate
978 // getelementptr. This will improve alias analysis a bit.
979 } else if (isa<ConstantExpr>(C2)) {
980 // If C2 is a constant expr and C1 isn't, flop them around and fold the
981 // other way if possible.
982 switch (Opcode) {
983 case Instruction::Add:
984 case Instruction::FAdd:
985 case Instruction::Mul:
986 case Instruction::FMul:
987 case Instruction::And:
988 case Instruction::Or:
989 case Instruction::Xor:
990 // No change of opcode required.
991 return ConstantFoldBinaryInstruction(Context, Opcode, C2, C1);
993 case Instruction::Shl:
994 case Instruction::LShr:
995 case Instruction::AShr:
996 case Instruction::Sub:
997 case Instruction::FSub:
998 case Instruction::SDiv:
999 case Instruction::UDiv:
1000 case Instruction::FDiv:
1001 case Instruction::URem:
1002 case Instruction::SRem:
1003 case Instruction::FRem:
1004 default: // These instructions cannot be flopped around.
1005 break;
1009 // We don't know how to fold this.
1010 return 0;
1013 /// isZeroSizedType - This type is zero sized if its an array or structure of
1014 /// zero sized types. The only leaf zero sized type is an empty structure.
1015 static bool isMaybeZeroSizedType(const Type *Ty) {
1016 if (isa<OpaqueType>(Ty)) return true; // Can't say.
1017 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1019 // If all of elements have zero size, this does too.
1020 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1021 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1022 return true;
1024 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1025 return isMaybeZeroSizedType(ATy->getElementType());
1027 return false;
1030 /// IdxCompare - Compare the two constants as though they were getelementptr
1031 /// indices. This allows coersion of the types to be the same thing.
1033 /// If the two constants are the "same" (after coersion), return 0. If the
1034 /// first is less than the second, return -1, if the second is less than the
1035 /// first, return 1. If the constants are not integral, return -2.
1037 static int IdxCompare(LLVMContext &Context, Constant *C1, Constant *C2,
1038 const Type *ElTy) {
1039 if (C1 == C2) return 0;
1041 // Ok, we found a different index. If they are not ConstantInt, we can't do
1042 // anything with them.
1043 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1044 return -2; // don't know!
1046 // Ok, we have two differing integer indices. Sign extend them to be the same
1047 // type. Long is always big enough, so we use it.
1048 if (C1->getType() != Type::getInt64Ty(Context))
1049 C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
1051 if (C2->getType() != Type::getInt64Ty(Context))
1052 C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
1054 if (C1 == C2) return 0; // They are equal
1056 // If the type being indexed over is really just a zero sized type, there is
1057 // no pointer difference being made here.
1058 if (isMaybeZeroSizedType(ElTy))
1059 return -2; // dunno.
1061 // If they are really different, now that they are the same type, then we
1062 // found a difference!
1063 if (cast<ConstantInt>(C1)->getSExtValue() <
1064 cast<ConstantInt>(C2)->getSExtValue())
1065 return -1;
1066 else
1067 return 1;
1070 /// evaluateFCmpRelation - This function determines if there is anything we can
1071 /// decide about the two constants provided. This doesn't need to handle simple
1072 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1073 /// If we can determine that the two constants have a particular relation to
1074 /// each other, we should return the corresponding FCmpInst predicate,
1075 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1076 /// ConstantFoldCompareInstruction.
1078 /// To simplify this code we canonicalize the relation so that the first
1079 /// operand is always the most "complex" of the two. We consider ConstantFP
1080 /// to be the simplest, and ConstantExprs to be the most complex.
1081 static FCmpInst::Predicate evaluateFCmpRelation(LLVMContext &Context,
1082 const Constant *V1,
1083 const Constant *V2) {
1084 assert(V1->getType() == V2->getType() &&
1085 "Cannot compare values of different types!");
1087 // No compile-time operations on this type yet.
1088 if (V1->getType() == Type::getPPC_FP128Ty(Context))
1089 return FCmpInst::BAD_FCMP_PREDICATE;
1091 // Handle degenerate case quickly
1092 if (V1 == V2) return FCmpInst::FCMP_OEQ;
1094 if (!isa<ConstantExpr>(V1)) {
1095 if (!isa<ConstantExpr>(V2)) {
1096 // We distilled thisUse the standard constant folder for a few cases
1097 ConstantInt *R = 0;
1098 Constant *C1 = const_cast<Constant*>(V1);
1099 Constant *C2 = const_cast<Constant*>(V2);
1100 R = dyn_cast<ConstantInt>(
1101 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
1102 if (R && !R->isZero())
1103 return FCmpInst::FCMP_OEQ;
1104 R = dyn_cast<ConstantInt>(
1105 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
1106 if (R && !R->isZero())
1107 return FCmpInst::FCMP_OLT;
1108 R = dyn_cast<ConstantInt>(
1109 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
1110 if (R && !R->isZero())
1111 return FCmpInst::FCMP_OGT;
1113 // Nothing more we can do
1114 return FCmpInst::BAD_FCMP_PREDICATE;
1117 // If the first operand is simple and second is ConstantExpr, swap operands.
1118 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(Context, V2, V1);
1119 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1120 return FCmpInst::getSwappedPredicate(SwappedRelation);
1121 } else {
1122 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1123 // constantexpr or a simple constant.
1124 const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1125 switch (CE1->getOpcode()) {
1126 case Instruction::FPTrunc:
1127 case Instruction::FPExt:
1128 case Instruction::UIToFP:
1129 case Instruction::SIToFP:
1130 // We might be able to do something with these but we don't right now.
1131 break;
1132 default:
1133 break;
1136 // There are MANY other foldings that we could perform here. They will
1137 // probably be added on demand, as they seem needed.
1138 return FCmpInst::BAD_FCMP_PREDICATE;
1141 /// evaluateICmpRelation - This function determines if there is anything we can
1142 /// decide about the two constants provided. This doesn't need to handle simple
1143 /// things like integer comparisons, but should instead handle ConstantExprs
1144 /// and GlobalValues. If we can determine that the two constants have a
1145 /// particular relation to each other, we should return the corresponding ICmp
1146 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1148 /// To simplify this code we canonicalize the relation so that the first
1149 /// operand is always the most "complex" of the two. We consider simple
1150 /// constants (like ConstantInt) to be the simplest, followed by
1151 /// GlobalValues, followed by ConstantExpr's (the most complex).
1153 static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
1154 const Constant *V1,
1155 const Constant *V2,
1156 bool isSigned) {
1157 assert(V1->getType() == V2->getType() &&
1158 "Cannot compare different types of values!");
1159 if (V1 == V2) return ICmpInst::ICMP_EQ;
1161 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
1162 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
1163 // We distilled this down to a simple case, use the standard constant
1164 // folder.
1165 ConstantInt *R = 0;
1166 Constant *C1 = const_cast<Constant*>(V1);
1167 Constant *C2 = const_cast<Constant*>(V2);
1168 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1169 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1170 if (R && !R->isZero())
1171 return pred;
1172 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1173 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1174 if (R && !R->isZero())
1175 return pred;
1176 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1177 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1178 if (R && !R->isZero())
1179 return pred;
1181 // If we couldn't figure it out, bail.
1182 return ICmpInst::BAD_ICMP_PREDICATE;
1185 // If the first operand is simple, swap operands.
1186 ICmpInst::Predicate SwappedRelation =
1187 evaluateICmpRelation(Context, V2, V1, isSigned);
1188 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1189 return ICmpInst::getSwappedPredicate(SwappedRelation);
1191 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
1192 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1193 ICmpInst::Predicate SwappedRelation =
1194 evaluateICmpRelation(Context, V2, V1, isSigned);
1195 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1196 return ICmpInst::getSwappedPredicate(SwappedRelation);
1197 else
1198 return ICmpInst::BAD_ICMP_PREDICATE;
1201 // Now we know that the RHS is a GlobalValue or simple constant,
1202 // which (since the types must match) means that it's a ConstantPointerNull.
1203 if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1204 // Don't try to decide equality of aliases.
1205 if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
1206 if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
1207 return ICmpInst::ICMP_NE;
1208 } else {
1209 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1210 // GlobalVals can never be null. Don't try to evaluate aliases.
1211 if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
1212 return ICmpInst::ICMP_NE;
1214 } else {
1215 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1216 // constantexpr, a CPR, or a simple constant.
1217 const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1218 const Constant *CE1Op0 = CE1->getOperand(0);
1220 switch (CE1->getOpcode()) {
1221 case Instruction::Trunc:
1222 case Instruction::FPTrunc:
1223 case Instruction::FPExt:
1224 case Instruction::FPToUI:
1225 case Instruction::FPToSI:
1226 break; // We can't evaluate floating point casts or truncations.
1228 case Instruction::UIToFP:
1229 case Instruction::SIToFP:
1230 case Instruction::BitCast:
1231 case Instruction::ZExt:
1232 case Instruction::SExt:
1233 // If the cast is not actually changing bits, and the second operand is a
1234 // null pointer, do the comparison with the pre-casted value.
1235 if (V2->isNullValue() &&
1236 (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
1237 bool sgnd = isSigned;
1238 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1239 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1240 return evaluateICmpRelation(Context, CE1Op0,
1241 Constant::getNullValue(CE1Op0->getType()),
1242 sgnd);
1245 // If the dest type is a pointer type, and the RHS is a constantexpr cast
1246 // from the same type as the src of the LHS, evaluate the inputs. This is
1247 // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1248 // which happens a lot in compilers with tagged integers.
1249 if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1250 if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
1251 CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1252 CE1->getOperand(0)->getType()->isInteger()) {
1253 bool sgnd = isSigned;
1254 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1255 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1256 return evaluateICmpRelation(Context, CE1->getOperand(0),
1257 CE2->getOperand(0), sgnd);
1259 break;
1261 case Instruction::GetElementPtr:
1262 // Ok, since this is a getelementptr, we know that the constant has a
1263 // pointer type. Check the various cases.
1264 if (isa<ConstantPointerNull>(V2)) {
1265 // If we are comparing a GEP to a null pointer, check to see if the base
1266 // of the GEP equals the null pointer.
1267 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1268 if (GV->hasExternalWeakLinkage())
1269 // Weak linkage GVals could be zero or not. We're comparing that
1270 // to null pointer so its greater-or-equal
1271 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1272 else
1273 // If its not weak linkage, the GVal must have a non-zero address
1274 // so the result is greater-than
1275 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1276 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1277 // If we are indexing from a null pointer, check to see if we have any
1278 // non-zero indices.
1279 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1280 if (!CE1->getOperand(i)->isNullValue())
1281 // Offsetting from null, must not be equal.
1282 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1283 // Only zero indexes from null, must still be zero.
1284 return ICmpInst::ICMP_EQ;
1286 // Otherwise, we can't really say if the first operand is null or not.
1287 } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1288 if (isa<ConstantPointerNull>(CE1Op0)) {
1289 if (CPR2->hasExternalWeakLinkage())
1290 // Weak linkage GVals could be zero or not. We're comparing it to
1291 // a null pointer, so its less-or-equal
1292 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1293 else
1294 // If its not weak linkage, the GVal must have a non-zero address
1295 // so the result is less-than
1296 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1297 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1298 if (CPR1 == CPR2) {
1299 // If this is a getelementptr of the same global, then it must be
1300 // different. Because the types must match, the getelementptr could
1301 // only have at most one index, and because we fold getelementptr's
1302 // with a single zero index, it must be nonzero.
1303 assert(CE1->getNumOperands() == 2 &&
1304 !CE1->getOperand(1)->isNullValue() &&
1305 "Suprising getelementptr!");
1306 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1307 } else {
1308 // If they are different globals, we don't know what the value is,
1309 // but they can't be equal.
1310 return ICmpInst::ICMP_NE;
1313 } else {
1314 const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1315 const Constant *CE2Op0 = CE2->getOperand(0);
1317 // There are MANY other foldings that we could perform here. They will
1318 // probably be added on demand, as they seem needed.
1319 switch (CE2->getOpcode()) {
1320 default: break;
1321 case Instruction::GetElementPtr:
1322 // By far the most common case to handle is when the base pointers are
1323 // obviously to the same or different globals.
1324 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1325 if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1326 return ICmpInst::ICMP_NE;
1327 // Ok, we know that both getelementptr instructions are based on the
1328 // same global. From this, we can precisely determine the relative
1329 // ordering of the resultant pointers.
1330 unsigned i = 1;
1332 // Compare all of the operands the GEP's have in common.
1333 gep_type_iterator GTI = gep_type_begin(CE1);
1334 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1335 ++i, ++GTI)
1336 switch (IdxCompare(Context, CE1->getOperand(i),
1337 CE2->getOperand(i), GTI.getIndexedType())) {
1338 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1339 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1340 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1343 // Ok, we ran out of things they have in common. If any leftovers
1344 // are non-zero then we have a difference, otherwise we are equal.
1345 for (; i < CE1->getNumOperands(); ++i)
1346 if (!CE1->getOperand(i)->isNullValue()) {
1347 if (isa<ConstantInt>(CE1->getOperand(i)))
1348 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1349 else
1350 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1353 for (; i < CE2->getNumOperands(); ++i)
1354 if (!CE2->getOperand(i)->isNullValue()) {
1355 if (isa<ConstantInt>(CE2->getOperand(i)))
1356 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1357 else
1358 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1360 return ICmpInst::ICMP_EQ;
1364 default:
1365 break;
1369 return ICmpInst::BAD_ICMP_PREDICATE;
1372 Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
1373 unsigned short pred,
1374 const Constant *C1,
1375 const Constant *C2) {
1376 const Type *ResultTy;
1377 if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1378 ResultTy = VectorType::get(Type::getInt1Ty(Context), VT->getNumElements());
1379 else
1380 ResultTy = Type::getInt1Ty(Context);
1382 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1383 if (pred == FCmpInst::FCMP_FALSE)
1384 return Constant::getNullValue(ResultTy);
1386 if (pred == FCmpInst::FCMP_TRUE)
1387 return Constant::getAllOnesValue(ResultTy);
1389 // Handle some degenerate cases first
1390 if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1391 return UndefValue::get(ResultTy);
1393 // No compile-time operations on this type yet.
1394 if (C1->getType() == Type::getPPC_FP128Ty(Context))
1395 return 0;
1397 // icmp eq/ne(null,GV) -> false/true
1398 if (C1->isNullValue()) {
1399 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1400 // Don't try to evaluate aliases. External weak GV can be null.
1401 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1402 if (pred == ICmpInst::ICMP_EQ)
1403 return ConstantInt::getFalse(Context);
1404 else if (pred == ICmpInst::ICMP_NE)
1405 return ConstantInt::getTrue(Context);
1407 // icmp eq/ne(GV,null) -> false/true
1408 } else if (C2->isNullValue()) {
1409 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1410 // Don't try to evaluate aliases. External weak GV can be null.
1411 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1412 if (pred == ICmpInst::ICMP_EQ)
1413 return ConstantInt::getFalse(Context);
1414 else if (pred == ICmpInst::ICMP_NE)
1415 return ConstantInt::getTrue(Context);
1419 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1420 APInt V1 = cast<ConstantInt>(C1)->getValue();
1421 APInt V2 = cast<ConstantInt>(C2)->getValue();
1422 switch (pred) {
1423 default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1424 case ICmpInst::ICMP_EQ:
1425 return ConstantInt::get(Type::getInt1Ty(Context), V1 == V2);
1426 case ICmpInst::ICMP_NE:
1427 return ConstantInt::get(Type::getInt1Ty(Context), V1 != V2);
1428 case ICmpInst::ICMP_SLT:
1429 return ConstantInt::get(Type::getInt1Ty(Context), V1.slt(V2));
1430 case ICmpInst::ICMP_SGT:
1431 return ConstantInt::get(Type::getInt1Ty(Context), V1.sgt(V2));
1432 case ICmpInst::ICMP_SLE:
1433 return ConstantInt::get(Type::getInt1Ty(Context), V1.sle(V2));
1434 case ICmpInst::ICMP_SGE:
1435 return ConstantInt::get(Type::getInt1Ty(Context), V1.sge(V2));
1436 case ICmpInst::ICMP_ULT:
1437 return ConstantInt::get(Type::getInt1Ty(Context), V1.ult(V2));
1438 case ICmpInst::ICMP_UGT:
1439 return ConstantInt::get(Type::getInt1Ty(Context), V1.ugt(V2));
1440 case ICmpInst::ICMP_ULE:
1441 return ConstantInt::get(Type::getInt1Ty(Context), V1.ule(V2));
1442 case ICmpInst::ICMP_UGE:
1443 return ConstantInt::get(Type::getInt1Ty(Context), V1.uge(V2));
1445 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1446 APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1447 APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1448 APFloat::cmpResult R = C1V.compare(C2V);
1449 switch (pred) {
1450 default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1451 case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse(Context);
1452 case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue(Context);
1453 case FCmpInst::FCMP_UNO:
1454 return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered);
1455 case FCmpInst::FCMP_ORD:
1456 return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpUnordered);
1457 case FCmpInst::FCMP_UEQ:
1458 return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
1459 R==APFloat::cmpEqual);
1460 case FCmpInst::FCMP_OEQ:
1461 return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpEqual);
1462 case FCmpInst::FCMP_UNE:
1463 return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpEqual);
1464 case FCmpInst::FCMP_ONE:
1465 return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan ||
1466 R==APFloat::cmpGreaterThan);
1467 case FCmpInst::FCMP_ULT:
1468 return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
1469 R==APFloat::cmpLessThan);
1470 case FCmpInst::FCMP_OLT:
1471 return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan);
1472 case FCmpInst::FCMP_UGT:
1473 return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpUnordered ||
1474 R==APFloat::cmpGreaterThan);
1475 case FCmpInst::FCMP_OGT:
1476 return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpGreaterThan);
1477 case FCmpInst::FCMP_ULE:
1478 return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpGreaterThan);
1479 case FCmpInst::FCMP_OLE:
1480 return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpLessThan ||
1481 R==APFloat::cmpEqual);
1482 case FCmpInst::FCMP_UGE:
1483 return ConstantInt::get(Type::getInt1Ty(Context), R!=APFloat::cmpLessThan);
1484 case FCmpInst::FCMP_OGE:
1485 return ConstantInt::get(Type::getInt1Ty(Context), R==APFloat::cmpGreaterThan ||
1486 R==APFloat::cmpEqual);
1488 } else if (isa<VectorType>(C1->getType())) {
1489 SmallVector<Constant*, 16> C1Elts, C2Elts;
1490 C1->getVectorElements(Context, C1Elts);
1491 C2->getVectorElements(Context, C2Elts);
1493 // If we can constant fold the comparison of each element, constant fold
1494 // the whole vector comparison.
1495 SmallVector<Constant*, 4> ResElts;
1496 for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1497 // Compare the elements, producing an i1 result or constant expr.
1498 ResElts.push_back(
1499 ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1501 return ConstantVector::get(&ResElts[0], ResElts.size());
1504 if (C1->getType()->isFloatingPoint()) {
1505 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1506 switch (evaluateFCmpRelation(Context, C1, C2)) {
1507 default: llvm_unreachable("Unknown relation!");
1508 case FCmpInst::FCMP_UNO:
1509 case FCmpInst::FCMP_ORD:
1510 case FCmpInst::FCMP_UEQ:
1511 case FCmpInst::FCMP_UNE:
1512 case FCmpInst::FCMP_ULT:
1513 case FCmpInst::FCMP_UGT:
1514 case FCmpInst::FCMP_ULE:
1515 case FCmpInst::FCMP_UGE:
1516 case FCmpInst::FCMP_TRUE:
1517 case FCmpInst::FCMP_FALSE:
1518 case FCmpInst::BAD_FCMP_PREDICATE:
1519 break; // Couldn't determine anything about these constants.
1520 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1521 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1522 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1523 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1524 break;
1525 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1526 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1527 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1528 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1529 break;
1530 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1531 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1532 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1533 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1534 break;
1535 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1536 // We can only partially decide this relation.
1537 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1538 Result = 0;
1539 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1540 Result = 1;
1541 break;
1542 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1543 // We can only partially decide this relation.
1544 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1545 Result = 0;
1546 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1547 Result = 1;
1548 break;
1549 case ICmpInst::ICMP_NE: // We know that C1 != C2
1550 // We can only partially decide this relation.
1551 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1552 Result = 0;
1553 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1554 Result = 1;
1555 break;
1558 // If we evaluated the result, return it now.
1559 if (Result != -1)
1560 return ConstantInt::get(Type::getInt1Ty(Context), Result);
1562 } else {
1563 // Evaluate the relation between the two constants, per the predicate.
1564 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1565 switch (evaluateICmpRelation(Context, C1, C2, CmpInst::isSigned(pred))) {
1566 default: llvm_unreachable("Unknown relational!");
1567 case ICmpInst::BAD_ICMP_PREDICATE:
1568 break; // Couldn't determine anything about these constants.
1569 case ICmpInst::ICMP_EQ: // We know the constants are equal!
1570 // If we know the constants are equal, we can decide the result of this
1571 // computation precisely.
1572 Result = (pred == ICmpInst::ICMP_EQ ||
1573 pred == ICmpInst::ICMP_ULE ||
1574 pred == ICmpInst::ICMP_SLE ||
1575 pred == ICmpInst::ICMP_UGE ||
1576 pred == ICmpInst::ICMP_SGE);
1577 break;
1578 case ICmpInst::ICMP_ULT:
1579 // If we know that C1 < C2, we can decide the result of this computation
1580 // precisely.
1581 Result = (pred == ICmpInst::ICMP_ULT ||
1582 pred == ICmpInst::ICMP_NE ||
1583 pred == ICmpInst::ICMP_ULE);
1584 break;
1585 case ICmpInst::ICMP_SLT:
1586 // If we know that C1 < C2, we can decide the result of this computation
1587 // precisely.
1588 Result = (pred == ICmpInst::ICMP_SLT ||
1589 pred == ICmpInst::ICMP_NE ||
1590 pred == ICmpInst::ICMP_SLE);
1591 break;
1592 case ICmpInst::ICMP_UGT:
1593 // If we know that C1 > C2, we can decide the result of this computation
1594 // precisely.
1595 Result = (pred == ICmpInst::ICMP_UGT ||
1596 pred == ICmpInst::ICMP_NE ||
1597 pred == ICmpInst::ICMP_UGE);
1598 break;
1599 case ICmpInst::ICMP_SGT:
1600 // If we know that C1 > C2, we can decide the result of this computation
1601 // precisely.
1602 Result = (pred == ICmpInst::ICMP_SGT ||
1603 pred == ICmpInst::ICMP_NE ||
1604 pred == ICmpInst::ICMP_SGE);
1605 break;
1606 case ICmpInst::ICMP_ULE:
1607 // If we know that C1 <= C2, we can only partially decide this relation.
1608 if (pred == ICmpInst::ICMP_UGT) Result = 0;
1609 if (pred == ICmpInst::ICMP_ULT) Result = 1;
1610 break;
1611 case ICmpInst::ICMP_SLE:
1612 // If we know that C1 <= C2, we can only partially decide this relation.
1613 if (pred == ICmpInst::ICMP_SGT) Result = 0;
1614 if (pred == ICmpInst::ICMP_SLT) Result = 1;
1615 break;
1617 case ICmpInst::ICMP_UGE:
1618 // If we know that C1 >= C2, we can only partially decide this relation.
1619 if (pred == ICmpInst::ICMP_ULT) Result = 0;
1620 if (pred == ICmpInst::ICMP_UGT) Result = 1;
1621 break;
1622 case ICmpInst::ICMP_SGE:
1623 // If we know that C1 >= C2, we can only partially decide this relation.
1624 if (pred == ICmpInst::ICMP_SLT) Result = 0;
1625 if (pred == ICmpInst::ICMP_SGT) Result = 1;
1626 break;
1628 case ICmpInst::ICMP_NE:
1629 // If we know that C1 != C2, we can only partially decide this relation.
1630 if (pred == ICmpInst::ICMP_EQ) Result = 0;
1631 if (pred == ICmpInst::ICMP_NE) Result = 1;
1632 break;
1635 // If we evaluated the result, return it now.
1636 if (Result != -1)
1637 return ConstantInt::get(Type::getInt1Ty(Context), Result);
1639 if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1640 // If C2 is a constant expr and C1 isn't, flip them around and fold the
1641 // other way if possible.
1642 switch (pred) {
1643 case ICmpInst::ICMP_EQ:
1644 case ICmpInst::ICMP_NE:
1645 // No change of predicate required.
1646 return ConstantFoldCompareInstruction(Context, pred, C2, C1);
1648 case ICmpInst::ICMP_ULT:
1649 case ICmpInst::ICMP_SLT:
1650 case ICmpInst::ICMP_UGT:
1651 case ICmpInst::ICMP_SGT:
1652 case ICmpInst::ICMP_ULE:
1653 case ICmpInst::ICMP_SLE:
1654 case ICmpInst::ICMP_UGE:
1655 case ICmpInst::ICMP_SGE:
1656 // Change the predicate as necessary to swap the operands.
1657 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1658 return ConstantFoldCompareInstruction(Context, pred, C2, C1);
1660 default: // These predicates cannot be flopped around.
1661 break;
1665 return 0;
1668 Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
1669 const Constant *C,
1670 Constant* const *Idxs,
1671 unsigned NumIdx) {
1672 if (NumIdx == 0 ||
1673 (NumIdx == 1 && Idxs[0]->isNullValue()))
1674 return const_cast<Constant*>(C);
1676 if (isa<UndefValue>(C)) {
1677 const PointerType *Ptr = cast<PointerType>(C->getType());
1678 const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1679 (Value **)Idxs,
1680 (Value **)Idxs+NumIdx);
1681 assert(Ty != 0 && "Invalid indices for GEP!");
1682 return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1685 Constant *Idx0 = Idxs[0];
1686 if (C->isNullValue()) {
1687 bool isNull = true;
1688 for (unsigned i = 0, e = NumIdx; i != e; ++i)
1689 if (!Idxs[i]->isNullValue()) {
1690 isNull = false;
1691 break;
1693 if (isNull) {
1694 const PointerType *Ptr = cast<PointerType>(C->getType());
1695 const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1696 (Value**)Idxs,
1697 (Value**)Idxs+NumIdx);
1698 assert(Ty != 0 && "Invalid indices for GEP!");
1699 return ConstantPointerNull::get(
1700 PointerType::get(Ty,Ptr->getAddressSpace()));
1704 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1705 // Combine Indices - If the source pointer to this getelementptr instruction
1706 // is a getelementptr instruction, combine the indices of the two
1707 // getelementptr instructions into a single instruction.
1709 if (CE->getOpcode() == Instruction::GetElementPtr) {
1710 const Type *LastTy = 0;
1711 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1712 I != E; ++I)
1713 LastTy = *I;
1715 if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1716 SmallVector<Value*, 16> NewIndices;
1717 NewIndices.reserve(NumIdx + CE->getNumOperands());
1718 for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1719 NewIndices.push_back(CE->getOperand(i));
1721 // Add the last index of the source with the first index of the new GEP.
1722 // Make sure to handle the case when they are actually different types.
1723 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1724 // Otherwise it must be an array.
1725 if (!Idx0->isNullValue()) {
1726 const Type *IdxTy = Combined->getType();
1727 if (IdxTy != Idx0->getType()) {
1728 Constant *C1 =
1729 ConstantExpr::getSExtOrBitCast(Idx0, Type::getInt64Ty(Context));
1730 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1731 Type::getInt64Ty(Context));
1732 Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1733 } else {
1734 Combined =
1735 ConstantExpr::get(Instruction::Add, Idx0, Combined);
1739 NewIndices.push_back(Combined);
1740 NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1741 return ConstantExpr::getGetElementPtr(CE->getOperand(0),
1742 &NewIndices[0],
1743 NewIndices.size());
1747 // Implement folding of:
1748 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1749 // long 0, long 0)
1750 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1752 if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1753 if (const PointerType *SPT =
1754 dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1755 if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1756 if (const ArrayType *CAT =
1757 dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1758 if (CAT->getElementType() == SAT->getElementType())
1759 return ConstantExpr::getGetElementPtr(
1760 (Constant*)CE->getOperand(0), Idxs, NumIdx);
1763 // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1764 // Into: inttoptr (i64 0 to i8*)
1765 // This happens with pointers to member functions in C++.
1766 if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1767 isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1768 cast<PointerType>(CE->getType())->getElementType() == Type::getInt8Ty(Context)) {
1769 Constant *Base = CE->getOperand(0);
1770 Constant *Offset = Idxs[0];
1772 // Convert the smaller integer to the larger type.
1773 if (Offset->getType()->getPrimitiveSizeInBits() <
1774 Base->getType()->getPrimitiveSizeInBits())
1775 Offset = ConstantExpr::getSExt(Offset, Base->getType());
1776 else if (Base->getType()->getPrimitiveSizeInBits() <
1777 Offset->getType()->getPrimitiveSizeInBits())
1778 Base = ConstantExpr::getZExt(Base, Offset->getType());
1780 Base = ConstantExpr::getAdd(Base, Offset);
1781 return ConstantExpr::getIntToPtr(Base, CE->getType());
1784 return 0;