convert some uses of printBasicBlockLabel to use GetMBBSymbol
[llvm/avr.git] / docs / tutorial / LangImpl3.html
blob5978707e3bbbfae4686fdbca5a687efd8f3de373
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
4 <html>
5 <head>
6 <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <link rel="stylesheet" href="../llvm.css" type="text/css">
10 </head>
12 <body>
14 <div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div>
16 <ul>
17 <li><a href="index.html">Up to Tutorial Index</a></li>
18 <li>Chapter 3
19 <ol>
20 <li><a href="#intro">Chapter 3 Introduction</a></li>
21 <li><a href="#basics">Code Generation Setup</a></li>
22 <li><a href="#exprs">Expression Code Generation</a></li>
23 <li><a href="#funcs">Function Code Generation</a></li>
24 <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
25 <li><a href="#code">Full Code Listing</a></li>
26 </ol>
27 </li>
28 <li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer
29 Support</li>
30 </ul>
32 <div class="doc_author">
33 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
34 </div>
36 <!-- *********************************************************************** -->
37 <div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div>
38 <!-- *********************************************************************** -->
40 <div class="doc_text">
42 <p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
43 with LLVM</a>" tutorial. This chapter shows you how to transform the <a
44 href="LangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into LLVM IR.
45 This will teach you a little bit about how LLVM does things, as well as
46 demonstrate how easy it is to use. It's much more work to build a lexer and
47 parser than it is to generate LLVM IR code. :)
48 </p>
50 <p><b>Please note</b>: the code in this chapter and later require LLVM 2.2 or
51 later. LLVM 2.1 and before will not work with it. Also note that you need
52 to use a version of this tutorial that matches your LLVM release: If you are
53 using an official LLVM release, use the version of the documentation included
54 with your release or on the <a href="http://llvm.org/releases/">llvm.org
55 releases page</a>.</p>
57 </div>
59 <!-- *********************************************************************** -->
60 <div class="doc_section"><a name="basics">Code Generation Setup</a></div>
61 <!-- *********************************************************************** -->
63 <div class="doc_text">
65 <p>
66 In order to generate LLVM IR, we want some simple setup to get started. First
67 we define virtual code generation (codegen) methods in each AST class:</p>
69 <div class="doc_code">
70 <pre>
71 /// ExprAST - Base class for all expression nodes.
72 class ExprAST {
73 public:
74 virtual ~ExprAST() {}
75 <b>virtual Value *Codegen() = 0;</b>
78 /// NumberExprAST - Expression class for numeric literals like "1.0".
79 class NumberExprAST : public ExprAST {
80 double Val;
81 public:
82 explicit NumberExprAST(double val) : Val(val) {}
83 <b>virtual Value *Codegen();</b>
85 ...
86 </pre>
87 </div>
89 <p>The Codegen() method says to emit IR for that AST node along with all the things it
90 depends on, and they all return an LLVM Value object.
91 "Value" is the class used to represent a "<a
92 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
93 Assignment (SSA)</a> register" or "SSA value" in LLVM. The most distinct aspect
94 of SSA values is that their value is computed as the related instruction
95 executes, and it does not get a new value until (and if) the instruction
96 re-executes. In other words, there is no way to "change" an SSA value. For
97 more information, please read up on <a
98 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
99 Assignment</a> - the concepts are really quite natural once you grok them.</p>
101 <p>Note that instead of adding virtual methods to the ExprAST class hierarchy,
102 it could also make sense to use a <a
103 href="http://en.wikipedia.org/wiki/Visitor_pattern">visitor pattern</a> or some
104 other way to model this. Again, this tutorial won't dwell on good software
105 engineering practices: for our purposes, adding a virtual method is
106 simplest.</p>
108 <p>The
109 second thing we want is an "Error" method like we used for the parser, which will
110 be used to report errors found during code generation (for example, use of an
111 undeclared parameter):</p>
113 <div class="doc_code">
114 <pre>
115 Value *ErrorV(const char *Str) { Error(Str); return 0; }
117 static Module *TheModule;
118 static IRBuilder&lt;&gt; Builder(getGlobalContext());
119 static std::map&lt;std::string, Value*&gt; NamedValues;
120 </pre>
121 </div>
123 <p>The static variables will be used during code generation. <tt>TheModule</tt>
124 is the LLVM construct that contains all of the functions and global variables in
125 a chunk of code. In many ways, it is the top-level structure that the LLVM IR
126 uses to contain code.</p>
128 <p>The <tt>Builder</tt> object is a helper object that makes it easy to generate
129 LLVM instructions. Instances of the <a
130 href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a>
131 class template keep track of the current place to insert instructions and has
132 methods to create new instructions.</p>
134 <p>The <tt>NamedValues</tt> map keeps track of which values are defined in the
135 current scope and what their LLVM representation is. (In other words, it is a
136 symbol table for the code). In this form of Kaleidoscope, the only things that
137 can be referenced are function parameters. As such, function parameters will
138 be in this map when generating code for their function body.</p>
141 With these basics in place, we can start talking about how to generate code for
142 each expression. Note that this assumes that the <tt>Builder</tt> has been set
143 up to generate code <em>into</em> something. For now, we'll assume that this
144 has already been done, and we'll just use it to emit code.
145 </p>
147 </div>
149 <!-- *********************************************************************** -->
150 <div class="doc_section"><a name="exprs">Expression Code Generation</a></div>
151 <!-- *********************************************************************** -->
153 <div class="doc_text">
155 <p>Generating LLVM code for expression nodes is very straightforward: less
156 than 45 lines of commented code for all four of our expression nodes. First
157 we'll do numeric literals:</p>
159 <div class="doc_code">
160 <pre>
161 Value *NumberExprAST::Codegen() {
162 return ConstantFP::get(getGlobalContext(), APFloat(Val));
164 </pre>
165 </div>
167 <p>In the LLVM IR, numeric constants are represented with the
168 <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
169 internally (<tt>APFloat</tt> has the capability of holding floating point
170 constants of <em>A</em>rbitrary <em>P</em>recision). This code basically just
171 creates and returns a <tt>ConstantFP</tt>. Note that in the LLVM IR
172 that constants are all uniqued together and shared. For this reason, the API
173 uses "the Context.get..." idiom instead of "new foo(..)" or "foo::Create(..)".</p>
175 <div class="doc_code">
176 <pre>
177 Value *VariableExprAST::Codegen() {
178 // Look this variable up in the function.
179 Value *V = NamedValues[Name];
180 return V ? V : ErrorV("Unknown variable name");
182 </pre>
183 </div>
185 <p>References to variables are also quite simple using LLVM. In the simple version
186 of Kaleidoscope, we assume that the variable has already been emited somewhere
187 and its value is available. In practice, the only values that can be in the
188 <tt>NamedValues</tt> map are function arguments. This
189 code simply checks to see that the specified name is in the map (if not, an
190 unknown variable is being referenced) and returns the value for it. In future
191 chapters, we'll add support for <a href="LangImpl5.html#for">loop induction
192 variables</a> in the symbol table, and for <a
193 href="LangImpl7.html#localvars">local variables</a>.</p>
195 <div class="doc_code">
196 <pre>
197 Value *BinaryExprAST::Codegen() {
198 Value *L = LHS-&gt;Codegen();
199 Value *R = RHS-&gt;Codegen();
200 if (L == 0 || R == 0) return 0;
202 switch (Op) {
203 case '+': return Builder.CreateAdd(L, R, "addtmp");
204 case '-': return Builder.CreateSub(L, R, "subtmp");
205 case '*': return Builder.CreateMul(L, R, "multmp");
206 case '&lt;':
207 L = Builder.CreateFCmpULT(L, R, "cmptmp");
208 // Convert bool 0/1 to double 0.0 or 1.0
209 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), "booltmp");
210 default: return ErrorV("invalid binary operator");
213 </pre>
214 </div>
216 <p>Binary operators start to get more interesting. The basic idea here is that
217 we recursively emit code for the left-hand side of the expression, then the
218 right-hand side, then we compute the result of the binary expression. In this
219 code, we do a simple switch on the opcode to create the right LLVM instruction.
220 </p>
222 <p>In the example above, the LLVM builder class is starting to show its value.
223 IRBuilder knows where to insert the newly created instruction, all you have to
224 do is specify what instruction to create (e.g. with <tt>CreateAdd</tt>), which
225 operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name
226 for the generated instruction.</p>
228 <p>One nice thing about LLVM is that the name is just a hint. For instance, if
229 the code above emits multiple "addtmp" variables, LLVM will automatically
230 provide each one with an increasing, unique numeric suffix. Local value names
231 for instructions are purely optional, but it makes it much easier to read the
232 IR dumps.</p>
234 <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
235 strict rules: for example, the Left and Right operators of
236 an <a href="../LangRef.html#i_add">add instruction</a> must have the same
237 type, and the result type of the add must match the operand types. Because
238 all values in Kaleidoscope are doubles, this makes for very simple code for add,
239 sub and mul.</p>
241 <p>On the other hand, LLVM specifies that the <a
242 href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
243 (a one bit integer). The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value. In order to get these semantics, we combine the fcmp instruction with
244 a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>. This instruction
245 converts its input integer into a floating point value by treating the input
246 as an unsigned value. In contrast, if we used the <a
247 href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '&lt;'
248 operator would return 0.0 and -1.0, depending on the input value.</p>
250 <div class="doc_code">
251 <pre>
252 Value *CallExprAST::Codegen() {
253 // Look up the name in the global module table.
254 Function *CalleeF = TheModule-&gt;getFunction(Callee);
255 if (CalleeF == 0)
256 return ErrorV("Unknown function referenced");
258 // If argument mismatch error.
259 if (CalleeF-&gt;arg_size() != Args.size())
260 return ErrorV("Incorrect # arguments passed");
262 std::vector&lt;Value*&gt; ArgsV;
263 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
264 ArgsV.push_back(Args[i]-&gt;Codegen());
265 if (ArgsV.back() == 0) return 0;
268 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
270 </pre>
271 </div>
273 <p>Code generation for function calls is quite straightforward with LLVM. The
274 code above initially does a function name lookup in the LLVM Module's symbol
275 table. Recall that the LLVM Module is the container that holds all of the
276 functions we are JIT'ing. By giving each function the same name as what the
277 user specifies, we can use the LLVM symbol table to resolve function names for
278 us.</p>
280 <p>Once we have the function to call, we recursively codegen each argument that
281 is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
282 instruction</a>. Note that LLVM uses the native C calling conventions by
283 default, allowing these calls to also call into standard library functions like
284 "sin" and "cos", with no additional effort.</p>
286 <p>This wraps up our handling of the four basic expressions that we have so far
287 in Kaleidoscope. Feel free to go in and add some more. For example, by
288 browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
289 several other interesting instructions that are really easy to plug into our
290 basic framework.</p>
292 </div>
294 <!-- *********************************************************************** -->
295 <div class="doc_section"><a name="funcs">Function Code Generation</a></div>
296 <!-- *********************************************************************** -->
298 <div class="doc_text">
300 <p>Code generation for prototypes and functions must handle a number of
301 details, which make their code less beautiful than expression code
302 generation, but allows us to illustrate some important points. First, lets
303 talk about code generation for prototypes: they are used both for function
304 bodies and external function declarations. The code starts with:</p>
306 <div class="doc_code">
307 <pre>
308 Function *PrototypeAST::Codegen() {
309 // Make the function type: double(double,double) etc.
310 std::vector&lt;const Type*&gt; Doubles(Args.size(), Type::getDoubleTy(getGlobalContext()));
311 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
313 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
314 </pre>
315 </div>
317 <p>This code packs a lot of power into a few lines. Note first that this
318 function returns a "Function*" instead of a "Value*". Because a "prototype"
319 really talks about the external interface for a function (not the value computed
320 by an expression), it makes sense for it to return the LLVM Function it
321 corresponds to when codegen'd.</p>
323 <p>The call to <tt>Context.get</tt> creates
324 the <tt>FunctionType</tt> that should be used for a given Prototype. Since all
325 function arguments in Kaleidoscope are of type double, the first line creates
326 a vector of "N" LLVM double types. It then uses the <tt>Context.get</tt>
327 method to create a function type that takes "N" doubles as arguments, returns
328 one double as a result, and that is not vararg (the false parameter indicates
329 this). Note that Types in LLVM are uniqued just like Constants are, so you
330 don't "new" a type, you "get" it.</p>
332 <p>The final line above actually creates the function that the prototype will
333 correspond to. This indicates the type, linkage and name to use, as well as which
334 module to insert into. "<a href="../LangRef.html#linkage">external linkage</a>"
335 means that the function may be defined outside the current module and/or that it
336 is callable by functions outside the module. The Name passed in is the name the
337 user specified: since "<tt>TheModule</tt>" is specified, this name is registered
338 in "<tt>TheModule</tt>"s symbol table, which is used by the function call code
339 above.</p>
341 <div class="doc_code">
342 <pre>
343 // If F conflicted, there was already something named 'Name'. If it has a
344 // body, don't allow redefinition or reextern.
345 if (F-&gt;getName() != Name) {
346 // Delete the one we just made and get the existing one.
347 F-&gt;eraseFromParent();
348 F = TheModule-&gt;getFunction(Name);
349 </pre>
350 </div>
352 <p>The Module symbol table works just like the Function symbol table when it
353 comes to name conflicts: if a new function is created with a name was previously
354 added to the symbol table, it will get implicitly renamed when added to the
355 Module. The code above exploits this fact to determine if there was a previous
356 definition of this function.</p>
358 <p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
359 first, we want to allow 'extern'ing a function more than once, as long as the
360 prototypes for the externs match (since all arguments have the same type, we
361 just have to check that the number of arguments match). Second, we want to
362 allow 'extern'ing a function and then definining a body for it. This is useful
363 when defining mutually recursive functions.</p>
365 <p>In order to implement this, the code above first checks to see if there is
366 a collision on the name of the function. If so, it deletes the function we just
367 created (by calling <tt>eraseFromParent</tt>) and then calling
368 <tt>getFunction</tt> to get the existing function with the specified name. Note
369 that many APIs in LLVM have "erase" forms and "remove" forms. The "remove" form
370 unlinks the object from its parent (e.g. a Function from a Module) and returns
371 it. The "erase" form unlinks the object and then deletes it.</p>
373 <div class="doc_code">
374 <pre>
375 // If F already has a body, reject this.
376 if (!F-&gt;empty()) {
377 ErrorF("redefinition of function");
378 return 0;
381 // If F took a different number of args, reject.
382 if (F-&gt;arg_size() != Args.size()) {
383 ErrorF("redefinition of function with different # args");
384 return 0;
387 </pre>
388 </div>
390 <p>In order to verify the logic above, we first check to see if the pre-existing
391 function is "empty". In this case, empty means that it has no basic blocks in
392 it, which means it has no body. If it has no body, it is a forward
393 declaration. Since we don't allow anything after a full definition of the
394 function, the code rejects this case. If the previous reference to a function
395 was an 'extern', we simply verify that the number of arguments for that
396 definition and this one match up. If not, we emit an error.</p>
398 <div class="doc_code">
399 <pre>
400 // Set names for all arguments.
401 unsigned Idx = 0;
402 for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
403 ++AI, ++Idx) {
404 AI-&gt;setName(Args[Idx]);
406 // Add arguments to variable symbol table.
407 NamedValues[Args[Idx]] = AI;
409 return F;
411 </pre>
412 </div>
414 <p>The last bit of code for prototypes loops over all of the arguments in the
415 function, setting the name of the LLVM Argument objects to match, and registering
416 the arguments in the <tt>NamedValues</tt> map for future use by the
417 <tt>VariableExprAST</tt> AST node. Once this is set up, it returns the Function
418 object to the caller. Note that we don't check for conflicting
419 argument names here (e.g. "extern foo(a b a)"). Doing so would be very
420 straight-forward with the mechanics we have already used above.</p>
422 <div class="doc_code">
423 <pre>
424 Function *FunctionAST::Codegen() {
425 NamedValues.clear();
427 Function *TheFunction = Proto-&gt;Codegen();
428 if (TheFunction == 0)
429 return 0;
430 </pre>
431 </div>
433 <p>Code generation for function definitions starts out simply enough: we just
434 codegen the prototype (Proto) and verify that it is ok. We then clear out the
435 <tt>NamedValues</tt> map to make sure that there isn't anything in it from the
436 last function we compiled. Code generation of the prototype ensures that there
437 is an LLVM Function object that is ready to go for us.</p>
439 <div class="doc_code">
440 <pre>
441 // Create a new basic block to start insertion into.
442 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
443 Builder.SetInsertPoint(BB);
445 if (Value *RetVal = Body-&gt;Codegen()) {
446 </pre>
447 </div>
449 <p>Now we get to the point where the <tt>Builder</tt> is set up. The first
450 line creates a new <a href="http://en.wikipedia.org/wiki/Basic_block">basic
451 block</a> (named "entry"), which is inserted into <tt>TheFunction</tt>. The
452 second line then tells the builder that new instructions should be inserted into
453 the end of the new basic block. Basic blocks in LLVM are an important part
454 of functions that define the <a
455 href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
456 Since we don't have any control flow, our functions will only contain one
457 block at this point. We'll fix this in <a href="LangImpl5.html">Chapter 5</a> :).</p>
459 <div class="doc_code">
460 <pre>
461 if (Value *RetVal = Body-&gt;Codegen()) {
462 // Finish off the function.
463 Builder.CreateRet(RetVal);
465 // Validate the generated code, checking for consistency.
466 verifyFunction(*TheFunction);
467 return TheFunction;
469 </pre>
470 </div>
472 <p>Once the insertion point is set up, we call the <tt>CodeGen()</tt> method for
473 the root expression of the function. If no error happens, this emits code to
474 compute the expression into the entry block and returns the value that was
475 computed. Assuming no error, we then create an LLVM <a
476 href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
477 Once the function is built, we call <tt>verifyFunction</tt>, which
478 is provided by LLVM. This function does a variety of consistency checks on the
479 generated code, to determine if our compiler is doing everything right. Using
480 this is important: it can catch a lot of bugs. Once the function is finished
481 and validated, we return it.</p>
483 <div class="doc_code">
484 <pre>
485 // Error reading body, remove function.
486 TheFunction-&gt;eraseFromParent();
487 return 0;
489 </pre>
490 </div>
492 <p>The only piece left here is handling of the error case. For simplicity, we
493 handle this by merely deleting the function we produced with the
494 <tt>eraseFromParent</tt> method. This allows the user to redefine a function
495 that they incorrectly typed in before: if we didn't delete it, it would live in
496 the symbol table, with a body, preventing future redefinition.</p>
498 <p>This code does have a bug, though. Since the <tt>PrototypeAST::Codegen</tt>
499 can return a previously defined forward declaration, our code can actually delete
500 a forward declaration. There are a number of ways to fix this bug, see what you
501 can come up with! Here is a testcase:</p>
503 <div class="doc_code">
504 <pre>
505 extern foo(a b); # ok, defines foo.
506 def foo(a b) c; # error, 'c' is invalid.
507 def bar() foo(1, 2); # error, unknown function "foo"
508 </pre>
509 </div>
511 </div>
513 <!-- *********************************************************************** -->
514 <div class="doc_section"><a name="driver">Driver Changes and
515 Closing Thoughts</a></div>
516 <!-- *********************************************************************** -->
518 <div class="doc_text">
521 For now, code generation to LLVM doesn't really get us much, except that we can
522 look at the pretty IR calls. The sample code inserts calls to Codegen into the
523 "<tt>HandleDefinition</tt>", "<tt>HandleExtern</tt>" etc functions, and then
524 dumps out the LLVM IR. This gives a nice way to look at the LLVM IR for simple
525 functions. For example:
526 </p>
528 <div class="doc_code">
529 <pre>
530 ready> <b>4+5</b>;
531 Read top-level expression:
532 define double @""() {
533 entry:
534 %addtmp = add double 4.000000e+00, 5.000000e+00
535 ret double %addtmp
537 </pre>
538 </div>
540 <p>Note how the parser turns the top-level expression into anonymous functions
541 for us. This will be handy when we add <a href="LangImpl4.html#jit">JIT
542 support</a> in the next chapter. Also note that the code is very literally
543 transcribed, no optimizations are being performed. We will
544 <a href="LangImpl4.html#trivialconstfold">add optimizations</a> explicitly in
545 the next chapter.</p>
547 <div class="doc_code">
548 <pre>
549 ready&gt; <b>def foo(a b) a*a + 2*a*b + b*b;</b>
550 Read function definition:
551 define double @foo(double %a, double %b) {
552 entry:
553 %multmp = mul double %a, %a
554 %multmp1 = mul double 2.000000e+00, %a
555 %multmp2 = mul double %multmp1, %b
556 %addtmp = add double %multmp, %multmp2
557 %multmp3 = mul double %b, %b
558 %addtmp4 = add double %addtmp, %multmp3
559 ret double %addtmp4
561 </pre>
562 </div>
564 <p>This shows some simple arithmetic. Notice the striking similarity to the
565 LLVM builder calls that we use to create the instructions.</p>
567 <div class="doc_code">
568 <pre>
569 ready&gt; <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
570 Read function definition:
571 define double @bar(double %a) {
572 entry:
573 %calltmp = call double @foo( double %a, double 4.000000e+00 )
574 %calltmp1 = call double @bar( double 3.133700e+04 )
575 %addtmp = add double %calltmp, %calltmp1
576 ret double %addtmp
578 </pre>
579 </div>
581 <p>This shows some function calls. Note that this function will take a long
582 time to execute if you call it. In the future we'll add conditional control
583 flow to actually make recursion useful :).</p>
585 <div class="doc_code">
586 <pre>
587 ready&gt; <b>extern cos(x);</b>
588 Read extern:
589 declare double @cos(double)
591 ready&gt; <b>cos(1.234);</b>
592 Read top-level expression:
593 define double @""() {
594 entry:
595 %calltmp = call double @cos( double 1.234000e+00 )
596 ret double %calltmp
598 </pre>
599 </div>
601 <p>This shows an extern for the libm "cos" function, and a call to it.</p>
604 <div class="doc_code">
605 <pre>
606 ready&gt; <b>^D</b>
607 ; ModuleID = 'my cool jit'
609 define double @""() {
610 entry:
611 %addtmp = add double 4.000000e+00, 5.000000e+00
612 ret double %addtmp
615 define double @foo(double %a, double %b) {
616 entry:
617 %multmp = mul double %a, %a
618 %multmp1 = mul double 2.000000e+00, %a
619 %multmp2 = mul double %multmp1, %b
620 %addtmp = add double %multmp, %multmp2
621 %multmp3 = mul double %b, %b
622 %addtmp4 = add double %addtmp, %multmp3
623 ret double %addtmp4
626 define double @bar(double %a) {
627 entry:
628 %calltmp = call double @foo( double %a, double 4.000000e+00 )
629 %calltmp1 = call double @bar( double 3.133700e+04 )
630 %addtmp = add double %calltmp, %calltmp1
631 ret double %addtmp
634 declare double @cos(double)
636 define double @""() {
637 entry:
638 %calltmp = call double @cos( double 1.234000e+00 )
639 ret double %calltmp
641 </pre>
642 </div>
644 <p>When you quit the current demo, it dumps out the IR for the entire module
645 generated. Here you can see the big picture with all the functions referencing
646 each other.</p>
648 <p>This wraps up the third chapter of the Kaleidoscope tutorial. Up next, we'll
649 describe how to <a href="LangImpl4.html">add JIT codegen and optimizer
650 support</a> to this so we can actually start running code!</p>
652 </div>
655 <!-- *********************************************************************** -->
656 <div class="doc_section"><a name="code">Full Code Listing</a></div>
657 <!-- *********************************************************************** -->
659 <div class="doc_text">
662 Here is the complete code listing for our running example, enhanced with the
663 LLVM code generator. Because this uses the LLVM libraries, we need to link
664 them in. To do this, we use the <a
665 href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
666 our makefile/command line about which options to use:</p>
668 <div class="doc_code">
669 <pre>
670 # Compile
671 g++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy
672 # Run
673 ./toy
674 </pre>
675 </div>
677 <p>Here is the code:</p>
679 <div class="doc_code">
680 <pre>
681 // To build this:
682 // See example below.
684 #include "llvm/DerivedTypes.h"
685 #include "llvm/LLVMContext.h"
686 #include "llvm/Module.h"
687 #include "llvm/Analysis/Verifier.h"
688 #include "llvm/Support/IRBuilder.h"
689 #include &lt;cstdio&gt;
690 #include &lt;string&gt;
691 #include &lt;map&gt;
692 #include &lt;vector&gt;
693 using namespace llvm;
695 //===----------------------------------------------------------------------===//
696 // Lexer
697 //===----------------------------------------------------------------------===//
699 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
700 // of these for known things.
701 enum Token {
702 tok_eof = -1,
704 // commands
705 tok_def = -2, tok_extern = -3,
707 // primary
708 tok_identifier = -4, tok_number = -5,
711 static std::string IdentifierStr; // Filled in if tok_identifier
712 static double NumVal; // Filled in if tok_number
714 /// gettok - Return the next token from standard input.
715 static int gettok() {
716 static int LastChar = ' ';
718 // Skip any whitespace.
719 while (isspace(LastChar))
720 LastChar = getchar();
722 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
723 IdentifierStr = LastChar;
724 while (isalnum((LastChar = getchar())))
725 IdentifierStr += LastChar;
727 if (IdentifierStr == "def") return tok_def;
728 if (IdentifierStr == "extern") return tok_extern;
729 return tok_identifier;
732 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
733 std::string NumStr;
734 do {
735 NumStr += LastChar;
736 LastChar = getchar();
737 } while (isdigit(LastChar) || LastChar == '.');
739 NumVal = strtod(NumStr.c_str(), 0);
740 return tok_number;
743 if (LastChar == '#') {
744 // Comment until end of line.
745 do LastChar = getchar();
746 while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
748 if (LastChar != EOF)
749 return gettok();
752 // Check for end of file. Don't eat the EOF.
753 if (LastChar == EOF)
754 return tok_eof;
756 // Otherwise, just return the character as its ascii value.
757 int ThisChar = LastChar;
758 LastChar = getchar();
759 return ThisChar;
762 //===----------------------------------------------------------------------===//
763 // Abstract Syntax Tree (aka Parse Tree)
764 //===----------------------------------------------------------------------===//
766 /// ExprAST - Base class for all expression nodes.
767 class ExprAST {
768 public:
769 virtual ~ExprAST() {}
770 virtual Value *Codegen() = 0;
773 /// NumberExprAST - Expression class for numeric literals like "1.0".
774 class NumberExprAST : public ExprAST {
775 double Val;
776 public:
777 explicit NumberExprAST(double val) : Val(val) {}
778 virtual Value *Codegen();
781 /// VariableExprAST - Expression class for referencing a variable, like "a".
782 class VariableExprAST : public ExprAST {
783 std::string Name;
784 public:
785 explicit VariableExprAST(const std::string &amp;name) : Name(name) {}
786 virtual Value *Codegen();
789 /// BinaryExprAST - Expression class for a binary operator.
790 class BinaryExprAST : public ExprAST {
791 char Op;
792 ExprAST *LHS, *RHS;
793 public:
794 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
795 : Op(op), LHS(lhs), RHS(rhs) {}
796 virtual Value *Codegen();
799 /// CallExprAST - Expression class for function calls.
800 class CallExprAST : public ExprAST {
801 std::string Callee;
802 std::vector&lt;ExprAST*&gt; Args;
803 public:
804 CallExprAST(const std::string &amp;callee, std::vector&lt;ExprAST*&gt; &amp;args)
805 : Callee(callee), Args(args) {}
806 virtual Value *Codegen();
809 /// PrototypeAST - This class represents the "prototype" for a function,
810 /// which captures its argument names as well as if it is an operator.
811 class PrototypeAST {
812 std::string Name;
813 std::vector&lt;std::string&gt; Args;
814 public:
815 PrototypeAST(const std::string &amp;name, const std::vector&lt;std::string&gt; &amp;args)
816 : Name(name), Args(args) {}
818 Function *Codegen();
821 /// FunctionAST - This class represents a function definition itself.
822 class FunctionAST {
823 PrototypeAST *Proto;
824 ExprAST *Body;
825 public:
826 FunctionAST(PrototypeAST *proto, ExprAST *body)
827 : Proto(proto), Body(body) {}
829 Function *Codegen();
832 //===----------------------------------------------------------------------===//
833 // Parser
834 //===----------------------------------------------------------------------===//
836 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
837 /// token the parser it looking at. getNextToken reads another token from the
838 /// lexer and updates CurTok with its results.
839 static int CurTok;
840 static int getNextToken() {
841 return CurTok = gettok();
844 /// BinopPrecedence - This holds the precedence for each binary operator that is
845 /// defined.
846 static std::map&lt;char, int&gt; BinopPrecedence;
848 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
849 static int GetTokPrecedence() {
850 if (!isascii(CurTok))
851 return -1;
853 // Make sure it's a declared binop.
854 int TokPrec = BinopPrecedence[CurTok];
855 if (TokPrec &lt;= 0) return -1;
856 return TokPrec;
859 /// Error* - These are little helper functions for error handling.
860 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
861 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
862 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
864 static ExprAST *ParseExpression();
866 /// identifierexpr
867 /// ::= identifier
868 /// ::= identifier '(' expression* ')'
869 static ExprAST *ParseIdentifierExpr() {
870 std::string IdName = IdentifierStr;
872 getNextToken(); // eat identifier.
874 if (CurTok != '(') // Simple variable ref.
875 return new VariableExprAST(IdName);
877 // Call.
878 getNextToken(); // eat (
879 std::vector&lt;ExprAST*&gt; Args;
880 if (CurTok != ')') {
881 while (1) {
882 ExprAST *Arg = ParseExpression();
883 if (!Arg) return 0;
884 Args.push_back(Arg);
886 if (CurTok == ')') break;
888 if (CurTok != ',')
889 return Error("Expected ')' or ',' in argument list");
890 getNextToken();
894 // Eat the ')'.
895 getNextToken();
897 return new CallExprAST(IdName, Args);
900 /// numberexpr ::= number
901 static ExprAST *ParseNumberExpr() {
902 ExprAST *Result = new NumberExprAST(NumVal);
903 getNextToken(); // consume the number
904 return Result;
907 /// parenexpr ::= '(' expression ')'
908 static ExprAST *ParseParenExpr() {
909 getNextToken(); // eat (.
910 ExprAST *V = ParseExpression();
911 if (!V) return 0;
913 if (CurTok != ')')
914 return Error("expected ')'");
915 getNextToken(); // eat ).
916 return V;
919 /// primary
920 /// ::= identifierexpr
921 /// ::= numberexpr
922 /// ::= parenexpr
923 static ExprAST *ParsePrimary() {
924 switch (CurTok) {
925 default: return Error("unknown token when expecting an expression");
926 case tok_identifier: return ParseIdentifierExpr();
927 case tok_number: return ParseNumberExpr();
928 case '(': return ParseParenExpr();
932 /// binoprhs
933 /// ::= ('+' primary)*
934 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
935 // If this is a binop, find its precedence.
936 while (1) {
937 int TokPrec = GetTokPrecedence();
939 // If this is a binop that binds at least as tightly as the current binop,
940 // consume it, otherwise we are done.
941 if (TokPrec &lt; ExprPrec)
942 return LHS;
944 // Okay, we know this is a binop.
945 int BinOp = CurTok;
946 getNextToken(); // eat binop
948 // Parse the primary expression after the binary operator.
949 ExprAST *RHS = ParsePrimary();
950 if (!RHS) return 0;
952 // If BinOp binds less tightly with RHS than the operator after RHS, let
953 // the pending operator take RHS as its LHS.
954 int NextPrec = GetTokPrecedence();
955 if (TokPrec &lt; NextPrec) {
956 RHS = ParseBinOpRHS(TokPrec+1, RHS);
957 if (RHS == 0) return 0;
960 // Merge LHS/RHS.
961 LHS = new BinaryExprAST(BinOp, LHS, RHS);
965 /// expression
966 /// ::= primary binoprhs
968 static ExprAST *ParseExpression() {
969 ExprAST *LHS = ParsePrimary();
970 if (!LHS) return 0;
972 return ParseBinOpRHS(0, LHS);
975 /// prototype
976 /// ::= id '(' id* ')'
977 static PrototypeAST *ParsePrototype() {
978 if (CurTok != tok_identifier)
979 return ErrorP("Expected function name in prototype");
981 std::string FnName = IdentifierStr;
982 getNextToken();
984 if (CurTok != '(')
985 return ErrorP("Expected '(' in prototype");
987 std::vector&lt;std::string&gt; ArgNames;
988 while (getNextToken() == tok_identifier)
989 ArgNames.push_back(IdentifierStr);
990 if (CurTok != ')')
991 return ErrorP("Expected ')' in prototype");
993 // success.
994 getNextToken(); // eat ')'.
996 return new PrototypeAST(FnName, ArgNames);
999 /// definition ::= 'def' prototype expression
1000 static FunctionAST *ParseDefinition() {
1001 getNextToken(); // eat def.
1002 PrototypeAST *Proto = ParsePrototype();
1003 if (Proto == 0) return 0;
1005 if (ExprAST *E = ParseExpression())
1006 return new FunctionAST(Proto, E);
1007 return 0;
1010 /// toplevelexpr ::= expression
1011 static FunctionAST *ParseTopLevelExpr() {
1012 if (ExprAST *E = ParseExpression()) {
1013 // Make an anonymous proto.
1014 PrototypeAST *Proto = new PrototypeAST("", std::vector&lt;std::string&gt;());
1015 return new FunctionAST(Proto, E);
1017 return 0;
1020 /// external ::= 'extern' prototype
1021 static PrototypeAST *ParseExtern() {
1022 getNextToken(); // eat extern.
1023 return ParsePrototype();
1026 //===----------------------------------------------------------------------===//
1027 // Code Generation
1028 //===----------------------------------------------------------------------===//
1030 static Module *TheModule;
1031 static IRBuilder&lt;&gt; Builder(getGlobalContext());
1032 static std::map&lt;std::string, Value*&gt; NamedValues;
1034 Value *ErrorV(const char *Str) { Error(Str); return 0; }
1036 Value *NumberExprAST::Codegen() {
1037 return ConstantFP::get(getGlobalContext(), APFloat(Val));
1040 Value *VariableExprAST::Codegen() {
1041 // Look this variable up in the function.
1042 Value *V = NamedValues[Name];
1043 return V ? V : ErrorV("Unknown variable name");
1046 Value *BinaryExprAST::Codegen() {
1047 Value *L = LHS-&gt;Codegen();
1048 Value *R = RHS-&gt;Codegen();
1049 if (L == 0 || R == 0) return 0;
1051 switch (Op) {
1052 case '+': return Builder.CreateAdd(L, R, "addtmp");
1053 case '-': return Builder.CreateSub(L, R, "subtmp");
1054 case '*': return Builder.CreateMul(L, R, "multmp");
1055 case '&lt;':
1056 L = Builder.CreateFCmpULT(L, R, "cmptmp");
1057 // Convert bool 0/1 to double 0.0 or 1.0
1058 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), "booltmp");
1059 default: return ErrorV("invalid binary operator");
1063 Value *CallExprAST::Codegen() {
1064 // Look up the name in the global module table.
1065 Function *CalleeF = TheModule-&gt;getFunction(Callee);
1066 if (CalleeF == 0)
1067 return ErrorV("Unknown function referenced");
1069 // If argument mismatch error.
1070 if (CalleeF-&gt;arg_size() != Args.size())
1071 return ErrorV("Incorrect # arguments passed");
1073 std::vector&lt;Value*&gt; ArgsV;
1074 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1075 ArgsV.push_back(Args[i]-&gt;Codegen());
1076 if (ArgsV.back() == 0) return 0;
1079 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
1082 Function *PrototypeAST::Codegen() {
1083 // Make the function type: double(double,double) etc.
1084 std::vector&lt;const Type*&gt; Doubles(Args.size(), Type::getDoubleTy(getGlobalContext()));
1085 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
1087 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
1089 // If F conflicted, there was already something named 'Name'. If it has a
1090 // body, don't allow redefinition or reextern.
1091 if (F-&gt;getName() != Name) {
1092 // Delete the one we just made and get the existing one.
1093 F-&gt;eraseFromParent();
1094 F = TheModule-&gt;getFunction(Name);
1096 // If F already has a body, reject this.
1097 if (!F-&gt;empty()) {
1098 ErrorF("redefinition of function");
1099 return 0;
1102 // If F took a different number of args, reject.
1103 if (F-&gt;arg_size() != Args.size()) {
1104 ErrorF("redefinition of function with different # args");
1105 return 0;
1109 // Set names for all arguments.
1110 unsigned Idx = 0;
1111 for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
1112 ++AI, ++Idx) {
1113 AI-&gt;setName(Args[Idx]);
1115 // Add arguments to variable symbol table.
1116 NamedValues[Args[Idx]] = AI;
1119 return F;
1122 Function *FunctionAST::Codegen() {
1123 NamedValues.clear();
1125 Function *TheFunction = Proto-&gt;Codegen();
1126 if (TheFunction == 0)
1127 return 0;
1129 // Create a new basic block to start insertion into.
1130 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1131 Builder.SetInsertPoint(BB);
1133 if (Value *RetVal = Body-&gt;Codegen()) {
1134 // Finish off the function.
1135 Builder.CreateRet(RetVal);
1137 // Validate the generated code, checking for consistency.
1138 verifyFunction(*TheFunction);
1139 return TheFunction;
1142 // Error reading body, remove function.
1143 TheFunction-&gt;eraseFromParent();
1144 return 0;
1147 //===----------------------------------------------------------------------===//
1148 // Top-Level parsing and JIT Driver
1149 //===----------------------------------------------------------------------===//
1151 static void HandleDefinition() {
1152 if (FunctionAST *F = ParseDefinition()) {
1153 if (Function *LF = F-&gt;Codegen()) {
1154 fprintf(stderr, "Read function definition:");
1155 LF-&gt;dump();
1157 } else {
1158 // Skip token for error recovery.
1159 getNextToken();
1163 static void HandleExtern() {
1164 if (PrototypeAST *P = ParseExtern()) {
1165 if (Function *F = P-&gt;Codegen()) {
1166 fprintf(stderr, "Read extern: ");
1167 F-&gt;dump();
1169 } else {
1170 // Skip token for error recovery.
1171 getNextToken();
1175 static void HandleTopLevelExpression() {
1176 // Evaluate a top level expression into an anonymous function.
1177 if (FunctionAST *F = ParseTopLevelExpr()) {
1178 if (Function *LF = F-&gt;Codegen()) {
1179 fprintf(stderr, "Read top-level expression:");
1180 LF-&gt;dump();
1182 } else {
1183 // Skip token for error recovery.
1184 getNextToken();
1188 /// top ::= definition | external | expression | ';'
1189 static void MainLoop() {
1190 while (1) {
1191 fprintf(stderr, "ready&gt; ");
1192 switch (CurTok) {
1193 case tok_eof: return;
1194 case ';': getNextToken(); break; // ignore top level semicolons.
1195 case tok_def: HandleDefinition(); break;
1196 case tok_extern: HandleExtern(); break;
1197 default: HandleTopLevelExpression(); break;
1204 //===----------------------------------------------------------------------===//
1205 // "Library" functions that can be "extern'd" from user code.
1206 //===----------------------------------------------------------------------===//
1208 /// putchard - putchar that takes a double and returns 0.
1209 extern "C"
1210 double putchard(double X) {
1211 putchar((char)X);
1212 return 0;
1215 //===----------------------------------------------------------------------===//
1216 // Main driver code.
1217 //===----------------------------------------------------------------------===//
1219 int main() {
1220 TheModule = new Module("my cool jit", getGlobalContext());
1222 // Install standard binary operators.
1223 // 1 is lowest precedence.
1224 BinopPrecedence['&lt;'] = 10;
1225 BinopPrecedence['+'] = 20;
1226 BinopPrecedence['-'] = 20;
1227 BinopPrecedence['*'] = 40; // highest.
1229 // Prime the first token.
1230 fprintf(stderr, "ready&gt; ");
1231 getNextToken();
1233 MainLoop();
1234 TheModule-&gt;dump();
1235 return 0;
1237 </pre>
1238 </div>
1239 <a href="LangImpl4.html">Next: Adding JIT and Optimizer Support</a>
1240 </div>
1242 <!-- *********************************************************************** -->
1243 <hr>
1244 <address>
1245 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1246 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1247 <a href="http://validator.w3.org/check/referer"><img
1248 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1250 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1251 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
1252 Last modified: $Date: 2009-07-21 11:05:13 -0700 (Tue, 21 Jul 2009) $
1253 </address>
1254 </body>
1255 </html>