Fix part 1 of pr4682. PICADD is a 16-bit instruction even in thumb2 mode.
[llvm/avr.git] / docs / LangRef.html
blob33fc7d4ff6cbc23b1596a8109623810510ae6741
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11 </head>
13 <body>
15 <div class="doc_title"> LLVM Language Reference Manual </div>
16 <ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a>
24 <ol>
25 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
28 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
29 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
30 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
31 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
32 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
33 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_linkonce">'<tt>linkonce_odr</tt>' Linkage</a></li>
35 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
37 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
39 </ol>
40 </li>
41 <li><a href="#callingconv">Calling Conventions</a></li>
42 <li><a href="#namedtypes">Named Types</a></li>
43 <li><a href="#globalvars">Global Variables</a></li>
44 <li><a href="#functionstructure">Functions</a></li>
45 <li><a href="#aliasstructure">Aliases</a></li>
46 <li><a href="#paramattrs">Parameter Attributes</a></li>
47 <li><a href="#fnattrs">Function Attributes</a></li>
48 <li><a href="#gc">Garbage Collector Names</a></li>
49 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
50 <li><a href="#datalayout">Data Layout</a></li>
51 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
52 </ol>
53 </li>
54 <li><a href="#typesystem">Type System</a>
55 <ol>
56 <li><a href="#t_classifications">Type Classifications</a></li>
57 <li><a href="#t_primitive">Primitive Types</a>
58 <ol>
59 <li><a href="#t_floating">Floating Point Types</a></li>
60 <li><a href="#t_void">Void Type</a></li>
61 <li><a href="#t_label">Label Type</a></li>
62 <li><a href="#t_metadata">Metadata Type</a></li>
63 </ol>
64 </li>
65 <li><a href="#t_derived">Derived Types</a>
66 <ol>
67 <li><a href="#t_integer">Integer Type</a></li>
68 <li><a href="#t_array">Array Type</a></li>
69 <li><a href="#t_function">Function Type</a></li>
70 <li><a href="#t_pointer">Pointer Type</a></li>
71 <li><a href="#t_struct">Structure Type</a></li>
72 <li><a href="#t_pstruct">Packed Structure Type</a></li>
73 <li><a href="#t_vector">Vector Type</a></li>
74 <li><a href="#t_opaque">Opaque Type</a></li>
75 </ol>
76 </li>
77 <li><a href="#t_uprefs">Type Up-references</a></li>
78 </ol>
79 </li>
80 <li><a href="#constants">Constants</a>
81 <ol>
82 <li><a href="#simpleconstants">Simple Constants</a></li>
83 <li><a href="#complexconstants">Complex Constants</a></li>
84 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
85 <li><a href="#undefvalues">Undefined Values</a></li>
86 <li><a href="#constantexprs">Constant Expressions</a></li>
87 <li><a href="#metadata">Embedded Metadata</a></li>
88 </ol>
89 </li>
90 <li><a href="#othervalues">Other Values</a>
91 <ol>
92 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
93 </ol>
94 </li>
95 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
96 <ol>
97 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
98 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
99 Global Variable</a></li>
100 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
101 Global Variable</a></li>
102 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
103 Global Variable</a></li>
104 </ol>
105 </li>
106 <li><a href="#instref">Instruction Reference</a>
107 <ol>
108 <li><a href="#terminators">Terminator Instructions</a>
109 <ol>
110 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
111 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
112 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
113 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
114 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
115 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
116 </ol>
117 </li>
118 <li><a href="#binaryops">Binary Operations</a>
119 <ol>
120 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
121 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
122 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
123 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
124 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
125 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
126 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
127 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
128 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
129 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
130 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
131 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
132 </ol>
133 </li>
134 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
135 <ol>
136 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
137 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
138 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
139 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
140 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
141 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 <li><a href="#vectorops">Vector Operations</a>
145 <ol>
146 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
147 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
148 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
149 </ol>
150 </li>
151 <li><a href="#aggregateops">Aggregate Operations</a>
152 <ol>
153 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
154 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
155 </ol>
156 </li>
157 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
158 <ol>
159 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
160 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
161 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
162 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
163 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
164 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
165 </ol>
166 </li>
167 <li><a href="#convertops">Conversion Operations</a>
168 <ol>
169 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
170 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
171 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
172 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
173 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
174 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
175 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
176 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
177 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
178 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
179 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
180 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
181 </ol>
182 </li>
183 <li><a href="#otherops">Other Operations</a>
184 <ol>
185 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
186 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
187 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
188 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
189 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
190 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
191 </ol>
192 </li>
193 </ol>
194 </li>
195 <li><a href="#intrinsics">Intrinsic Functions</a>
196 <ol>
197 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
198 <ol>
199 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
200 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
201 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
202 </ol>
203 </li>
204 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
205 <ol>
206 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
207 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
208 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
209 </ol>
210 </li>
211 <li><a href="#int_codegen">Code Generator Intrinsics</a>
212 <ol>
213 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
214 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
215 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
216 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
217 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
218 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
219 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
220 </ol>
221 </li>
222 <li><a href="#int_libc">Standard C Library Intrinsics</a>
223 <ol>
224 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
225 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
226 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
227 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
228 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
229 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
230 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
231 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
232 </ol>
233 </li>
234 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
235 <ol>
236 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
237 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
238 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
239 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
240 </ol>
241 </li>
242 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
243 <ol>
244 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
245 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
246 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
247 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
248 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
249 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
250 </ol>
251 </li>
252 <li><a href="#int_debugger">Debugger intrinsics</a></li>
253 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
254 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
255 <ol>
256 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
257 </ol>
258 </li>
259 <li><a href="#int_atomics">Atomic intrinsics</a>
260 <ol>
261 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
262 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
263 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
264 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
265 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
266 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
267 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
268 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
269 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
270 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
271 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
272 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
273 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
274 </ol>
275 </li>
276 <li><a href="#int_general">General intrinsics</a>
277 <ol>
278 <li><a href="#int_var_annotation">
279 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
280 <li><a href="#int_annotation">
281 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
282 <li><a href="#int_trap">
283 '<tt>llvm.trap</tt>' Intrinsic</a></li>
284 <li><a href="#int_stackprotector">
285 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
286 </ol>
287 </li>
288 </ol>
289 </li>
290 </ol>
292 <div class="doc_author">
293 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
294 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
295 </div>
297 <!-- *********************************************************************** -->
298 <div class="doc_section"> <a name="abstract">Abstract </a></div>
299 <!-- *********************************************************************** -->
301 <div class="doc_text">
303 <p>This document is a reference manual for the LLVM assembly language. LLVM is
304 a Static Single Assignment (SSA) based representation that provides type
305 safety, low-level operations, flexibility, and the capability of representing
306 'all' high-level languages cleanly. It is the common code representation
307 used throughout all phases of the LLVM compilation strategy.</p>
309 </div>
311 <!-- *********************************************************************** -->
312 <div class="doc_section"> <a name="introduction">Introduction</a> </div>
313 <!-- *********************************************************************** -->
315 <div class="doc_text">
317 <p>The LLVM code representation is designed to be used in three different forms:
318 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
319 for fast loading by a Just-In-Time compiler), and as a human readable
320 assembly language representation. This allows LLVM to provide a powerful
321 intermediate representation for efficient compiler transformations and
322 analysis, while providing a natural means to debug and visualize the
323 transformations. The three different forms of LLVM are all equivalent. This
324 document describes the human readable representation and notation.</p>
326 <p>The LLVM representation aims to be light-weight and low-level while being
327 expressive, typed, and extensible at the same time. It aims to be a
328 "universal IR" of sorts, by being at a low enough level that high-level ideas
329 may be cleanly mapped to it (similar to how microprocessors are "universal
330 IR's", allowing many source languages to be mapped to them). By providing
331 type information, LLVM can be used as the target of optimizations: for
332 example, through pointer analysis, it can be proven that a C automatic
333 variable is never accessed outside of the current function... allowing it to
334 be promoted to a simple SSA value instead of a memory location.</p>
336 </div>
338 <!-- _______________________________________________________________________ -->
339 <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
341 <div class="doc_text">
343 <p>It is important to note that this document describes 'well formed' LLVM
344 assembly language. There is a difference between what the parser accepts and
345 what is considered 'well formed'. For example, the following instruction is
346 syntactically okay, but not well formed:</p>
348 <div class="doc_code">
349 <pre>
350 %x = <a href="#i_add">add</a> i32 1, %x
351 </pre>
352 </div>
354 <p>...because the definition of <tt>%x</tt> does not dominate all of its
355 uses. The LLVM infrastructure provides a verification pass that may be used
356 to verify that an LLVM module is well formed. This pass is automatically run
357 by the parser after parsing input assembly and by the optimizer before it
358 outputs bitcode. The violations pointed out by the verifier pass indicate
359 bugs in transformation passes or input to the parser.</p>
361 </div>
363 <!-- Describe the typesetting conventions here. -->
365 <!-- *********************************************************************** -->
366 <div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
367 <!-- *********************************************************************** -->
369 <div class="doc_text">
371 <p>LLVM identifiers come in two basic types: global and local. Global
372 identifiers (functions, global variables) begin with the <tt>'@'</tt>
373 character. Local identifiers (register names, types) begin with
374 the <tt>'%'</tt> character. Additionally, there are three different formats
375 for identifiers, for different purposes:</p>
377 <ol>
378 <li>Named values are represented as a string of characters with their prefix.
379 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
380 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
381 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
382 other characters in their names can be surrounded with quotes. Special
383 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
384 ASCII code for the character in hexadecimal. In this way, any character
385 can be used in a name value, even quotes themselves.</li>
387 <li>Unnamed values are represented as an unsigned numeric value with their
388 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
390 <li>Constants, which are described in a <a href="#constants">section about
391 constants</a>, below.</li>
392 </ol>
394 <p>LLVM requires that values start with a prefix for two reasons: Compilers
395 don't need to worry about name clashes with reserved words, and the set of
396 reserved words may be expanded in the future without penalty. Additionally,
397 unnamed identifiers allow a compiler to quickly come up with a temporary
398 variable without having to avoid symbol table conflicts.</p>
400 <p>Reserved words in LLVM are very similar to reserved words in other
401 languages. There are keywords for different opcodes
402 ('<tt><a href="#i_add">add</a></tt>',
403 '<tt><a href="#i_bitcast">bitcast</a></tt>',
404 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
405 ('<tt><a href="#t_void">void</a></tt>',
406 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
407 reserved words cannot conflict with variable names, because none of them
408 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
410 <p>Here is an example of LLVM code to multiply the integer variable
411 '<tt>%X</tt>' by 8:</p>
413 <p>The easy way:</p>
415 <div class="doc_code">
416 <pre>
417 %result = <a href="#i_mul">mul</a> i32 %X, 8
418 </pre>
419 </div>
421 <p>After strength reduction:</p>
423 <div class="doc_code">
424 <pre>
425 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
426 </pre>
427 </div>
429 <p>And the hard way:</p>
431 <div class="doc_code">
432 <pre>
433 <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
434 <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
435 %result = <a href="#i_add">add</a> i32 %1, %1
436 </pre>
437 </div>
439 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
440 lexical features of LLVM:</p>
442 <ol>
443 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
444 line.</li>
446 <li>Unnamed temporaries are created when the result of a computation is not
447 assigned to a named value.</li>
449 <li>Unnamed temporaries are numbered sequentially</li>
450 </ol>
452 <p>...and it also shows a convention that we follow in this document. When
453 demonstrating instructions, we will follow an instruction with a comment that
454 defines the type and name of value produced. Comments are shown in italic
455 text.</p>
457 </div>
459 <!-- *********************************************************************** -->
460 <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
461 <!-- *********************************************************************** -->
463 <!-- ======================================================================= -->
464 <div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
465 </div>
467 <div class="doc_text">
469 <p>LLVM programs are composed of "Module"s, each of which is a translation unit
470 of the input programs. Each module consists of functions, global variables,
471 and symbol table entries. Modules may be combined together with the LLVM
472 linker, which merges function (and global variable) definitions, resolves
473 forward declarations, and merges symbol table entries. Here is an example of
474 the "hello world" module:</p>
476 <div class="doc_code">
477 <pre><i>; Declare the string constant as a global constant...</i>
478 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
479 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
481 <i>; External declaration of the puts function</i>
482 <a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
484 <i>; Definition of main function</i>
485 define i32 @main() { <i>; i32()* </i>
486 <i>; Convert [13 x i8]* to i8 *...</i>
487 %cast210 = <a
488 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
490 <i>; Call puts function to write out the string to stdout...</i>
492 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
494 href="#i_ret">ret</a> i32 0<br>}<br>
495 </pre>
496 </div>
498 <p>This example is made up of a <a href="#globalvars">global variable</a> named
499 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and
500 a <a href="#functionstructure">function definition</a> for
501 "<tt>main</tt>".</p>
503 <p>In general, a module is made up of a list of global values, where both
504 functions and global variables are global values. Global values are
505 represented by a pointer to a memory location (in this case, a pointer to an
506 array of char, and a pointer to a function), and have one of the
507 following <a href="#linkage">linkage types</a>.</p>
509 </div>
511 <!-- ======================================================================= -->
512 <div class="doc_subsection">
513 <a name="linkage">Linkage Types</a>
514 </div>
516 <div class="doc_text">
518 <p>All Global Variables and Functions have one of the following types of
519 linkage:</p>
521 <dl>
522 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
523 <dd>Global values with private linkage are only directly accessible by objects
524 in the current module. In particular, linking code into a module with an
525 private global value may cause the private to be renamed as necessary to
526 avoid collisions. Because the symbol is private to the module, all
527 references can be updated. This doesn't show up in any symbol table in the
528 object file.</dd>
530 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt>: </dt>
531 <dd>Similar to private, but the symbol is passed through the assembler and
532 removed by the linker after evaluation.</dd>
534 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
535 <dd>Similar to private, but the value shows as a local symbol
536 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
537 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
539 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt>: </dt>
540 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
541 into the object file corresponding to the LLVM module. They exist to
542 allow inlining and other optimizations to take place given knowledge of
543 the definition of the global, which is known to be somewhere outside the
544 module. Globals with <tt>available_externally</tt> linkage are allowed to
545 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
546 This linkage type is only allowed on definitions, not declarations.</dd>
548 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
549 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
550 the same name when linkage occurs. This is typically used to implement
551 inline functions, templates, or other code which must be generated in each
552 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
553 allowed to be discarded.</dd>
555 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
556 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
557 linkage, except that unreferenced <tt>common</tt> globals may not be
558 discarded. This is used for globals that may be emitted in multiple
559 translation units, but that are not guaranteed to be emitted into every
560 translation unit that uses them. One example of this is tentative
561 definitions in C, such as "<tt>int X;</tt>" at global scope.</dd>
563 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
564 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
565 that some targets may choose to emit different assembly sequences for them
566 for target-dependent reasons. This is used for globals that are declared
567 "weak" in C source code.</dd>
569 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
570 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
571 pointer to array type. When two global variables with appending linkage
572 are linked together, the two global arrays are appended together. This is
573 the LLVM, typesafe, equivalent of having the system linker append together
574 "sections" with identical names when .o files are linked.</dd>
576 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
577 <dd>The semantics of this linkage follow the ELF object file model: the symbol
578 is weak until linked, if not linked, the symbol becomes null instead of
579 being an undefined reference.</dd>
581 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
582 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
583 <dd>Some languages allow differing globals to be merged, such as two functions
584 with different semantics. Other languages, such as <tt>C++</tt>, ensure
585 that only equivalent globals are ever merged (the "one definition rule" -
586 "ODR"). Such languages can use the <tt>linkonce_odr</tt>
587 and <tt>weak_odr</tt> linkage types to indicate that the global will only
588 be merged with equivalent globals. These linkage types are otherwise the
589 same as their non-<tt>odr</tt> versions.</dd>
591 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
592 <dd>If none of the above identifiers are used, the global is externally
593 visible, meaning that it participates in linkage and can be used to
594 resolve external symbol references.</dd>
595 </dl>
597 <p>The next two types of linkage are targeted for Microsoft Windows platform
598 only. They are designed to support importing (exporting) symbols from (to)
599 DLLs (Dynamic Link Libraries).</p>
601 <dl>
602 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
603 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
604 or variable via a global pointer to a pointer that is set up by the DLL
605 exporting the symbol. On Microsoft Windows targets, the pointer name is
606 formed by combining <code>__imp_</code> and the function or variable
607 name.</dd>
609 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
610 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
611 pointer to a pointer in a DLL, so that it can be referenced with the
612 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
613 name is formed by combining <code>__imp_</code> and the function or
614 variable name.</dd>
615 </dl>
617 <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
618 another module defined a "<tt>.LC0</tt>" variable and was linked with this
619 one, one of the two would be renamed, preventing a collision. Since
620 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
621 declarations), they are accessible outside of the current module.</p>
623 <p>It is illegal for a function <i>declaration</i> to have any linkage type
624 other than "externally visible", <tt>dllimport</tt>
625 or <tt>extern_weak</tt>.</p>
627 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
628 or <tt>weak_odr</tt> linkages.</p>
630 </div>
632 <!-- ======================================================================= -->
633 <div class="doc_subsection">
634 <a name="callingconv">Calling Conventions</a>
635 </div>
637 <div class="doc_text">
639 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
640 and <a href="#i_invoke">invokes</a> can all have an optional calling
641 convention specified for the call. The calling convention of any pair of
642 dynamic caller/callee must match, or the behavior of the program is
643 undefined. The following calling conventions are supported by LLVM, and more
644 may be added in the future:</p>
646 <dl>
647 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
648 <dd>This calling convention (the default if no other calling convention is
649 specified) matches the target C calling conventions. This calling
650 convention supports varargs function calls and tolerates some mismatch in
651 the declared prototype and implemented declaration of the function (as
652 does normal C).</dd>
654 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
655 <dd>This calling convention attempts to make calls as fast as possible
656 (e.g. by passing things in registers). This calling convention allows the
657 target to use whatever tricks it wants to produce fast code for the
658 target, without having to conform to an externally specified ABI
659 (Application Binary Interface). Implementations of this convention should
660 allow arbitrary <a href="CodeGenerator.html#tailcallopt">tail call
661 optimization</a> to be supported. This calling convention does not
662 support varargs and requires the prototype of all callees to exactly match
663 the prototype of the function definition.</dd>
665 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
666 <dd>This calling convention attempts to make code in the caller as efficient
667 as possible under the assumption that the call is not commonly executed.
668 As such, these calls often preserve all registers so that the call does
669 not break any live ranges in the caller side. This calling convention
670 does not support varargs and requires the prototype of all callees to
671 exactly match the prototype of the function definition.</dd>
673 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
674 <dd>Any calling convention may be specified by number, allowing
675 target-specific calling conventions to be used. Target specific calling
676 conventions start at 64.</dd>
677 </dl>
679 <p>More calling conventions can be added/defined on an as-needed basis, to
680 support Pascal conventions or any other well-known target-independent
681 convention.</p>
683 </div>
685 <!-- ======================================================================= -->
686 <div class="doc_subsection">
687 <a name="visibility">Visibility Styles</a>
688 </div>
690 <div class="doc_text">
692 <p>All Global Variables and Functions have one of the following visibility
693 styles:</p>
695 <dl>
696 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
697 <dd>On targets that use the ELF object file format, default visibility means
698 that the declaration is visible to other modules and, in shared libraries,
699 means that the declared entity may be overridden. On Darwin, default
700 visibility means that the declaration is visible to other modules. Default
701 visibility corresponds to "external linkage" in the language.</dd>
703 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
704 <dd>Two declarations of an object with hidden visibility refer to the same
705 object if they are in the same shared object. Usually, hidden visibility
706 indicates that the symbol will not be placed into the dynamic symbol
707 table, so no other module (executable or shared library) can reference it
708 directly.</dd>
710 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
711 <dd>On ELF, protected visibility indicates that the symbol will be placed in
712 the dynamic symbol table, but that references within the defining module
713 will bind to the local symbol. That is, the symbol cannot be overridden by
714 another module.</dd>
715 </dl>
717 </div>
719 <!-- ======================================================================= -->
720 <div class="doc_subsection">
721 <a name="namedtypes">Named Types</a>
722 </div>
724 <div class="doc_text">
726 <p>LLVM IR allows you to specify name aliases for certain types. This can make
727 it easier to read the IR and make the IR more condensed (particularly when
728 recursive types are involved). An example of a name specification is:</p>
730 <div class="doc_code">
731 <pre>
732 %mytype = type { %mytype*, i32 }
733 </pre>
734 </div>
736 <p>You may give a name to any <a href="#typesystem">type</a> except
737 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
738 is expected with the syntax "%mytype".</p>
740 <p>Note that type names are aliases for the structural type that they indicate,
741 and that you can therefore specify multiple names for the same type. This
742 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
743 uses structural typing, the name is not part of the type. When printing out
744 LLVM IR, the printer will pick <em>one name</em> to render all types of a
745 particular shape. This means that if you have code where two different
746 source types end up having the same LLVM type, that the dumper will sometimes
747 print the "wrong" or unexpected type. This is an important design point and
748 isn't going to change.</p>
750 </div>
752 <!-- ======================================================================= -->
753 <div class="doc_subsection">
754 <a name="globalvars">Global Variables</a>
755 </div>
757 <div class="doc_text">
759 <p>Global variables define regions of memory allocated at compilation time
760 instead of run-time. Global variables may optionally be initialized, may
761 have an explicit section to be placed in, and may have an optional explicit
762 alignment specified. A variable may be defined as "thread_local", which
763 means that it will not be shared by threads (each thread will have a
764 separated copy of the variable). A variable may be defined as a global
765 "constant," which indicates that the contents of the variable
766 will <b>never</b> be modified (enabling better optimization, allowing the
767 global data to be placed in the read-only section of an executable, etc).
768 Note that variables that need runtime initialization cannot be marked
769 "constant" as there is a store to the variable.</p>
771 <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
772 constant, even if the final definition of the global is not. This capability
773 can be used to enable slightly better optimization of the program, but
774 requires the language definition to guarantee that optimizations based on the
775 'constantness' are valid for the translation units that do not include the
776 definition.</p>
778 <p>As SSA values, global variables define pointer values that are in scope
779 (i.e. they dominate) all basic blocks in the program. Global variables
780 always define a pointer to their "content" type because they describe a
781 region of memory, and all memory objects in LLVM are accessed through
782 pointers.</p>
784 <p>A global variable may be declared to reside in a target-specific numbered
785 address space. For targets that support them, address spaces may affect how
786 optimizations are performed and/or what target instructions are used to
787 access the variable. The default address space is zero. The address space
788 qualifier must precede any other attributes.</p>
790 <p>LLVM allows an explicit section to be specified for globals. If the target
791 supports it, it will emit globals to the section specified.</p>
793 <p>An explicit alignment may be specified for a global. If not present, or if
794 the alignment is set to zero, the alignment of the global is set by the
795 target to whatever it feels convenient. If an explicit alignment is
796 specified, the global is forced to have at least that much alignment. All
797 alignments must be a power of 2.</p>
799 <p>For example, the following defines a global in a numbered address space with
800 an initializer, section, and alignment:</p>
802 <div class="doc_code">
803 <pre>
804 @G = addrspace(5) constant float 1.0, section "foo", align 4
805 </pre>
806 </div>
808 </div>
811 <!-- ======================================================================= -->
812 <div class="doc_subsection">
813 <a name="functionstructure">Functions</a>
814 </div>
816 <div class="doc_text">
818 <p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an
819 optional <a href="#linkage">linkage type</a>, an optional
820 <a href="#visibility">visibility style</a>, an optional
821 <a href="#callingconv">calling convention</a>, a return type, an optional
822 <a href="#paramattrs">parameter attribute</a> for the return type, a function
823 name, a (possibly empty) argument list (each with optional
824 <a href="#paramattrs">parameter attributes</a>), optional
825 <a href="#fnattrs">function attributes</a>, an optional section, an optional
826 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
827 curly brace, a list of basic blocks, and a closing curly brace.</p>
829 <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
830 optional <a href="#linkage">linkage type</a>, an optional
831 <a href="#visibility">visibility style</a>, an optional
832 <a href="#callingconv">calling convention</a>, a return type, an optional
833 <a href="#paramattrs">parameter attribute</a> for the return type, a function
834 name, a possibly empty list of arguments, an optional alignment, and an
835 optional <a href="#gc">garbage collector name</a>.</p>
837 <p>A function definition contains a list of basic blocks, forming the CFG
838 (Control Flow Graph) for the function. Each basic block may optionally start
839 with a label (giving the basic block a symbol table entry), contains a list
840 of instructions, and ends with a <a href="#terminators">terminator</a>
841 instruction (such as a branch or function return).</p>
843 <p>The first basic block in a function is special in two ways: it is immediately
844 executed on entrance to the function, and it is not allowed to have
845 predecessor basic blocks (i.e. there can not be any branches to the entry
846 block of a function). Because the block can have no predecessors, it also
847 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
849 <p>LLVM allows an explicit section to be specified for functions. If the target
850 supports it, it will emit functions to the section specified.</p>
852 <p>An explicit alignment may be specified for a function. If not present, or if
853 the alignment is set to zero, the alignment of the function is set by the
854 target to whatever it feels convenient. If an explicit alignment is
855 specified, the function is forced to have at least that much alignment. All
856 alignments must be a power of 2.</p>
858 <h5>Syntax:</h5>
859 <div class="doc_code">
860 <pre>
861 define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
862 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
863 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
864 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
865 [<a href="#gc">gc</a>] { ... }
866 </pre>
867 </div>
869 </div>
871 <!-- ======================================================================= -->
872 <div class="doc_subsection">
873 <a name="aliasstructure">Aliases</a>
874 </div>
876 <div class="doc_text">
878 <p>Aliases act as "second name" for the aliasee value (which can be either
879 function, global variable, another alias or bitcast of global value). Aliases
880 may have an optional <a href="#linkage">linkage type</a>, and an
881 optional <a href="#visibility">visibility style</a>.</p>
883 <h5>Syntax:</h5>
884 <div class="doc_code">
885 <pre>
886 @&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
887 </pre>
888 </div>
890 </div>
892 <!-- ======================================================================= -->
893 <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
895 <div class="doc_text">
897 <p>The return type and each parameter of a function type may have a set of
898 <i>parameter attributes</i> associated with them. Parameter attributes are
899 used to communicate additional information about the result or parameters of
900 a function. Parameter attributes are considered to be part of the function,
901 not of the function type, so functions with different parameter attributes
902 can have the same function type.</p>
904 <p>Parameter attributes are simple keywords that follow the type specified. If
905 multiple parameter attributes are needed, they are space separated. For
906 example:</p>
908 <div class="doc_code">
909 <pre>
910 declare i32 @printf(i8* noalias nocapture, ...)
911 declare i32 @atoi(i8 zeroext)
912 declare signext i8 @returns_signed_char()
913 </pre>
914 </div>
916 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
917 <tt>readonly</tt>) come immediately after the argument list.</p>
919 <p>Currently, only the following parameter attributes are defined:</p>
921 <dl>
922 <dt><tt>zeroext</tt></dt>
923 <dd>This indicates to the code generator that the parameter or return value
924 should be zero-extended to a 32-bit value by the caller (for a parameter)
925 or the callee (for a return value).</dd>
927 <dt><tt>signext</tt></dt>
928 <dd>This indicates to the code generator that the parameter or return value
929 should be sign-extended to a 32-bit value by the caller (for a parameter)
930 or the callee (for a return value).</dd>
932 <dt><tt>inreg</tt></dt>
933 <dd>This indicates that this parameter or return value should be treated in a
934 special target-dependent fashion during while emitting code for a function
935 call or return (usually, by putting it in a register as opposed to memory,
936 though some targets use it to distinguish between two different kinds of
937 registers). Use of this attribute is target-specific.</dd>
939 <dt><tt><a name="byval">byval</a></tt></dt>
940 <dd>This indicates that the pointer parameter should really be passed by value
941 to the function. The attribute implies that a hidden copy of the pointee
942 is made between the caller and the callee, so the callee is unable to
943 modify the value in the callee. This attribute is only valid on LLVM
944 pointer arguments. It is generally used to pass structs and arrays by
945 value, but is also valid on pointers to scalars. The copy is considered
946 to belong to the caller not the callee (for example,
947 <tt><a href="#readonly">readonly</a></tt> functions should not write to
948 <tt>byval</tt> parameters). This is not a valid attribute for return
949 values. The byval attribute also supports specifying an alignment with
950 the align attribute. This has a target-specific effect on the code
951 generator that usually indicates a desired alignment for the synthesized
952 stack slot.</dd>
954 <dt><tt>sret</tt></dt>
955 <dd>This indicates that the pointer parameter specifies the address of a
956 structure that is the return value of the function in the source program.
957 This pointer must be guaranteed by the caller to be valid: loads and
958 stores to the structure may be assumed by the callee to not to trap. This
959 may only be applied to the first parameter. This is not a valid attribute
960 for return values. </dd>
962 <dt><tt>noalias</tt></dt>
963 <dd>This indicates that the pointer does not alias any global or any other
964 parameter. The caller is responsible for ensuring that this is the
965 case. On a function return value, <tt>noalias</tt> additionally indicates
966 that the pointer does not alias any other pointers visible to the
967 caller. For further details, please see the discussion of the NoAlias
968 response in
969 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
970 analysis</a>.</dd>
972 <dt><tt>nocapture</tt></dt>
973 <dd>This indicates that the callee does not make any copies of the pointer
974 that outlive the callee itself. This is not a valid attribute for return
975 values.</dd>
977 <dt><tt>nest</tt></dt>
978 <dd>This indicates that the pointer parameter can be excised using the
979 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
980 attribute for return values.</dd>
981 </dl>
983 </div>
985 <!-- ======================================================================= -->
986 <div class="doc_subsection">
987 <a name="gc">Garbage Collector Names</a>
988 </div>
990 <div class="doc_text">
992 <p>Each function may specify a garbage collector name, which is simply a
993 string:</p>
995 <div class="doc_code">
996 <pre>
997 define void @f() gc "name" { ...
998 </pre>
999 </div>
1001 <p>The compiler declares the supported values of <i>name</i>. Specifying a
1002 collector which will cause the compiler to alter its output in order to
1003 support the named garbage collection algorithm.</p>
1005 </div>
1007 <!-- ======================================================================= -->
1008 <div class="doc_subsection">
1009 <a name="fnattrs">Function Attributes</a>
1010 </div>
1012 <div class="doc_text">
1014 <p>Function attributes are set to communicate additional information about a
1015 function. Function attributes are considered to be part of the function, not
1016 of the function type, so functions with different parameter attributes can
1017 have the same function type.</p>
1019 <p>Function attributes are simple keywords that follow the type specified. If
1020 multiple attributes are needed, they are space separated. For example:</p>
1022 <div class="doc_code">
1023 <pre>
1024 define void @f() noinline { ... }
1025 define void @f() alwaysinline { ... }
1026 define void @f() alwaysinline optsize { ... }
1027 define void @f() optsize
1028 </pre>
1029 </div>
1031 <dl>
1032 <dt><tt>alwaysinline</tt></dt>
1033 <dd>This attribute indicates that the inliner should attempt to inline this
1034 function into callers whenever possible, ignoring any active inlining size
1035 threshold for this caller.</dd>
1037 <dt><tt>noinline</tt></dt>
1038 <dd>This attribute indicates that the inliner should never inline this
1039 function in any situation. This attribute may not be used together with
1040 the <tt>alwaysinline</tt> attribute.</dd>
1042 <dt><tt>optsize</tt></dt>
1043 <dd>This attribute suggests that optimization passes and code generator passes
1044 make choices that keep the code size of this function low, and otherwise
1045 do optimizations specifically to reduce code size.</dd>
1047 <dt><tt>noreturn</tt></dt>
1048 <dd>This function attribute indicates that the function never returns
1049 normally. This produces undefined behavior at runtime if the function
1050 ever does dynamically return.</dd>
1052 <dt><tt>nounwind</tt></dt>
1053 <dd>This function attribute indicates that the function never returns with an
1054 unwind or exceptional control flow. If the function does unwind, its
1055 runtime behavior is undefined.</dd>
1057 <dt><tt>readnone</tt></dt>
1058 <dd>This attribute indicates that the function computes its result (or decides
1059 to unwind an exception) based strictly on its arguments, without
1060 dereferencing any pointer arguments or otherwise accessing any mutable
1061 state (e.g. memory, control registers, etc) visible to caller functions.
1062 It does not write through any pointer arguments
1063 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1064 changes any state visible to callers. This means that it cannot unwind
1065 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1066 could use the <tt>unwind</tt> instruction.</dd>
1068 <dt><tt><a name="readonly">readonly</a></tt></dt>
1069 <dd>This attribute indicates that the function does not write through any
1070 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1071 arguments) or otherwise modify any state (e.g. memory, control registers,
1072 etc) visible to caller functions. It may dereference pointer arguments
1073 and read state that may be set in the caller. A readonly function always
1074 returns the same value (or unwinds an exception identically) when called
1075 with the same set of arguments and global state. It cannot unwind an
1076 exception by calling the <tt>C++</tt> exception throwing methods, but may
1077 use the <tt>unwind</tt> instruction.</dd>
1079 <dt><tt><a name="ssp">ssp</a></tt></dt>
1080 <dd>This attribute indicates that the function should emit a stack smashing
1081 protector. It is in the form of a "canary"&mdash;a random value placed on
1082 the stack before the local variables that's checked upon return from the
1083 function to see if it has been overwritten. A heuristic is used to
1084 determine if a function needs stack protectors or not.<br>
1085 <br>
1086 If a function that has an <tt>ssp</tt> attribute is inlined into a
1087 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1088 function will have an <tt>ssp</tt> attribute.</dd>
1090 <dt><tt>sspreq</tt></dt>
1091 <dd>This attribute indicates that the function should <em>always</em> emit a
1092 stack smashing protector. This overrides
1093 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1094 <br>
1095 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1096 function that doesn't have an <tt>sspreq</tt> attribute or which has
1097 an <tt>ssp</tt> attribute, then the resulting function will have
1098 an <tt>sspreq</tt> attribute.</dd>
1100 <dt><tt>noredzone</tt></dt>
1101 <dd>This attribute indicates that the code generator should not use a red
1102 zone, even if the target-specific ABI normally permits it.</dd>
1104 <dt><tt>noimplicitfloat</tt></dt>
1105 <dd>This attributes disables implicit floating point instructions.</dd>
1107 <dt><tt>naked</tt></dt>
1108 <dd>This attribute disables prologue / epilogue emission for the function.
1109 This can have very system-specific consequences.</dd>
1110 </dl>
1112 </div>
1114 <!-- ======================================================================= -->
1115 <div class="doc_subsection">
1116 <a name="moduleasm">Module-Level Inline Assembly</a>
1117 </div>
1119 <div class="doc_text">
1121 <p>Modules may contain "module-level inline asm" blocks, which corresponds to
1122 the GCC "file scope inline asm" blocks. These blocks are internally
1123 concatenated by LLVM and treated as a single unit, but may be separated in
1124 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
1126 <div class="doc_code">
1127 <pre>
1128 module asm "inline asm code goes here"
1129 module asm "more can go here"
1130 </pre>
1131 </div>
1133 <p>The strings can contain any character by escaping non-printable characters.
1134 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1135 for the number.</p>
1137 <p>The inline asm code is simply printed to the machine code .s file when
1138 assembly code is generated.</p>
1140 </div>
1142 <!-- ======================================================================= -->
1143 <div class="doc_subsection">
1144 <a name="datalayout">Data Layout</a>
1145 </div>
1147 <div class="doc_text">
1149 <p>A module may specify a target specific data layout string that specifies how
1150 data is to be laid out in memory. The syntax for the data layout is
1151 simply:</p>
1153 <div class="doc_code">
1154 <pre>
1155 target datalayout = "<i>layout specification</i>"
1156 </pre>
1157 </div>
1159 <p>The <i>layout specification</i> consists of a list of specifications
1160 separated by the minus sign character ('-'). Each specification starts with
1161 a letter and may include other information after the letter to define some
1162 aspect of the data layout. The specifications accepted are as follows:</p>
1164 <dl>
1165 <dt><tt>E</tt></dt>
1166 <dd>Specifies that the target lays out data in big-endian form. That is, the
1167 bits with the most significance have the lowest address location.</dd>
1169 <dt><tt>e</tt></dt>
1170 <dd>Specifies that the target lays out data in little-endian form. That is,
1171 the bits with the least significance have the lowest address
1172 location.</dd>
1174 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1175 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1176 <i>preferred</i> alignments. All sizes are in bits. Specifying
1177 the <i>pref</i> alignment is optional. If omitted, the
1178 preceding <tt>:</tt> should be omitted too.</dd>
1180 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1181 <dd>This specifies the alignment for an integer type of a given bit
1182 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1184 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1185 <dd>This specifies the alignment for a vector type of a given bit
1186 <i>size</i>.</dd>
1188 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1189 <dd>This specifies the alignment for a floating point type of a given bit
1190 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1191 (double).</dd>
1193 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1194 <dd>This specifies the alignment for an aggregate type of a given bit
1195 <i>size</i>.</dd>
1197 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1198 <dd>This specifies the alignment for a stack object of a given bit
1199 <i>size</i>.</dd>
1200 </dl>
1202 <p>When constructing the data layout for a given target, LLVM starts with a
1203 default set of specifications which are then (possibly) overriden by the
1204 specifications in the <tt>datalayout</tt> keyword. The default specifications
1205 are given in this list:</p>
1207 <ul>
1208 <li><tt>E</tt> - big endian</li>
1209 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1210 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1211 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1212 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1213 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
1214 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
1215 alignment of 64-bits</li>
1216 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1217 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1218 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1219 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1220 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1221 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
1222 </ul>
1224 <p>When LLVM is determining the alignment for a given type, it uses the
1225 following rules:</p>
1227 <ol>
1228 <li>If the type sought is an exact match for one of the specifications, that
1229 specification is used.</li>
1231 <li>If no match is found, and the type sought is an integer type, then the
1232 smallest integer type that is larger than the bitwidth of the sought type
1233 is used. If none of the specifications are larger than the bitwidth then
1234 the the largest integer type is used. For example, given the default
1235 specifications above, the i7 type will use the alignment of i8 (next
1236 largest) while both i65 and i256 will use the alignment of i64 (largest
1237 specified).</li>
1239 <li>If no match is found, and the type sought is a vector type, then the
1240 largest vector type that is smaller than the sought vector type will be
1241 used as a fall back. This happens because &lt;128 x double&gt; can be
1242 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
1243 </ol>
1245 </div>
1247 <!-- ======================================================================= -->
1248 <div class="doc_subsection">
1249 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1250 </div>
1252 <div class="doc_text">
1254 <p>Any memory access must be done through a pointer value associated
1255 with an address range of the memory access, otherwise the behavior
1256 is undefined. Pointer values are associated with address ranges
1257 according to the following rules:</p>
1259 <ul>
1260 <li>A pointer value formed from a
1261 <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
1262 is associated with the addresses associated with the first operand
1263 of the <tt>getelementptr</tt>.</li>
1264 <li>An address of a global variable is associated with the address
1265 range of the variable's storage.</li>
1266 <li>The result value of an allocation instruction is associated with
1267 the address range of the allocated storage.</li>
1268 <li>A null pointer in the default address-space is associated with
1269 no address.</li>
1270 <li>A pointer value formed by an
1271 <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
1272 address ranges of all pointer values that contribute (directly or
1273 indirectly) to the computation of the pointer's value.</li>
1274 <li>The result value of a
1275 <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
1276 addresses associated with the operand of the <tt>bitcast</tt>.</li>
1277 <li>An integer constant other than zero or a pointer value returned
1278 from a function not defined within LLVM may be associated with address
1279 ranges allocated through mechanisms other than those provided by
1280 LLVM. Such ranges shall not overlap with any ranges of addresses
1281 allocated by mechanisms provided by LLVM.</li>
1282 </ul>
1284 <p>LLVM IR does not associate types with memory. The result type of a
1285 <tt><a href="#i_load">load</a></tt> merely indicates the size and
1286 alignment of the memory from which to load, as well as the
1287 interpretation of the value. The first operand of a
1288 <tt><a href="#i_store">store</a></tt> similarly only indicates the size
1289 and alignment of the store.</p>
1291 <p>Consequently, type-based alias analysis, aka TBAA, aka
1292 <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1293 LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1294 additional information which specialized optimization passes may use
1295 to implement type-based alias analysis.</p>
1297 </div>
1299 <!-- *********************************************************************** -->
1300 <div class="doc_section"> <a name="typesystem">Type System</a> </div>
1301 <!-- *********************************************************************** -->
1303 <div class="doc_text">
1305 <p>The LLVM type system is one of the most important features of the
1306 intermediate representation. Being typed enables a number of optimizations
1307 to be performed on the intermediate representation directly, without having
1308 to do extra analyses on the side before the transformation. A strong type
1309 system makes it easier to read the generated code and enables novel analyses
1310 and transformations that are not feasible to perform on normal three address
1311 code representations.</p>
1313 </div>
1315 <!-- ======================================================================= -->
1316 <div class="doc_subsection"> <a name="t_classifications">Type
1317 Classifications</a> </div>
1319 <div class="doc_text">
1321 <p>The types fall into a few useful classifications:</p>
1323 <table border="1" cellspacing="0" cellpadding="4">
1324 <tbody>
1325 <tr><th>Classification</th><th>Types</th></tr>
1326 <tr>
1327 <td><a href="#t_integer">integer</a></td>
1328 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1329 </tr>
1330 <tr>
1331 <td><a href="#t_floating">floating point</a></td>
1332 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
1333 </tr>
1334 <tr>
1335 <td><a name="t_firstclass">first class</a></td>
1336 <td><a href="#t_integer">integer</a>,
1337 <a href="#t_floating">floating point</a>,
1338 <a href="#t_pointer">pointer</a>,
1339 <a href="#t_vector">vector</a>,
1340 <a href="#t_struct">structure</a>,
1341 <a href="#t_array">array</a>,
1342 <a href="#t_label">label</a>,
1343 <a href="#t_metadata">metadata</a>.
1344 </td>
1345 </tr>
1346 <tr>
1347 <td><a href="#t_primitive">primitive</a></td>
1348 <td><a href="#t_label">label</a>,
1349 <a href="#t_void">void</a>,
1350 <a href="#t_floating">floating point</a>,
1351 <a href="#t_metadata">metadata</a>.</td>
1352 </tr>
1353 <tr>
1354 <td><a href="#t_derived">derived</a></td>
1355 <td><a href="#t_integer">integer</a>,
1356 <a href="#t_array">array</a>,
1357 <a href="#t_function">function</a>,
1358 <a href="#t_pointer">pointer</a>,
1359 <a href="#t_struct">structure</a>,
1360 <a href="#t_pstruct">packed structure</a>,
1361 <a href="#t_vector">vector</a>,
1362 <a href="#t_opaque">opaque</a>.
1363 </td>
1364 </tr>
1365 </tbody>
1366 </table>
1368 <p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1369 important. Values of these types are the only ones which can be produced by
1370 instructions, passed as arguments, or used as operands to instructions.</p>
1372 </div>
1374 <!-- ======================================================================= -->
1375 <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
1377 <div class="doc_text">
1379 <p>The primitive types are the fundamental building blocks of the LLVM
1380 system.</p>
1382 </div>
1384 <!-- _______________________________________________________________________ -->
1385 <div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1387 <div class="doc_text">
1389 <table>
1390 <tbody>
1391 <tr><th>Type</th><th>Description</th></tr>
1392 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1393 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1394 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1395 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1396 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1397 </tbody>
1398 </table>
1400 </div>
1402 <!-- _______________________________________________________________________ -->
1403 <div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1405 <div class="doc_text">
1407 <h5>Overview:</h5>
1408 <p>The void type does not represent any value and has no size.</p>
1410 <h5>Syntax:</h5>
1411 <pre>
1412 void
1413 </pre>
1415 </div>
1417 <!-- _______________________________________________________________________ -->
1418 <div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1420 <div class="doc_text">
1422 <h5>Overview:</h5>
1423 <p>The label type represents code labels.</p>
1425 <h5>Syntax:</h5>
1426 <pre>
1427 label
1428 </pre>
1430 </div>
1432 <!-- _______________________________________________________________________ -->
1433 <div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1435 <div class="doc_text">
1437 <h5>Overview:</h5>
1438 <p>The metadata type represents embedded metadata. The only derived type that
1439 may contain metadata is <tt>metadata*</tt> or a function type that returns or
1440 takes metadata typed parameters, but not pointer to metadata types.</p>
1442 <h5>Syntax:</h5>
1443 <pre>
1444 metadata
1445 </pre>
1447 </div>
1450 <!-- ======================================================================= -->
1451 <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1453 <div class="doc_text">
1455 <p>The real power in LLVM comes from the derived types in the system. This is
1456 what allows a programmer to represent arrays, functions, pointers, and other
1457 useful types. Note that these derived types may be recursive: For example,
1458 it is possible to have a two dimensional array.</p>
1460 </div>
1462 <!-- _______________________________________________________________________ -->
1463 <div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1465 <div class="doc_text">
1467 <h5>Overview:</h5>
1468 <p>The integer type is a very simple derived type that simply specifies an
1469 arbitrary bit width for the integer type desired. Any bit width from 1 bit to
1470 2^23-1 (about 8 million) can be specified.</p>
1472 <h5>Syntax:</h5>
1473 <pre>
1475 </pre>
1477 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1478 value.</p>
1480 <h5>Examples:</h5>
1481 <table class="layout">
1482 <tr class="layout">
1483 <td class="left"><tt>i1</tt></td>
1484 <td class="left">a single-bit integer.</td>
1485 </tr>
1486 <tr class="layout">
1487 <td class="left"><tt>i32</tt></td>
1488 <td class="left">a 32-bit integer.</td>
1489 </tr>
1490 <tr class="layout">
1491 <td class="left"><tt>i1942652</tt></td>
1492 <td class="left">a really big integer of over 1 million bits.</td>
1493 </tr>
1494 </table>
1496 <p>Note that the code generator does not yet support large integer types to be
1497 used as function return types. The specific limit on how large a return type
1498 the code generator can currently handle is target-dependent; currently it's
1499 often 64 bits for 32-bit targets and 128 bits for 64-bit targets.</p>
1501 </div>
1503 <!-- _______________________________________________________________________ -->
1504 <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1506 <div class="doc_text">
1508 <h5>Overview:</h5>
1509 <p>The array type is a very simple derived type that arranges elements
1510 sequentially in memory. The array type requires a size (number of elements)
1511 and an underlying data type.</p>
1513 <h5>Syntax:</h5>
1514 <pre>
1515 [&lt;# elements&gt; x &lt;elementtype&gt;]
1516 </pre>
1518 <p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1519 be any type with a size.</p>
1521 <h5>Examples:</h5>
1522 <table class="layout">
1523 <tr class="layout">
1524 <td class="left"><tt>[40 x i32]</tt></td>
1525 <td class="left">Array of 40 32-bit integer values.</td>
1526 </tr>
1527 <tr class="layout">
1528 <td class="left"><tt>[41 x i32]</tt></td>
1529 <td class="left">Array of 41 32-bit integer values.</td>
1530 </tr>
1531 <tr class="layout">
1532 <td class="left"><tt>[4 x i8]</tt></td>
1533 <td class="left">Array of 4 8-bit integer values.</td>
1534 </tr>
1535 </table>
1536 <p>Here are some examples of multidimensional arrays:</p>
1537 <table class="layout">
1538 <tr class="layout">
1539 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1540 <td class="left">3x4 array of 32-bit integer values.</td>
1541 </tr>
1542 <tr class="layout">
1543 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1544 <td class="left">12x10 array of single precision floating point values.</td>
1545 </tr>
1546 <tr class="layout">
1547 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1548 <td class="left">2x3x4 array of 16-bit integer values.</td>
1549 </tr>
1550 </table>
1552 <p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1553 length array. Normally, accesses past the end of an array are undefined in
1554 LLVM (e.g. it is illegal to access the 5th element of a 3 element array). As
1555 a special case, however, zero length arrays are recognized to be variable
1556 length. This allows implementation of 'pascal style arrays' with the LLVM
1557 type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
1559 <p>Note that the code generator does not yet support large aggregate types to be
1560 used as function return types. The specific limit on how large an aggregate
1561 return type the code generator can currently handle is target-dependent, and
1562 also dependent on the aggregate element types.</p>
1564 </div>
1566 <!-- _______________________________________________________________________ -->
1567 <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1569 <div class="doc_text">
1571 <h5>Overview:</h5>
1572 <p>The function type can be thought of as a function signature. It consists of
1573 a return type and a list of formal parameter types. The return type of a
1574 function type is a scalar type, a void type, or a struct type. If the return
1575 type is a struct type then all struct elements must be of first class types,
1576 and the struct must have at least one element.</p>
1578 <h5>Syntax:</h5>
1579 <pre>
1580 &lt;returntype list&gt; (&lt;parameter list&gt;)
1581 </pre>
1583 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1584 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1585 which indicates that the function takes a variable number of arguments.
1586 Variable argument functions can access their arguments with
1587 the <a href="#int_varargs">variable argument handling intrinsic</a>
1588 functions. '<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1589 <a href="#t_firstclass">first class</a> type specifiers.</p>
1591 <h5>Examples:</h5>
1592 <table class="layout">
1593 <tr class="layout">
1594 <td class="left"><tt>i32 (i32)</tt></td>
1595 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1596 </td>
1597 </tr><tr class="layout">
1598 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
1599 </tt></td>
1600 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1601 an <tt>i16</tt> that should be sign extended and a
1602 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1603 <tt>float</tt>.
1604 </td>
1605 </tr><tr class="layout">
1606 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1607 <td class="left">A vararg function that takes at least one
1608 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1609 which returns an integer. This is the signature for <tt>printf</tt> in
1610 LLVM.
1611 </td>
1612 </tr><tr class="layout">
1613 <td class="left"><tt>{i32, i32} (i32)</tt></td>
1614 <td class="left">A function taking an <tt>i32</tt>, returning two
1615 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
1616 </td>
1617 </tr>
1618 </table>
1620 </div>
1622 <!-- _______________________________________________________________________ -->
1623 <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1625 <div class="doc_text">
1627 <h5>Overview:</h5>
1628 <p>The structure type is used to represent a collection of data members together
1629 in memory. The packing of the field types is defined to match the ABI of the
1630 underlying processor. The elements of a structure may be any type that has a
1631 size.</p>
1633 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1634 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1635 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1637 <h5>Syntax:</h5>
1638 <pre>
1639 { &lt;type list&gt; }
1640 </pre>
1642 <h5>Examples:</h5>
1643 <table class="layout">
1644 <tr class="layout">
1645 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1646 <td class="left">A triple of three <tt>i32</tt> values</td>
1647 </tr><tr class="layout">
1648 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1649 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1650 second element is a <a href="#t_pointer">pointer</a> to a
1651 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1652 an <tt>i32</tt>.</td>
1653 </tr>
1654 </table>
1656 <p>Note that the code generator does not yet support large aggregate types to be
1657 used as function return types. The specific limit on how large an aggregate
1658 return type the code generator can currently handle is target-dependent, and
1659 also dependent on the aggregate element types.</p>
1661 </div>
1663 <!-- _______________________________________________________________________ -->
1664 <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1665 </div>
1667 <div class="doc_text">
1669 <h5>Overview:</h5>
1670 <p>The packed structure type is used to represent a collection of data members
1671 together in memory. There is no padding between fields. Further, the
1672 alignment of a packed structure is 1 byte. The elements of a packed
1673 structure may be any type that has a size.</p>
1675 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1676 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1677 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1679 <h5>Syntax:</h5>
1680 <pre>
1681 &lt; { &lt;type list&gt; } &gt;
1682 </pre>
1684 <h5>Examples:</h5>
1685 <table class="layout">
1686 <tr class="layout">
1687 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1688 <td class="left">A triple of three <tt>i32</tt> values</td>
1689 </tr><tr class="layout">
1690 <td class="left">
1691 <tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
1692 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1693 second element is a <a href="#t_pointer">pointer</a> to a
1694 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1695 an <tt>i32</tt>.</td>
1696 </tr>
1697 </table>
1699 </div>
1701 <!-- _______________________________________________________________________ -->
1702 <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1704 <div class="doc_text">
1706 <h5>Overview:</h5>
1707 <p>As in many languages, the pointer type represents a pointer or reference to
1708 another object, which must live in memory. Pointer types may have an optional
1709 address space attribute defining the target-specific numbered address space
1710 where the pointed-to object resides. The default address space is zero.</p>
1712 <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1713 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
1715 <h5>Syntax:</h5>
1716 <pre>
1717 &lt;type&gt; *
1718 </pre>
1720 <h5>Examples:</h5>
1721 <table class="layout">
1722 <tr class="layout">
1723 <td class="left"><tt>[4 x i32]*</tt></td>
1724 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1725 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1726 </tr>
1727 <tr class="layout">
1728 <td class="left"><tt>i32 (i32 *) *</tt></td>
1729 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
1730 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1731 <tt>i32</tt>.</td>
1732 </tr>
1733 <tr class="layout">
1734 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1735 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1736 that resides in address space #5.</td>
1737 </tr>
1738 </table>
1740 </div>
1742 <!-- _______________________________________________________________________ -->
1743 <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1745 <div class="doc_text">
1747 <h5>Overview:</h5>
1748 <p>A vector type is a simple derived type that represents a vector of elements.
1749 Vector types are used when multiple primitive data are operated in parallel
1750 using a single instruction (SIMD). A vector type requires a size (number of
1751 elements) and an underlying primitive data type. Vectors must have a power
1752 of two length (1, 2, 4, 8, 16 ...). Vector types are considered
1753 <a href="#t_firstclass">first class</a>.</p>
1755 <h5>Syntax:</h5>
1756 <pre>
1757 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1758 </pre>
1760 <p>The number of elements is a constant integer value; elementtype may be any
1761 integer or floating point type.</p>
1763 <h5>Examples:</h5>
1764 <table class="layout">
1765 <tr class="layout">
1766 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1767 <td class="left">Vector of 4 32-bit integer values.</td>
1768 </tr>
1769 <tr class="layout">
1770 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1771 <td class="left">Vector of 8 32-bit floating-point values.</td>
1772 </tr>
1773 <tr class="layout">
1774 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1775 <td class="left">Vector of 2 64-bit integer values.</td>
1776 </tr>
1777 </table>
1779 <p>Note that the code generator does not yet support large vector types to be
1780 used as function return types. The specific limit on how large a vector
1781 return type codegen can currently handle is target-dependent; currently it's
1782 often a few times longer than a hardware vector register.</p>
1784 </div>
1786 <!-- _______________________________________________________________________ -->
1787 <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1788 <div class="doc_text">
1790 <h5>Overview:</h5>
1791 <p>Opaque types are used to represent unknown types in the system. This
1792 corresponds (for example) to the C notion of a forward declared structure
1793 type. In LLVM, opaque types can eventually be resolved to any type (not just
1794 a structure type).</p>
1796 <h5>Syntax:</h5>
1797 <pre>
1798 opaque
1799 </pre>
1801 <h5>Examples:</h5>
1802 <table class="layout">
1803 <tr class="layout">
1804 <td class="left"><tt>opaque</tt></td>
1805 <td class="left">An opaque type.</td>
1806 </tr>
1807 </table>
1809 </div>
1811 <!-- ======================================================================= -->
1812 <div class="doc_subsection">
1813 <a name="t_uprefs">Type Up-references</a>
1814 </div>
1816 <div class="doc_text">
1818 <h5>Overview:</h5>
1819 <p>An "up reference" allows you to refer to a lexically enclosing type without
1820 requiring it to have a name. For instance, a structure declaration may
1821 contain a pointer to any of the types it is lexically a member of. Example
1822 of up references (with their equivalent as named type declarations)
1823 include:</p>
1825 <pre>
1826 { \2 * } %x = type { %x* }
1827 { \2 }* %y = type { %y }*
1828 \1* %z = type %z*
1829 </pre>
1831 <p>An up reference is needed by the asmprinter for printing out cyclic types
1832 when there is no declared name for a type in the cycle. Because the
1833 asmprinter does not want to print out an infinite type string, it needs a
1834 syntax to handle recursive types that have no names (all names are optional
1835 in llvm IR).</p>
1837 <h5>Syntax:</h5>
1838 <pre>
1839 \&lt;level&gt;
1840 </pre>
1842 <p>The level is the count of the lexical type that is being referred to.</p>
1844 <h5>Examples:</h5>
1845 <table class="layout">
1846 <tr class="layout">
1847 <td class="left"><tt>\1*</tt></td>
1848 <td class="left">Self-referential pointer.</td>
1849 </tr>
1850 <tr class="layout">
1851 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1852 <td class="left">Recursive structure where the upref refers to the out-most
1853 structure.</td>
1854 </tr>
1855 </table>
1857 </div>
1859 <!-- *********************************************************************** -->
1860 <div class="doc_section"> <a name="constants">Constants</a> </div>
1861 <!-- *********************************************************************** -->
1863 <div class="doc_text">
1865 <p>LLVM has several different basic types of constants. This section describes
1866 them all and their syntax.</p>
1868 </div>
1870 <!-- ======================================================================= -->
1871 <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1873 <div class="doc_text">
1875 <dl>
1876 <dt><b>Boolean constants</b></dt>
1877 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1878 constants of the <tt><a href="#t_primitive">i1</a></tt> type.</dd>
1880 <dt><b>Integer constants</b></dt>
1881 <dd>Standard integers (such as '4') are constants of
1882 the <a href="#t_integer">integer</a> type. Negative numbers may be used
1883 with integer types.</dd>
1885 <dt><b>Floating point constants</b></dt>
1886 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1887 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1888 notation (see below). The assembler requires the exact decimal value of a
1889 floating-point constant. For example, the assembler accepts 1.25 but
1890 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1891 constants must have a <a href="#t_floating">floating point</a> type. </dd>
1893 <dt><b>Null pointer constants</b></dt>
1894 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1895 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1896 </dl>
1898 <p>The one non-intuitive notation for constants is the hexadecimal form of
1899 floating point constants. For example, the form '<tt>double
1900 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
1901 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
1902 constants are required (and the only time that they are generated by the
1903 disassembler) is when a floating point constant must be emitted but it cannot
1904 be represented as a decimal floating point number in a reasonable number of
1905 digits. For example, NaN's, infinities, and other special values are
1906 represented in their IEEE hexadecimal format so that assembly and disassembly
1907 do not cause any bits to change in the constants.</p>
1909 <p>When using the hexadecimal form, constants of types float and double are
1910 represented using the 16-digit form shown above (which matches the IEEE754
1911 representation for double); float values must, however, be exactly
1912 representable as IEE754 single precision. Hexadecimal format is always used
1913 for long double, and there are three forms of long double. The 80-bit format
1914 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
1915 The 128-bit format used by PowerPC (two adjacent doubles) is represented
1916 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
1917 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
1918 currently supported target uses this format. Long doubles will only work if
1919 they match the long double format on your target. All hexadecimal formats
1920 are big-endian (sign bit at the left).</p>
1922 </div>
1924 <!-- ======================================================================= -->
1925 <div class="doc_subsection">
1926 <a name="aggregateconstants"></a> <!-- old anchor -->
1927 <a name="complexconstants">Complex Constants</a>
1928 </div>
1930 <div class="doc_text">
1932 <p>Complex constants are a (potentially recursive) combination of simple
1933 constants and smaller complex constants.</p>
1935 <dl>
1936 <dt><b>Structure constants</b></dt>
1937 <dd>Structure constants are represented with notation similar to structure
1938 type definitions (a comma separated list of elements, surrounded by braces
1939 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1940 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
1941 Structure constants must have <a href="#t_struct">structure type</a>, and
1942 the number and types of elements must match those specified by the
1943 type.</dd>
1945 <dt><b>Array constants</b></dt>
1946 <dd>Array constants are represented with notation similar to array type
1947 definitions (a comma separated list of elements, surrounded by square
1948 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
1949 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
1950 the number and types of elements must match those specified by the
1951 type.</dd>
1953 <dt><b>Vector constants</b></dt>
1954 <dd>Vector constants are represented with notation similar to vector type
1955 definitions (a comma separated list of elements, surrounded by
1956 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
1957 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
1958 have <a href="#t_vector">vector type</a>, and the number and types of
1959 elements must match those specified by the type.</dd>
1961 <dt><b>Zero initialization</b></dt>
1962 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1963 value to zero of <em>any</em> type, including scalar and aggregate types.
1964 This is often used to avoid having to print large zero initializers
1965 (e.g. for large arrays) and is always exactly equivalent to using explicit
1966 zero initializers.</dd>
1968 <dt><b>Metadata node</b></dt>
1969 <dd>A metadata node is a structure-like constant with
1970 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
1971 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
1972 be interpreted as part of the instruction stream, metadata is a place to
1973 attach additional information such as debug info.</dd>
1974 </dl>
1976 </div>
1978 <!-- ======================================================================= -->
1979 <div class="doc_subsection">
1980 <a name="globalconstants">Global Variable and Function Addresses</a>
1981 </div>
1983 <div class="doc_text">
1985 <p>The addresses of <a href="#globalvars">global variables</a>
1986 and <a href="#functionstructure">functions</a> are always implicitly valid
1987 (link-time) constants. These constants are explicitly referenced when
1988 the <a href="#identifiers">identifier for the global</a> is used and always
1989 have <a href="#t_pointer">pointer</a> type. For example, the following is a
1990 legal LLVM file:</p>
1992 <div class="doc_code">
1993 <pre>
1994 @X = global i32 17
1995 @Y = global i32 42
1996 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1997 </pre>
1998 </div>
2000 </div>
2002 <!-- ======================================================================= -->
2003 <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
2004 <div class="doc_text">
2006 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has no
2007 specific value. Undefined values may be of any type and be used anywhere a
2008 constant is permitted.</p>
2010 <p>Undefined values indicate to the compiler that the program is well defined no
2011 matter what value is used, giving the compiler more freedom to optimize.</p>
2013 </div>
2015 <!-- ======================================================================= -->
2016 <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2017 </div>
2019 <div class="doc_text">
2021 <p>Constant expressions are used to allow expressions involving other constants
2022 to be used as constants. Constant expressions may be of
2023 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2024 operation that does not have side effects (e.g. load and call are not
2025 supported). The following is the syntax for constant expressions:</p>
2027 <dl>
2028 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
2029 <dd>Truncate a constant to another type. The bit size of CST must be larger
2030 than the bit size of TYPE. Both types must be integers.</dd>
2032 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
2033 <dd>Zero extend a constant to another type. The bit size of CST must be
2034 smaller or equal to the bit size of TYPE. Both types must be
2035 integers.</dd>
2037 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
2038 <dd>Sign extend a constant to another type. The bit size of CST must be
2039 smaller or equal to the bit size of TYPE. Both types must be
2040 integers.</dd>
2042 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
2043 <dd>Truncate a floating point constant to another floating point type. The
2044 size of CST must be larger than the size of TYPE. Both types must be
2045 floating point.</dd>
2047 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
2048 <dd>Floating point extend a constant to another type. The size of CST must be
2049 smaller or equal to the size of TYPE. Both types must be floating
2050 point.</dd>
2052 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
2053 <dd>Convert a floating point constant to the corresponding unsigned integer
2054 constant. TYPE must be a scalar or vector integer type. CST must be of
2055 scalar or vector floating point type. Both CST and TYPE must be scalars,
2056 or vectors of the same number of elements. If the value won't fit in the
2057 integer type, the results are undefined.</dd>
2059 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
2060 <dd>Convert a floating point constant to the corresponding signed integer
2061 constant. TYPE must be a scalar or vector integer type. CST must be of
2062 scalar or vector floating point type. Both CST and TYPE must be scalars,
2063 or vectors of the same number of elements. If the value won't fit in the
2064 integer type, the results are undefined.</dd>
2066 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
2067 <dd>Convert an unsigned integer constant to the corresponding floating point
2068 constant. TYPE must be a scalar or vector floating point type. CST must be
2069 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2070 vectors of the same number of elements. If the value won't fit in the
2071 floating point type, the results are undefined.</dd>
2073 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
2074 <dd>Convert a signed integer constant to the corresponding floating point
2075 constant. TYPE must be a scalar or vector floating point type. CST must be
2076 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2077 vectors of the same number of elements. If the value won't fit in the
2078 floating point type, the results are undefined.</dd>
2080 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2081 <dd>Convert a pointer typed constant to the corresponding integer constant
2082 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2083 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2084 make it fit in <tt>TYPE</tt>.</dd>
2086 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
2087 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2088 type. CST must be of integer type. The CST value is zero extended,
2089 truncated, or unchanged to make it fit in a pointer size. This one is
2090 <i>really</i> dangerous!</dd>
2092 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
2093 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2094 are the same as those for the <a href="#i_bitcast">bitcast
2095 instruction</a>.</dd>
2097 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
2098 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
2099 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2100 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2101 instruction, the index list may have zero or more indexes, which are
2102 required to make sense for the type of "CSTPTR".</dd>
2104 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
2105 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
2107 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2108 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2110 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2111 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
2113 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2114 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2115 constants.</dd>
2117 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2118 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2119 constants.</dd>
2121 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2122 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2123 constants.</dd>
2125 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2126 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2127 be any of the <a href="#binaryops">binary</a>
2128 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2129 on operands are the same as those for the corresponding instruction
2130 (e.g. no bitwise operations on floating point values are allowed).</dd>
2131 </dl>
2133 </div>
2135 <!-- ======================================================================= -->
2136 <div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2137 </div>
2139 <div class="doc_text">
2141 <p>Embedded metadata provides a way to attach arbitrary data to the instruction
2142 stream without affecting the behaviour of the program. There are two
2143 metadata primitives, strings and nodes. All metadata has the
2144 <tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2145 point ('<tt>!</tt>').</p>
2147 <p>A metadata string is a string surrounded by double quotes. It can contain
2148 any character by escaping non-printable characters with "\xx" where "xx" is
2149 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2151 <p>Metadata nodes are represented with notation similar to structure constants
2152 (a comma separated list of elements, surrounded by braces and preceeded by an
2153 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2154 10}</tt>".</p>
2156 <p>A metadata node will attempt to track changes to the values it holds. In the
2157 event that a value is deleted, it will be replaced with a typeless
2158 "<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
2160 <p>Optimizations may rely on metadata to provide additional information about
2161 the program that isn't available in the instructions, or that isn't easily
2162 computable. Similarly, the code generator may expect a certain metadata
2163 format to be used to express debugging information.</p>
2165 </div>
2167 <!-- *********************************************************************** -->
2168 <div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2169 <!-- *********************************************************************** -->
2171 <!-- ======================================================================= -->
2172 <div class="doc_subsection">
2173 <a name="inlineasm">Inline Assembler Expressions</a>
2174 </div>
2176 <div class="doc_text">
2178 <p>LLVM supports inline assembler expressions (as opposed
2179 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2180 a special value. This value represents the inline assembler as a string
2181 (containing the instructions to emit), a list of operand constraints (stored
2182 as a string), and a flag that indicates whether or not the inline asm
2183 expression has side effects. An example inline assembler expression is:</p>
2185 <div class="doc_code">
2186 <pre>
2187 i32 (i32) asm "bswap $0", "=r,r"
2188 </pre>
2189 </div>
2191 <p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2192 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2193 have:</p>
2195 <div class="doc_code">
2196 <pre>
2197 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
2198 </pre>
2199 </div>
2201 <p>Inline asms with side effects not visible in the constraint list must be
2202 marked as having side effects. This is done through the use of the
2203 '<tt>sideeffect</tt>' keyword, like so:</p>
2205 <div class="doc_code">
2206 <pre>
2207 call void asm sideeffect "eieio", ""()
2208 </pre>
2209 </div>
2211 <p>TODO: The format of the asm and constraints string still need to be
2212 documented here. Constraints on what can be done (e.g. duplication, moving,
2213 etc need to be documented). This is probably best done by reference to
2214 another document that covers inline asm from a holistic perspective.</p>
2216 </div>
2219 <!-- *********************************************************************** -->
2220 <div class="doc_section">
2221 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2222 </div>
2223 <!-- *********************************************************************** -->
2225 <p>LLVM has a number of "magic" global variables that contain data that affect
2226 code generation or other IR semantics. These are documented here. All globals
2227 of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2228 section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2229 by LLVM.</p>
2231 <!-- ======================================================================= -->
2232 <div class="doc_subsection">
2233 <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2234 </div>
2236 <div class="doc_text">
2238 <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2239 href="#linkage_appending">appending linkage</a>. This array contains a list of
2240 pointers to global variables and functions which may optionally have a pointer
2241 cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2243 <pre>
2244 @X = global i8 4
2245 @Y = global i32 123
2247 @llvm.used = appending global [2 x i8*] [
2248 i8* @X,
2249 i8* bitcast (i32* @Y to i8*)
2250 ], section "llvm.metadata"
2251 </pre>
2253 <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2254 compiler, assembler, and linker are required to treat the symbol as if there is
2255 a reference to the global that it cannot see. For example, if a variable has
2256 internal linkage and no references other than that from the <tt>@llvm.used</tt>
2257 list, it cannot be deleted. This is commonly used to represent references from
2258 inline asms and other things the compiler cannot "see", and corresponds to
2259 "attribute((used))" in GNU C.</p>
2261 <p>On some targets, the code generator must emit a directive to the assembler or
2262 object file to prevent the assembler and linker from molesting the symbol.</p>
2264 </div>
2266 <!-- ======================================================================= -->
2267 <div class="doc_subsection">
2268 <a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2269 </div>
2271 <div class="doc_text">
2273 <p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2274 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2275 touching the symbol. On targets that support it, this allows an intelligent
2276 linker to optimize references to the symbol without being impeded as it would be
2277 by <tt>@llvm.used</tt>.</p>
2279 <p>This is a rare construct that should only be used in rare circumstances, and
2280 should not be exposed to source languages.</p>
2282 </div>
2284 <!-- ======================================================================= -->
2285 <div class="doc_subsection">
2286 <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2287 </div>
2289 <div class="doc_text">
2291 <p>TODO: Describe this.</p>
2293 </div>
2295 <!-- ======================================================================= -->
2296 <div class="doc_subsection">
2297 <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2298 </div>
2300 <div class="doc_text">
2302 <p>TODO: Describe this.</p>
2304 </div>
2307 <!-- *********************************************************************** -->
2308 <div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2309 <!-- *********************************************************************** -->
2311 <div class="doc_text">
2313 <p>The LLVM instruction set consists of several different classifications of
2314 instructions: <a href="#terminators">terminator
2315 instructions</a>, <a href="#binaryops">binary instructions</a>,
2316 <a href="#bitwiseops">bitwise binary instructions</a>,
2317 <a href="#memoryops">memory instructions</a>, and
2318 <a href="#otherops">other instructions</a>.</p>
2320 </div>
2322 <!-- ======================================================================= -->
2323 <div class="doc_subsection"> <a name="terminators">Terminator
2324 Instructions</a> </div>
2326 <div class="doc_text">
2328 <p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2329 in a program ends with a "Terminator" instruction, which indicates which
2330 block should be executed after the current block is finished. These
2331 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2332 control flow, not values (the one exception being the
2333 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2335 <p>There are six different terminator instructions: the
2336 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2337 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2338 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
2339 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2340 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2341 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
2343 </div>
2345 <!-- _______________________________________________________________________ -->
2346 <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2347 Instruction</a> </div>
2349 <div class="doc_text">
2351 <h5>Syntax:</h5>
2352 <pre>
2353 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
2354 ret void <i>; Return from void function</i>
2355 </pre>
2357 <h5>Overview:</h5>
2358 <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2359 a value) from a function back to the caller.</p>
2361 <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2362 value and then causes control flow, and one that just causes control flow to
2363 occur.</p>
2365 <h5>Arguments:</h5>
2366 <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2367 return value. The type of the return value must be a
2368 '<a href="#t_firstclass">first class</a>' type.</p>
2370 <p>A function is not <a href="#wellformed">well formed</a> if it it has a
2371 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2372 value or a return value with a type that does not match its type, or if it
2373 has a void return type and contains a '<tt>ret</tt>' instruction with a
2374 return value.</p>
2376 <h5>Semantics:</h5>
2377 <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2378 the calling function's context. If the caller is a
2379 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2380 instruction after the call. If the caller was an
2381 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2382 the beginning of the "normal" destination block. If the instruction returns
2383 a value, that value shall set the call or invoke instruction's return
2384 value.</p>
2386 <h5>Example:</h5>
2387 <pre>
2388 ret i32 5 <i>; Return an integer value of 5</i>
2389 ret void <i>; Return from a void function</i>
2390 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
2391 </pre>
2393 <p>Note that the code generator does not yet fully support large
2394 return values. The specific sizes that are currently supported are
2395 dependent on the target. For integers, on 32-bit targets the limit
2396 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2397 For aggregate types, the current limits are dependent on the element
2398 types; for example targets are often limited to 2 total integer
2399 elements and 2 total floating-point elements.</p>
2401 </div>
2402 <!-- _______________________________________________________________________ -->
2403 <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
2405 <div class="doc_text">
2407 <h5>Syntax:</h5>
2408 <pre>
2409 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
2410 </pre>
2412 <h5>Overview:</h5>
2413 <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2414 different basic block in the current function. There are two forms of this
2415 instruction, corresponding to a conditional branch and an unconditional
2416 branch.</p>
2418 <h5>Arguments:</h5>
2419 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2420 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2421 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2422 target.</p>
2424 <h5>Semantics:</h5>
2425 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
2426 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2427 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2428 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2430 <h5>Example:</h5>
2431 <pre>
2432 Test:
2433 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2434 br i1 %cond, label %IfEqual, label %IfUnequal
2435 IfEqual:
2436 <a href="#i_ret">ret</a> i32 1
2437 IfUnequal:
2438 <a href="#i_ret">ret</a> i32 0
2439 </pre>
2441 </div>
2443 <!-- _______________________________________________________________________ -->
2444 <div class="doc_subsubsection">
2445 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2446 </div>
2448 <div class="doc_text">
2450 <h5>Syntax:</h5>
2451 <pre>
2452 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2453 </pre>
2455 <h5>Overview:</h5>
2456 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2457 several different places. It is a generalization of the '<tt>br</tt>'
2458 instruction, allowing a branch to occur to one of many possible
2459 destinations.</p>
2461 <h5>Arguments:</h5>
2462 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2463 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2464 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2465 The table is not allowed to contain duplicate constant entries.</p>
2467 <h5>Semantics:</h5>
2468 <p>The <tt>switch</tt> instruction specifies a table of values and
2469 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2470 is searched for the given value. If the value is found, control flow is
2471 transfered to the corresponding destination; otherwise, control flow is
2472 transfered to the default destination.</p>
2474 <h5>Implementation:</h5>
2475 <p>Depending on properties of the target machine and the particular
2476 <tt>switch</tt> instruction, this instruction may be code generated in
2477 different ways. For example, it could be generated as a series of chained
2478 conditional branches or with a lookup table.</p>
2480 <h5>Example:</h5>
2481 <pre>
2482 <i>; Emulate a conditional br instruction</i>
2483 %Val = <a href="#i_zext">zext</a> i1 %value to i32
2484 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2486 <i>; Emulate an unconditional br instruction</i>
2487 switch i32 0, label %dest [ ]
2489 <i>; Implement a jump table:</i>
2490 switch i32 %val, label %otherwise [ i32 0, label %onzero
2491 i32 1, label %onone
2492 i32 2, label %ontwo ]
2493 </pre>
2495 </div>
2497 <!-- _______________________________________________________________________ -->
2498 <div class="doc_subsubsection">
2499 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2500 </div>
2502 <div class="doc_text">
2504 <h5>Syntax:</h5>
2505 <pre>
2506 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
2507 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
2508 </pre>
2510 <h5>Overview:</h5>
2511 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2512 function, with the possibility of control flow transfer to either the
2513 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
2514 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
2515 control flow will return to the "normal" label. If the callee (or any
2516 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
2517 instruction, control is interrupted and continued at the dynamically nearest
2518 "exception" label.</p>
2520 <h5>Arguments:</h5>
2521 <p>This instruction requires several arguments:</p>
2523 <ol>
2524 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
2525 convention</a> the call should use. If none is specified, the call
2526 defaults to using C calling conventions.</li>
2528 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2529 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
2530 '<tt>inreg</tt>' attributes are valid here.</li>
2532 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2533 function value being invoked. In most cases, this is a direct function
2534 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
2535 off an arbitrary pointer to function value.</li>
2537 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2538 function to be invoked. </li>
2540 <li>'<tt>function args</tt>': argument list whose types match the function
2541 signature argument types. If the function signature indicates the
2542 function accepts a variable number of arguments, the extra arguments can
2543 be specified.</li>
2545 <li>'<tt>normal label</tt>': the label reached when the called function
2546 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2548 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2549 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2551 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
2552 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2553 '<tt>readnone</tt>' attributes are valid here.</li>
2554 </ol>
2556 <h5>Semantics:</h5>
2557 <p>This instruction is designed to operate as a standard
2558 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
2559 primary difference is that it establishes an association with a label, which
2560 is used by the runtime library to unwind the stack.</p>
2562 <p>This instruction is used in languages with destructors to ensure that proper
2563 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2564 exception. Additionally, this is important for implementation of
2565 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
2567 <p>For the purposes of the SSA form, the definition of the value returned by the
2568 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
2569 block to the "normal" label. If the callee unwinds then no return value is
2570 available.</p>
2572 <h5>Example:</h5>
2573 <pre>
2574 %retval = invoke i32 @Test(i32 15) to label %Continue
2575 unwind label %TestCleanup <i>; {i32}:retval set</i>
2576 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
2577 unwind label %TestCleanup <i>; {i32}:retval set</i>
2578 </pre>
2580 </div>
2582 <!-- _______________________________________________________________________ -->
2584 <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2585 Instruction</a> </div>
2587 <div class="doc_text">
2589 <h5>Syntax:</h5>
2590 <pre>
2591 unwind
2592 </pre>
2594 <h5>Overview:</h5>
2595 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2596 at the first callee in the dynamic call stack which used
2597 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
2598 This is primarily used to implement exception handling.</p>
2600 <h5>Semantics:</h5>
2601 <p>The '<tt>unwind</tt>' instruction causes execution of the current function to
2602 immediately halt. The dynamic call stack is then searched for the
2603 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
2604 Once found, execution continues at the "exceptional" destination block
2605 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
2606 instruction in the dynamic call chain, undefined behavior results.</p>
2608 </div>
2610 <!-- _______________________________________________________________________ -->
2612 <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2613 Instruction</a> </div>
2615 <div class="doc_text">
2617 <h5>Syntax:</h5>
2618 <pre>
2619 unreachable
2620 </pre>
2622 <h5>Overview:</h5>
2623 <p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2624 instruction is used to inform the optimizer that a particular portion of the
2625 code is not reachable. This can be used to indicate that the code after a
2626 no-return function cannot be reached, and other facts.</p>
2628 <h5>Semantics:</h5>
2629 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2631 </div>
2633 <!-- ======================================================================= -->
2634 <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
2636 <div class="doc_text">
2638 <p>Binary operators are used to do most of the computation in a program. They
2639 require two operands of the same type, execute an operation on them, and
2640 produce a single value. The operands might represent multiple data, as is
2641 the case with the <a href="#t_vector">vector</a> data type. The result value
2642 has the same type as its operands.</p>
2644 <p>There are several different binary operators:</p>
2646 </div>
2648 <!-- _______________________________________________________________________ -->
2649 <div class="doc_subsubsection">
2650 <a name="i_add">'<tt>add</tt>' Instruction</a>
2651 </div>
2653 <div class="doc_text">
2655 <h5>Syntax:</h5>
2656 <pre>
2657 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2658 &lt;result&gt; = nuw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2659 &lt;result&gt; = nsw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2660 &lt;result&gt; = nuw nsw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2661 </pre>
2663 <h5>Overview:</h5>
2664 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
2666 <h5>Arguments:</h5>
2667 <p>The two arguments to the '<tt>add</tt>' instruction must
2668 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2669 integer values. Both arguments must have identical types.</p>
2671 <h5>Semantics:</h5>
2672 <p>The value produced is the integer sum of the two operands.</p>
2674 <p>If the sum has unsigned overflow, the result returned is the mathematical
2675 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
2677 <p>Because LLVM integers use a two's complement representation, this instruction
2678 is appropriate for both signed and unsigned integers.</p>
2680 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2681 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2682 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
2683 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
2685 <h5>Example:</h5>
2686 <pre>
2687 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
2688 </pre>
2690 </div>
2692 <!-- _______________________________________________________________________ -->
2693 <div class="doc_subsubsection">
2694 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2695 </div>
2697 <div class="doc_text">
2699 <h5>Syntax:</h5>
2700 <pre>
2701 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2702 </pre>
2704 <h5>Overview:</h5>
2705 <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2707 <h5>Arguments:</h5>
2708 <p>The two arguments to the '<tt>fadd</tt>' instruction must be
2709 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2710 floating point values. Both arguments must have identical types.</p>
2712 <h5>Semantics:</h5>
2713 <p>The value produced is the floating point sum of the two operands.</p>
2715 <h5>Example:</h5>
2716 <pre>
2717 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2718 </pre>
2720 </div>
2722 <!-- _______________________________________________________________________ -->
2723 <div class="doc_subsubsection">
2724 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2725 </div>
2727 <div class="doc_text">
2729 <h5>Syntax:</h5>
2730 <pre>
2731 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2732 &lt;result&gt; = nuw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2733 &lt;result&gt; = nsw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2734 &lt;result&gt; = nuw nsw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2735 </pre>
2737 <h5>Overview:</h5>
2738 <p>The '<tt>sub</tt>' instruction returns the difference of its two
2739 operands.</p>
2741 <p>Note that the '<tt>sub</tt>' instruction is used to represent the
2742 '<tt>neg</tt>' instruction present in most other intermediate
2743 representations.</p>
2745 <h5>Arguments:</h5>
2746 <p>The two arguments to the '<tt>sub</tt>' instruction must
2747 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2748 integer values. Both arguments must have identical types.</p>
2750 <h5>Semantics:</h5>
2751 <p>The value produced is the integer difference of the two operands.</p>
2753 <p>If the difference has unsigned overflow, the result returned is the
2754 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
2755 result.</p>
2757 <p>Because LLVM integers use a two's complement representation, this instruction
2758 is appropriate for both signed and unsigned integers.</p>
2760 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2761 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2762 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
2763 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
2765 <h5>Example:</h5>
2766 <pre>
2767 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
2768 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
2769 </pre>
2771 </div>
2773 <!-- _______________________________________________________________________ -->
2774 <div class="doc_subsubsection">
2775 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2776 </div>
2778 <div class="doc_text">
2780 <h5>Syntax:</h5>
2781 <pre>
2782 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2783 </pre>
2785 <h5>Overview:</h5>
2786 <p>The '<tt>fsub</tt>' instruction returns the difference of its two
2787 operands.</p>
2789 <p>Note that the '<tt>fsub</tt>' instruction is used to represent the
2790 '<tt>fneg</tt>' instruction present in most other intermediate
2791 representations.</p>
2793 <h5>Arguments:</h5>
2794 <p>The two arguments to the '<tt>fsub</tt>' instruction must be
2795 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2796 floating point values. Both arguments must have identical types.</p>
2798 <h5>Semantics:</h5>
2799 <p>The value produced is the floating point difference of the two operands.</p>
2801 <h5>Example:</h5>
2802 <pre>
2803 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2804 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2805 </pre>
2807 </div>
2809 <!-- _______________________________________________________________________ -->
2810 <div class="doc_subsubsection">
2811 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2812 </div>
2814 <div class="doc_text">
2816 <h5>Syntax:</h5>
2817 <pre>
2818 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2819 &lt;result&gt; = nuw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2820 &lt;result&gt; = nsw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2821 &lt;result&gt; = nuw nsw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2822 </pre>
2824 <h5>Overview:</h5>
2825 <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
2827 <h5>Arguments:</h5>
2828 <p>The two arguments to the '<tt>mul</tt>' instruction must
2829 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2830 integer values. Both arguments must have identical types.</p>
2832 <h5>Semantics:</h5>
2833 <p>The value produced is the integer product of the two operands.</p>
2835 <p>If the result of the multiplication has unsigned overflow, the result
2836 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
2837 width of the result.</p>
2839 <p>Because LLVM integers use a two's complement representation, and the result
2840 is the same width as the operands, this instruction returns the correct
2841 result for both signed and unsigned integers. If a full product
2842 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
2843 be sign-extended or zero-extended as appropriate to the width of the full
2844 product.</p>
2846 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2847 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2848 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
2849 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
2851 <h5>Example:</h5>
2852 <pre>
2853 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2854 </pre>
2856 </div>
2858 <!-- _______________________________________________________________________ -->
2859 <div class="doc_subsubsection">
2860 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2861 </div>
2863 <div class="doc_text">
2865 <h5>Syntax:</h5>
2866 <pre>
2867 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2868 </pre>
2870 <h5>Overview:</h5>
2871 <p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
2873 <h5>Arguments:</h5>
2874 <p>The two arguments to the '<tt>fmul</tt>' instruction must be
2875 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2876 floating point values. Both arguments must have identical types.</p>
2878 <h5>Semantics:</h5>
2879 <p>The value produced is the floating point product of the two operands.</p>
2881 <h5>Example:</h5>
2882 <pre>
2883 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
2884 </pre>
2886 </div>
2888 <!-- _______________________________________________________________________ -->
2889 <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2890 </a></div>
2892 <div class="doc_text">
2894 <h5>Syntax:</h5>
2895 <pre>
2896 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2897 </pre>
2899 <h5>Overview:</h5>
2900 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
2902 <h5>Arguments:</h5>
2903 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
2904 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2905 values. Both arguments must have identical types.</p>
2907 <h5>Semantics:</h5>
2908 <p>The value produced is the unsigned integer quotient of the two operands.</p>
2910 <p>Note that unsigned integer division and signed integer division are distinct
2911 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2913 <p>Division by zero leads to undefined behavior.</p>
2915 <h5>Example:</h5>
2916 <pre>
2917 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2918 </pre>
2920 </div>
2922 <!-- _______________________________________________________________________ -->
2923 <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2924 </a> </div>
2926 <div class="doc_text">
2928 <h5>Syntax:</h5>
2929 <pre>
2930 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2931 &lt;result&gt; = exact sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2932 </pre>
2934 <h5>Overview:</h5>
2935 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
2937 <h5>Arguments:</h5>
2938 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2939 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2940 values. Both arguments must have identical types.</p>
2942 <h5>Semantics:</h5>
2943 <p>The value produced is the signed integer quotient of the two operands rounded
2944 towards zero.</p>
2946 <p>Note that signed integer division and unsigned integer division are distinct
2947 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2949 <p>Division by zero leads to undefined behavior. Overflow also leads to
2950 undefined behavior; this is a rare case, but can occur, for example, by doing
2951 a 32-bit division of -2147483648 by -1.</p>
2953 <p>If the <tt>exact</tt> keyword is present, the result value of the
2954 <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
2955 would occur.</p>
2957 <h5>Example:</h5>
2958 <pre>
2959 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2960 </pre>
2962 </div>
2964 <!-- _______________________________________________________________________ -->
2965 <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2966 Instruction</a> </div>
2968 <div class="doc_text">
2970 <h5>Syntax:</h5>
2971 <pre>
2972 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2973 </pre>
2975 <h5>Overview:</h5>
2976 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
2978 <h5>Arguments:</h5>
2979 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2980 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2981 floating point values. Both arguments must have identical types.</p>
2983 <h5>Semantics:</h5>
2984 <p>The value produced is the floating point quotient of the two operands.</p>
2986 <h5>Example:</h5>
2987 <pre>
2988 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2989 </pre>
2991 </div>
2993 <!-- _______________________________________________________________________ -->
2994 <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2995 </div>
2997 <div class="doc_text">
2999 <h5>Syntax:</h5>
3000 <pre>
3001 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3002 </pre>
3004 <h5>Overview:</h5>
3005 <p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3006 division of its two arguments.</p>
3008 <h5>Arguments:</h5>
3009 <p>The two arguments to the '<tt>urem</tt>' instruction must be
3010 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3011 values. Both arguments must have identical types.</p>
3013 <h5>Semantics:</h5>
3014 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
3015 This instruction always performs an unsigned division to get the
3016 remainder.</p>
3018 <p>Note that unsigned integer remainder and signed integer remainder are
3019 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3021 <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
3023 <h5>Example:</h5>
3024 <pre>
3025 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
3026 </pre>
3028 </div>
3030 <!-- _______________________________________________________________________ -->
3031 <div class="doc_subsubsection">
3032 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3033 </div>
3035 <div class="doc_text">
3037 <h5>Syntax:</h5>
3038 <pre>
3039 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3040 </pre>
3042 <h5>Overview:</h5>
3043 <p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3044 division of its two operands. This instruction can also take
3045 <a href="#t_vector">vector</a> versions of the values in which case the
3046 elements must be integers.</p>
3048 <h5>Arguments:</h5>
3049 <p>The two arguments to the '<tt>srem</tt>' instruction must be
3050 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3051 values. Both arguments must have identical types.</p>
3053 <h5>Semantics:</h5>
3054 <p>This instruction returns the <i>remainder</i> of a division (where the result
3055 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3056 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3057 a value. For more information about the difference,
3058 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3059 Math Forum</a>. For a table of how this is implemented in various languages,
3060 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3061 Wikipedia: modulo operation</a>.</p>
3063 <p>Note that signed integer remainder and unsigned integer remainder are
3064 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3066 <p>Taking the remainder of a division by zero leads to undefined behavior.
3067 Overflow also leads to undefined behavior; this is a rare case, but can
3068 occur, for example, by taking the remainder of a 32-bit division of
3069 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3070 lets srem be implemented using instructions that return both the result of
3071 the division and the remainder.)</p>
3073 <h5>Example:</h5>
3074 <pre>
3075 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
3076 </pre>
3078 </div>
3080 <!-- _______________________________________________________________________ -->
3081 <div class="doc_subsubsection">
3082 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3084 <div class="doc_text">
3086 <h5>Syntax:</h5>
3087 <pre>
3088 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3089 </pre>
3091 <h5>Overview:</h5>
3092 <p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3093 its two operands.</p>
3095 <h5>Arguments:</h5>
3096 <p>The two arguments to the '<tt>frem</tt>' instruction must be
3097 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3098 floating point values. Both arguments must have identical types.</p>
3100 <h5>Semantics:</h5>
3101 <p>This instruction returns the <i>remainder</i> of a division. The remainder
3102 has the same sign as the dividend.</p>
3104 <h5>Example:</h5>
3105 <pre>
3106 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
3107 </pre>
3109 </div>
3111 <!-- ======================================================================= -->
3112 <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3113 Operations</a> </div>
3115 <div class="doc_text">
3117 <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3118 program. They are generally very efficient instructions and can commonly be
3119 strength reduced from other instructions. They require two operands of the
3120 same type, execute an operation on them, and produce a single value. The
3121 resulting value is the same type as its operands.</p>
3123 </div>
3125 <!-- _______________________________________________________________________ -->
3126 <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3127 Instruction</a> </div>
3129 <div class="doc_text">
3131 <h5>Syntax:</h5>
3132 <pre>
3133 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3134 </pre>
3136 <h5>Overview:</h5>
3137 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3138 a specified number of bits.</p>
3140 <h5>Arguments:</h5>
3141 <p>Both arguments to the '<tt>shl</tt>' instruction must be the
3142 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3143 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3145 <h5>Semantics:</h5>
3146 <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3147 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3148 is (statically or dynamically) negative or equal to or larger than the number
3149 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3150 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3151 shift amount in <tt>op2</tt>.</p>
3153 <h5>Example:</h5>
3154 <pre>
3155 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3156 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3157 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
3158 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
3159 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
3160 </pre>
3162 </div>
3164 <!-- _______________________________________________________________________ -->
3165 <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3166 Instruction</a> </div>
3168 <div class="doc_text">
3170 <h5>Syntax:</h5>
3171 <pre>
3172 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3173 </pre>
3175 <h5>Overview:</h5>
3176 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3177 operand shifted to the right a specified number of bits with zero fill.</p>
3179 <h5>Arguments:</h5>
3180 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
3181 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3182 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3184 <h5>Semantics:</h5>
3185 <p>This instruction always performs a logical shift right operation. The most
3186 significant bits of the result will be filled with zero bits after the shift.
3187 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3188 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3189 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3190 shift amount in <tt>op2</tt>.</p>
3192 <h5>Example:</h5>
3193 <pre>
3194 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3195 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3196 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3197 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
3198 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
3199 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
3200 </pre>
3202 </div>
3204 <!-- _______________________________________________________________________ -->
3205 <div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3206 Instruction</a> </div>
3207 <div class="doc_text">
3209 <h5>Syntax:</h5>
3210 <pre>
3211 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3212 </pre>
3214 <h5>Overview:</h5>
3215 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3216 operand shifted to the right a specified number of bits with sign
3217 extension.</p>
3219 <h5>Arguments:</h5>
3220 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
3221 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3222 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3224 <h5>Semantics:</h5>
3225 <p>This instruction always performs an arithmetic shift right operation, The
3226 most significant bits of the result will be filled with the sign bit
3227 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3228 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3229 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3230 the corresponding shift amount in <tt>op2</tt>.</p>
3232 <h5>Example:</h5>
3233 <pre>
3234 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3235 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3236 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3237 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
3238 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
3239 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
3240 </pre>
3242 </div>
3244 <!-- _______________________________________________________________________ -->
3245 <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3246 Instruction</a> </div>
3248 <div class="doc_text">
3250 <h5>Syntax:</h5>
3251 <pre>
3252 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3253 </pre>
3255 <h5>Overview:</h5>
3256 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3257 operands.</p>
3259 <h5>Arguments:</h5>
3260 <p>The two arguments to the '<tt>and</tt>' instruction must be
3261 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3262 values. Both arguments must have identical types.</p>
3264 <h5>Semantics:</h5>
3265 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
3267 <table border="1" cellspacing="0" cellpadding="4">
3268 <tbody>
3269 <tr>
3270 <td>In0</td>
3271 <td>In1</td>
3272 <td>Out</td>
3273 </tr>
3274 <tr>
3275 <td>0</td>
3276 <td>0</td>
3277 <td>0</td>
3278 </tr>
3279 <tr>
3280 <td>0</td>
3281 <td>1</td>
3282 <td>0</td>
3283 </tr>
3284 <tr>
3285 <td>1</td>
3286 <td>0</td>
3287 <td>0</td>
3288 </tr>
3289 <tr>
3290 <td>1</td>
3291 <td>1</td>
3292 <td>1</td>
3293 </tr>
3294 </tbody>
3295 </table>
3297 <h5>Example:</h5>
3298 <pre>
3299 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
3300 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3301 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
3302 </pre>
3303 </div>
3304 <!-- _______________________________________________________________________ -->
3305 <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
3307 <div class="doc_text">
3309 <h5>Syntax:</h5>
3310 <pre>
3311 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3312 </pre>
3314 <h5>Overview:</h5>
3315 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3316 two operands.</p>
3318 <h5>Arguments:</h5>
3319 <p>The two arguments to the '<tt>or</tt>' instruction must be
3320 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3321 values. Both arguments must have identical types.</p>
3323 <h5>Semantics:</h5>
3324 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
3326 <table border="1" cellspacing="0" cellpadding="4">
3327 <tbody>
3328 <tr>
3329 <td>In0</td>
3330 <td>In1</td>
3331 <td>Out</td>
3332 </tr>
3333 <tr>
3334 <td>0</td>
3335 <td>0</td>
3336 <td>0</td>
3337 </tr>
3338 <tr>
3339 <td>0</td>
3340 <td>1</td>
3341 <td>1</td>
3342 </tr>
3343 <tr>
3344 <td>1</td>
3345 <td>0</td>
3346 <td>1</td>
3347 </tr>
3348 <tr>
3349 <td>1</td>
3350 <td>1</td>
3351 <td>1</td>
3352 </tr>
3353 </tbody>
3354 </table>
3356 <h5>Example:</h5>
3357 <pre>
3358 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3359 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3360 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
3361 </pre>
3363 </div>
3365 <!-- _______________________________________________________________________ -->
3366 <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3367 Instruction</a> </div>
3369 <div class="doc_text">
3371 <h5>Syntax:</h5>
3372 <pre>
3373 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3374 </pre>
3376 <h5>Overview:</h5>
3377 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3378 its two operands. The <tt>xor</tt> is used to implement the "one's
3379 complement" operation, which is the "~" operator in C.</p>
3381 <h5>Arguments:</h5>
3382 <p>The two arguments to the '<tt>xor</tt>' instruction must be
3383 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3384 values. Both arguments must have identical types.</p>
3386 <h5>Semantics:</h5>
3387 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
3389 <table border="1" cellspacing="0" cellpadding="4">
3390 <tbody>
3391 <tr>
3392 <td>In0</td>
3393 <td>In1</td>
3394 <td>Out</td>
3395 </tr>
3396 <tr>
3397 <td>0</td>
3398 <td>0</td>
3399 <td>0</td>
3400 </tr>
3401 <tr>
3402 <td>0</td>
3403 <td>1</td>
3404 <td>1</td>
3405 </tr>
3406 <tr>
3407 <td>1</td>
3408 <td>0</td>
3409 <td>1</td>
3410 </tr>
3411 <tr>
3412 <td>1</td>
3413 <td>1</td>
3414 <td>0</td>
3415 </tr>
3416 </tbody>
3417 </table>
3419 <h5>Example:</h5>
3420 <pre>
3421 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3422 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3423 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3424 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
3425 </pre>
3427 </div>
3429 <!-- ======================================================================= -->
3430 <div class="doc_subsection">
3431 <a name="vectorops">Vector Operations</a>
3432 </div>
3434 <div class="doc_text">
3436 <p>LLVM supports several instructions to represent vector operations in a
3437 target-independent manner. These instructions cover the element-access and
3438 vector-specific operations needed to process vectors effectively. While LLVM
3439 does directly support these vector operations, many sophisticated algorithms
3440 will want to use target-specific intrinsics to take full advantage of a
3441 specific target.</p>
3443 </div>
3445 <!-- _______________________________________________________________________ -->
3446 <div class="doc_subsubsection">
3447 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3448 </div>
3450 <div class="doc_text">
3452 <h5>Syntax:</h5>
3453 <pre>
3454 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
3455 </pre>
3457 <h5>Overview:</h5>
3458 <p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3459 from a vector at a specified index.</p>
3462 <h5>Arguments:</h5>
3463 <p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3464 of <a href="#t_vector">vector</a> type. The second operand is an index
3465 indicating the position from which to extract the element. The index may be
3466 a variable.</p>
3468 <h5>Semantics:</h5>
3469 <p>The result is a scalar of the same type as the element type of
3470 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3471 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3472 results are undefined.</p>
3474 <h5>Example:</h5>
3475 <pre>
3476 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
3477 </pre>
3479 </div>
3481 <!-- _______________________________________________________________________ -->
3482 <div class="doc_subsubsection">
3483 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3484 </div>
3486 <div class="doc_text">
3488 <h5>Syntax:</h5>
3489 <pre>
3490 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
3491 </pre>
3493 <h5>Overview:</h5>
3494 <p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
3495 vector at a specified index.</p>
3497 <h5>Arguments:</h5>
3498 <p>The first operand of an '<tt>insertelement</tt>' instruction is a value
3499 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
3500 whose type must equal the element type of the first operand. The third
3501 operand is an index indicating the position at which to insert the value.
3502 The index may be a variable.</p>
3504 <h5>Semantics:</h5>
3505 <p>The result is a vector of the same type as <tt>val</tt>. Its element values
3506 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
3507 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3508 results are undefined.</p>
3510 <h5>Example:</h5>
3511 <pre>
3512 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
3513 </pre>
3515 </div>
3517 <!-- _______________________________________________________________________ -->
3518 <div class="doc_subsubsection">
3519 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3520 </div>
3522 <div class="doc_text">
3524 <h5>Syntax:</h5>
3525 <pre>
3526 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
3527 </pre>
3529 <h5>Overview:</h5>
3530 <p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3531 from two input vectors, returning a vector with the same element type as the
3532 input and length that is the same as the shuffle mask.</p>
3534 <h5>Arguments:</h5>
3535 <p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3536 with types that match each other. The third argument is a shuffle mask whose
3537 element type is always 'i32'. The result of the instruction is a vector
3538 whose length is the same as the shuffle mask and whose element type is the
3539 same as the element type of the first two operands.</p>
3541 <p>The shuffle mask operand is required to be a constant vector with either
3542 constant integer or undef values.</p>
3544 <h5>Semantics:</h5>
3545 <p>The elements of the two input vectors are numbered from left to right across
3546 both of the vectors. The shuffle mask operand specifies, for each element of
3547 the result vector, which element of the two input vectors the result element
3548 gets. The element selector may be undef (meaning "don't care") and the
3549 second operand may be undef if performing a shuffle from only one vector.</p>
3551 <h5>Example:</h5>
3552 <pre>
3553 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3554 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
3555 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3556 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
3557 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3558 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3559 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3560 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
3561 </pre>
3563 </div>
3565 <!-- ======================================================================= -->
3566 <div class="doc_subsection">
3567 <a name="aggregateops">Aggregate Operations</a>
3568 </div>
3570 <div class="doc_text">
3572 <p>LLVM supports several instructions for working with aggregate values.</p>
3574 </div>
3576 <!-- _______________________________________________________________________ -->
3577 <div class="doc_subsubsection">
3578 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3579 </div>
3581 <div class="doc_text">
3583 <h5>Syntax:</h5>
3584 <pre>
3585 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3586 </pre>
3588 <h5>Overview:</h5>
3589 <p>The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3590 or array element from an aggregate value.</p>
3592 <h5>Arguments:</h5>
3593 <p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
3594 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3595 operands are constant indices to specify which value to extract in a similar
3596 manner as indices in a
3597 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
3599 <h5>Semantics:</h5>
3600 <p>The result is the value at the position in the aggregate specified by the
3601 index operands.</p>
3603 <h5>Example:</h5>
3604 <pre>
3605 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
3606 </pre>
3608 </div>
3610 <!-- _______________________________________________________________________ -->
3611 <div class="doc_subsubsection">
3612 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3613 </div>
3615 <div class="doc_text">
3617 <h5>Syntax:</h5>
3618 <pre>
3619 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
3620 </pre>
3622 <h5>Overview:</h5>
3623 <p>The '<tt>insertvalue</tt>' instruction inserts a value into a struct field or
3624 array element in an aggregate.</p>
3627 <h5>Arguments:</h5>
3628 <p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
3629 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3630 second operand is a first-class value to insert. The following operands are
3631 constant indices indicating the position at which to insert the value in a
3632 similar manner as indices in a
3633 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
3634 value to insert must have the same type as the value identified by the
3635 indices.</p>
3637 <h5>Semantics:</h5>
3638 <p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
3639 that of <tt>val</tt> except that the value at the position specified by the
3640 indices is that of <tt>elt</tt>.</p>
3642 <h5>Example:</h5>
3643 <pre>
3644 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
3645 </pre>
3647 </div>
3650 <!-- ======================================================================= -->
3651 <div class="doc_subsection">
3652 <a name="memoryops">Memory Access and Addressing Operations</a>
3653 </div>
3655 <div class="doc_text">
3657 <p>A key design point of an SSA-based representation is how it represents
3658 memory. In LLVM, no memory locations are in SSA form, which makes things
3659 very simple. This section describes how to read, write, allocate, and free
3660 memory in LLVM.</p>
3662 </div>
3664 <!-- _______________________________________________________________________ -->
3665 <div class="doc_subsubsection">
3666 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3667 </div>
3669 <div class="doc_text">
3671 <h5>Syntax:</h5>
3672 <pre>
3673 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3674 </pre>
3676 <h5>Overview:</h5>
3677 <p>The '<tt>malloc</tt>' instruction allocates memory from the system heap and
3678 returns a pointer to it. The object is always allocated in the generic
3679 address space (address space zero).</p>
3681 <h5>Arguments:</h5>
3682 <p>The '<tt>malloc</tt>' instruction allocates
3683 <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory from the operating
3684 system and returns a pointer of the appropriate type to the program. If
3685 "NumElements" is specified, it is the number of elements allocated, otherwise
3686 "NumElements" is defaulted to be one. If a constant alignment is specified,
3687 the value result of the allocation is guaranteed to be aligned to at least
3688 that boundary. If not specified, or if zero, the target can choose to align
3689 the allocation on any convenient boundary compatible with the type.</p>
3691 <p>'<tt>type</tt>' must be a sized type.</p>
3693 <h5>Semantics:</h5>
3694 <p>Memory is allocated using the system "<tt>malloc</tt>" function, and a
3695 pointer is returned. The result of a zero byte allocation is undefined. The
3696 result is null if there is insufficient memory available.</p>
3698 <h5>Example:</h5>
3699 <pre>
3700 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
3702 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3703 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3704 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3705 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3706 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
3707 </pre>
3709 <p>Note that the code generator does not yet respect the alignment value.</p>
3711 </div>
3713 <!-- _______________________________________________________________________ -->
3714 <div class="doc_subsubsection">
3715 <a name="i_free">'<tt>free</tt>' Instruction</a>
3716 </div>
3718 <div class="doc_text">
3720 <h5>Syntax:</h5>
3721 <pre>
3722 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
3723 </pre>
3725 <h5>Overview:</h5>
3726 <p>The '<tt>free</tt>' instruction returns memory back to the unused memory heap
3727 to be reallocated in the future.</p>
3729 <h5>Arguments:</h5>
3730 <p>'<tt>value</tt>' shall be a pointer value that points to a value that was
3731 allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.</p>
3733 <h5>Semantics:</h5>
3734 <p>Access to the memory pointed to by the pointer is no longer defined after
3735 this instruction executes. If the pointer is null, the operation is a
3736 noop.</p>
3738 <h5>Example:</h5>
3739 <pre>
3740 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3741 free [4 x i8]* %array
3742 </pre>
3744 </div>
3746 <!-- _______________________________________________________________________ -->
3747 <div class="doc_subsubsection">
3748 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3749 </div>
3751 <div class="doc_text">
3753 <h5>Syntax:</h5>
3754 <pre>
3755 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3756 </pre>
3758 <h5>Overview:</h5>
3759 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3760 currently executing function, to be automatically released when this function
3761 returns to its caller. The object is always allocated in the generic address
3762 space (address space zero).</p>
3764 <h5>Arguments:</h5>
3765 <p>The '<tt>alloca</tt>' instruction
3766 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
3767 runtime stack, returning a pointer of the appropriate type to the program.
3768 If "NumElements" is specified, it is the number of elements allocated,
3769 otherwise "NumElements" is defaulted to be one. If a constant alignment is
3770 specified, the value result of the allocation is guaranteed to be aligned to
3771 at least that boundary. If not specified, or if zero, the target can choose
3772 to align the allocation on any convenient boundary compatible with the
3773 type.</p>
3775 <p>'<tt>type</tt>' may be any sized type.</p>
3777 <h5>Semantics:</h5>
3778 <p>Memory is allocated; a pointer is returned. The operation is undefined if
3779 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
3780 memory is automatically released when the function returns. The
3781 '<tt>alloca</tt>' instruction is commonly used to represent automatic
3782 variables that must have an address available. When the function returns
3783 (either with the <tt><a href="#i_ret">ret</a></tt>
3784 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
3785 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
3787 <h5>Example:</h5>
3788 <pre>
3789 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3790 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3791 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3792 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
3793 </pre>
3795 </div>
3797 <!-- _______________________________________________________________________ -->
3798 <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3799 Instruction</a> </div>
3801 <div class="doc_text">
3803 <h5>Syntax:</h5>
3804 <pre>
3805 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3806 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3807 </pre>
3809 <h5>Overview:</h5>
3810 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
3812 <h5>Arguments:</h5>
3813 <p>The argument to the '<tt>load</tt>' instruction specifies the memory address
3814 from which to load. The pointer must point to
3815 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3816 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
3817 number or order of execution of this <tt>load</tt> with other
3818 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3819 instructions. </p>
3821 <p>The optional constant "align" argument specifies the alignment of the
3822 operation (that is, the alignment of the memory address). A value of 0 or an
3823 omitted "align" argument means that the operation has the preferential
3824 alignment for the target. It is the responsibility of the code emitter to
3825 ensure that the alignment information is correct. Overestimating the
3826 alignment results in an undefined behavior. Underestimating the alignment may
3827 produce less efficient code. An alignment of 1 is always safe.</p>
3829 <h5>Semantics:</h5>
3830 <p>The location of memory pointed to is loaded. If the value being loaded is of
3831 scalar type then the number of bytes read does not exceed the minimum number
3832 of bytes needed to hold all bits of the type. For example, loading an
3833 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
3834 <tt>i20</tt> with a size that is not an integral number of bytes, the result
3835 is undefined if the value was not originally written using a store of the
3836 same type.</p>
3838 <h5>Examples:</h5>
3839 <pre>
3840 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3841 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3842 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
3843 </pre>
3845 </div>
3847 <!-- _______________________________________________________________________ -->
3848 <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3849 Instruction</a> </div>
3851 <div class="doc_text">
3853 <h5>Syntax:</h5>
3854 <pre>
3855 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3856 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3857 </pre>
3859 <h5>Overview:</h5>
3860 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
3862 <h5>Arguments:</h5>
3863 <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
3864 and an address at which to store it. The type of the
3865 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
3866 the <a href="#t_firstclass">first class</a> type of the
3867 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
3868 as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
3869 or order of execution of this <tt>store</tt> with other
3870 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3871 instructions.</p>
3873 <p>The optional constant "align" argument specifies the alignment of the
3874 operation (that is, the alignment of the memory address). A value of 0 or an
3875 omitted "align" argument means that the operation has the preferential
3876 alignment for the target. It is the responsibility of the code emitter to
3877 ensure that the alignment information is correct. Overestimating the
3878 alignment results in an undefined behavior. Underestimating the alignment may
3879 produce less efficient code. An alignment of 1 is always safe.</p>
3881 <h5>Semantics:</h5>
3882 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
3883 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
3884 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
3885 does not exceed the minimum number of bytes needed to hold all bits of the
3886 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
3887 writing a value of a type like <tt>i20</tt> with a size that is not an
3888 integral number of bytes, it is unspecified what happens to the extra bits
3889 that do not belong to the type, but they will typically be overwritten.</p>
3891 <h5>Example:</h5>
3892 <pre>
3893 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3894 store i32 3, i32* %ptr <i>; yields {void}</i>
3895 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
3896 </pre>
3898 </div>
3900 <!-- _______________________________________________________________________ -->
3901 <div class="doc_subsubsection">
3902 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3903 </div>
3905 <div class="doc_text">
3907 <h5>Syntax:</h5>
3908 <pre>
3909 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3910 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3911 </pre>
3913 <h5>Overview:</h5>
3914 <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
3915 subelement of an aggregate data structure. It performs address calculation
3916 only and does not access memory.</p>
3918 <h5>Arguments:</h5>
3919 <p>The first argument is always a pointer, and forms the basis of the
3920 calculation. The remaining arguments are indices that indicate which of the
3921 elements of the aggregate object are indexed. The interpretation of each
3922 index is dependent on the type being indexed into. The first index always
3923 indexes the pointer value given as the first argument, the second index
3924 indexes a value of the type pointed to (not necessarily the value directly
3925 pointed to, since the first index can be non-zero), etc. The first type
3926 indexed into must be a pointer value, subsequent types can be arrays, vectors
3927 and structs. Note that subsequent types being indexed into can never be
3928 pointers, since that would require loading the pointer before continuing
3929 calculation.</p>
3931 <p>The type of each index argument depends on the type it is indexing into.
3932 When indexing into a (optionally packed) structure, only <tt>i32</tt> integer
3933 <b>constants</b> are allowed. When indexing into an array, pointer or
3934 vector, integers of any width are allowed, and they are not required to be
3935 constant.</p>
3937 <p>For example, let's consider a C code fragment and how it gets compiled to
3938 LLVM:</p>
3940 <div class="doc_code">
3941 <pre>
3942 struct RT {
3943 char A;
3944 int B[10][20];
3945 char C;
3947 struct ST {
3948 int X;
3949 double Y;
3950 struct RT Z;
3953 int *foo(struct ST *s) {
3954 return &amp;s[1].Z.B[5][13];
3956 </pre>
3957 </div>
3959 <p>The LLVM code generated by the GCC frontend is:</p>
3961 <div class="doc_code">
3962 <pre>
3963 %RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3964 %ST = <a href="#namedtypes">type</a> { i32, double, %RT }
3966 define i32* @foo(%ST* %s) {
3967 entry:
3968 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3969 ret i32* %reg
3971 </pre>
3972 </div>
3974 <h5>Semantics:</h5>
3975 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
3976 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3977 }</tt>' type, a structure. The second index indexes into the third element
3978 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3979 i8 }</tt>' type, another structure. The third index indexes into the second
3980 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3981 array. The two dimensions of the array are subscripted into, yielding an
3982 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
3983 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
3985 <p>Note that it is perfectly legal to index partially through a structure,
3986 returning a pointer to an inner element. Because of this, the LLVM code for
3987 the given testcase is equivalent to:</p>
3989 <pre>
3990 define i32* @foo(%ST* %s) {
3991 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
3992 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3993 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
3994 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3995 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3996 ret i32* %t5
3998 </pre>
4000 <p>If the <tt>inbounds</tt> keyword is present, the result value of the
4001 <tt>getelementptr</tt> is undefined if the base pointer is not an
4002 <i>in bounds</i> address of an allocated object, or if any of the addresses
4003 formed by successive addition of the offsets implied by the indices to
4004 the base address are not an <i>in bounds</i> address of that allocated
4005 object.
4006 The <i>in bounds</i> addresses for an allocated object are all the addresses
4007 that point into the object, plus the address one past the end.</p>
4009 <p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4010 the base address with silently-wrapping two's complement arithmetic, and
4011 the result value of the <tt>getelementptr</tt> may be outside the object
4012 pointed to by the base pointer. The result value may not necessarily be
4013 used to access memory though, even if it happens to point into allocated
4014 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4015 section for more information.</p>
4017 <p>The getelementptr instruction is often confusing. For some more insight into
4018 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
4020 <h5>Example:</h5>
4021 <pre>
4022 <i>; yields [12 x i8]*:aptr</i>
4023 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4024 <i>; yields i8*:vptr</i>
4025 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
4026 <i>; yields i8*:eptr</i>
4027 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4028 <i>; yields i32*:iptr</i>
4029 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4030 </pre>
4032 </div>
4034 <!-- ======================================================================= -->
4035 <div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
4036 </div>
4038 <div class="doc_text">
4040 <p>The instructions in this category are the conversion instructions (casting)
4041 which all take a single operand and a type. They perform various bit
4042 conversions on the operand.</p>
4044 </div>
4046 <!-- _______________________________________________________________________ -->
4047 <div class="doc_subsubsection">
4048 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4049 </div>
4050 <div class="doc_text">
4052 <h5>Syntax:</h5>
4053 <pre>
4054 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4055 </pre>
4057 <h5>Overview:</h5>
4058 <p>The '<tt>trunc</tt>' instruction truncates its operand to the
4059 type <tt>ty2</tt>.</p>
4061 <h5>Arguments:</h5>
4062 <p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4063 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4064 size and type of the result, which must be
4065 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4066 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4067 allowed.</p>
4069 <h5>Semantics:</h5>
4070 <p>The '<tt>trunc</tt>' instruction truncates the high order bits
4071 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4072 source size must be larger than the destination size, <tt>trunc</tt> cannot
4073 be a <i>no-op cast</i>. It will always truncate bits.</p>
4075 <h5>Example:</h5>
4076 <pre>
4077 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
4078 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4079 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
4080 </pre>
4082 </div>
4084 <!-- _______________________________________________________________________ -->
4085 <div class="doc_subsubsection">
4086 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4087 </div>
4088 <div class="doc_text">
4090 <h5>Syntax:</h5>
4091 <pre>
4092 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4093 </pre>
4095 <h5>Overview:</h5>
4096 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
4097 <tt>ty2</tt>.</p>
4100 <h5>Arguments:</h5>
4101 <p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
4102 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4103 also be of <a href="#t_integer">integer</a> type. The bit size of the
4104 <tt>value</tt> must be smaller than the bit size of the destination type,
4105 <tt>ty2</tt>.</p>
4107 <h5>Semantics:</h5>
4108 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
4109 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
4111 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
4113 <h5>Example:</h5>
4114 <pre>
4115 %X = zext i32 257 to i64 <i>; yields i64:257</i>
4116 %Y = zext i1 true to i32 <i>; yields i32:1</i>
4117 </pre>
4119 </div>
4121 <!-- _______________________________________________________________________ -->
4122 <div class="doc_subsubsection">
4123 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4124 </div>
4125 <div class="doc_text">
4127 <h5>Syntax:</h5>
4128 <pre>
4129 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4130 </pre>
4132 <h5>Overview:</h5>
4133 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4135 <h5>Arguments:</h5>
4136 <p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
4137 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4138 also be of <a href="#t_integer">integer</a> type. The bit size of the
4139 <tt>value</tt> must be smaller than the bit size of the destination type,
4140 <tt>ty2</tt>.</p>
4142 <h5>Semantics:</h5>
4143 <p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4144 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4145 of the type <tt>ty2</tt>.</p>
4147 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
4149 <h5>Example:</h5>
4150 <pre>
4151 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
4152 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
4153 </pre>
4155 </div>
4157 <!-- _______________________________________________________________________ -->
4158 <div class="doc_subsubsection">
4159 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4160 </div>
4162 <div class="doc_text">
4164 <h5>Syntax:</h5>
4165 <pre>
4166 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4167 </pre>
4169 <h5>Overview:</h5>
4170 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
4171 <tt>ty2</tt>.</p>
4173 <h5>Arguments:</h5>
4174 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4175 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4176 to cast it to. The size of <tt>value</tt> must be larger than the size of
4177 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4178 <i>no-op cast</i>.</p>
4180 <h5>Semantics:</h5>
4181 <p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4182 <a href="#t_floating">floating point</a> type to a smaller
4183 <a href="#t_floating">floating point</a> type. If the value cannot fit
4184 within the destination type, <tt>ty2</tt>, then the results are
4185 undefined.</p>
4187 <h5>Example:</h5>
4188 <pre>
4189 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4190 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4191 </pre>
4193 </div>
4195 <!-- _______________________________________________________________________ -->
4196 <div class="doc_subsubsection">
4197 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4198 </div>
4199 <div class="doc_text">
4201 <h5>Syntax:</h5>
4202 <pre>
4203 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4204 </pre>
4206 <h5>Overview:</h5>
4207 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4208 floating point value.</p>
4210 <h5>Arguments:</h5>
4211 <p>The '<tt>fpext</tt>' instruction takes a
4212 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4213 a <a href="#t_floating">floating point</a> type to cast it to. The source
4214 type must be smaller than the destination type.</p>
4216 <h5>Semantics:</h5>
4217 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
4218 <a href="#t_floating">floating point</a> type to a larger
4219 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4220 used to make a <i>no-op cast</i> because it always changes bits. Use
4221 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
4223 <h5>Example:</h5>
4224 <pre>
4225 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4226 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4227 </pre>
4229 </div>
4231 <!-- _______________________________________________________________________ -->
4232 <div class="doc_subsubsection">
4233 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
4234 </div>
4235 <div class="doc_text">
4237 <h5>Syntax:</h5>
4238 <pre>
4239 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4240 </pre>
4242 <h5>Overview:</h5>
4243 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
4244 unsigned integer equivalent of type <tt>ty2</tt>.</p>
4246 <h5>Arguments:</h5>
4247 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4248 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4249 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4250 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4251 vector integer type with the same number of elements as <tt>ty</tt></p>
4253 <h5>Semantics:</h5>
4254 <p>The '<tt>fptoui</tt>' instruction converts its
4255 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4256 towards zero) unsigned integer value. If the value cannot fit
4257 in <tt>ty2</tt>, the results are undefined.</p>
4259 <h5>Example:</h5>
4260 <pre>
4261 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
4262 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
4263 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
4264 </pre>
4266 </div>
4268 <!-- _______________________________________________________________________ -->
4269 <div class="doc_subsubsection">
4270 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
4271 </div>
4272 <div class="doc_text">
4274 <h5>Syntax:</h5>
4275 <pre>
4276 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4277 </pre>
4279 <h5>Overview:</h5>
4280 <p>The '<tt>fptosi</tt>' instruction converts
4281 <a href="#t_floating">floating point</a> <tt>value</tt> to
4282 type <tt>ty2</tt>.</p>
4284 <h5>Arguments:</h5>
4285 <p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4286 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4287 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4288 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4289 vector integer type with the same number of elements as <tt>ty</tt></p>
4291 <h5>Semantics:</h5>
4292 <p>The '<tt>fptosi</tt>' instruction converts its
4293 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4294 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4295 the results are undefined.</p>
4297 <h5>Example:</h5>
4298 <pre>
4299 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
4300 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
4301 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
4302 </pre>
4304 </div>
4306 <!-- _______________________________________________________________________ -->
4307 <div class="doc_subsubsection">
4308 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
4309 </div>
4310 <div class="doc_text">
4312 <h5>Syntax:</h5>
4313 <pre>
4314 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4315 </pre>
4317 <h5>Overview:</h5>
4318 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
4319 integer and converts that value to the <tt>ty2</tt> type.</p>
4321 <h5>Arguments:</h5>
4322 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4323 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4324 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4325 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4326 floating point type with the same number of elements as <tt>ty</tt></p>
4328 <h5>Semantics:</h5>
4329 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
4330 integer quantity and converts it to the corresponding floating point
4331 value. If the value cannot fit in the floating point value, the results are
4332 undefined.</p>
4334 <h5>Example:</h5>
4335 <pre>
4336 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
4337 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
4338 </pre>
4340 </div>
4342 <!-- _______________________________________________________________________ -->
4343 <div class="doc_subsubsection">
4344 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
4345 </div>
4346 <div class="doc_text">
4348 <h5>Syntax:</h5>
4349 <pre>
4350 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4351 </pre>
4353 <h5>Overview:</h5>
4354 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4355 and converts that value to the <tt>ty2</tt> type.</p>
4357 <h5>Arguments:</h5>
4358 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4359 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4360 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4361 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4362 floating point type with the same number of elements as <tt>ty</tt></p>
4364 <h5>Semantics:</h5>
4365 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4366 quantity and converts it to the corresponding floating point value. If the
4367 value cannot fit in the floating point value, the results are undefined.</p>
4369 <h5>Example:</h5>
4370 <pre>
4371 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
4372 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
4373 </pre>
4375 </div>
4377 <!-- _______________________________________________________________________ -->
4378 <div class="doc_subsubsection">
4379 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4380 </div>
4381 <div class="doc_text">
4383 <h5>Syntax:</h5>
4384 <pre>
4385 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4386 </pre>
4388 <h5>Overview:</h5>
4389 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4390 the integer type <tt>ty2</tt>.</p>
4392 <h5>Arguments:</h5>
4393 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4394 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4395 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
4397 <h5>Semantics:</h5>
4398 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4399 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4400 truncating or zero extending that value to the size of the integer type. If
4401 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4402 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4403 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4404 change.</p>
4406 <h5>Example:</h5>
4407 <pre>
4408 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4409 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
4410 </pre>
4412 </div>
4414 <!-- _______________________________________________________________________ -->
4415 <div class="doc_subsubsection">
4416 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4417 </div>
4418 <div class="doc_text">
4420 <h5>Syntax:</h5>
4421 <pre>
4422 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4423 </pre>
4425 <h5>Overview:</h5>
4426 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4427 pointer type, <tt>ty2</tt>.</p>
4429 <h5>Arguments:</h5>
4430 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
4431 value to cast, and a type to cast it to, which must be a
4432 <a href="#t_pointer">pointer</a> type.</p>
4434 <h5>Semantics:</h5>
4435 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4436 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4437 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4438 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4439 than the size of a pointer then a zero extension is done. If they are the
4440 same size, nothing is done (<i>no-op cast</i>).</p>
4442 <h5>Example:</h5>
4443 <pre>
4444 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4445 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4446 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
4447 </pre>
4449 </div>
4451 <!-- _______________________________________________________________________ -->
4452 <div class="doc_subsubsection">
4453 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
4454 </div>
4455 <div class="doc_text">
4457 <h5>Syntax:</h5>
4458 <pre>
4459 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4460 </pre>
4462 <h5>Overview:</h5>
4463 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
4464 <tt>ty2</tt> without changing any bits.</p>
4466 <h5>Arguments:</h5>
4467 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4468 non-aggregate first class value, and a type to cast it to, which must also be
4469 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4470 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4471 identical. If the source type is a pointer, the destination type must also be
4472 a pointer. This instruction supports bitwise conversion of vectors to
4473 integers and to vectors of other types (as long as they have the same
4474 size).</p>
4476 <h5>Semantics:</h5>
4477 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
4478 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4479 this conversion. The conversion is done as if the <tt>value</tt> had been
4480 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4481 be converted to other pointer types with this instruction. To convert
4482 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4483 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
4485 <h5>Example:</h5>
4486 <pre>
4487 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
4488 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
4489 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
4490 </pre>
4492 </div>
4494 <!-- ======================================================================= -->
4495 <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4497 <div class="doc_text">
4499 <p>The instructions in this category are the "miscellaneous" instructions, which
4500 defy better classification.</p>
4502 </div>
4504 <!-- _______________________________________________________________________ -->
4505 <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4506 </div>
4508 <div class="doc_text">
4510 <h5>Syntax:</h5>
4511 <pre>
4512 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
4513 </pre>
4515 <h5>Overview:</h5>
4516 <p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4517 boolean values based on comparison of its two integer, integer vector, or
4518 pointer operands.</p>
4520 <h5>Arguments:</h5>
4521 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
4522 the condition code indicating the kind of comparison to perform. It is not a
4523 value, just a keyword. The possible condition code are:</p>
4525 <ol>
4526 <li><tt>eq</tt>: equal</li>
4527 <li><tt>ne</tt>: not equal </li>
4528 <li><tt>ugt</tt>: unsigned greater than</li>
4529 <li><tt>uge</tt>: unsigned greater or equal</li>
4530 <li><tt>ult</tt>: unsigned less than</li>
4531 <li><tt>ule</tt>: unsigned less or equal</li>
4532 <li><tt>sgt</tt>: signed greater than</li>
4533 <li><tt>sge</tt>: signed greater or equal</li>
4534 <li><tt>slt</tt>: signed less than</li>
4535 <li><tt>sle</tt>: signed less or equal</li>
4536 </ol>
4538 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
4539 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
4540 typed. They must also be identical types.</p>
4542 <h5>Semantics:</h5>
4543 <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
4544 condition code given as <tt>cond</tt>. The comparison performed always yields
4545 either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt>
4546 result, as follows:</p>
4548 <ol>
4549 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4550 <tt>false</tt> otherwise. No sign interpretation is necessary or
4551 performed.</li>
4553 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
4554 <tt>false</tt> otherwise. No sign interpretation is necessary or
4555 performed.</li>
4557 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
4558 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4560 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
4561 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4562 to <tt>op2</tt>.</li>
4564 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
4565 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4567 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
4568 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4570 <li><tt>sgt</tt>: interprets the operands as signed values and yields
4571 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4573 <li><tt>sge</tt>: interprets the operands as signed values and yields
4574 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4575 to <tt>op2</tt>.</li>
4577 <li><tt>slt</tt>: interprets the operands as signed values and yields
4578 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4580 <li><tt>sle</tt>: interprets the operands as signed values and yields
4581 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4582 </ol>
4584 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
4585 values are compared as if they were integers.</p>
4587 <p>If the operands are integer vectors, then they are compared element by
4588 element. The result is an <tt>i1</tt> vector with the same number of elements
4589 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
4591 <h5>Example:</h5>
4592 <pre>
4593 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4594 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4595 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4596 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4597 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4598 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
4599 </pre>
4601 <p>Note that the code generator does not yet support vector types with
4602 the <tt>icmp</tt> instruction.</p>
4604 </div>
4606 <!-- _______________________________________________________________________ -->
4607 <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4608 </div>
4610 <div class="doc_text">
4612 <h5>Syntax:</h5>
4613 <pre>
4614 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
4615 </pre>
4617 <h5>Overview:</h5>
4618 <p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
4619 values based on comparison of its operands.</p>
4621 <p>If the operands are floating point scalars, then the result type is a boolean
4622 (<a href="#t_primitive"><tt>i1</tt></a>).</p>
4624 <p>If the operands are floating point vectors, then the result type is a vector
4625 of boolean with the same number of elements as the operands being
4626 compared.</p>
4628 <h5>Arguments:</h5>
4629 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
4630 the condition code indicating the kind of comparison to perform. It is not a
4631 value, just a keyword. The possible condition code are:</p>
4633 <ol>
4634 <li><tt>false</tt>: no comparison, always returns false</li>
4635 <li><tt>oeq</tt>: ordered and equal</li>
4636 <li><tt>ogt</tt>: ordered and greater than </li>
4637 <li><tt>oge</tt>: ordered and greater than or equal</li>
4638 <li><tt>olt</tt>: ordered and less than </li>
4639 <li><tt>ole</tt>: ordered and less than or equal</li>
4640 <li><tt>one</tt>: ordered and not equal</li>
4641 <li><tt>ord</tt>: ordered (no nans)</li>
4642 <li><tt>ueq</tt>: unordered or equal</li>
4643 <li><tt>ugt</tt>: unordered or greater than </li>
4644 <li><tt>uge</tt>: unordered or greater than or equal</li>
4645 <li><tt>ult</tt>: unordered or less than </li>
4646 <li><tt>ule</tt>: unordered or less than or equal</li>
4647 <li><tt>une</tt>: unordered or not equal</li>
4648 <li><tt>uno</tt>: unordered (either nans)</li>
4649 <li><tt>true</tt>: no comparison, always returns true</li>
4650 </ol>
4652 <p><i>Ordered</i> means that neither operand is a QNAN while
4653 <i>unordered</i> means that either operand may be a QNAN.</p>
4655 <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
4656 a <a href="#t_floating">floating point</a> type or
4657 a <a href="#t_vector">vector</a> of floating point type. They must have
4658 identical types.</p>
4660 <h5>Semantics:</h5>
4661 <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
4662 according to the condition code given as <tt>cond</tt>. If the operands are
4663 vectors, then the vectors are compared element by element. Each comparison
4664 performed always yields an <a href="#t_primitive">i1</a> result, as
4665 follows:</p>
4667 <ol>
4668 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
4670 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4671 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4673 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4674 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
4676 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4677 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4679 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4680 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4682 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4683 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4685 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
4686 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4688 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4690 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
4691 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4693 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
4694 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4696 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
4697 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4699 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
4700 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4702 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
4703 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4705 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
4706 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4708 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
4710 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4711 </ol>
4713 <h5>Example:</h5>
4714 <pre>
4715 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
4716 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4717 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4718 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
4719 </pre>
4721 <p>Note that the code generator does not yet support vector types with
4722 the <tt>fcmp</tt> instruction.</p>
4724 </div>
4726 <!-- _______________________________________________________________________ -->
4727 <div class="doc_subsubsection">
4728 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4729 </div>
4731 <div class="doc_text">
4733 <h5>Syntax:</h5>
4734 <pre>
4735 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
4736 </pre>
4738 <h5>Overview:</h5>
4739 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
4740 SSA graph representing the function.</p>
4742 <h5>Arguments:</h5>
4743 <p>The type of the incoming values is specified with the first type field. After
4744 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
4745 one pair for each predecessor basic block of the current block. Only values
4746 of <a href="#t_firstclass">first class</a> type may be used as the value
4747 arguments to the PHI node. Only labels may be used as the label
4748 arguments.</p>
4750 <p>There must be no non-phi instructions between the start of a basic block and
4751 the PHI instructions: i.e. PHI instructions must be first in a basic
4752 block.</p>
4754 <p>For the purposes of the SSA form, the use of each incoming value is deemed to
4755 occur on the edge from the corresponding predecessor block to the current
4756 block (but after any definition of an '<tt>invoke</tt>' instruction's return
4757 value on the same edge).</p>
4759 <h5>Semantics:</h5>
4760 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4761 specified by the pair corresponding to the predecessor basic block that
4762 executed just prior to the current block.</p>
4764 <h5>Example:</h5>
4765 <pre>
4766 Loop: ; Infinite loop that counts from 0 on up...
4767 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4768 %nextindvar = add i32 %indvar, 1
4769 br label %Loop
4770 </pre>
4772 </div>
4774 <!-- _______________________________________________________________________ -->
4775 <div class="doc_subsubsection">
4776 <a name="i_select">'<tt>select</tt>' Instruction</a>
4777 </div>
4779 <div class="doc_text">
4781 <h5>Syntax:</h5>
4782 <pre>
4783 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4785 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
4786 </pre>
4788 <h5>Overview:</h5>
4789 <p>The '<tt>select</tt>' instruction is used to choose one value based on a
4790 condition, without branching.</p>
4793 <h5>Arguments:</h5>
4794 <p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
4795 values indicating the condition, and two values of the
4796 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
4797 vectors and the condition is a scalar, then entire vectors are selected, not
4798 individual elements.</p>
4800 <h5>Semantics:</h5>
4801 <p>If the condition is an i1 and it evaluates to 1, the instruction returns the
4802 first value argument; otherwise, it returns the second value argument.</p>
4804 <p>If the condition is a vector of i1, then the value arguments must be vectors
4805 of the same size, and the selection is done element by element.</p>
4807 <h5>Example:</h5>
4808 <pre>
4809 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
4810 </pre>
4812 <p>Note that the code generator does not yet support conditions
4813 with vector type.</p>
4815 </div>
4817 <!-- _______________________________________________________________________ -->
4818 <div class="doc_subsubsection">
4819 <a name="i_call">'<tt>call</tt>' Instruction</a>
4820 </div>
4822 <div class="doc_text">
4824 <h5>Syntax:</h5>
4825 <pre>
4826 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
4827 </pre>
4829 <h5>Overview:</h5>
4830 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
4832 <h5>Arguments:</h5>
4833 <p>This instruction requires several arguments:</p>
4835 <ol>
4836 <li>The optional "tail" marker indicates whether the callee function accesses
4837 any allocas or varargs in the caller. If the "tail" marker is present,
4838 the function call is eligible for tail call optimization. Note that calls
4839 may be marked "tail" even if they do not occur before
4840 a <a href="#i_ret"><tt>ret</tt></a> instruction.</li>
4842 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
4843 convention</a> the call should use. If none is specified, the call
4844 defaults to using C calling conventions.</li>
4846 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4847 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
4848 '<tt>inreg</tt>' attributes are valid here.</li>
4850 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
4851 type of the return value. Functions that return no value are marked
4852 <tt><a href="#t_void">void</a></tt>.</li>
4854 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
4855 being invoked. The argument types must match the types implied by this
4856 signature. This type can be omitted if the function is not varargs and if
4857 the function type does not return a pointer to a function.</li>
4859 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4860 be invoked. In most cases, this is a direct function invocation, but
4861 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
4862 to function value.</li>
4864 <li>'<tt>function args</tt>': argument list whose types match the function
4865 signature argument types. All arguments must be of
4866 <a href="#t_firstclass">first class</a> type. If the function signature
4867 indicates the function accepts a variable number of arguments, the extra
4868 arguments can be specified.</li>
4870 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
4871 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4872 '<tt>readnone</tt>' attributes are valid here.</li>
4873 </ol>
4875 <h5>Semantics:</h5>
4876 <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
4877 a specified function, with its incoming arguments bound to the specified
4878 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
4879 function, control flow continues with the instruction after the function
4880 call, and the return value of the function is bound to the result
4881 argument.</p>
4883 <h5>Example:</h5>
4884 <pre>
4885 %retval = call i32 @test(i32 %argc)
4886 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4887 %X = tail call i32 @foo() <i>; yields i32</i>
4888 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4889 call void %foo(i8 97 signext)
4891 %struct.A = type { i32, i8 }
4892 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4893 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4894 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
4895 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
4896 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
4897 </pre>
4899 </div>
4901 <!-- _______________________________________________________________________ -->
4902 <div class="doc_subsubsection">
4903 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
4904 </div>
4906 <div class="doc_text">
4908 <h5>Syntax:</h5>
4909 <pre>
4910 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
4911 </pre>
4913 <h5>Overview:</h5>
4914 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
4915 the "variable argument" area of a function call. It is used to implement the
4916 <tt>va_arg</tt> macro in C.</p>
4918 <h5>Arguments:</h5>
4919 <p>This instruction takes a <tt>va_list*</tt> value and the type of the
4920 argument. It returns a value of the specified argument type and increments
4921 the <tt>va_list</tt> to point to the next argument. The actual type
4922 of <tt>va_list</tt> is target specific.</p>
4924 <h5>Semantics:</h5>
4925 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
4926 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
4927 to the next argument. For more information, see the variable argument
4928 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
4930 <p>It is legal for this instruction to be called in a function which does not
4931 take a variable number of arguments, for example, the <tt>vfprintf</tt>
4932 function.</p>
4934 <p><tt>va_arg</tt> is an LLVM instruction instead of
4935 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
4936 argument.</p>
4938 <h5>Example:</h5>
4939 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4941 <p>Note that the code generator does not yet fully support va_arg on many
4942 targets. Also, it does not currently support va_arg with aggregate types on
4943 any target.</p>
4945 </div>
4947 <!-- *********************************************************************** -->
4948 <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4949 <!-- *********************************************************************** -->
4951 <div class="doc_text">
4953 <p>LLVM supports the notion of an "intrinsic function". These functions have
4954 well known names and semantics and are required to follow certain
4955 restrictions. Overall, these intrinsics represent an extension mechanism for
4956 the LLVM language that does not require changing all of the transformations
4957 in LLVM when adding to the language (or the bitcode reader/writer, the
4958 parser, etc...).</p>
4960 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
4961 prefix is reserved in LLVM for intrinsic names; thus, function names may not
4962 begin with this prefix. Intrinsic functions must always be external
4963 functions: you cannot define the body of intrinsic functions. Intrinsic
4964 functions may only be used in call or invoke instructions: it is illegal to
4965 take the address of an intrinsic function. Additionally, because intrinsic
4966 functions are part of the LLVM language, it is required if any are added that
4967 they be documented here.</p>
4969 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
4970 family of functions that perform the same operation but on different data
4971 types. Because LLVM can represent over 8 million different integer types,
4972 overloading is used commonly to allow an intrinsic function to operate on any
4973 integer type. One or more of the argument types or the result type can be
4974 overloaded to accept any integer type. Argument types may also be defined as
4975 exactly matching a previous argument's type or the result type. This allows
4976 an intrinsic function which accepts multiple arguments, but needs all of them
4977 to be of the same type, to only be overloaded with respect to a single
4978 argument or the result.</p>
4980 <p>Overloaded intrinsics will have the names of its overloaded argument types
4981 encoded into its function name, each preceded by a period. Only those types
4982 which are overloaded result in a name suffix. Arguments whose type is matched
4983 against another type do not. For example, the <tt>llvm.ctpop</tt> function
4984 can take an integer of any width and returns an integer of exactly the same
4985 integer width. This leads to a family of functions such as
4986 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
4987 %val)</tt>. Only one type, the return type, is overloaded, and only one type
4988 suffix is required. Because the argument's type is matched against the return
4989 type, it does not require its own name suffix.</p>
4991 <p>To learn how to add an intrinsic function, please see the
4992 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
4994 </div>
4996 <!-- ======================================================================= -->
4997 <div class="doc_subsection">
4998 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4999 </div>
5001 <div class="doc_text">
5003 <p>Variable argument support is defined in LLVM with
5004 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5005 intrinsic functions. These functions are related to the similarly named
5006 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
5008 <p>All of these functions operate on arguments that use a target-specific value
5009 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5010 not define what this type is, so all transformations should be prepared to
5011 handle these functions regardless of the type used.</p>
5013 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
5014 instruction and the variable argument handling intrinsic functions are
5015 used.</p>
5017 <div class="doc_code">
5018 <pre>
5019 define i32 @test(i32 %X, ...) {
5020 ; Initialize variable argument processing
5021 %ap = alloca i8*
5022 %ap2 = bitcast i8** %ap to i8*
5023 call void @llvm.va_start(i8* %ap2)
5025 ; Read a single integer argument
5026 %tmp = va_arg i8** %ap, i32
5028 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5029 %aq = alloca i8*
5030 %aq2 = bitcast i8** %aq to i8*
5031 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5032 call void @llvm.va_end(i8* %aq2)
5034 ; Stop processing of arguments.
5035 call void @llvm.va_end(i8* %ap2)
5036 ret i32 %tmp
5039 declare void @llvm.va_start(i8*)
5040 declare void @llvm.va_copy(i8*, i8*)
5041 declare void @llvm.va_end(i8*)
5042 </pre>
5043 </div>
5045 </div>
5047 <!-- _______________________________________________________________________ -->
5048 <div class="doc_subsubsection">
5049 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
5050 </div>
5053 <div class="doc_text">
5055 <h5>Syntax:</h5>
5056 <pre>
5057 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5058 </pre>
5060 <h5>Overview:</h5>
5061 <p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5062 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
5064 <h5>Arguments:</h5>
5065 <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
5067 <h5>Semantics:</h5>
5068 <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
5069 macro available in C. In a target-dependent way, it initializes
5070 the <tt>va_list</tt> element to which the argument points, so that the next
5071 call to <tt>va_arg</tt> will produce the first variable argument passed to
5072 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5073 need to know the last argument of the function as the compiler can figure
5074 that out.</p>
5076 </div>
5078 <!-- _______________________________________________________________________ -->
5079 <div class="doc_subsubsection">
5080 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
5081 </div>
5083 <div class="doc_text">
5085 <h5>Syntax:</h5>
5086 <pre>
5087 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5088 </pre>
5090 <h5>Overview:</h5>
5091 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
5092 which has been initialized previously
5093 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5094 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
5096 <h5>Arguments:</h5>
5097 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
5099 <h5>Semantics:</h5>
5100 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
5101 macro available in C. In a target-dependent way, it destroys
5102 the <tt>va_list</tt> element to which the argument points. Calls
5103 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5104 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5105 with calls to <tt>llvm.va_end</tt>.</p>
5107 </div>
5109 <!-- _______________________________________________________________________ -->
5110 <div class="doc_subsubsection">
5111 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
5112 </div>
5114 <div class="doc_text">
5116 <h5>Syntax:</h5>
5117 <pre>
5118 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
5119 </pre>
5121 <h5>Overview:</h5>
5122 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
5123 from the source argument list to the destination argument list.</p>
5125 <h5>Arguments:</h5>
5126 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
5127 The second argument is a pointer to a <tt>va_list</tt> element to copy
5128 from.</p>
5130 <h5>Semantics:</h5>
5131 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
5132 macro available in C. In a target-dependent way, it copies the
5133 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5134 element. This intrinsic is necessary because
5135 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5136 arbitrarily complex and require, for example, memory allocation.</p>
5138 </div>
5140 <!-- ======================================================================= -->
5141 <div class="doc_subsection">
5142 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5143 </div>
5145 <div class="doc_text">
5147 <p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
5148 Collection</a> (GC) requires the implementation and generation of these
5149 intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5150 roots on the stack</a>, as well as garbage collector implementations that
5151 require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5152 barriers. Front-ends for type-safe garbage collected languages should generate
5153 these intrinsics to make use of the LLVM garbage collectors. For more details,
5154 see <a href="GarbageCollection.html">Accurate Garbage Collection with
5155 LLVM</a>.</p>
5157 <p>The garbage collection intrinsics only operate on objects in the generic
5158 address space (address space zero).</p>
5160 </div>
5162 <!-- _______________________________________________________________________ -->
5163 <div class="doc_subsubsection">
5164 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
5165 </div>
5167 <div class="doc_text">
5169 <h5>Syntax:</h5>
5170 <pre>
5171 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
5172 </pre>
5174 <h5>Overview:</h5>
5175 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
5176 the code generator, and allows some metadata to be associated with it.</p>
5178 <h5>Arguments:</h5>
5179 <p>The first argument specifies the address of a stack object that contains the
5180 root pointer. The second pointer (which must be either a constant or a
5181 global value address) contains the meta-data to be associated with the
5182 root.</p>
5184 <h5>Semantics:</h5>
5185 <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
5186 location. At compile-time, the code generator generates information to allow
5187 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5188 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5189 algorithm</a>.</p>
5191 </div>
5193 <!-- _______________________________________________________________________ -->
5194 <div class="doc_subsubsection">
5195 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
5196 </div>
5198 <div class="doc_text">
5200 <h5>Syntax:</h5>
5201 <pre>
5202 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
5203 </pre>
5205 <h5>Overview:</h5>
5206 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5207 locations, allowing garbage collector implementations that require read
5208 barriers.</p>
5210 <h5>Arguments:</h5>
5211 <p>The second argument is the address to read from, which should be an address
5212 allocated from the garbage collector. The first object is a pointer to the
5213 start of the referenced object, if needed by the language runtime (otherwise
5214 null).</p>
5216 <h5>Semantics:</h5>
5217 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5218 instruction, but may be replaced with substantially more complex code by the
5219 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5220 may only be used in a function which <a href="#gc">specifies a GC
5221 algorithm</a>.</p>
5223 </div>
5225 <!-- _______________________________________________________________________ -->
5226 <div class="doc_subsubsection">
5227 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
5228 </div>
5230 <div class="doc_text">
5232 <h5>Syntax:</h5>
5233 <pre>
5234 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
5235 </pre>
5237 <h5>Overview:</h5>
5238 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5239 locations, allowing garbage collector implementations that require write
5240 barriers (such as generational or reference counting collectors).</p>
5242 <h5>Arguments:</h5>
5243 <p>The first argument is the reference to store, the second is the start of the
5244 object to store it to, and the third is the address of the field of Obj to
5245 store to. If the runtime does not require a pointer to the object, Obj may
5246 be null.</p>
5248 <h5>Semantics:</h5>
5249 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5250 instruction, but may be replaced with substantially more complex code by the
5251 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5252 may only be used in a function which <a href="#gc">specifies a GC
5253 algorithm</a>.</p>
5255 </div>
5257 <!-- ======================================================================= -->
5258 <div class="doc_subsection">
5259 <a name="int_codegen">Code Generator Intrinsics</a>
5260 </div>
5262 <div class="doc_text">
5264 <p>These intrinsics are provided by LLVM to expose special features that may
5265 only be implemented with code generator support.</p>
5267 </div>
5269 <!-- _______________________________________________________________________ -->
5270 <div class="doc_subsubsection">
5271 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
5272 </div>
5274 <div class="doc_text">
5276 <h5>Syntax:</h5>
5277 <pre>
5278 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
5279 </pre>
5281 <h5>Overview:</h5>
5282 <p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5283 target-specific value indicating the return address of the current function
5284 or one of its callers.</p>
5286 <h5>Arguments:</h5>
5287 <p>The argument to this intrinsic indicates which function to return the address
5288 for. Zero indicates the calling function, one indicates its caller, etc.
5289 The argument is <b>required</b> to be a constant integer value.</p>
5291 <h5>Semantics:</h5>
5292 <p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5293 indicating the return address of the specified call frame, or zero if it
5294 cannot be identified. The value returned by this intrinsic is likely to be
5295 incorrect or 0 for arguments other than zero, so it should only be used for
5296 debugging purposes.</p>
5298 <p>Note that calling this intrinsic does not prevent function inlining or other
5299 aggressive transformations, so the value returned may not be that of the
5300 obvious source-language caller.</p>
5302 </div>
5304 <!-- _______________________________________________________________________ -->
5305 <div class="doc_subsubsection">
5306 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
5307 </div>
5309 <div class="doc_text">
5311 <h5>Syntax:</h5>
5312 <pre>
5313 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
5314 </pre>
5316 <h5>Overview:</h5>
5317 <p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5318 target-specific frame pointer value for the specified stack frame.</p>
5320 <h5>Arguments:</h5>
5321 <p>The argument to this intrinsic indicates which function to return the frame
5322 pointer for. Zero indicates the calling function, one indicates its caller,
5323 etc. The argument is <b>required</b> to be a constant integer value.</p>
5325 <h5>Semantics:</h5>
5326 <p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5327 indicating the frame address of the specified call frame, or zero if it
5328 cannot be identified. The value returned by this intrinsic is likely to be
5329 incorrect or 0 for arguments other than zero, so it should only be used for
5330 debugging purposes.</p>
5332 <p>Note that calling this intrinsic does not prevent function inlining or other
5333 aggressive transformations, so the value returned may not be that of the
5334 obvious source-language caller.</p>
5336 </div>
5338 <!-- _______________________________________________________________________ -->
5339 <div class="doc_subsubsection">
5340 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
5341 </div>
5343 <div class="doc_text">
5345 <h5>Syntax:</h5>
5346 <pre>
5347 declare i8 *@llvm.stacksave()
5348 </pre>
5350 <h5>Overview:</h5>
5351 <p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5352 of the function stack, for use
5353 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5354 useful for implementing language features like scoped automatic variable
5355 sized arrays in C99.</p>
5357 <h5>Semantics:</h5>
5358 <p>This intrinsic returns a opaque pointer value that can be passed
5359 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5360 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5361 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5362 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5363 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5364 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
5366 </div>
5368 <!-- _______________________________________________________________________ -->
5369 <div class="doc_subsubsection">
5370 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
5371 </div>
5373 <div class="doc_text">
5375 <h5>Syntax:</h5>
5376 <pre>
5377 declare void @llvm.stackrestore(i8 * %ptr)
5378 </pre>
5380 <h5>Overview:</h5>
5381 <p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5382 the function stack to the state it was in when the
5383 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5384 executed. This is useful for implementing language features like scoped
5385 automatic variable sized arrays in C99.</p>
5387 <h5>Semantics:</h5>
5388 <p>See the description
5389 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
5391 </div>
5393 <!-- _______________________________________________________________________ -->
5394 <div class="doc_subsubsection">
5395 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
5396 </div>
5398 <div class="doc_text">
5400 <h5>Syntax:</h5>
5401 <pre>
5402 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
5403 </pre>
5405 <h5>Overview:</h5>
5406 <p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5407 insert a prefetch instruction if supported; otherwise, it is a noop.
5408 Prefetches have no effect on the behavior of the program but can change its
5409 performance characteristics.</p>
5411 <h5>Arguments:</h5>
5412 <p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5413 specifier determining if the fetch should be for a read (0) or write (1),
5414 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5415 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5416 and <tt>locality</tt> arguments must be constant integers.</p>
5418 <h5>Semantics:</h5>
5419 <p>This intrinsic does not modify the behavior of the program. In particular,
5420 prefetches cannot trap and do not produce a value. On targets that support
5421 this intrinsic, the prefetch can provide hints to the processor cache for
5422 better performance.</p>
5424 </div>
5426 <!-- _______________________________________________________________________ -->
5427 <div class="doc_subsubsection">
5428 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
5429 </div>
5431 <div class="doc_text">
5433 <h5>Syntax:</h5>
5434 <pre>
5435 declare void @llvm.pcmarker(i32 &lt;id&gt;)
5436 </pre>
5438 <h5>Overview:</h5>
5439 <p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5440 Counter (PC) in a region of code to simulators and other tools. The method
5441 is target specific, but it is expected that the marker will use exported
5442 symbols to transmit the PC of the marker. The marker makes no guarantees
5443 that it will remain with any specific instruction after optimizations. It is
5444 possible that the presence of a marker will inhibit optimizations. The
5445 intended use is to be inserted after optimizations to allow correlations of
5446 simulation runs.</p>
5448 <h5>Arguments:</h5>
5449 <p><tt>id</tt> is a numerical id identifying the marker.</p>
5451 <h5>Semantics:</h5>
5452 <p>This intrinsic does not modify the behavior of the program. Backends that do
5453 not support this intrinisic may ignore it.</p>
5455 </div>
5457 <!-- _______________________________________________________________________ -->
5458 <div class="doc_subsubsection">
5459 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
5460 </div>
5462 <div class="doc_text">
5464 <h5>Syntax:</h5>
5465 <pre>
5466 declare i64 @llvm.readcyclecounter( )
5467 </pre>
5469 <h5>Overview:</h5>
5470 <p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5471 counter register (or similar low latency, high accuracy clocks) on those
5472 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5473 should map to RPCC. As the backing counters overflow quickly (on the order
5474 of 9 seconds on alpha), this should only be used for small timings.</p>
5476 <h5>Semantics:</h5>
5477 <p>When directly supported, reading the cycle counter should not modify any
5478 memory. Implementations are allowed to either return a application specific
5479 value or a system wide value. On backends without support, this is lowered
5480 to a constant 0.</p>
5482 </div>
5484 <!-- ======================================================================= -->
5485 <div class="doc_subsection">
5486 <a name="int_libc">Standard C Library Intrinsics</a>
5487 </div>
5489 <div class="doc_text">
5491 <p>LLVM provides intrinsics for a few important standard C library functions.
5492 These intrinsics allow source-language front-ends to pass information about
5493 the alignment of the pointer arguments to the code generator, providing
5494 opportunity for more efficient code generation.</p>
5496 </div>
5498 <!-- _______________________________________________________________________ -->
5499 <div class="doc_subsubsection">
5500 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
5501 </div>
5503 <div class="doc_text">
5505 <h5>Syntax:</h5>
5506 <p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
5507 integer bit width. Not all targets support all bit widths however.</p>
5509 <pre>
5510 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5511 i8 &lt;len&gt;, i32 &lt;align&gt;)
5512 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5513 i16 &lt;len&gt;, i32 &lt;align&gt;)
5514 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5515 i32 &lt;len&gt;, i32 &lt;align&gt;)
5516 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5517 i64 &lt;len&gt;, i32 &lt;align&gt;)
5518 </pre>
5520 <h5>Overview:</h5>
5521 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5522 source location to the destination location.</p>
5524 <p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5525 intrinsics do not return a value, and takes an extra alignment argument.</p>
5527 <h5>Arguments:</h5>
5528 <p>The first argument is a pointer to the destination, the second is a pointer
5529 to the source. The third argument is an integer argument specifying the
5530 number of bytes to copy, and the fourth argument is the alignment of the
5531 source and destination locations.</p>
5533 <p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5534 then the caller guarantees that both the source and destination pointers are
5535 aligned to that boundary.</p>
5537 <h5>Semantics:</h5>
5538 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5539 source location to the destination location, which are not allowed to
5540 overlap. It copies "len" bytes of memory over. If the argument is known to
5541 be aligned to some boundary, this can be specified as the fourth argument,
5542 otherwise it should be set to 0 or 1.</p>
5544 </div>
5546 <!-- _______________________________________________________________________ -->
5547 <div class="doc_subsubsection">
5548 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
5549 </div>
5551 <div class="doc_text">
5553 <h5>Syntax:</h5>
5554 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5555 width. Not all targets support all bit widths however.</p>
5557 <pre>
5558 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5559 i8 &lt;len&gt;, i32 &lt;align&gt;)
5560 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5561 i16 &lt;len&gt;, i32 &lt;align&gt;)
5562 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5563 i32 &lt;len&gt;, i32 &lt;align&gt;)
5564 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5565 i64 &lt;len&gt;, i32 &lt;align&gt;)
5566 </pre>
5568 <h5>Overview:</h5>
5569 <p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
5570 source location to the destination location. It is similar to the
5571 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
5572 overlap.</p>
5574 <p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5575 intrinsics do not return a value, and takes an extra alignment argument.</p>
5577 <h5>Arguments:</h5>
5578 <p>The first argument is a pointer to the destination, the second is a pointer
5579 to the source. The third argument is an integer argument specifying the
5580 number of bytes to copy, and the fourth argument is the alignment of the
5581 source and destination locations.</p>
5583 <p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5584 then the caller guarantees that the source and destination pointers are
5585 aligned to that boundary.</p>
5587 <h5>Semantics:</h5>
5588 <p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
5589 source location to the destination location, which may overlap. It copies
5590 "len" bytes of memory over. If the argument is known to be aligned to some
5591 boundary, this can be specified as the fourth argument, otherwise it should
5592 be set to 0 or 1.</p>
5594 </div>
5596 <!-- _______________________________________________________________________ -->
5597 <div class="doc_subsubsection">
5598 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
5599 </div>
5601 <div class="doc_text">
5603 <h5>Syntax:</h5>
5604 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5605 width. Not all targets support all bit widths however.</p>
5607 <pre>
5608 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5609 i8 &lt;len&gt;, i32 &lt;align&gt;)
5610 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5611 i16 &lt;len&gt;, i32 &lt;align&gt;)
5612 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5613 i32 &lt;len&gt;, i32 &lt;align&gt;)
5614 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5615 i64 &lt;len&gt;, i32 &lt;align&gt;)
5616 </pre>
5618 <h5>Overview:</h5>
5619 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
5620 particular byte value.</p>
5622 <p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
5623 intrinsic does not return a value, and takes an extra alignment argument.</p>
5625 <h5>Arguments:</h5>
5626 <p>The first argument is a pointer to the destination to fill, the second is the
5627 byte value to fill it with, the third argument is an integer argument
5628 specifying the number of bytes to fill, and the fourth argument is the known
5629 alignment of destination location.</p>
5631 <p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5632 then the caller guarantees that the destination pointer is aligned to that
5633 boundary.</p>
5635 <h5>Semantics:</h5>
5636 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
5637 at the destination location. If the argument is known to be aligned to some
5638 boundary, this can be specified as the fourth argument, otherwise it should
5639 be set to 0 or 1.</p>
5641 </div>
5643 <!-- _______________________________________________________________________ -->
5644 <div class="doc_subsubsection">
5645 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
5646 </div>
5648 <div class="doc_text">
5650 <h5>Syntax:</h5>
5651 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
5652 floating point or vector of floating point type. Not all targets support all
5653 types however.</p>
5655 <pre>
5656 declare float @llvm.sqrt.f32(float %Val)
5657 declare double @llvm.sqrt.f64(double %Val)
5658 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5659 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5660 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
5661 </pre>
5663 <h5>Overview:</h5>
5664 <p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
5665 returning the same value as the libm '<tt>sqrt</tt>' functions would.
5666 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
5667 behavior for negative numbers other than -0.0 (which allows for better
5668 optimization, because there is no need to worry about errno being
5669 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
5671 <h5>Arguments:</h5>
5672 <p>The argument and return value are floating point numbers of the same
5673 type.</p>
5675 <h5>Semantics:</h5>
5676 <p>This function returns the sqrt of the specified operand if it is a
5677 nonnegative floating point number.</p>
5679 </div>
5681 <!-- _______________________________________________________________________ -->
5682 <div class="doc_subsubsection">
5683 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
5684 </div>
5686 <div class="doc_text">
5688 <h5>Syntax:</h5>
5689 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
5690 floating point or vector of floating point type. Not all targets support all
5691 types however.</p>
5693 <pre>
5694 declare float @llvm.powi.f32(float %Val, i32 %power)
5695 declare double @llvm.powi.f64(double %Val, i32 %power)
5696 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5697 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5698 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
5699 </pre>
5701 <h5>Overview:</h5>
5702 <p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5703 specified (positive or negative) power. The order of evaluation of
5704 multiplications is not defined. When a vector of floating point type is
5705 used, the second argument remains a scalar integer value.</p>
5707 <h5>Arguments:</h5>
5708 <p>The second argument is an integer power, and the first is a value to raise to
5709 that power.</p>
5711 <h5>Semantics:</h5>
5712 <p>This function returns the first value raised to the second power with an
5713 unspecified sequence of rounding operations.</p>
5715 </div>
5717 <!-- _______________________________________________________________________ -->
5718 <div class="doc_subsubsection">
5719 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5720 </div>
5722 <div class="doc_text">
5724 <h5>Syntax:</h5>
5725 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5726 floating point or vector of floating point type. Not all targets support all
5727 types however.</p>
5729 <pre>
5730 declare float @llvm.sin.f32(float %Val)
5731 declare double @llvm.sin.f64(double %Val)
5732 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5733 declare fp128 @llvm.sin.f128(fp128 %Val)
5734 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5735 </pre>
5737 <h5>Overview:</h5>
5738 <p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
5740 <h5>Arguments:</h5>
5741 <p>The argument and return value are floating point numbers of the same
5742 type.</p>
5744 <h5>Semantics:</h5>
5745 <p>This function returns the sine of the specified operand, returning the same
5746 values as the libm <tt>sin</tt> functions would, and handles error conditions
5747 in the same way.</p>
5749 </div>
5751 <!-- _______________________________________________________________________ -->
5752 <div class="doc_subsubsection">
5753 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5754 </div>
5756 <div class="doc_text">
5758 <h5>Syntax:</h5>
5759 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5760 floating point or vector of floating point type. Not all targets support all
5761 types however.</p>
5763 <pre>
5764 declare float @llvm.cos.f32(float %Val)
5765 declare double @llvm.cos.f64(double %Val)
5766 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5767 declare fp128 @llvm.cos.f128(fp128 %Val)
5768 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5769 </pre>
5771 <h5>Overview:</h5>
5772 <p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
5774 <h5>Arguments:</h5>
5775 <p>The argument and return value are floating point numbers of the same
5776 type.</p>
5778 <h5>Semantics:</h5>
5779 <p>This function returns the cosine of the specified operand, returning the same
5780 values as the libm <tt>cos</tt> functions would, and handles error conditions
5781 in the same way.</p>
5783 </div>
5785 <!-- _______________________________________________________________________ -->
5786 <div class="doc_subsubsection">
5787 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5788 </div>
5790 <div class="doc_text">
5792 <h5>Syntax:</h5>
5793 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5794 floating point or vector of floating point type. Not all targets support all
5795 types however.</p>
5797 <pre>
5798 declare float @llvm.pow.f32(float %Val, float %Power)
5799 declare double @llvm.pow.f64(double %Val, double %Power)
5800 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5801 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5802 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5803 </pre>
5805 <h5>Overview:</h5>
5806 <p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5807 specified (positive or negative) power.</p>
5809 <h5>Arguments:</h5>
5810 <p>The second argument is a floating point power, and the first is a value to
5811 raise to that power.</p>
5813 <h5>Semantics:</h5>
5814 <p>This function returns the first value raised to the second power, returning
5815 the same values as the libm <tt>pow</tt> functions would, and handles error
5816 conditions in the same way.</p>
5818 </div>
5820 <!-- ======================================================================= -->
5821 <div class="doc_subsection">
5822 <a name="int_manip">Bit Manipulation Intrinsics</a>
5823 </div>
5825 <div class="doc_text">
5827 <p>LLVM provides intrinsics for a few important bit manipulation operations.
5828 These allow efficient code generation for some algorithms.</p>
5830 </div>
5832 <!-- _______________________________________________________________________ -->
5833 <div class="doc_subsubsection">
5834 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
5835 </div>
5837 <div class="doc_text">
5839 <h5>Syntax:</h5>
5840 <p>This is an overloaded intrinsic function. You can use bswap on any integer
5841 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
5843 <pre>
5844 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5845 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5846 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
5847 </pre>
5849 <h5>Overview:</h5>
5850 <p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
5851 values with an even number of bytes (positive multiple of 16 bits). These
5852 are useful for performing operations on data that is not in the target's
5853 native byte order.</p>
5855 <h5>Semantics:</h5>
5856 <p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
5857 and low byte of the input i16 swapped. Similarly,
5858 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
5859 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
5860 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
5861 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
5862 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
5863 more, respectively).</p>
5865 </div>
5867 <!-- _______________________________________________________________________ -->
5868 <div class="doc_subsubsection">
5869 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
5870 </div>
5872 <div class="doc_text">
5874 <h5>Syntax:</h5>
5875 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5876 width. Not all targets support all bit widths however.</p>
5878 <pre>
5879 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
5880 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
5881 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
5882 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5883 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
5884 </pre>
5886 <h5>Overview:</h5>
5887 <p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
5888 in a value.</p>
5890 <h5>Arguments:</h5>
5891 <p>The only argument is the value to be counted. The argument may be of any
5892 integer type. The return type must match the argument type.</p>
5894 <h5>Semantics:</h5>
5895 <p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
5897 </div>
5899 <!-- _______________________________________________________________________ -->
5900 <div class="doc_subsubsection">
5901 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
5902 </div>
5904 <div class="doc_text">
5906 <h5>Syntax:</h5>
5907 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5908 integer bit width. Not all targets support all bit widths however.</p>
5910 <pre>
5911 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5912 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
5913 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
5914 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5915 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
5916 </pre>
5918 <h5>Overview:</h5>
5919 <p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5920 leading zeros in a variable.</p>
5922 <h5>Arguments:</h5>
5923 <p>The only argument is the value to be counted. The argument may be of any
5924 integer type. The return type must match the argument type.</p>
5926 <h5>Semantics:</h5>
5927 <p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
5928 zeros in a variable. If the src == 0 then the result is the size in bits of
5929 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
5931 </div>
5933 <!-- _______________________________________________________________________ -->
5934 <div class="doc_subsubsection">
5935 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
5936 </div>
5938 <div class="doc_text">
5940 <h5>Syntax:</h5>
5941 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5942 integer bit width. Not all targets support all bit widths however.</p>
5944 <pre>
5945 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5946 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
5947 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
5948 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5949 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
5950 </pre>
5952 <h5>Overview:</h5>
5953 <p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5954 trailing zeros.</p>
5956 <h5>Arguments:</h5>
5957 <p>The only argument is the value to be counted. The argument may be of any
5958 integer type. The return type must match the argument type.</p>
5960 <h5>Semantics:</h5>
5961 <p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
5962 zeros in a variable. If the src == 0 then the result is the size in bits of
5963 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
5965 </div>
5967 <!-- ======================================================================= -->
5968 <div class="doc_subsection">
5969 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5970 </div>
5972 <div class="doc_text">
5974 <p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
5976 </div>
5978 <!-- _______________________________________________________________________ -->
5979 <div class="doc_subsubsection">
5980 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
5981 </div>
5983 <div class="doc_text">
5985 <h5>Syntax:</h5>
5986 <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
5987 on any integer bit width.</p>
5989 <pre>
5990 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5991 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5992 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5993 </pre>
5995 <h5>Overview:</h5>
5996 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5997 a signed addition of the two arguments, and indicate whether an overflow
5998 occurred during the signed summation.</p>
6000 <h5>Arguments:</h5>
6001 <p>The arguments (%a and %b) and the first element of the result structure may
6002 be of integer types of any bit width, but they must have the same bit
6003 width. The second element of the result structure must be of
6004 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6005 undergo signed addition.</p>
6007 <h5>Semantics:</h5>
6008 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6009 a signed addition of the two variables. They return a structure &mdash; the
6010 first element of which is the signed summation, and the second element of
6011 which is a bit specifying if the signed summation resulted in an
6012 overflow.</p>
6014 <h5>Examples:</h5>
6015 <pre>
6016 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6017 %sum = extractvalue {i32, i1} %res, 0
6018 %obit = extractvalue {i32, i1} %res, 1
6019 br i1 %obit, label %overflow, label %normal
6020 </pre>
6022 </div>
6024 <!-- _______________________________________________________________________ -->
6025 <div class="doc_subsubsection">
6026 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
6027 </div>
6029 <div class="doc_text">
6031 <h5>Syntax:</h5>
6032 <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
6033 on any integer bit width.</p>
6035 <pre>
6036 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6037 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6038 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6039 </pre>
6041 <h5>Overview:</h5>
6042 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6043 an unsigned addition of the two arguments, and indicate whether a carry
6044 occurred during the unsigned summation.</p>
6046 <h5>Arguments:</h5>
6047 <p>The arguments (%a and %b) and the first element of the result structure may
6048 be of integer types of any bit width, but they must have the same bit
6049 width. The second element of the result structure must be of
6050 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6051 undergo unsigned addition.</p>
6053 <h5>Semantics:</h5>
6054 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6055 an unsigned addition of the two arguments. They return a structure &mdash;
6056 the first element of which is the sum, and the second element of which is a
6057 bit specifying if the unsigned summation resulted in a carry.</p>
6059 <h5>Examples:</h5>
6060 <pre>
6061 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6062 %sum = extractvalue {i32, i1} %res, 0
6063 %obit = extractvalue {i32, i1} %res, 1
6064 br i1 %obit, label %carry, label %normal
6065 </pre>
6067 </div>
6069 <!-- _______________________________________________________________________ -->
6070 <div class="doc_subsubsection">
6071 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
6072 </div>
6074 <div class="doc_text">
6076 <h5>Syntax:</h5>
6077 <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
6078 on any integer bit width.</p>
6080 <pre>
6081 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6082 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6083 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6084 </pre>
6086 <h5>Overview:</h5>
6087 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6088 a signed subtraction of the two arguments, and indicate whether an overflow
6089 occurred during the signed subtraction.</p>
6091 <h5>Arguments:</h5>
6092 <p>The arguments (%a and %b) and the first element of the result structure may
6093 be of integer types of any bit width, but they must have the same bit
6094 width. The second element of the result structure must be of
6095 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6096 undergo signed subtraction.</p>
6098 <h5>Semantics:</h5>
6099 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6100 a signed subtraction of the two arguments. They return a structure &mdash;
6101 the first element of which is the subtraction, and the second element of
6102 which is a bit specifying if the signed subtraction resulted in an
6103 overflow.</p>
6105 <h5>Examples:</h5>
6106 <pre>
6107 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6108 %sum = extractvalue {i32, i1} %res, 0
6109 %obit = extractvalue {i32, i1} %res, 1
6110 br i1 %obit, label %overflow, label %normal
6111 </pre>
6113 </div>
6115 <!-- _______________________________________________________________________ -->
6116 <div class="doc_subsubsection">
6117 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
6118 </div>
6120 <div class="doc_text">
6122 <h5>Syntax:</h5>
6123 <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
6124 on any integer bit width.</p>
6126 <pre>
6127 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6128 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6129 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6130 </pre>
6132 <h5>Overview:</h5>
6133 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6134 an unsigned subtraction of the two arguments, and indicate whether an
6135 overflow occurred during the unsigned subtraction.</p>
6137 <h5>Arguments:</h5>
6138 <p>The arguments (%a and %b) and the first element of the result structure may
6139 be of integer types of any bit width, but they must have the same bit
6140 width. The second element of the result structure must be of
6141 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6142 undergo unsigned subtraction.</p>
6144 <h5>Semantics:</h5>
6145 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6146 an unsigned subtraction of the two arguments. They return a structure &mdash;
6147 the first element of which is the subtraction, and the second element of
6148 which is a bit specifying if the unsigned subtraction resulted in an
6149 overflow.</p>
6151 <h5>Examples:</h5>
6152 <pre>
6153 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6154 %sum = extractvalue {i32, i1} %res, 0
6155 %obit = extractvalue {i32, i1} %res, 1
6156 br i1 %obit, label %overflow, label %normal
6157 </pre>
6159 </div>
6161 <!-- _______________________________________________________________________ -->
6162 <div class="doc_subsubsection">
6163 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
6164 </div>
6166 <div class="doc_text">
6168 <h5>Syntax:</h5>
6169 <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
6170 on any integer bit width.</p>
6172 <pre>
6173 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6174 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6175 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6176 </pre>
6178 <h5>Overview:</h5>
6180 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6181 a signed multiplication of the two arguments, and indicate whether an
6182 overflow occurred during the signed multiplication.</p>
6184 <h5>Arguments:</h5>
6185 <p>The arguments (%a and %b) and the first element of the result structure may
6186 be of integer types of any bit width, but they must have the same bit
6187 width. The second element of the result structure must be of
6188 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6189 undergo signed multiplication.</p>
6191 <h5>Semantics:</h5>
6192 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6193 a signed multiplication of the two arguments. They return a structure &mdash;
6194 the first element of which is the multiplication, and the second element of
6195 which is a bit specifying if the signed multiplication resulted in an
6196 overflow.</p>
6198 <h5>Examples:</h5>
6199 <pre>
6200 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6201 %sum = extractvalue {i32, i1} %res, 0
6202 %obit = extractvalue {i32, i1} %res, 1
6203 br i1 %obit, label %overflow, label %normal
6204 </pre>
6206 </div>
6208 <!-- _______________________________________________________________________ -->
6209 <div class="doc_subsubsection">
6210 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6211 </div>
6213 <div class="doc_text">
6215 <h5>Syntax:</h5>
6216 <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6217 on any integer bit width.</p>
6219 <pre>
6220 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6221 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6222 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6223 </pre>
6225 <h5>Overview:</h5>
6226 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6227 a unsigned multiplication of the two arguments, and indicate whether an
6228 overflow occurred during the unsigned multiplication.</p>
6230 <h5>Arguments:</h5>
6231 <p>The arguments (%a and %b) and the first element of the result structure may
6232 be of integer types of any bit width, but they must have the same bit
6233 width. The second element of the result structure must be of
6234 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6235 undergo unsigned multiplication.</p>
6237 <h5>Semantics:</h5>
6238 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6239 an unsigned multiplication of the two arguments. They return a structure
6240 &mdash; the first element of which is the multiplication, and the second
6241 element of which is a bit specifying if the unsigned multiplication resulted
6242 in an overflow.</p>
6244 <h5>Examples:</h5>
6245 <pre>
6246 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6247 %sum = extractvalue {i32, i1} %res, 0
6248 %obit = extractvalue {i32, i1} %res, 1
6249 br i1 %obit, label %overflow, label %normal
6250 </pre>
6252 </div>
6254 <!-- ======================================================================= -->
6255 <div class="doc_subsection">
6256 <a name="int_debugger">Debugger Intrinsics</a>
6257 </div>
6259 <div class="doc_text">
6261 <p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6262 prefix), are described in
6263 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6264 Level Debugging</a> document.</p>
6266 </div>
6268 <!-- ======================================================================= -->
6269 <div class="doc_subsection">
6270 <a name="int_eh">Exception Handling Intrinsics</a>
6271 </div>
6273 <div class="doc_text">
6275 <p>The LLVM exception handling intrinsics (which all start with
6276 <tt>llvm.eh.</tt> prefix), are described in
6277 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6278 Handling</a> document.</p>
6280 </div>
6282 <!-- ======================================================================= -->
6283 <div class="doc_subsection">
6284 <a name="int_trampoline">Trampoline Intrinsic</a>
6285 </div>
6287 <div class="doc_text">
6289 <p>This intrinsic makes it possible to excise one parameter, marked with
6290 the <tt>nest</tt> attribute, from a function. The result is a callable
6291 function pointer lacking the nest parameter - the caller does not need to
6292 provide a value for it. Instead, the value to use is stored in advance in a
6293 "trampoline", a block of memory usually allocated on the stack, which also
6294 contains code to splice the nest value into the argument list. This is used
6295 to implement the GCC nested function address extension.</p>
6297 <p>For example, if the function is
6298 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6299 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6300 follows:</p>
6302 <div class="doc_code">
6303 <pre>
6304 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6305 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6306 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6307 %fp = bitcast i8* %p to i32 (i32, i32)*
6308 </pre>
6309 </div>
6311 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6312 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6314 </div>
6316 <!-- _______________________________________________________________________ -->
6317 <div class="doc_subsubsection">
6318 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6319 </div>
6321 <div class="doc_text">
6323 <h5>Syntax:</h5>
6324 <pre>
6325 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
6326 </pre>
6328 <h5>Overview:</h5>
6329 <p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6330 function pointer suitable for executing it.</p>
6332 <h5>Arguments:</h5>
6333 <p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6334 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6335 sufficiently aligned block of memory; this memory is written to by the
6336 intrinsic. Note that the size and the alignment are target-specific - LLVM
6337 currently provides no portable way of determining them, so a front-end that
6338 generates this intrinsic needs to have some target-specific knowledge.
6339 The <tt>func</tt> argument must hold a function bitcast to
6340 an <tt>i8*</tt>.</p>
6342 <h5>Semantics:</h5>
6343 <p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6344 dependent code, turning it into a function. A pointer to this function is
6345 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6346 function pointer type</a> before being called. The new function's signature
6347 is the same as that of <tt>func</tt> with any arguments marked with
6348 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6349 is allowed, and it must be of pointer type. Calling the new function is
6350 equivalent to calling <tt>func</tt> with the same argument list, but
6351 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6352 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6353 by <tt>tramp</tt> is modified, then the effect of any later call to the
6354 returned function pointer is undefined.</p>
6356 </div>
6358 <!-- ======================================================================= -->
6359 <div class="doc_subsection">
6360 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6361 </div>
6363 <div class="doc_text">
6365 <p>These intrinsic functions expand the "universal IR" of LLVM to represent
6366 hardware constructs for atomic operations and memory synchronization. This
6367 provides an interface to the hardware, not an interface to the programmer. It
6368 is aimed at a low enough level to allow any programming models or APIs
6369 (Application Programming Interfaces) which need atomic behaviors to map
6370 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6371 hardware provides a "universal IR" for source languages, it also provides a
6372 starting point for developing a "universal" atomic operation and
6373 synchronization IR.</p>
6375 <p>These do <em>not</em> form an API such as high-level threading libraries,
6376 software transaction memory systems, atomic primitives, and intrinsic
6377 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6378 application libraries. The hardware interface provided by LLVM should allow
6379 a clean implementation of all of these APIs and parallel programming models.
6380 No one model or paradigm should be selected above others unless the hardware
6381 itself ubiquitously does so.</p>
6383 </div>
6385 <!-- _______________________________________________________________________ -->
6386 <div class="doc_subsubsection">
6387 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6388 </div>
6389 <div class="doc_text">
6390 <h5>Syntax:</h5>
6391 <pre>
6392 declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
6393 </pre>
6395 <h5>Overview:</h5>
6396 <p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6397 specific pairs of memory access types.</p>
6399 <h5>Arguments:</h5>
6400 <p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6401 The first four arguments enables a specific barrier as listed below. The
6402 fith argument specifies that the barrier applies to io or device or uncached
6403 memory.</p>
6405 <ul>
6406 <li><tt>ll</tt>: load-load barrier</li>
6407 <li><tt>ls</tt>: load-store barrier</li>
6408 <li><tt>sl</tt>: store-load barrier</li>
6409 <li><tt>ss</tt>: store-store barrier</li>
6410 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6411 </ul>
6413 <h5>Semantics:</h5>
6414 <p>This intrinsic causes the system to enforce some ordering constraints upon
6415 the loads and stores of the program. This barrier does not
6416 indicate <em>when</em> any events will occur, it only enforces
6417 an <em>order</em> in which they occur. For any of the specified pairs of load
6418 and store operations (f.ex. load-load, or store-load), all of the first
6419 operations preceding the barrier will complete before any of the second
6420 operations succeeding the barrier begin. Specifically the semantics for each
6421 pairing is as follows:</p>
6423 <ul>
6424 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6425 after the barrier begins.</li>
6426 <li><tt>ls</tt>: All loads before the barrier must complete before any
6427 store after the barrier begins.</li>
6428 <li><tt>ss</tt>: All stores before the barrier must complete before any
6429 store after the barrier begins.</li>
6430 <li><tt>sl</tt>: All stores before the barrier must complete before any
6431 load after the barrier begins.</li>
6432 </ul>
6434 <p>These semantics are applied with a logical "and" behavior when more than one
6435 is enabled in a single memory barrier intrinsic.</p>
6437 <p>Backends may implement stronger barriers than those requested when they do
6438 not support as fine grained a barrier as requested. Some architectures do
6439 not need all types of barriers and on such architectures, these become
6440 noops.</p>
6442 <h5>Example:</h5>
6443 <pre>
6444 %ptr = malloc i32
6445 store i32 4, %ptr
6447 %result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6448 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6449 <i>; guarantee the above finishes</i>
6450 store i32 8, %ptr <i>; before this begins</i>
6451 </pre>
6453 </div>
6455 <!-- _______________________________________________________________________ -->
6456 <div class="doc_subsubsection">
6457 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
6458 </div>
6460 <div class="doc_text">
6462 <h5>Syntax:</h5>
6463 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6464 any integer bit width and for different address spaces. Not all targets
6465 support all bit widths however.</p>
6467 <pre>
6468 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6469 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6470 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6471 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
6472 </pre>
6474 <h5>Overview:</h5>
6475 <p>This loads a value in memory and compares it to a given value. If they are
6476 equal, it stores a new value into the memory.</p>
6478 <h5>Arguments:</h5>
6479 <p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
6480 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6481 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6482 this integer type. While any bit width integer may be used, targets may only
6483 lower representations they support in hardware.</p>
6485 <h5>Semantics:</h5>
6486 <p>This entire intrinsic must be executed atomically. It first loads the value
6487 in memory pointed to by <tt>ptr</tt> and compares it with the
6488 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
6489 memory. The loaded value is yielded in all cases. This provides the
6490 equivalent of an atomic compare-and-swap operation within the SSA
6491 framework.</p>
6493 <h5>Examples:</h5>
6494 <pre>
6495 %ptr = malloc i32
6496 store i32 4, %ptr
6498 %val1 = add i32 4, 4
6499 %result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
6500 <i>; yields {i32}:result1 = 4</i>
6501 %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6502 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6504 %val2 = add i32 1, 1
6505 %result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
6506 <i>; yields {i32}:result2 = 8</i>
6507 %stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6509 %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6510 </pre>
6512 </div>
6514 <!-- _______________________________________________________________________ -->
6515 <div class="doc_subsubsection">
6516 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6517 </div>
6518 <div class="doc_text">
6519 <h5>Syntax:</h5>
6521 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6522 integer bit width. Not all targets support all bit widths however.</p>
6524 <pre>
6525 declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6526 declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6527 declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6528 declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
6529 </pre>
6531 <h5>Overview:</h5>
6532 <p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6533 the value from memory. It then stores the value in <tt>val</tt> in the memory
6534 at <tt>ptr</tt>.</p>
6536 <h5>Arguments:</h5>
6537 <p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
6538 the <tt>val</tt> argument and the result must be integers of the same bit
6539 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6540 integer type. The targets may only lower integer representations they
6541 support.</p>
6543 <h5>Semantics:</h5>
6544 <p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6545 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6546 equivalent of an atomic swap operation within the SSA framework.</p>
6548 <h5>Examples:</h5>
6549 <pre>
6550 %ptr = malloc i32
6551 store i32 4, %ptr
6553 %val1 = add i32 4, 4
6554 %result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
6555 <i>; yields {i32}:result1 = 4</i>
6556 %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6557 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6559 %val2 = add i32 1, 1
6560 %result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
6561 <i>; yields {i32}:result2 = 8</i>
6563 %stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6564 %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6565 </pre>
6567 </div>
6569 <!-- _______________________________________________________________________ -->
6570 <div class="doc_subsubsection">
6571 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
6573 </div>
6575 <div class="doc_text">
6577 <h5>Syntax:</h5>
6578 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
6579 any integer bit width. Not all targets support all bit widths however.</p>
6581 <pre>
6582 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6583 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6584 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6585 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
6586 </pre>
6588 <h5>Overview:</h5>
6589 <p>This intrinsic adds <tt>delta</tt> to the value stored in memory
6590 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6592 <h5>Arguments:</h5>
6593 <p>The intrinsic takes two arguments, the first a pointer to an integer value
6594 and the second an integer value. The result is also an integer value. These
6595 integer types can have any bit width, but they must all have the same bit
6596 width. The targets may only lower integer representations they support.</p>
6598 <h5>Semantics:</h5>
6599 <p>This intrinsic does a series of operations atomically. It first loads the
6600 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6601 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
6603 <h5>Examples:</h5>
6604 <pre>
6605 %ptr = malloc i32
6606 store i32 4, %ptr
6607 %result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
6608 <i>; yields {i32}:result1 = 4</i>
6609 %result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
6610 <i>; yields {i32}:result2 = 8</i>
6611 %result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
6612 <i>; yields {i32}:result3 = 10</i>
6613 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
6614 </pre>
6616 </div>
6618 <!-- _______________________________________________________________________ -->
6619 <div class="doc_subsubsection">
6620 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6622 </div>
6624 <div class="doc_text">
6626 <h5>Syntax:</h5>
6627 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
6628 any integer bit width and for different address spaces. Not all targets
6629 support all bit widths however.</p>
6631 <pre>
6632 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6633 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6634 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6635 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
6636 </pre>
6638 <h5>Overview:</h5>
6639 <p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6640 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6642 <h5>Arguments:</h5>
6643 <p>The intrinsic takes two arguments, the first a pointer to an integer value
6644 and the second an integer value. The result is also an integer value. These
6645 integer types can have any bit width, but they must all have the same bit
6646 width. The targets may only lower integer representations they support.</p>
6648 <h5>Semantics:</h5>
6649 <p>This intrinsic does a series of operations atomically. It first loads the
6650 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6651 result to <tt>ptr</tt>. It yields the original value stored
6652 at <tt>ptr</tt>.</p>
6654 <h5>Examples:</h5>
6655 <pre>
6656 %ptr = malloc i32
6657 store i32 8, %ptr
6658 %result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
6659 <i>; yields {i32}:result1 = 8</i>
6660 %result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
6661 <i>; yields {i32}:result2 = 4</i>
6662 %result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
6663 <i>; yields {i32}:result3 = 2</i>
6664 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6665 </pre>
6667 </div>
6669 <!-- _______________________________________________________________________ -->
6670 <div class="doc_subsubsection">
6671 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6672 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6673 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6674 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6675 </div>
6677 <div class="doc_text">
6679 <h5>Syntax:</h5>
6680 <p>These are overloaded intrinsics. You can
6681 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
6682 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
6683 bit width and for different address spaces. Not all targets support all bit
6684 widths however.</p>
6686 <pre>
6687 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6688 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6689 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6690 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
6691 </pre>
6693 <pre>
6694 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6695 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6696 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6697 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
6698 </pre>
6700 <pre>
6701 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6702 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6703 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6704 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
6705 </pre>
6707 <pre>
6708 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6709 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6710 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6711 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
6712 </pre>
6714 <h5>Overview:</h5>
6715 <p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6716 the value stored in memory at <tt>ptr</tt>. It yields the original value
6717 at <tt>ptr</tt>.</p>
6719 <h5>Arguments:</h5>
6720 <p>These intrinsics take two arguments, the first a pointer to an integer value
6721 and the second an integer value. The result is also an integer value. These
6722 integer types can have any bit width, but they must all have the same bit
6723 width. The targets may only lower integer representations they support.</p>
6725 <h5>Semantics:</h5>
6726 <p>These intrinsics does a series of operations atomically. They first load the
6727 value stored at <tt>ptr</tt>. They then do the bitwise
6728 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
6729 original value stored at <tt>ptr</tt>.</p>
6731 <h5>Examples:</h5>
6732 <pre>
6733 %ptr = malloc i32
6734 store i32 0x0F0F, %ptr
6735 %result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
6736 <i>; yields {i32}:result0 = 0x0F0F</i>
6737 %result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
6738 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
6739 %result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
6740 <i>; yields {i32}:result2 = 0xF0</i>
6741 %result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
6742 <i>; yields {i32}:result3 = FF</i>
6743 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6744 </pre>
6746 </div>
6748 <!-- _______________________________________________________________________ -->
6749 <div class="doc_subsubsection">
6750 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6751 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6752 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6753 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6754 </div>
6756 <div class="doc_text">
6758 <h5>Syntax:</h5>
6759 <p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6760 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
6761 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6762 address spaces. Not all targets support all bit widths however.</p>
6764 <pre>
6765 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6766 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6767 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6768 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
6769 </pre>
6771 <pre>
6772 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6773 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6774 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6775 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
6776 </pre>
6778 <pre>
6779 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6780 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6781 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6782 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
6783 </pre>
6785 <pre>
6786 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6787 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6788 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6789 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
6790 </pre>
6792 <h5>Overview:</h5>
6793 <p>These intrinsics takes the signed or unsigned minimum or maximum of
6794 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6795 original value at <tt>ptr</tt>.</p>
6797 <h5>Arguments:</h5>
6798 <p>These intrinsics take two arguments, the first a pointer to an integer value
6799 and the second an integer value. The result is also an integer value. These
6800 integer types can have any bit width, but they must all have the same bit
6801 width. The targets may only lower integer representations they support.</p>
6803 <h5>Semantics:</h5>
6804 <p>These intrinsics does a series of operations atomically. They first load the
6805 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
6806 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
6807 yield the original value stored at <tt>ptr</tt>.</p>
6809 <h5>Examples:</h5>
6810 <pre>
6811 %ptr = malloc i32
6812 store i32 7, %ptr
6813 %result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
6814 <i>; yields {i32}:result0 = 7</i>
6815 %result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
6816 <i>; yields {i32}:result1 = -2</i>
6817 %result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
6818 <i>; yields {i32}:result2 = 8</i>
6819 %result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
6820 <i>; yields {i32}:result3 = 8</i>
6821 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6822 </pre>
6824 </div>
6826 <!-- ======================================================================= -->
6827 <div class="doc_subsection">
6828 <a name="int_general">General Intrinsics</a>
6829 </div>
6831 <div class="doc_text">
6833 <p>This class of intrinsics is designed to be generic and has no specific
6834 purpose.</p>
6836 </div>
6838 <!-- _______________________________________________________________________ -->
6839 <div class="doc_subsubsection">
6840 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6841 </div>
6843 <div class="doc_text">
6845 <h5>Syntax:</h5>
6846 <pre>
6847 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6848 </pre>
6850 <h5>Overview:</h5>
6851 <p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
6853 <h5>Arguments:</h5>
6854 <p>The first argument is a pointer to a value, the second is a pointer to a
6855 global string, the third is a pointer to a global string which is the source
6856 file name, and the last argument is the line number.</p>
6858 <h5>Semantics:</h5>
6859 <p>This intrinsic allows annotation of local variables with arbitrary strings.
6860 This can be useful for special purpose optimizations that want to look for
6861 these annotations. These have no other defined use, they are ignored by code
6862 generation and optimization.</p>
6864 </div>
6866 <!-- _______________________________________________________________________ -->
6867 <div class="doc_subsubsection">
6868 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
6869 </div>
6871 <div class="doc_text">
6873 <h5>Syntax:</h5>
6874 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6875 any integer bit width.</p>
6877 <pre>
6878 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6879 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6880 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6881 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6882 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6883 </pre>
6885 <h5>Overview:</h5>
6886 <p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
6888 <h5>Arguments:</h5>
6889 <p>The first argument is an integer value (result of some expression), the
6890 second is a pointer to a global string, the third is a pointer to a global
6891 string which is the source file name, and the last argument is the line
6892 number. It returns the value of the first argument.</p>
6894 <h5>Semantics:</h5>
6895 <p>This intrinsic allows annotations to be put on arbitrary expressions with
6896 arbitrary strings. This can be useful for special purpose optimizations that
6897 want to look for these annotations. These have no other defined use, they
6898 are ignored by code generation and optimization.</p>
6900 </div>
6902 <!-- _______________________________________________________________________ -->
6903 <div class="doc_subsubsection">
6904 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6905 </div>
6907 <div class="doc_text">
6909 <h5>Syntax:</h5>
6910 <pre>
6911 declare void @llvm.trap()
6912 </pre>
6914 <h5>Overview:</h5>
6915 <p>The '<tt>llvm.trap</tt>' intrinsic.</p>
6917 <h5>Arguments:</h5>
6918 <p>None.</p>
6920 <h5>Semantics:</h5>
6921 <p>This intrinsics is lowered to the target dependent trap instruction. If the
6922 target does not have a trap instruction, this intrinsic will be lowered to
6923 the call of the <tt>abort()</tt> function.</p>
6925 </div>
6927 <!-- _______________________________________________________________________ -->
6928 <div class="doc_subsubsection">
6929 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
6930 </div>
6932 <div class="doc_text">
6934 <h5>Syntax:</h5>
6935 <pre>
6936 declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6937 </pre>
6939 <h5>Overview:</h5>
6940 <p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
6941 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
6942 ensure that it is placed on the stack before local variables.</p>
6944 <h5>Arguments:</h5>
6945 <p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
6946 arguments. The first argument is the value loaded from the stack
6947 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
6948 that has enough space to hold the value of the guard.</p>
6950 <h5>Semantics:</h5>
6951 <p>This intrinsic causes the prologue/epilogue inserter to force the position of
6952 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6953 stack. This is to ensure that if a local variable on the stack is
6954 overwritten, it will destroy the value of the guard. When the function exits,
6955 the guard on the stack is checked against the original guard. If they're
6956 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
6957 function.</p>
6959 </div>
6961 <!-- *********************************************************************** -->
6962 <hr>
6963 <address>
6964 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6965 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
6966 <a href="http://validator.w3.org/check/referer"><img
6967 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
6969 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
6970 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
6971 Last modified: $Date$
6972 </address>
6974 </body>
6975 </html>