1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the AsmPrinter class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "llvm/Assembly/Writer.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/GCMetadataPrinter.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/DwarfWriter.h"
24 #include "llvm/Analysis/DebugInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCInst.h"
27 #include "llvm/MC/MCSection.h"
28 #include "llvm/MC/MCStreamer.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FormattedStream.h"
32 #include "llvm/Support/Mangler.h"
33 #include "llvm/Target/TargetAsmInfo.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include "llvm/Target/TargetLoweringObjectFile.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/ADT/StringExtras.h"
45 static cl::opt
<cl::boolOrDefault
>
46 AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
47 cl::init(cl::BOU_UNSET
));
49 char AsmPrinter::ID
= 0;
50 AsmPrinter::AsmPrinter(formatted_raw_ostream
&o
, TargetMachine
&tm
,
51 const TargetAsmInfo
*T
, bool VDef
)
52 : MachineFunctionPass(&ID
), FunctionNumber(0), O(o
),
53 TM(tm
), TAI(T
), TRI(tm
.getRegisterInfo()),
55 OutContext(*new MCContext()),
56 OutStreamer(*createAsmStreamer(OutContext
, O
)),
58 LastMI(0), LastFn(0), Counter(~0U),
59 PrevDLT(0, ~0U, ~0U) {
63 case cl::BOU_UNSET
: VerboseAsm
= VDef
; break;
64 case cl::BOU_TRUE
: VerboseAsm
= true; break;
65 case cl::BOU_FALSE
: VerboseAsm
= false; break;
69 AsmPrinter::~AsmPrinter() {
70 for (gcp_iterator I
= GCMetadataPrinters
.begin(),
71 E
= GCMetadataPrinters
.end(); I
!= E
; ++I
)
78 TargetLoweringObjectFile
&AsmPrinter::getObjFileLowering() const {
79 return TM
.getTargetLowering()->getObjFileLowering();
82 /// SwitchToSection - Switch to the specified section of the executable if we
83 /// are not already in it! If "NS" is null, then this causes us to exit the
84 /// current section and not reenter another one. This is generally used for
87 /// FIXME: Remove support for null sections.
89 void AsmPrinter::SwitchToSection(const MCSection
*NS
) {
90 // If we're already in this section, we're done.
91 if (CurrentSection
== NS
) return;
96 // If section is named we need to switch into it via special '.section'
97 // directive and also append funky flags. Otherwise - section name is just
98 // some magic assembler directive.
99 if (!NS
->isDirective()) {
100 SmallString
<32> FlagsStr
;
102 getObjFileLowering().getSectionFlagsAsString(NS
->getKind(), FlagsStr
);
104 O
<< TAI
->getSwitchToSectionDirective()
105 << CurrentSection
->getName() << FlagsStr
.c_str();
107 O
<< CurrentSection
->getName();
109 O
<< TAI
->getDataSectionStartSuffix() << '\n';
113 void AsmPrinter::getAnalysisUsage(AnalysisUsage
&AU
) const {
114 AU
.setPreservesAll();
115 MachineFunctionPass::getAnalysisUsage(AU
);
116 AU
.addRequired
<GCModuleInfo
>();
119 bool AsmPrinter::doInitialization(Module
&M
) {
120 // Initialize TargetLoweringObjectFile.
121 const_cast<TargetLoweringObjectFile
&>(getObjFileLowering())
122 .Initialize(OutContext
, TM
);
124 Mang
= new Mangler(M
, TAI
->getGlobalPrefix(), TAI
->getPrivateGlobalPrefix(),
125 TAI
->getLinkerPrivateGlobalPrefix());
127 if (TAI
->doesAllowQuotesInName())
128 Mang
->setUseQuotes(true);
130 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
131 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
133 if (TAI
->hasSingleParameterDotFile()) {
134 /* Very minimal debug info. It is ignored if we emit actual
135 debug info. If we don't, this at helps the user find where
136 a function came from. */
137 O
<< "\t.file\t\"" << M
.getModuleIdentifier() << "\"\n";
140 for (GCModuleInfo::iterator I
= MI
->begin(), E
= MI
->end(); I
!= E
; ++I
)
141 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*I
))
142 MP
->beginAssembly(O
, *this, *TAI
);
144 if (!M
.getModuleInlineAsm().empty())
145 O
<< TAI
->getCommentString() << " Start of file scope inline assembly\n"
146 << M
.getModuleInlineAsm()
147 << '\n' << TAI
->getCommentString()
148 << " End of file scope inline assembly\n";
150 SwitchToSection(0); // Reset back to no section to close off sections.
152 if (TAI
->doesSupportDebugInformation() ||
153 TAI
->doesSupportExceptionHandling()) {
154 MMI
= getAnalysisIfAvailable
<MachineModuleInfo
>();
156 MMI
->AnalyzeModule(M
);
157 DW
= getAnalysisIfAvailable
<DwarfWriter
>();
159 DW
->BeginModule(&M
, MMI
, O
, this, TAI
);
165 bool AsmPrinter::doFinalization(Module
&M
) {
166 // Emit global variables.
167 for (Module::const_global_iterator I
= M
.global_begin(), E
= M
.global_end();
169 PrintGlobalVariable(I
);
171 // Emit final debug information.
172 if (TAI
->doesSupportDebugInformation() || TAI
->doesSupportExceptionHandling())
175 // If the target wants to know about weak references, print them all.
176 if (TAI
->getWeakRefDirective()) {
177 // FIXME: This is not lazy, it would be nice to only print weak references
178 // to stuff that is actually used. Note that doing so would require targets
179 // to notice uses in operands (due to constant exprs etc). This should
180 // happen with the MC stuff eventually.
183 // Print out module-level global variables here.
184 for (Module::const_global_iterator I
= M
.global_begin(), E
= M
.global_end();
186 if (I
->hasExternalWeakLinkage())
187 O
<< TAI
->getWeakRefDirective() << Mang
->getMangledName(I
) << '\n';
190 for (Module::const_iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
191 if (I
->hasExternalWeakLinkage())
192 O
<< TAI
->getWeakRefDirective() << Mang
->getMangledName(I
) << '\n';
196 if (TAI
->getSetDirective()) {
198 for (Module::const_alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
200 std::string Name
= Mang
->getMangledName(I
);
202 const GlobalValue
*GV
= cast
<GlobalValue
>(I
->getAliasedGlobal());
203 std::string Target
= Mang
->getMangledName(GV
);
205 if (I
->hasExternalLinkage() || !TAI
->getWeakRefDirective())
206 O
<< "\t.globl\t" << Name
<< '\n';
207 else if (I
->hasWeakLinkage())
208 O
<< TAI
->getWeakRefDirective() << Name
<< '\n';
209 else if (!I
->hasLocalLinkage())
210 llvm_unreachable("Invalid alias linkage");
212 printVisibility(Name
, I
->getVisibility());
214 O
<< TAI
->getSetDirective() << ' ' << Name
<< ", " << Target
<< '\n';
218 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
219 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
220 for (GCModuleInfo::iterator I
= MI
->end(), E
= MI
->begin(); I
!= E
; )
221 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*--I
))
222 MP
->finishAssembly(O
, *this, *TAI
);
224 // If we don't have any trampolines, then we don't require stack memory
225 // to be executable. Some targets have a directive to declare this.
226 Function
*InitTrampolineIntrinsic
= M
.getFunction("llvm.init.trampoline");
227 if (!InitTrampolineIntrinsic
|| InitTrampolineIntrinsic
->use_empty())
228 if (TAI
->getNonexecutableStackDirective())
229 O
<< TAI
->getNonexecutableStackDirective() << '\n';
231 delete Mang
; Mang
= 0;
234 OutStreamer
.Finish();
239 AsmPrinter::getCurrentFunctionEHName(const MachineFunction
*MF
) const {
240 assert(MF
&& "No machine function?");
241 return Mang
->getMangledName(MF
->getFunction(), ".eh",
242 TAI
->is_EHSymbolPrivate());
245 void AsmPrinter::SetupMachineFunction(MachineFunction
&MF
) {
246 // What's my mangled name?
247 CurrentFnName
= Mang
->getMangledName(MF
.getFunction());
248 IncrementFunctionNumber();
252 // SectionCPs - Keep track the alignment, constpool entries per Section.
256 SmallVector
<unsigned, 4> CPEs
;
257 SectionCPs(const MCSection
*s
, unsigned a
) : S(s
), Alignment(a
) {};
261 /// EmitConstantPool - Print to the current output stream assembly
262 /// representations of the constants in the constant pool MCP. This is
263 /// used to print out constants which have been "spilled to memory" by
264 /// the code generator.
266 void AsmPrinter::EmitConstantPool(MachineConstantPool
*MCP
) {
267 const std::vector
<MachineConstantPoolEntry
> &CP
= MCP
->getConstants();
268 if (CP
.empty()) return;
270 // Calculate sections for constant pool entries. We collect entries to go into
271 // the same section together to reduce amount of section switch statements.
272 SmallVector
<SectionCPs
, 4> CPSections
;
273 for (unsigned i
= 0, e
= CP
.size(); i
!= e
; ++i
) {
274 const MachineConstantPoolEntry
&CPE
= CP
[i
];
275 unsigned Align
= CPE
.getAlignment();
278 switch (CPE
.getRelocationInfo()) {
279 default: llvm_unreachable("Unknown section kind");
280 case 2: Kind
= SectionKind::getReadOnlyWithRel(); break;
282 Kind
= SectionKind::getReadOnlyWithRelLocal();
285 switch (TM
.getTargetData()->getTypeAllocSize(CPE
.getType())) {
286 case 4: Kind
= SectionKind::getMergeableConst4(); break;
287 case 8: Kind
= SectionKind::getMergeableConst8(); break;
288 case 16: Kind
= SectionKind::getMergeableConst16();break;
289 default: Kind
= SectionKind::getMergeableConst(); break;
293 const MCSection
*S
= getObjFileLowering().getSectionForConstant(Kind
);
295 // The number of sections are small, just do a linear search from the
296 // last section to the first.
298 unsigned SecIdx
= CPSections
.size();
299 while (SecIdx
!= 0) {
300 if (CPSections
[--SecIdx
].S
== S
) {
306 SecIdx
= CPSections
.size();
307 CPSections
.push_back(SectionCPs(S
, Align
));
310 if (Align
> CPSections
[SecIdx
].Alignment
)
311 CPSections
[SecIdx
].Alignment
= Align
;
312 CPSections
[SecIdx
].CPEs
.push_back(i
);
315 // Now print stuff into the calculated sections.
316 for (unsigned i
= 0, e
= CPSections
.size(); i
!= e
; ++i
) {
317 SwitchToSection(CPSections
[i
].S
);
318 EmitAlignment(Log2_32(CPSections
[i
].Alignment
));
321 for (unsigned j
= 0, ee
= CPSections
[i
].CPEs
.size(); j
!= ee
; ++j
) {
322 unsigned CPI
= CPSections
[i
].CPEs
[j
];
323 MachineConstantPoolEntry CPE
= CP
[CPI
];
325 // Emit inter-object padding for alignment.
326 unsigned AlignMask
= CPE
.getAlignment() - 1;
327 unsigned NewOffset
= (Offset
+ AlignMask
) & ~AlignMask
;
328 EmitZeros(NewOffset
- Offset
);
330 const Type
*Ty
= CPE
.getType();
331 Offset
= NewOffset
+ TM
.getTargetData()->getTypeAllocSize(Ty
);
333 O
<< TAI
->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
334 << CPI
<< ":\t\t\t\t\t";
336 O
<< TAI
->getCommentString() << ' ';
337 WriteTypeSymbolic(O
, CPE
.getType(), 0);
340 if (CPE
.isMachineConstantPoolEntry())
341 EmitMachineConstantPoolValue(CPE
.Val
.MachineCPVal
);
343 EmitGlobalConstant(CPE
.Val
.ConstVal
);
348 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
349 /// by the current function to the current output stream.
351 void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo
*MJTI
,
352 MachineFunction
&MF
) {
353 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
354 if (JT
.empty()) return;
356 bool IsPic
= TM
.getRelocationModel() == Reloc::PIC_
;
358 // Pick the directive to use to print the jump table entries, and switch to
359 // the appropriate section.
360 TargetLowering
*LoweringInfo
= TM
.getTargetLowering();
362 const Function
*F
= MF
.getFunction();
363 bool JTInDiffSection
= false;
364 if (F
->isWeakForLinker() ||
365 (IsPic
&& !LoweringInfo
->usesGlobalOffsetTable())) {
366 // In PIC mode, we need to emit the jump table to the same section as the
367 // function body itself, otherwise the label differences won't make sense.
368 // We should also do if the section name is NULL or function is declared in
369 // discardable section.
370 SwitchToSection(getObjFileLowering().SectionForGlobal(F
, Mang
, TM
));
372 // Otherwise, drop it in the readonly section.
373 const MCSection
*ReadOnlySection
=
374 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
375 SwitchToSection(ReadOnlySection
);
376 JTInDiffSection
= true;
379 EmitAlignment(Log2_32(MJTI
->getAlignment()));
381 for (unsigned i
= 0, e
= JT
.size(); i
!= e
; ++i
) {
382 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[i
].MBBs
;
384 // If this jump table was deleted, ignore it.
385 if (JTBBs
.empty()) continue;
387 // For PIC codegen, if possible we want to use the SetDirective to reduce
388 // the number of relocations the assembler will generate for the jump table.
389 // Set directives are all printed before the jump table itself.
390 SmallPtrSet
<MachineBasicBlock
*, 16> EmittedSets
;
391 if (TAI
->getSetDirective() && IsPic
)
392 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
)
393 if (EmittedSets
.insert(JTBBs
[ii
]))
394 printPICJumpTableSetLabel(i
, JTBBs
[ii
]);
396 // On some targets (e.g. darwin) we want to emit two consequtive labels
397 // before each jump table. The first label is never referenced, but tells
398 // the assembler and linker the extents of the jump table object. The
399 // second label is actually referenced by the code.
400 if (JTInDiffSection
) {
401 if (const char *JTLabelPrefix
= TAI
->getJumpTableSpecialLabelPrefix())
402 O
<< JTLabelPrefix
<< "JTI" << getFunctionNumber() << '_' << i
<< ":\n";
405 O
<< TAI
->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
406 << '_' << i
<< ":\n";
408 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
) {
409 printPICJumpTableEntry(MJTI
, JTBBs
[ii
], i
);
415 void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
416 const MachineBasicBlock
*MBB
,
417 unsigned uid
) const {
418 bool IsPic
= TM
.getRelocationModel() == Reloc::PIC_
;
420 // Use JumpTableDirective otherwise honor the entry size from the jump table
422 const char *JTEntryDirective
= TAI
->getJumpTableDirective();
423 bool HadJTEntryDirective
= JTEntryDirective
!= NULL
;
424 if (!HadJTEntryDirective
) {
425 JTEntryDirective
= MJTI
->getEntrySize() == 4 ?
426 TAI
->getData32bitsDirective() : TAI
->getData64bitsDirective();
429 O
<< JTEntryDirective
<< ' ';
431 // If we have emitted set directives for the jump table entries, print
432 // them rather than the entries themselves. If we're emitting PIC, then
433 // emit the table entries as differences between two text section labels.
434 // If we're emitting non-PIC code, then emit the entries as direct
435 // references to the target basic blocks.
437 if (TAI
->getSetDirective()) {
438 O
<< TAI
->getPrivateGlobalPrefix() << getFunctionNumber()
439 << '_' << uid
<< "_set_" << MBB
->getNumber();
441 printBasicBlockLabel(MBB
, false, false, false);
442 // If the arch uses custom Jump Table directives, don't calc relative to
444 if (!HadJTEntryDirective
)
445 O
<< '-' << TAI
->getPrivateGlobalPrefix() << "JTI"
446 << getFunctionNumber() << '_' << uid
;
449 printBasicBlockLabel(MBB
, false, false, false);
454 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
455 /// special global used by LLVM. If so, emit it and return true, otherwise
456 /// do nothing and return false.
457 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable
*GV
) {
458 if (GV
->getName() == "llvm.used") {
459 if (TAI
->getUsedDirective() != 0) // No need to emit this at all.
460 EmitLLVMUsedList(GV
->getInitializer());
464 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
465 if (GV
->getSection() == "llvm.metadata" ||
466 GV
->hasAvailableExternallyLinkage())
469 if (!GV
->hasAppendingLinkage()) return false;
471 assert(GV
->hasInitializer() && "Not a special LLVM global!");
473 const TargetData
*TD
= TM
.getTargetData();
474 unsigned Align
= Log2_32(TD
->getPointerPrefAlignment());
475 if (GV
->getName() == "llvm.global_ctors") {
476 SwitchToSection(getObjFileLowering().getStaticCtorSection());
477 EmitAlignment(Align
, 0);
478 EmitXXStructorList(GV
->getInitializer());
482 if (GV
->getName() == "llvm.global_dtors") {
483 SwitchToSection(getObjFileLowering().getStaticDtorSection());
484 EmitAlignment(Align
, 0);
485 EmitXXStructorList(GV
->getInitializer());
492 /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each
493 /// global in the specified llvm.used list for which emitUsedDirectiveFor
494 /// is true, as being used with this directive.
495 void AsmPrinter::EmitLLVMUsedList(Constant
*List
) {
496 const char *Directive
= TAI
->getUsedDirective();
498 // Should be an array of 'i8*'.
499 ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(List
);
500 if (InitList
== 0) return;
502 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
) {
503 const GlobalValue
*GV
=
504 dyn_cast
<GlobalValue
>(InitList
->getOperand(i
)->stripPointerCasts());
505 if (GV
&& getObjFileLowering().shouldEmitUsedDirectiveFor(GV
, Mang
)) {
507 EmitConstantValueOnly(InitList
->getOperand(i
));
513 /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
514 /// function pointers, ignoring the init priority.
515 void AsmPrinter::EmitXXStructorList(Constant
*List
) {
516 // Should be an array of '{ int, void ()* }' structs. The first value is the
517 // init priority, which we ignore.
518 if (!isa
<ConstantArray
>(List
)) return;
519 ConstantArray
*InitList
= cast
<ConstantArray
>(List
);
520 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
521 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))){
522 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
524 if (CS
->getOperand(1)->isNullValue())
525 return; // Found a null terminator, exit printing.
526 // Emit the function pointer.
527 EmitGlobalConstant(CS
->getOperand(1));
531 /// getGlobalLinkName - Returns the asm/link name of of the specified
532 /// global variable. Should be overridden by each target asm printer to
533 /// generate the appropriate value.
534 const std::string
&AsmPrinter::getGlobalLinkName(const GlobalVariable
*GV
,
535 std::string
&LinkName
) const {
536 if (isa
<Function
>(GV
)) {
537 LinkName
+= TAI
->getFunctionAddrPrefix();
538 LinkName
+= Mang
->getMangledName(GV
);
539 LinkName
+= TAI
->getFunctionAddrSuffix();
541 LinkName
+= TAI
->getGlobalVarAddrPrefix();
542 LinkName
+= Mang
->getMangledName(GV
);
543 LinkName
+= TAI
->getGlobalVarAddrSuffix();
549 /// EmitExternalGlobal - Emit the external reference to a global variable.
550 /// Should be overridden if an indirect reference should be used.
551 void AsmPrinter::EmitExternalGlobal(const GlobalVariable
*GV
) {
553 O
<< getGlobalLinkName(GV
, GLN
);
558 //===----------------------------------------------------------------------===//
559 /// LEB 128 number encoding.
561 /// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
562 /// representing an unsigned leb128 value.
563 void AsmPrinter::PrintULEB128(unsigned Value
) const {
566 unsigned char Byte
= static_cast<unsigned char>(Value
& 0x7f);
568 if (Value
) Byte
|= 0x80;
569 O
<< "0x" << utohex_buffer(Byte
, Buffer
+20);
570 if (Value
) O
<< ", ";
574 /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
575 /// representing a signed leb128 value.
576 void AsmPrinter::PrintSLEB128(int Value
) const {
577 int Sign
= Value
>> (8 * sizeof(Value
) - 1);
582 unsigned char Byte
= static_cast<unsigned char>(Value
& 0x7f);
584 IsMore
= Value
!= Sign
|| ((Byte
^ Sign
) & 0x40) != 0;
585 if (IsMore
) Byte
|= 0x80;
586 O
<< "0x" << utohex_buffer(Byte
, Buffer
+20);
587 if (IsMore
) O
<< ", ";
591 //===--------------------------------------------------------------------===//
592 // Emission and print routines
595 /// PrintHex - Print a value as a hexidecimal value.
597 void AsmPrinter::PrintHex(int Value
) const {
599 O
<< "0x" << utohex_buffer(static_cast<unsigned>(Value
), Buffer
+20);
602 /// EOL - Print a newline character to asm stream. If a comment is present
603 /// then it will be printed first. Comments should not contain '\n'.
604 void AsmPrinter::EOL() const {
608 void AsmPrinter::EOL(const std::string
&Comment
) const {
609 if (VerboseAsm
&& !Comment
.empty()) {
611 << TAI
->getCommentString()
618 void AsmPrinter::EOL(const char* Comment
) const {
619 if (VerboseAsm
&& *Comment
) {
621 << TAI
->getCommentString()
628 /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
629 /// unsigned leb128 value.
630 void AsmPrinter::EmitULEB128Bytes(unsigned Value
) const {
631 if (TAI
->hasLEB128()) {
635 O
<< TAI
->getData8bitsDirective();
640 /// EmitSLEB128Bytes - print an assembler byte data directive to compose a
641 /// signed leb128 value.
642 void AsmPrinter::EmitSLEB128Bytes(int Value
) const {
643 if (TAI
->hasLEB128()) {
647 O
<< TAI
->getData8bitsDirective();
652 /// EmitInt8 - Emit a byte directive and value.
654 void AsmPrinter::EmitInt8(int Value
) const {
655 O
<< TAI
->getData8bitsDirective();
656 PrintHex(Value
& 0xFF);
659 /// EmitInt16 - Emit a short directive and value.
661 void AsmPrinter::EmitInt16(int Value
) const {
662 O
<< TAI
->getData16bitsDirective();
663 PrintHex(Value
& 0xFFFF);
666 /// EmitInt32 - Emit a long directive and value.
668 void AsmPrinter::EmitInt32(int Value
) const {
669 O
<< TAI
->getData32bitsDirective();
673 /// EmitInt64 - Emit a long long directive and value.
675 void AsmPrinter::EmitInt64(uint64_t Value
) const {
676 if (TAI
->getData64bitsDirective()) {
677 O
<< TAI
->getData64bitsDirective();
680 if (TM
.getTargetData()->isBigEndian()) {
681 EmitInt32(unsigned(Value
>> 32)); O
<< '\n';
682 EmitInt32(unsigned(Value
));
684 EmitInt32(unsigned(Value
)); O
<< '\n';
685 EmitInt32(unsigned(Value
>> 32));
690 /// toOctal - Convert the low order bits of X into an octal digit.
692 static inline char toOctal(int X
) {
696 /// printStringChar - Print a char, escaped if necessary.
698 static void printStringChar(formatted_raw_ostream
&O
, unsigned char C
) {
701 } else if (C
== '\\') {
703 } else if (isprint((unsigned char)C
)) {
707 case '\b': O
<< "\\b"; break;
708 case '\f': O
<< "\\f"; break;
709 case '\n': O
<< "\\n"; break;
710 case '\r': O
<< "\\r"; break;
711 case '\t': O
<< "\\t"; break;
714 O
<< toOctal(C
>> 6);
715 O
<< toOctal(C
>> 3);
716 O
<< toOctal(C
>> 0);
722 /// EmitString - Emit a string with quotes and a null terminator.
723 /// Special characters are emitted properly.
724 /// \literal (Eg. '\t') \endliteral
725 void AsmPrinter::EmitString(const std::string
&String
) const {
726 EmitString(String
.c_str(), String
.size());
729 void AsmPrinter::EmitString(const char *String
, unsigned Size
) const {
730 const char* AscizDirective
= TAI
->getAscizDirective();
734 O
<< TAI
->getAsciiDirective();
736 for (unsigned i
= 0; i
< Size
; ++i
)
737 printStringChar(O
, String
[i
]);
745 /// EmitFile - Emit a .file directive.
746 void AsmPrinter::EmitFile(unsigned Number
, const std::string
&Name
) const {
747 O
<< "\t.file\t" << Number
<< " \"";
748 for (unsigned i
= 0, N
= Name
.size(); i
< N
; ++i
)
749 printStringChar(O
, Name
[i
]);
754 //===----------------------------------------------------------------------===//
756 // EmitAlignment - Emit an alignment directive to the specified power of
757 // two boundary. For example, if you pass in 3 here, you will get an 8
758 // byte alignment. If a global value is specified, and if that global has
759 // an explicit alignment requested, it will unconditionally override the
760 // alignment request. However, if ForcedAlignBits is specified, this value
761 // has final say: the ultimate alignment will be the max of ForcedAlignBits
762 // and the alignment computed with NumBits and the global.
766 // if (GV && GV->hasalignment) Align = GV->getalignment();
767 // Align = std::max(Align, ForcedAlignBits);
769 void AsmPrinter::EmitAlignment(unsigned NumBits
, const GlobalValue
*GV
,
770 unsigned ForcedAlignBits
,
771 bool UseFillExpr
) const {
772 if (GV
&& GV
->getAlignment())
773 NumBits
= Log2_32(GV
->getAlignment());
774 NumBits
= std::max(NumBits
, ForcedAlignBits
);
776 if (NumBits
== 0) return; // No need to emit alignment.
777 if (TAI
->getAlignmentIsInBytes()) NumBits
= 1 << NumBits
;
778 O
<< TAI
->getAlignDirective() << NumBits
;
780 if (CurrentSection
&& CurrentSection
->getKind().isText())
781 if (unsigned FillValue
= TAI
->getTextAlignFillValue()) {
788 /// PadToColumn - This gets called every time a tab is emitted. If
789 /// column padding is turned on, we replace the tab with the
790 /// appropriate amount of padding. If not, we replace the tab with a
791 /// space, except for the first operand so that initial operands are
792 /// always lined up by tabs.
793 void AsmPrinter::PadToColumn(unsigned Operand
) const {
794 if (TAI
->getOperandColumn(Operand
) > 0) {
795 O
.PadToColumn(TAI
->getOperandColumn(Operand
), 1);
799 // Emit the tab after the mnemonic.
803 // Replace the tab with a space.
809 /// EmitZeros - Emit a block of zeros.
811 void AsmPrinter::EmitZeros(uint64_t NumZeros
, unsigned AddrSpace
) const {
813 if (TAI
->getZeroDirective()) {
814 O
<< TAI
->getZeroDirective() << NumZeros
;
815 if (TAI
->getZeroDirectiveSuffix())
816 O
<< TAI
->getZeroDirectiveSuffix();
819 for (; NumZeros
; --NumZeros
)
820 O
<< TAI
->getData8bitsDirective(AddrSpace
) << "0\n";
825 // Print out the specified constant, without a storage class. Only the
826 // constants valid in constant expressions can occur here.
827 void AsmPrinter::EmitConstantValueOnly(const Constant
*CV
) {
828 if (CV
->isNullValue() || isa
<UndefValue
>(CV
))
830 else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
831 O
<< CI
->getZExtValue();
832 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
833 // This is a constant address for a global variable or function. Use the
834 // name of the variable or function as the address value, possibly
835 // decorating it with GlobalVarAddrPrefix/Suffix or
836 // FunctionAddrPrefix/Suffix (these all default to "" )
837 if (isa
<Function
>(GV
)) {
838 O
<< TAI
->getFunctionAddrPrefix()
839 << Mang
->getMangledName(GV
)
840 << TAI
->getFunctionAddrSuffix();
842 O
<< TAI
->getGlobalVarAddrPrefix()
843 << Mang
->getMangledName(GV
)
844 << TAI
->getGlobalVarAddrSuffix();
846 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
847 const TargetData
*TD
= TM
.getTargetData();
848 unsigned Opcode
= CE
->getOpcode();
850 case Instruction::Trunc
:
851 case Instruction::ZExt
:
852 case Instruction::SExt
:
853 case Instruction::FPTrunc
:
854 case Instruction::FPExt
:
855 case Instruction::UIToFP
:
856 case Instruction::SIToFP
:
857 case Instruction::FPToUI
:
858 case Instruction::FPToSI
:
859 llvm_unreachable("FIXME: Don't support this constant cast expr");
860 case Instruction::GetElementPtr
: {
861 // generate a symbolic expression for the byte address
862 const Constant
*ptrVal
= CE
->getOperand(0);
863 SmallVector
<Value
*, 8> idxVec(CE
->op_begin()+1, CE
->op_end());
864 if (int64_t Offset
= TD
->getIndexedOffset(ptrVal
->getType(), &idxVec
[0],
866 // Truncate/sext the offset to the pointer size.
867 if (TD
->getPointerSizeInBits() != 64) {
868 int SExtAmount
= 64-TD
->getPointerSizeInBits();
869 Offset
= (Offset
<< SExtAmount
) >> SExtAmount
;
874 EmitConstantValueOnly(ptrVal
);
876 O
<< ") + " << Offset
;
878 O
<< ") - " << -Offset
;
880 EmitConstantValueOnly(ptrVal
);
884 case Instruction::BitCast
:
885 return EmitConstantValueOnly(CE
->getOperand(0));
887 case Instruction::IntToPtr
: {
888 // Handle casts to pointers by changing them into casts to the appropriate
889 // integer type. This promotes constant folding and simplifies this code.
890 Constant
*Op
= CE
->getOperand(0);
891 Op
= ConstantExpr::getIntegerCast(Op
, TD
->getIntPtrType(), false/*ZExt*/);
892 return EmitConstantValueOnly(Op
);
896 case Instruction::PtrToInt
: {
897 // Support only foldable casts to/from pointers that can be eliminated by
898 // changing the pointer to the appropriately sized integer type.
899 Constant
*Op
= CE
->getOperand(0);
900 const Type
*Ty
= CE
->getType();
902 // We can emit the pointer value into this slot if the slot is an
903 // integer slot greater or equal to the size of the pointer.
904 if (TD
->getTypeAllocSize(Ty
) == TD
->getTypeAllocSize(Op
->getType()))
905 return EmitConstantValueOnly(Op
);
908 EmitConstantValueOnly(Op
);
910 APInt::getAllOnesValue(TD
->getTypeAllocSizeInBits(Op
->getType()));
913 ptrMask
.toStringUnsigned(S
);
914 O
<< ") & " << S
.c_str() << ')';
917 case Instruction::Add
:
918 case Instruction::Sub
:
919 case Instruction::And
:
920 case Instruction::Or
:
921 case Instruction::Xor
:
923 EmitConstantValueOnly(CE
->getOperand(0));
926 case Instruction::Add
:
929 case Instruction::Sub
:
932 case Instruction::And
:
935 case Instruction::Or
:
938 case Instruction::Xor
:
945 EmitConstantValueOnly(CE
->getOperand(1));
949 llvm_unreachable("Unsupported operator!");
952 llvm_unreachable("Unknown constant value!");
956 /// printAsCString - Print the specified array as a C compatible string, only if
957 /// the predicate isString is true.
959 static void printAsCString(formatted_raw_ostream
&O
, const ConstantArray
*CVA
,
961 assert(CVA
->isString() && "Array is not string compatible!");
964 for (unsigned i
= 0; i
!= LastElt
; ++i
) {
966 (unsigned char)cast
<ConstantInt
>(CVA
->getOperand(i
))->getZExtValue();
967 printStringChar(O
, C
);
972 /// EmitString - Emit a zero-byte-terminated string constant.
974 void AsmPrinter::EmitString(const ConstantArray
*CVA
) const {
975 unsigned NumElts
= CVA
->getNumOperands();
976 if (TAI
->getAscizDirective() && NumElts
&&
977 cast
<ConstantInt
>(CVA
->getOperand(NumElts
-1))->getZExtValue() == 0) {
978 O
<< TAI
->getAscizDirective();
979 printAsCString(O
, CVA
, NumElts
-1);
981 O
<< TAI
->getAsciiDirective();
982 printAsCString(O
, CVA
, NumElts
);
987 void AsmPrinter::EmitGlobalConstantArray(const ConstantArray
*CVA
,
988 unsigned AddrSpace
) {
989 if (CVA
->isString()) {
991 } else { // Not a string. Print the values in successive locations
992 for (unsigned i
= 0, e
= CVA
->getNumOperands(); i
!= e
; ++i
)
993 EmitGlobalConstant(CVA
->getOperand(i
), AddrSpace
);
997 void AsmPrinter::EmitGlobalConstantVector(const ConstantVector
*CP
) {
998 const VectorType
*PTy
= CP
->getType();
1000 for (unsigned I
= 0, E
= PTy
->getNumElements(); I
< E
; ++I
)
1001 EmitGlobalConstant(CP
->getOperand(I
));
1004 void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct
*CVS
,
1005 unsigned AddrSpace
) {
1006 // Print the fields in successive locations. Pad to align if needed!
1007 const TargetData
*TD
= TM
.getTargetData();
1008 unsigned Size
= TD
->getTypeAllocSize(CVS
->getType());
1009 const StructLayout
*cvsLayout
= TD
->getStructLayout(CVS
->getType());
1010 uint64_t sizeSoFar
= 0;
1011 for (unsigned i
= 0, e
= CVS
->getNumOperands(); i
!= e
; ++i
) {
1012 const Constant
* field
= CVS
->getOperand(i
);
1014 // Check if padding is needed and insert one or more 0s.
1015 uint64_t fieldSize
= TD
->getTypeAllocSize(field
->getType());
1016 uint64_t padSize
= ((i
== e
-1 ? Size
: cvsLayout
->getElementOffset(i
+1))
1017 - cvsLayout
->getElementOffset(i
)) - fieldSize
;
1018 sizeSoFar
+= fieldSize
+ padSize
;
1020 // Now print the actual field value.
1021 EmitGlobalConstant(field
, AddrSpace
);
1023 // Insert padding - this may include padding to increase the size of the
1024 // current field up to the ABI size (if the struct is not packed) as well
1025 // as padding to ensure that the next field starts at the right offset.
1026 EmitZeros(padSize
, AddrSpace
);
1028 assert(sizeSoFar
== cvsLayout
->getSizeInBytes() &&
1029 "Layout of constant struct may be incorrect!");
1032 void AsmPrinter::EmitGlobalConstantFP(const ConstantFP
*CFP
,
1033 unsigned AddrSpace
) {
1034 // FP Constants are printed as integer constants to avoid losing
1036 const TargetData
*TD
= TM
.getTargetData();
1037 if (CFP
->getType() == Type::DoubleTy
) {
1038 double Val
= CFP
->getValueAPF().convertToDouble(); // for comment only
1039 uint64_t i
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
1040 if (TAI
->getData64bitsDirective(AddrSpace
)) {
1041 O
<< TAI
->getData64bitsDirective(AddrSpace
) << i
;
1043 O
<< '\t' << TAI
->getCommentString() << " double value: " << Val
;
1045 } else if (TD
->isBigEndian()) {
1046 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
>> 32);
1048 O
<< '\t' << TAI
->getCommentString()
1049 << " double most significant word " << Val
;
1051 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
);
1053 O
<< '\t' << TAI
->getCommentString()
1054 << " double least significant word " << Val
;
1057 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
);
1059 O
<< '\t' << TAI
->getCommentString()
1060 << " double least significant word " << Val
;
1062 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(i
>> 32);
1064 O
<< '\t' << TAI
->getCommentString()
1065 << " double most significant word " << Val
;
1069 } else if (CFP
->getType() == Type::FloatTy
) {
1070 float Val
= CFP
->getValueAPF().convertToFloat(); // for comment only
1071 O
<< TAI
->getData32bitsDirective(AddrSpace
)
1072 << CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
1074 O
<< '\t' << TAI
->getCommentString() << " float " << Val
;
1077 } else if (CFP
->getType() == Type::X86_FP80Ty
) {
1078 // all long double variants are printed as hex
1079 // api needed to prevent premature destruction
1080 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
1081 const uint64_t *p
= api
.getRawData();
1082 // Convert to double so we can print the approximate val as a comment.
1083 APFloat DoubleVal
= CFP
->getValueAPF();
1085 DoubleVal
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
,
1087 if (TD
->isBigEndian()) {
1088 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[1]);
1090 O
<< '\t' << TAI
->getCommentString()
1091 << " long double most significant halfword of ~"
1092 << DoubleVal
.convertToDouble();
1094 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 48);
1096 O
<< '\t' << TAI
->getCommentString() << " long double next halfword";
1098 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 32);
1100 O
<< '\t' << TAI
->getCommentString() << " long double next halfword";
1102 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 16);
1104 O
<< '\t' << TAI
->getCommentString() << " long double next halfword";
1106 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0]);
1108 O
<< '\t' << TAI
->getCommentString()
1109 << " long double least significant halfword";
1112 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0]);
1114 O
<< '\t' << TAI
->getCommentString()
1115 << " long double least significant halfword of ~"
1116 << DoubleVal
.convertToDouble();
1118 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 16);
1120 O
<< '\t' << TAI
->getCommentString()
1121 << " long double next halfword";
1123 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 32);
1125 O
<< '\t' << TAI
->getCommentString()
1126 << " long double next halfword";
1128 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[0] >> 48);
1130 O
<< '\t' << TAI
->getCommentString()
1131 << " long double next halfword";
1133 O
<< TAI
->getData16bitsDirective(AddrSpace
) << uint16_t(p
[1]);
1135 O
<< '\t' << TAI
->getCommentString()
1136 << " long double most significant halfword";
1139 EmitZeros(TD
->getTypeAllocSize(Type::X86_FP80Ty
) -
1140 TD
->getTypeStoreSize(Type::X86_FP80Ty
), AddrSpace
);
1142 } else if (CFP
->getType() == Type::PPC_FP128Ty
) {
1143 // all long double variants are printed as hex
1144 // api needed to prevent premature destruction
1145 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
1146 const uint64_t *p
= api
.getRawData();
1147 if (TD
->isBigEndian()) {
1148 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0] >> 32);
1150 O
<< '\t' << TAI
->getCommentString()
1151 << " long double most significant word";
1153 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0]);
1155 O
<< '\t' << TAI
->getCommentString()
1156 << " long double next word";
1158 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1] >> 32);
1160 O
<< '\t' << TAI
->getCommentString()
1161 << " long double next word";
1163 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1]);
1165 O
<< '\t' << TAI
->getCommentString()
1166 << " long double least significant word";
1169 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1]);
1171 O
<< '\t' << TAI
->getCommentString()
1172 << " long double least significant word";
1174 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[1] >> 32);
1176 O
<< '\t' << TAI
->getCommentString()
1177 << " long double next word";
1179 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0]);
1181 O
<< '\t' << TAI
->getCommentString()
1182 << " long double next word";
1184 O
<< TAI
->getData32bitsDirective(AddrSpace
) << uint32_t(p
[0] >> 32);
1186 O
<< '\t' << TAI
->getCommentString()
1187 << " long double most significant word";
1191 } else llvm_unreachable("Floating point constant type not handled");
1194 void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt
*CI
,
1195 unsigned AddrSpace
) {
1196 const TargetData
*TD
= TM
.getTargetData();
1197 unsigned BitWidth
= CI
->getBitWidth();
1198 assert(isPowerOf2_32(BitWidth
) &&
1199 "Non-power-of-2-sized integers not handled!");
1201 // We don't expect assemblers to support integer data directives
1202 // for more than 64 bits, so we emit the data in at most 64-bit
1203 // quantities at a time.
1204 const uint64_t *RawData
= CI
->getValue().getRawData();
1205 for (unsigned i
= 0, e
= BitWidth
/ 64; i
!= e
; ++i
) {
1207 if (TD
->isBigEndian())
1208 Val
= RawData
[e
- i
- 1];
1212 if (TAI
->getData64bitsDirective(AddrSpace
))
1213 O
<< TAI
->getData64bitsDirective(AddrSpace
) << Val
<< '\n';
1214 else if (TD
->isBigEndian()) {
1215 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
>> 32);
1217 O
<< '\t' << TAI
->getCommentString()
1218 << " Double-word most significant word " << Val
;
1220 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
);
1222 O
<< '\t' << TAI
->getCommentString()
1223 << " Double-word least significant word " << Val
;
1226 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
);
1228 O
<< '\t' << TAI
->getCommentString()
1229 << " Double-word least significant word " << Val
;
1231 O
<< TAI
->getData32bitsDirective(AddrSpace
) << unsigned(Val
>> 32);
1233 O
<< '\t' << TAI
->getCommentString()
1234 << " Double-word most significant word " << Val
;
1240 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1241 void AsmPrinter::EmitGlobalConstant(const Constant
*CV
, unsigned AddrSpace
) {
1242 const TargetData
*TD
= TM
.getTargetData();
1243 const Type
*type
= CV
->getType();
1244 unsigned Size
= TD
->getTypeAllocSize(type
);
1246 if (CV
->isNullValue() || isa
<UndefValue
>(CV
)) {
1247 EmitZeros(Size
, AddrSpace
);
1249 } else if (const ConstantArray
*CVA
= dyn_cast
<ConstantArray
>(CV
)) {
1250 EmitGlobalConstantArray(CVA
, AddrSpace
);
1252 } else if (const ConstantStruct
*CVS
= dyn_cast
<ConstantStruct
>(CV
)) {
1253 EmitGlobalConstantStruct(CVS
, AddrSpace
);
1255 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
1256 EmitGlobalConstantFP(CFP
, AddrSpace
);
1258 } else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
1259 // Small integers are handled below; large integers are handled here.
1261 EmitGlobalConstantLargeInt(CI
, AddrSpace
);
1264 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
1265 EmitGlobalConstantVector(CP
);
1269 printDataDirective(type
, AddrSpace
);
1270 EmitConstantValueOnly(CV
);
1272 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
1274 CI
->getValue().toStringUnsigned(S
, 16);
1275 O
<< "\t\t\t" << TAI
->getCommentString() << " 0x" << S
.c_str();
1281 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue
*MCPV
) {
1282 // Target doesn't support this yet!
1283 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1286 /// PrintSpecial - Print information related to the specified machine instr
1287 /// that is independent of the operand, and may be independent of the instr
1288 /// itself. This can be useful for portably encoding the comment character
1289 /// or other bits of target-specific knowledge into the asmstrings. The
1290 /// syntax used is ${:comment}. Targets can override this to add support
1291 /// for their own strange codes.
1292 void AsmPrinter::PrintSpecial(const MachineInstr
*MI
, const char *Code
) const {
1293 if (!strcmp(Code
, "private")) {
1294 O
<< TAI
->getPrivateGlobalPrefix();
1295 } else if (!strcmp(Code
, "comment")) {
1297 O
<< TAI
->getCommentString();
1298 } else if (!strcmp(Code
, "uid")) {
1299 // Comparing the address of MI isn't sufficient, because machineinstrs may
1300 // be allocated to the same address across functions.
1301 const Function
*ThisF
= MI
->getParent()->getParent()->getFunction();
1303 // If this is a new LastFn instruction, bump the counter.
1304 if (LastMI
!= MI
|| LastFn
!= ThisF
) {
1312 raw_string_ostream
Msg(msg
);
1313 Msg
<< "Unknown special formatter '" << Code
1314 << "' for machine instr: " << *MI
;
1315 llvm_report_error(Msg
.str());
1319 /// processDebugLoc - Processes the debug information of each machine
1320 /// instruction's DebugLoc.
1321 void AsmPrinter::processDebugLoc(DebugLoc DL
) {
1322 if (TAI
->doesSupportDebugInformation() && DW
->ShouldEmitDwarfDebug()) {
1323 if (!DL
.isUnknown()) {
1324 DebugLocTuple CurDLT
= MF
->getDebugLocTuple(DL
);
1326 if (CurDLT
.CompileUnit
!= 0 && PrevDLT
!= CurDLT
)
1327 printLabel(DW
->RecordSourceLine(CurDLT
.Line
, CurDLT
.Col
,
1328 DICompileUnit(CurDLT
.CompileUnit
)));
1335 /// printInlineAsm - This method formats and prints the specified machine
1336 /// instruction that is an inline asm.
1337 void AsmPrinter::printInlineAsm(const MachineInstr
*MI
) const {
1338 unsigned NumOperands
= MI
->getNumOperands();
1340 // Count the number of register definitions.
1341 unsigned NumDefs
= 0;
1342 for (; MI
->getOperand(NumDefs
).isReg() && MI
->getOperand(NumDefs
).isDef();
1344 assert(NumDefs
!= NumOperands
-1 && "No asm string?");
1346 assert(MI
->getOperand(NumDefs
).isSymbol() && "No asm string?");
1348 // Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
1349 const char *AsmStr
= MI
->getOperand(NumDefs
).getSymbolName();
1351 // If this asmstr is empty, just print the #APP/#NOAPP markers.
1352 // These are useful to see where empty asm's wound up.
1353 if (AsmStr
[0] == 0) {
1354 O
<< TAI
->getInlineAsmStart() << "\n\t" << TAI
->getInlineAsmEnd() << '\n';
1358 O
<< TAI
->getInlineAsmStart() << "\n\t";
1360 // The variant of the current asmprinter.
1361 int AsmPrinterVariant
= TAI
->getAssemblerDialect();
1363 int CurVariant
= -1; // The number of the {.|.|.} region we are in.
1364 const char *LastEmitted
= AsmStr
; // One past the last character emitted.
1366 while (*LastEmitted
) {
1367 switch (*LastEmitted
) {
1369 // Not a special case, emit the string section literally.
1370 const char *LiteralEnd
= LastEmitted
+1;
1371 while (*LiteralEnd
&& *LiteralEnd
!= '{' && *LiteralEnd
!= '|' &&
1372 *LiteralEnd
!= '}' && *LiteralEnd
!= '$' && *LiteralEnd
!= '\n')
1374 if (CurVariant
== -1 || CurVariant
== AsmPrinterVariant
)
1375 O
.write(LastEmitted
, LiteralEnd
-LastEmitted
);
1376 LastEmitted
= LiteralEnd
;
1380 ++LastEmitted
; // Consume newline character.
1381 O
<< '\n'; // Indent code with newline.
1384 ++LastEmitted
; // Consume '$' character.
1388 switch (*LastEmitted
) {
1389 default: Done
= false; break;
1390 case '$': // $$ -> $
1391 if (CurVariant
== -1 || CurVariant
== AsmPrinterVariant
)
1393 ++LastEmitted
; // Consume second '$' character.
1395 case '(': // $( -> same as GCC's { character.
1396 ++LastEmitted
; // Consume '(' character.
1397 if (CurVariant
!= -1) {
1398 llvm_report_error("Nested variants found in inline asm string: '"
1399 + std::string(AsmStr
) + "'");
1401 CurVariant
= 0; // We're in the first variant now.
1404 ++LastEmitted
; // consume '|' character.
1405 if (CurVariant
== -1)
1406 O
<< '|'; // this is gcc's behavior for | outside a variant
1408 ++CurVariant
; // We're in the next variant.
1410 case ')': // $) -> same as GCC's } char.
1411 ++LastEmitted
; // consume ')' character.
1412 if (CurVariant
== -1)
1413 O
<< '}'; // this is gcc's behavior for } outside a variant
1420 bool HasCurlyBraces
= false;
1421 if (*LastEmitted
== '{') { // ${variable}
1422 ++LastEmitted
; // Consume '{' character.
1423 HasCurlyBraces
= true;
1426 // If we have ${:foo}, then this is not a real operand reference, it is a
1427 // "magic" string reference, just like in .td files. Arrange to call
1429 if (HasCurlyBraces
&& *LastEmitted
== ':') {
1431 const char *StrStart
= LastEmitted
;
1432 const char *StrEnd
= strchr(StrStart
, '}');
1434 llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
1435 + std::string(AsmStr
) + "'");
1438 std::string
Val(StrStart
, StrEnd
);
1439 PrintSpecial(MI
, Val
.c_str());
1440 LastEmitted
= StrEnd
+1;
1444 const char *IDStart
= LastEmitted
;
1447 long Val
= strtol(IDStart
, &IDEnd
, 10); // We only accept numbers for IDs.
1448 if (!isdigit(*IDStart
) || (Val
== 0 && errno
== EINVAL
)) {
1449 llvm_report_error("Bad $ operand number in inline asm string: '"
1450 + std::string(AsmStr
) + "'");
1452 LastEmitted
= IDEnd
;
1454 char Modifier
[2] = { 0, 0 };
1456 if (HasCurlyBraces
) {
1457 // If we have curly braces, check for a modifier character. This
1458 // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
1459 if (*LastEmitted
== ':') {
1460 ++LastEmitted
; // Consume ':' character.
1461 if (*LastEmitted
== 0) {
1462 llvm_report_error("Bad ${:} expression in inline asm string: '"
1463 + std::string(AsmStr
) + "'");
1466 Modifier
[0] = *LastEmitted
;
1467 ++LastEmitted
; // Consume modifier character.
1470 if (*LastEmitted
!= '}') {
1471 llvm_report_error("Bad ${} expression in inline asm string: '"
1472 + std::string(AsmStr
) + "'");
1474 ++LastEmitted
; // Consume '}' character.
1477 if ((unsigned)Val
>= NumOperands
-1) {
1478 llvm_report_error("Invalid $ operand number in inline asm string: '"
1479 + std::string(AsmStr
) + "'");
1482 // Okay, we finally have a value number. Ask the target to print this
1484 if (CurVariant
== -1 || CurVariant
== AsmPrinterVariant
) {
1489 // Scan to find the machine operand number for the operand.
1490 for (; Val
; --Val
) {
1491 if (OpNo
>= MI
->getNumOperands()) break;
1492 unsigned OpFlags
= MI
->getOperand(OpNo
).getImm();
1493 OpNo
+= InlineAsm::getNumOperandRegisters(OpFlags
) + 1;
1496 if (OpNo
>= MI
->getNumOperands()) {
1499 unsigned OpFlags
= MI
->getOperand(OpNo
).getImm();
1500 ++OpNo
; // Skip over the ID number.
1502 if (Modifier
[0]=='l') // labels are target independent
1503 printBasicBlockLabel(MI
->getOperand(OpNo
).getMBB(),
1504 false, false, false);
1506 AsmPrinter
*AP
= const_cast<AsmPrinter
*>(this);
1507 if ((OpFlags
& 7) == 4) {
1508 Error
= AP
->PrintAsmMemoryOperand(MI
, OpNo
, AsmPrinterVariant
,
1509 Modifier
[0] ? Modifier
: 0);
1511 Error
= AP
->PrintAsmOperand(MI
, OpNo
, AsmPrinterVariant
,
1512 Modifier
[0] ? Modifier
: 0);
1518 raw_string_ostream
Msg(msg
);
1519 Msg
<< "Invalid operand found in inline asm: '"
1522 llvm_report_error(Msg
.str());
1529 O
<< "\n\t" << TAI
->getInlineAsmEnd() << '\n';
1532 /// printImplicitDef - This method prints the specified machine instruction
1533 /// that is an implicit def.
1534 void AsmPrinter::printImplicitDef(const MachineInstr
*MI
) const {
1536 O
<< '\t' << TAI
->getCommentString() << " implicit-def: "
1537 << TRI
->getAsmName(MI
->getOperand(0).getReg()) << '\n';
1540 /// printLabel - This method prints a local label used by debug and
1541 /// exception handling tables.
1542 void AsmPrinter::printLabel(const MachineInstr
*MI
) const {
1543 printLabel(MI
->getOperand(0).getImm());
1546 void AsmPrinter::printLabel(unsigned Id
) const {
1547 O
<< TAI
->getPrivateGlobalPrefix() << "label" << Id
<< ":\n";
1550 /// printDeclare - This method prints a local variable declaration used by
1552 /// FIXME: It doesn't really print anything rather it inserts a DebugVariable
1553 /// entry into dwarf table.
1554 void AsmPrinter::printDeclare(const MachineInstr
*MI
) const {
1555 unsigned FI
= MI
->getOperand(0).getIndex();
1556 GlobalValue
*GV
= MI
->getOperand(1).getGlobal();
1557 DW
->RecordVariable(cast
<GlobalVariable
>(GV
), FI
, MI
);
1560 /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
1561 /// instruction, using the specified assembler variant. Targets should
1562 /// overried this to format as appropriate.
1563 bool AsmPrinter::PrintAsmOperand(const MachineInstr
*MI
, unsigned OpNo
,
1564 unsigned AsmVariant
, const char *ExtraCode
) {
1565 // Target doesn't support this yet!
1569 bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr
*MI
, unsigned OpNo
,
1570 unsigned AsmVariant
,
1571 const char *ExtraCode
) {
1572 // Target doesn't support this yet!
1576 /// printBasicBlockLabel - This method prints the label for the specified
1577 /// MachineBasicBlock
1578 void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock
*MBB
,
1581 bool printComment
) const {
1583 unsigned Align
= MBB
->getAlignment();
1585 EmitAlignment(Log2_32(Align
));
1588 O
<< TAI
->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_'
1589 << MBB
->getNumber();
1592 if (printComment
&& MBB
->getBasicBlock())
1593 O
<< '\t' << TAI
->getCommentString() << ' '
1594 << MBB
->getBasicBlock()->getNameStr();
1597 /// printPICJumpTableSetLabel - This method prints a set label for the
1598 /// specified MachineBasicBlock for a jumptable entry.
1599 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid
,
1600 const MachineBasicBlock
*MBB
) const {
1601 if (!TAI
->getSetDirective())
1604 O
<< TAI
->getSetDirective() << ' ' << TAI
->getPrivateGlobalPrefix()
1605 << getFunctionNumber() << '_' << uid
<< "_set_" << MBB
->getNumber() << ',';
1606 printBasicBlockLabel(MBB
, false, false, false);
1607 O
<< '-' << TAI
->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1608 << '_' << uid
<< '\n';
1611 void AsmPrinter::printPICJumpTableSetLabel(unsigned uid
, unsigned uid2
,
1612 const MachineBasicBlock
*MBB
) const {
1613 if (!TAI
->getSetDirective())
1616 O
<< TAI
->getSetDirective() << ' ' << TAI
->getPrivateGlobalPrefix()
1617 << getFunctionNumber() << '_' << uid
<< '_' << uid2
1618 << "_set_" << MBB
->getNumber() << ',';
1619 printBasicBlockLabel(MBB
, false, false, false);
1620 O
<< '-' << TAI
->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
1621 << '_' << uid
<< '_' << uid2
<< '\n';
1624 /// printDataDirective - This method prints the asm directive for the
1626 void AsmPrinter::printDataDirective(const Type
*type
, unsigned AddrSpace
) {
1627 const TargetData
*TD
= TM
.getTargetData();
1628 switch (type
->getTypeID()) {
1629 case Type::FloatTyID
: case Type::DoubleTyID
:
1630 case Type::X86_FP80TyID
: case Type::FP128TyID
: case Type::PPC_FP128TyID
:
1631 assert(0 && "Should have already output floating point constant.");
1633 assert(0 && "Can't handle printing this type of thing");
1634 case Type::IntegerTyID
: {
1635 unsigned BitWidth
= cast
<IntegerType
>(type
)->getBitWidth();
1637 O
<< TAI
->getData8bitsDirective(AddrSpace
);
1638 else if (BitWidth
<= 16)
1639 O
<< TAI
->getData16bitsDirective(AddrSpace
);
1640 else if (BitWidth
<= 32)
1641 O
<< TAI
->getData32bitsDirective(AddrSpace
);
1642 else if (BitWidth
<= 64) {
1643 assert(TAI
->getData64bitsDirective(AddrSpace
) &&
1644 "Target cannot handle 64-bit constant exprs!");
1645 O
<< TAI
->getData64bitsDirective(AddrSpace
);
1647 llvm_unreachable("Target cannot handle given data directive width!");
1651 case Type::PointerTyID
:
1652 if (TD
->getPointerSize() == 8) {
1653 assert(TAI
->getData64bitsDirective(AddrSpace
) &&
1654 "Target cannot handle 64-bit pointer exprs!");
1655 O
<< TAI
->getData64bitsDirective(AddrSpace
);
1656 } else if (TD
->getPointerSize() == 2) {
1657 O
<< TAI
->getData16bitsDirective(AddrSpace
);
1658 } else if (TD
->getPointerSize() == 1) {
1659 O
<< TAI
->getData8bitsDirective(AddrSpace
);
1661 O
<< TAI
->getData32bitsDirective(AddrSpace
);
1667 void AsmPrinter::printVisibility(const std::string
& Name
,
1668 unsigned Visibility
) const {
1669 if (Visibility
== GlobalValue::HiddenVisibility
) {
1670 if (const char *Directive
= TAI
->getHiddenDirective())
1671 O
<< Directive
<< Name
<< '\n';
1672 } else if (Visibility
== GlobalValue::ProtectedVisibility
) {
1673 if (const char *Directive
= TAI
->getProtectedDirective())
1674 O
<< Directive
<< Name
<< '\n';
1678 void AsmPrinter::printOffset(int64_t Offset
) const {
1681 else if (Offset
< 0)
1685 GCMetadataPrinter
*AsmPrinter::GetOrCreateGCPrinter(GCStrategy
*S
) {
1686 if (!S
->usesMetadata())
1689 gcp_iterator GCPI
= GCMetadataPrinters
.find(S
);
1690 if (GCPI
!= GCMetadataPrinters
.end())
1691 return GCPI
->second
;
1693 const char *Name
= S
->getName().c_str();
1695 for (GCMetadataPrinterRegistry::iterator
1696 I
= GCMetadataPrinterRegistry::begin(),
1697 E
= GCMetadataPrinterRegistry::end(); I
!= E
; ++I
)
1698 if (strcmp(Name
, I
->getName()) == 0) {
1699 GCMetadataPrinter
*GMP
= I
->instantiate();
1701 GCMetadataPrinters
.insert(std::make_pair(S
, GMP
));
1705 cerr
<< "no GCMetadataPrinter registered for GC: " << Name
<< "\n";
1706 llvm_unreachable(0);
1709 /// EmitComments - Pretty-print comments for instructions
1710 void AsmPrinter::EmitComments(const MachineInstr
&MI
) const
1713 if (!MI
.getDebugLoc().isUnknown()) {
1714 DebugLocTuple DLT
= MF
->getDebugLocTuple(MI
.getDebugLoc());
1716 // Print source line info
1717 O
.PadToColumn(TAI
->getCommentColumn(), 1);
1718 O
<< TAI
->getCommentString() << " SrcLine ";
1719 if (DLT
.CompileUnit
->hasInitializer()) {
1720 Constant
*Name
= DLT
.CompileUnit
->getInitializer();
1721 if (ConstantArray
*NameString
= dyn_cast
<ConstantArray
>(Name
))
1722 if (NameString
->isString()) {
1723 O
<< NameString
->getAsString() << " ";
1728 O
<< ":" << DLT
.Col
;
1733 /// EmitComments - Pretty-print comments for instructions
1734 void AsmPrinter::EmitComments(const MCInst
&MI
) const
1737 if (!MI
.getDebugLoc().isUnknown()) {
1738 DebugLocTuple DLT
= MF
->getDebugLocTuple(MI
.getDebugLoc());
1740 // Print source line info
1741 O
.PadToColumn(TAI
->getCommentColumn(), 1);
1742 O
<< TAI
->getCommentString() << " SrcLine ";
1743 if (DLT
.CompileUnit
->hasInitializer()) {
1744 Constant
*Name
= DLT
.CompileUnit
->getInitializer();
1745 if (ConstantArray
*NameString
= dyn_cast
<ConstantArray
>(Name
))
1746 if (NameString
->isString()) {
1747 O
<< NameString
->getAsString() << " ";
1752 O
<< ":" << DLT
.Col
;