Fix part 1 of pr4682. PICADD is a 16-bit instruction even in thumb2 mode.
[llvm/avr.git] / lib / CodeGen / VirtRegRewriter.cpp
blob460b508a804b64c28eb1a551ee83b8030a994eca
1 //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "virtregrewriter"
11 #include "VirtRegRewriter.h"
12 #include "llvm/Support/Compiler.h"
13 #include "llvm/Support/ErrorHandling.h"
14 #include "llvm/Support/raw_ostream.h"
15 #include "llvm/Target/TargetLowering.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include <algorithm>
20 using namespace llvm;
22 STATISTIC(NumDSE , "Number of dead stores elided");
23 STATISTIC(NumDSS , "Number of dead spill slots removed");
24 STATISTIC(NumCommutes, "Number of instructions commuted");
25 STATISTIC(NumDRM , "Number of re-materializable defs elided");
26 STATISTIC(NumStores , "Number of stores added");
27 STATISTIC(NumPSpills , "Number of physical register spills");
28 STATISTIC(NumOmitted , "Number of reloads omited");
29 STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
30 STATISTIC(NumCopified, "Number of available reloads turned into copies");
31 STATISTIC(NumReMats , "Number of re-materialization");
32 STATISTIC(NumLoads , "Number of loads added");
33 STATISTIC(NumReused , "Number of values reused");
34 STATISTIC(NumDCE , "Number of copies elided");
35 STATISTIC(NumSUnfold , "Number of stores unfolded");
36 STATISTIC(NumModRefUnfold, "Number of modref unfolded");
38 namespace {
39 enum RewriterName { local, trivial };
42 static cl::opt<RewriterName>
43 RewriterOpt("rewriter",
44 cl::desc("Rewriter to use: (default: local)"),
45 cl::Prefix,
46 cl::values(clEnumVal(local, "local rewriter"),
47 clEnumVal(trivial, "trivial rewriter"),
48 clEnumValEnd),
49 cl::init(local));
51 cl::opt<bool>
52 ScheduleSpills("schedule-spills",
53 cl::desc("Schedule spill code"),
54 cl::init(false));
56 VirtRegRewriter::~VirtRegRewriter() {}
59 /// This class is intended for use with the new spilling framework only. It
60 /// rewrites vreg def/uses to use the assigned preg, but does not insert any
61 /// spill code.
62 struct VISIBILITY_HIDDEN TrivialRewriter : public VirtRegRewriter {
64 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
65 LiveIntervals* LIs) {
66 DOUT << "********** REWRITE MACHINE CODE **********\n";
67 DEBUG(errs() << "********** Function: "
68 << MF.getFunction()->getName() << '\n');
69 DOUT << "**** Machine Instrs"
70 << "(NOTE! Does not include spills and reloads!) ****\n";
71 DEBUG(MF.dump());
73 MachineRegisterInfo *mri = &MF.getRegInfo();
75 bool changed = false;
77 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
78 liItr != liEnd; ++liItr) {
80 if (TargetRegisterInfo::isVirtualRegister(liItr->first)) {
81 if (VRM.hasPhys(liItr->first)) {
82 unsigned preg = VRM.getPhys(liItr->first);
83 mri->replaceRegWith(liItr->first, preg);
84 mri->setPhysRegUsed(preg);
85 changed = true;
88 else {
89 if (!liItr->second->empty()) {
90 mri->setPhysRegUsed(liItr->first);
96 DOUT << "**** Post Machine Instrs ****\n";
97 DEBUG(MF.dump());
99 return changed;
104 // ************************************************************************ //
106 /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
107 /// from top down, keep track of which spill slots or remat are available in
108 /// each register.
110 /// Note that not all physregs are created equal here. In particular, some
111 /// physregs are reloads that we are allowed to clobber or ignore at any time.
112 /// Other physregs are values that the register allocated program is using
113 /// that we cannot CHANGE, but we can read if we like. We keep track of this
114 /// on a per-stack-slot / remat id basis as the low bit in the value of the
115 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
116 /// this bit and addAvailable sets it if.
117 class VISIBILITY_HIDDEN AvailableSpills {
118 const TargetRegisterInfo *TRI;
119 const TargetInstrInfo *TII;
121 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
122 // or remat'ed virtual register values that are still available, due to
123 // being loaded or stored to, but not invalidated yet.
124 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
126 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
127 // indicating which stack slot values are currently held by a physreg. This
128 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
129 // physreg is modified.
130 std::multimap<unsigned, int> PhysRegsAvailable;
132 void disallowClobberPhysRegOnly(unsigned PhysReg);
134 void ClobberPhysRegOnly(unsigned PhysReg);
135 public:
136 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
137 : TRI(tri), TII(tii) {
140 /// clear - Reset the state.
141 void clear() {
142 SpillSlotsOrReMatsAvailable.clear();
143 PhysRegsAvailable.clear();
146 const TargetRegisterInfo *getRegInfo() const { return TRI; }
148 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
149 /// available in a physical register, return that PhysReg, otherwise
150 /// return 0.
151 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
152 std::map<int, unsigned>::const_iterator I =
153 SpillSlotsOrReMatsAvailable.find(Slot);
154 if (I != SpillSlotsOrReMatsAvailable.end()) {
155 return I->second >> 1; // Remove the CanClobber bit.
157 return 0;
160 /// addAvailable - Mark that the specified stack slot / remat is available
161 /// in the specified physreg. If CanClobber is true, the physreg can be
162 /// modified at any time without changing the semantics of the program.
163 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
164 // If this stack slot is thought to be available in some other physreg,
165 // remove its record.
166 ModifyStackSlotOrReMat(SlotOrReMat);
168 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
169 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
170 (unsigned)CanClobber;
172 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
173 DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
174 else
175 DOUT << "Remembering SS#" << SlotOrReMat;
176 DOUT << " in physreg " << TRI->getName(Reg) << "\n";
179 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
180 /// the value of the specified stackslot register if it desires. The
181 /// specified stack slot must be available in a physreg for this query to
182 /// make sense.
183 bool canClobberPhysRegForSS(int SlotOrReMat) const {
184 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
185 "Value not available!");
186 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
189 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
190 /// physical register where values for some stack slot(s) might be
191 /// available.
192 bool canClobberPhysReg(unsigned PhysReg) const {
193 std::multimap<unsigned, int>::const_iterator I =
194 PhysRegsAvailable.lower_bound(PhysReg);
195 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
196 int SlotOrReMat = I->second;
197 I++;
198 if (!canClobberPhysRegForSS(SlotOrReMat))
199 return false;
201 return true;
204 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
205 /// stackslot register. The register is still available but is no longer
206 /// allowed to be modifed.
207 void disallowClobberPhysReg(unsigned PhysReg);
209 /// ClobberPhysReg - This is called when the specified physreg changes
210 /// value. We use this to invalidate any info about stuff that lives in
211 /// it and any of its aliases.
212 void ClobberPhysReg(unsigned PhysReg);
214 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
215 /// slot changes. This removes information about which register the
216 /// previous value for this slot lives in (as the previous value is dead
217 /// now).
218 void ModifyStackSlotOrReMat(int SlotOrReMat);
220 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
221 /// into the specified MBB. Add available physical registers as potential
222 /// live-in's. If they are reused in the MBB, they will be added to the
223 /// live-in set to make register scavenger and post-allocation scheduler.
224 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
225 std::vector<MachineOperand*> &KillOps);
228 // ************************************************************************ //
230 // Given a location where a reload of a spilled register or a remat of
231 // a constant is to be inserted, attempt to find a safe location to
232 // insert the load at an earlier point in the basic-block, to hide
233 // latency of the load and to avoid address-generation interlock
234 // issues.
235 static MachineBasicBlock::iterator
236 ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
237 MachineBasicBlock::iterator const Begin,
238 unsigned PhysReg,
239 const TargetRegisterInfo *TRI,
240 bool DoReMat,
241 int SSorRMId,
242 const TargetInstrInfo *TII,
243 const MachineFunction &MF)
245 if (!ScheduleSpills)
246 return InsertLoc;
248 // Spill backscheduling is of primary interest to addresses, so
249 // don't do anything if the register isn't in the register class
250 // used for pointers.
252 const TargetLowering *TL = MF.getTarget().getTargetLowering();
254 if (!TL->isTypeLegal(TL->getPointerTy()))
255 // Believe it or not, this is true on PIC16.
256 return InsertLoc;
258 const TargetRegisterClass *ptrRegClass =
259 TL->getRegClassFor(TL->getPointerTy());
260 if (!ptrRegClass->contains(PhysReg))
261 return InsertLoc;
263 // Scan upwards through the preceding instructions. If an instruction doesn't
264 // reference the stack slot or the register we're loading, we can
265 // backschedule the reload up past it.
266 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
267 while (NewInsertLoc != Begin) {
268 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
269 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
270 MachineOperand &Op = Prev->getOperand(i);
271 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
272 goto stop;
274 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
275 Prev->findRegisterDefOperand(PhysReg))
276 goto stop;
277 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
278 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
279 Prev->findRegisterDefOperand(*Alias))
280 goto stop;
281 NewInsertLoc = Prev;
283 stop:;
285 // If we made it to the beginning of the block, turn around and move back
286 // down just past any existing reloads. They're likely to be reloads/remats
287 // for instructions earlier than what our current reload/remat is for, so
288 // they should be scheduled earlier.
289 if (NewInsertLoc == Begin) {
290 int FrameIdx;
291 while (InsertLoc != NewInsertLoc &&
292 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
293 TII->isTriviallyReMaterializable(NewInsertLoc)))
294 ++NewInsertLoc;
297 return NewInsertLoc;
300 // ReusedOp - For each reused operand, we keep track of a bit of information,
301 // in case we need to rollback upon processing a new operand. See comments
302 // below.
303 struct ReusedOp {
304 // The MachineInstr operand that reused an available value.
305 unsigned Operand;
307 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
308 unsigned StackSlotOrReMat;
310 // PhysRegReused - The physical register the value was available in.
311 unsigned PhysRegReused;
313 // AssignedPhysReg - The physreg that was assigned for use by the reload.
314 unsigned AssignedPhysReg;
316 // VirtReg - The virtual register itself.
317 unsigned VirtReg;
319 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
320 unsigned vreg)
321 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
322 AssignedPhysReg(apr), VirtReg(vreg) {}
325 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
326 /// is reused instead of reloaded.
327 class VISIBILITY_HIDDEN ReuseInfo {
328 MachineInstr &MI;
329 std::vector<ReusedOp> Reuses;
330 BitVector PhysRegsClobbered;
331 public:
332 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
333 PhysRegsClobbered.resize(tri->getNumRegs());
336 bool hasReuses() const {
337 return !Reuses.empty();
340 /// addReuse - If we choose to reuse a virtual register that is already
341 /// available instead of reloading it, remember that we did so.
342 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
343 unsigned PhysRegReused, unsigned AssignedPhysReg,
344 unsigned VirtReg) {
345 // If the reload is to the assigned register anyway, no undo will be
346 // required.
347 if (PhysRegReused == AssignedPhysReg) return;
349 // Otherwise, remember this.
350 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
351 AssignedPhysReg, VirtReg));
354 void markClobbered(unsigned PhysReg) {
355 PhysRegsClobbered.set(PhysReg);
358 bool isClobbered(unsigned PhysReg) const {
359 return PhysRegsClobbered.test(PhysReg);
362 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
363 /// is some other operand that is using the specified register, either pick
364 /// a new register to use, or evict the previous reload and use this reg.
365 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
366 MachineFunction &MF, MachineInstr *MI,
367 AvailableSpills &Spills,
368 std::vector<MachineInstr*> &MaybeDeadStores,
369 SmallSet<unsigned, 8> &Rejected,
370 BitVector &RegKills,
371 std::vector<MachineOperand*> &KillOps,
372 VirtRegMap &VRM);
374 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
375 /// 'Rejected' set to remember which registers have been considered and
376 /// rejected for the reload. This avoids infinite looping in case like
377 /// this:
378 /// t1 := op t2, t3
379 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
380 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
381 /// t1 <- desires r1
382 /// sees r1 is taken by t2, tries t2's reload register r0
383 /// sees r0 is taken by t3, tries t3's reload register r1
384 /// sees r1 is taken by t2, tries t2's reload register r0 ...
385 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
386 AvailableSpills &Spills,
387 std::vector<MachineInstr*> &MaybeDeadStores,
388 BitVector &RegKills,
389 std::vector<MachineOperand*> &KillOps,
390 VirtRegMap &VRM) {
391 SmallSet<unsigned, 8> Rejected;
392 MachineFunction &MF = *MI->getParent()->getParent();
393 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
394 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
395 Rejected, RegKills, KillOps, VRM);
400 // ****************** //
401 // Utility Functions //
402 // ****************** //
404 /// findSinglePredSuccessor - Return via reference a vector of machine basic
405 /// blocks each of which is a successor of the specified BB and has no other
406 /// predecessor.
407 static void findSinglePredSuccessor(MachineBasicBlock *MBB,
408 SmallVectorImpl<MachineBasicBlock *> &Succs) {
409 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
410 SE = MBB->succ_end(); SI != SE; ++SI) {
411 MachineBasicBlock *SuccMBB = *SI;
412 if (SuccMBB->pred_size() == 1)
413 Succs.push_back(SuccMBB);
417 /// InvalidateKill - Invalidate register kill information for a specific
418 /// register. This also unsets the kills marker on the last kill operand.
419 static void InvalidateKill(unsigned Reg,
420 const TargetRegisterInfo* TRI,
421 BitVector &RegKills,
422 std::vector<MachineOperand*> &KillOps) {
423 if (RegKills[Reg]) {
424 KillOps[Reg]->setIsKill(false);
425 // KillOps[Reg] might be a def of a super-register.
426 unsigned KReg = KillOps[Reg]->getReg();
427 KillOps[KReg] = NULL;
428 RegKills.reset(KReg);
429 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
430 if (RegKills[*SR]) {
431 KillOps[*SR]->setIsKill(false);
432 KillOps[*SR] = NULL;
433 RegKills.reset(*SR);
439 /// InvalidateKills - MI is going to be deleted. If any of its operands are
440 /// marked kill, then invalidate the information.
441 static void InvalidateKills(MachineInstr &MI,
442 const TargetRegisterInfo* TRI,
443 BitVector &RegKills,
444 std::vector<MachineOperand*> &KillOps,
445 SmallVector<unsigned, 2> *KillRegs = NULL) {
446 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
447 MachineOperand &MO = MI.getOperand(i);
448 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
449 continue;
450 unsigned Reg = MO.getReg();
451 if (TargetRegisterInfo::isVirtualRegister(Reg))
452 continue;
453 if (KillRegs)
454 KillRegs->push_back(Reg);
455 assert(Reg < KillOps.size());
456 if (KillOps[Reg] == &MO) {
457 KillOps[Reg] = NULL;
458 RegKills.reset(Reg);
459 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
460 if (RegKills[*SR]) {
461 KillOps[*SR] = NULL;
462 RegKills.reset(*SR);
469 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
470 /// (since it's spill instruction is removed), mark it isDead. Also checks if
471 /// the def MI has other definition operands that are not dead. Returns it by
472 /// reference.
473 static bool InvalidateRegDef(MachineBasicBlock::iterator I,
474 MachineInstr &NewDef, unsigned Reg,
475 bool &HasLiveDef) {
476 // Due to remat, it's possible this reg isn't being reused. That is,
477 // the def of this reg (by prev MI) is now dead.
478 MachineInstr *DefMI = I;
479 MachineOperand *DefOp = NULL;
480 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
481 MachineOperand &MO = DefMI->getOperand(i);
482 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
483 continue;
484 if (MO.getReg() == Reg)
485 DefOp = &MO;
486 else if (!MO.isDead())
487 HasLiveDef = true;
489 if (!DefOp)
490 return false;
492 bool FoundUse = false, Done = false;
493 MachineBasicBlock::iterator E = &NewDef;
494 ++I; ++E;
495 for (; !Done && I != E; ++I) {
496 MachineInstr *NMI = I;
497 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
498 MachineOperand &MO = NMI->getOperand(j);
499 if (!MO.isReg() || MO.getReg() != Reg)
500 continue;
501 if (MO.isUse())
502 FoundUse = true;
503 Done = true; // Stop after scanning all the operands of this MI.
506 if (!FoundUse) {
507 // Def is dead!
508 DefOp->setIsDead();
509 return true;
511 return false;
514 /// UpdateKills - Track and update kill info. If a MI reads a register that is
515 /// marked kill, then it must be due to register reuse. Transfer the kill info
516 /// over.
517 static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
518 BitVector &RegKills,
519 std::vector<MachineOperand*> &KillOps) {
520 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
521 MachineOperand &MO = MI.getOperand(i);
522 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
523 continue;
524 unsigned Reg = MO.getReg();
525 if (Reg == 0)
526 continue;
528 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
529 // That can't be right. Register is killed but not re-defined and it's
530 // being reused. Let's fix that.
531 KillOps[Reg]->setIsKill(false);
532 // KillOps[Reg] might be a def of a super-register.
533 unsigned KReg = KillOps[Reg]->getReg();
534 KillOps[KReg] = NULL;
535 RegKills.reset(KReg);
537 // Must be a def of a super-register. Its other sub-regsters are no
538 // longer killed as well.
539 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
540 KillOps[*SR] = NULL;
541 RegKills.reset(*SR);
544 if (!MI.isRegTiedToDefOperand(i))
545 // Unless it's a two-address operand, this is the new kill.
546 MO.setIsKill();
548 if (MO.isKill()) {
549 RegKills.set(Reg);
550 KillOps[Reg] = &MO;
551 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
552 RegKills.set(*SR);
553 KillOps[*SR] = &MO;
558 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
559 const MachineOperand &MO = MI.getOperand(i);
560 if (!MO.isReg() || !MO.isDef())
561 continue;
562 unsigned Reg = MO.getReg();
563 RegKills.reset(Reg);
564 KillOps[Reg] = NULL;
565 // It also defines (or partially define) aliases.
566 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
567 RegKills.reset(*SR);
568 KillOps[*SR] = NULL;
573 /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
575 static void ReMaterialize(MachineBasicBlock &MBB,
576 MachineBasicBlock::iterator &MII,
577 unsigned DestReg, unsigned Reg,
578 const TargetInstrInfo *TII,
579 const TargetRegisterInfo *TRI,
580 VirtRegMap &VRM) {
581 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
582 #ifndef NDEBUG
583 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
584 assert(TID.getNumDefs() == 1 &&
585 "Don't know how to remat instructions that define > 1 values!");
586 #endif
587 TII->reMaterialize(MBB, MII, DestReg,
588 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI);
589 MachineInstr *NewMI = prior(MII);
590 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
591 MachineOperand &MO = NewMI->getOperand(i);
592 if (!MO.isReg() || MO.getReg() == 0)
593 continue;
594 unsigned VirtReg = MO.getReg();
595 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
596 continue;
597 assert(MO.isUse());
598 unsigned SubIdx = MO.getSubReg();
599 unsigned Phys = VRM.getPhys(VirtReg);
600 assert(Phys);
601 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
602 MO.setReg(RReg);
603 MO.setSubReg(0);
605 ++NumReMats;
608 /// findSuperReg - Find the SubReg's super-register of given register class
609 /// where its SubIdx sub-register is SubReg.
610 static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
611 unsigned SubIdx, const TargetRegisterInfo *TRI) {
612 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
613 I != E; ++I) {
614 unsigned Reg = *I;
615 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
616 return Reg;
618 return 0;
621 // ******************************** //
622 // Available Spills Implementation //
623 // ******************************** //
625 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
626 /// stackslot register. The register is still available but is no longer
627 /// allowed to be modifed.
628 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
629 std::multimap<unsigned, int>::iterator I =
630 PhysRegsAvailable.lower_bound(PhysReg);
631 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
632 int SlotOrReMat = I->second;
633 I++;
634 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
635 "Bidirectional map mismatch!");
636 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
637 DOUT << "PhysReg " << TRI->getName(PhysReg)
638 << " copied, it is available for use but can no longer be modified\n";
642 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
643 /// stackslot register and its aliases. The register and its aliases may
644 /// still available but is no longer allowed to be modifed.
645 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
646 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
647 disallowClobberPhysRegOnly(*AS);
648 disallowClobberPhysRegOnly(PhysReg);
651 /// ClobberPhysRegOnly - This is called when the specified physreg changes
652 /// value. We use this to invalidate any info about stuff we thing lives in it.
653 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
654 std::multimap<unsigned, int>::iterator I =
655 PhysRegsAvailable.lower_bound(PhysReg);
656 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
657 int SlotOrReMat = I->second;
658 PhysRegsAvailable.erase(I++);
659 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
660 "Bidirectional map mismatch!");
661 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
662 DOUT << "PhysReg " << TRI->getName(PhysReg)
663 << " clobbered, invalidating ";
664 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
665 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
666 else
667 DOUT << "SS#" << SlotOrReMat << "\n";
671 /// ClobberPhysReg - This is called when the specified physreg changes
672 /// value. We use this to invalidate any info about stuff we thing lives in
673 /// it and any of its aliases.
674 void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
675 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
676 ClobberPhysRegOnly(*AS);
677 ClobberPhysRegOnly(PhysReg);
680 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
681 /// into the specified MBB. Add available physical registers as potential
682 /// live-in's. If they are reused in the MBB, they will be added to the
683 /// live-in set to make register scavenger and post-allocation scheduler.
684 void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
685 BitVector &RegKills,
686 std::vector<MachineOperand*> &KillOps) {
687 std::set<unsigned> NotAvailable;
688 for (std::multimap<unsigned, int>::iterator
689 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
690 I != E; ++I) {
691 unsigned Reg = I->first;
692 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
693 // FIXME: A temporary workaround. We can't reuse available value if it's
694 // not safe to move the def of the virtual register's class. e.g.
695 // X86::RFP* register classes. Do not add it as a live-in.
696 if (!TII->isSafeToMoveRegClassDefs(RC))
697 // This is no longer available.
698 NotAvailable.insert(Reg);
699 else {
700 MBB.addLiveIn(Reg);
701 InvalidateKill(Reg, TRI, RegKills, KillOps);
704 // Skip over the same register.
705 std::multimap<unsigned, int>::iterator NI = next(I);
706 while (NI != E && NI->first == Reg) {
707 ++I;
708 ++NI;
712 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
713 E = NotAvailable.end(); I != E; ++I) {
714 ClobberPhysReg(*I);
715 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
716 *SubRegs; ++SubRegs)
717 ClobberPhysReg(*SubRegs);
721 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
722 /// slot changes. This removes information about which register the previous
723 /// value for this slot lives in (as the previous value is dead now).
724 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
725 std::map<int, unsigned>::iterator It =
726 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
727 if (It == SpillSlotsOrReMatsAvailable.end()) return;
728 unsigned Reg = It->second >> 1;
729 SpillSlotsOrReMatsAvailable.erase(It);
731 // This register may hold the value of multiple stack slots, only remove this
732 // stack slot from the set of values the register contains.
733 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
734 for (; ; ++I) {
735 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
736 "Map inverse broken!");
737 if (I->second == SlotOrReMat) break;
739 PhysRegsAvailable.erase(I);
742 // ************************** //
743 // Reuse Info Implementation //
744 // ************************** //
746 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
747 /// is some other operand that is using the specified register, either pick
748 /// a new register to use, or evict the previous reload and use this reg.
749 unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
750 unsigned PhysReg,
751 MachineFunction &MF,
752 MachineInstr *MI, AvailableSpills &Spills,
753 std::vector<MachineInstr*> &MaybeDeadStores,
754 SmallSet<unsigned, 8> &Rejected,
755 BitVector &RegKills,
756 std::vector<MachineOperand*> &KillOps,
757 VirtRegMap &VRM) {
758 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
759 const TargetRegisterInfo *TRI = Spills.getRegInfo();
761 if (Reuses.empty()) return PhysReg; // This is most often empty.
763 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
764 ReusedOp &Op = Reuses[ro];
765 // If we find some other reuse that was supposed to use this register
766 // exactly for its reload, we can change this reload to use ITS reload
767 // register. That is, unless its reload register has already been
768 // considered and subsequently rejected because it has also been reused
769 // by another operand.
770 if (Op.PhysRegReused == PhysReg &&
771 Rejected.count(Op.AssignedPhysReg) == 0 &&
772 RC->contains(Op.AssignedPhysReg)) {
773 // Yup, use the reload register that we didn't use before.
774 unsigned NewReg = Op.AssignedPhysReg;
775 Rejected.insert(PhysReg);
776 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
777 RegKills, KillOps, VRM);
778 } else {
779 // Otherwise, we might also have a problem if a previously reused
780 // value aliases the new register. If so, codegen the previous reload
781 // and use this one.
782 unsigned PRRU = Op.PhysRegReused;
783 if (TRI->areAliases(PRRU, PhysReg)) {
784 // Okay, we found out that an alias of a reused register
785 // was used. This isn't good because it means we have
786 // to undo a previous reuse.
787 MachineBasicBlock *MBB = MI->getParent();
788 const TargetRegisterClass *AliasRC =
789 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
791 // Copy Op out of the vector and remove it, we're going to insert an
792 // explicit load for it.
793 ReusedOp NewOp = Op;
794 Reuses.erase(Reuses.begin()+ro);
796 // Ok, we're going to try to reload the assigned physreg into the
797 // slot that we were supposed to in the first place. However, that
798 // register could hold a reuse. Check to see if it conflicts or
799 // would prefer us to use a different register.
800 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
801 MF, MI, Spills, MaybeDeadStores,
802 Rejected, RegKills, KillOps, VRM);
804 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
805 int SSorRMId = DoReMat
806 ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
808 // Back-schedule reloads and remats.
809 MachineBasicBlock::iterator InsertLoc =
810 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
811 DoReMat, SSorRMId, TII, MF);
813 if (DoReMat) {
814 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
815 TRI, VRM);
816 } else {
817 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
818 NewOp.StackSlotOrReMat, AliasRC);
819 MachineInstr *LoadMI = prior(InsertLoc);
820 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
821 // Any stores to this stack slot are not dead anymore.
822 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
823 ++NumLoads;
825 Spills.ClobberPhysReg(NewPhysReg);
826 Spills.ClobberPhysReg(NewOp.PhysRegReused);
828 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
829 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
830 MI->getOperand(NewOp.Operand).setReg(RReg);
831 MI->getOperand(NewOp.Operand).setSubReg(0);
833 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
834 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
835 DOUT << '\t' << *prior(InsertLoc);
837 DOUT << "Reuse undone!\n";
838 --NumReused;
840 // Finally, PhysReg is now available, go ahead and use it.
841 return PhysReg;
845 return PhysReg;
848 // ************************************************************************ //
850 /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
851 /// stack slot mod/ref. It also checks if it's possible to unfold the
852 /// instruction by having it define a specified physical register instead.
853 static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
854 const TargetInstrInfo *TII,
855 const TargetRegisterInfo *TRI,
856 VirtRegMap &VRM) {
857 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
858 return false;
860 bool Found = false;
861 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
862 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
863 unsigned VirtReg = I->second.first;
864 VirtRegMap::ModRef MR = I->second.second;
865 if (MR & VirtRegMap::isModRef)
866 if (VRM.getStackSlot(VirtReg) == SS) {
867 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
868 break;
871 if (!Found)
872 return false;
874 // Does the instruction uses a register that overlaps the scratch register?
875 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
876 MachineOperand &MO = MI.getOperand(i);
877 if (!MO.isReg() || MO.getReg() == 0)
878 continue;
879 unsigned Reg = MO.getReg();
880 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
881 if (!VRM.hasPhys(Reg))
882 continue;
883 Reg = VRM.getPhys(Reg);
885 if (TRI->regsOverlap(PhysReg, Reg))
886 return false;
888 return true;
891 /// FindFreeRegister - Find a free register of a given register class by looking
892 /// at (at most) the last two machine instructions.
893 static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
894 MachineBasicBlock &MBB,
895 const TargetRegisterClass *RC,
896 const TargetRegisterInfo *TRI,
897 BitVector &AllocatableRegs) {
898 BitVector Defs(TRI->getNumRegs());
899 BitVector Uses(TRI->getNumRegs());
900 SmallVector<unsigned, 4> LocalUses;
901 SmallVector<unsigned, 4> Kills;
903 // Take a look at 2 instructions at most.
904 for (unsigned Count = 0; Count < 2; ++Count) {
905 if (MII == MBB.begin())
906 break;
907 MachineInstr *PrevMI = prior(MII);
908 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
909 MachineOperand &MO = PrevMI->getOperand(i);
910 if (!MO.isReg() || MO.getReg() == 0)
911 continue;
912 unsigned Reg = MO.getReg();
913 if (MO.isDef()) {
914 Defs.set(Reg);
915 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
916 Defs.set(*AS);
917 } else {
918 LocalUses.push_back(Reg);
919 if (MO.isKill() && AllocatableRegs[Reg])
920 Kills.push_back(Reg);
924 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
925 unsigned Kill = Kills[i];
926 if (!Defs[Kill] && !Uses[Kill] &&
927 TRI->getPhysicalRegisterRegClass(Kill) == RC)
928 return Kill;
930 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
931 unsigned Reg = LocalUses[i];
932 Uses.set(Reg);
933 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
934 Uses.set(*AS);
937 MII = PrevMI;
940 return 0;
943 static
944 void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
945 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
946 MachineOperand &MO = MI->getOperand(i);
947 if (MO.isReg() && MO.getReg() == VirtReg)
948 MO.setReg(PhysReg);
952 namespace {
953 struct RefSorter {
954 bool operator()(const std::pair<MachineInstr*, int> &A,
955 const std::pair<MachineInstr*, int> &B) {
956 return A.second < B.second;
961 // ***************************** //
962 // Local Spiller Implementation //
963 // ***************************** //
965 class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
966 MachineRegisterInfo *RegInfo;
967 const TargetRegisterInfo *TRI;
968 const TargetInstrInfo *TII;
969 BitVector AllocatableRegs;
970 DenseMap<MachineInstr*, unsigned> DistanceMap;
971 public:
973 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
974 LiveIntervals* LIs) {
975 RegInfo = &MF.getRegInfo();
976 TRI = MF.getTarget().getRegisterInfo();
977 TII = MF.getTarget().getInstrInfo();
978 AllocatableRegs = TRI->getAllocatableSet(MF);
979 DEBUG(errs() << "\n**** Local spiller rewriting function '"
980 << MF.getFunction()->getName() << "':\n");
981 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
982 " ****\n";
983 DEBUG(MF.dump());
985 // Spills - Keep track of which spilled values are available in physregs
986 // so that we can choose to reuse the physregs instead of emitting
987 // reloads. This is usually refreshed per basic block.
988 AvailableSpills Spills(TRI, TII);
990 // Keep track of kill information.
991 BitVector RegKills(TRI->getNumRegs());
992 std::vector<MachineOperand*> KillOps;
993 KillOps.resize(TRI->getNumRegs(), NULL);
995 // SingleEntrySuccs - Successor blocks which have a single predecessor.
996 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
997 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
999 // Traverse the basic blocks depth first.
1000 MachineBasicBlock *Entry = MF.begin();
1001 SmallPtrSet<MachineBasicBlock*,16> Visited;
1002 for (df_ext_iterator<MachineBasicBlock*,
1003 SmallPtrSet<MachineBasicBlock*,16> >
1004 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1005 DFI != E; ++DFI) {
1006 MachineBasicBlock *MBB = *DFI;
1007 if (!EarlyVisited.count(MBB))
1008 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1010 // If this MBB is the only predecessor of a successor. Keep the
1011 // availability information and visit it next.
1012 do {
1013 // Keep visiting single predecessor successor as long as possible.
1014 SinglePredSuccs.clear();
1015 findSinglePredSuccessor(MBB, SinglePredSuccs);
1016 if (SinglePredSuccs.empty())
1017 MBB = 0;
1018 else {
1019 // FIXME: More than one successors, each of which has MBB has
1020 // the only predecessor.
1021 MBB = SinglePredSuccs[0];
1022 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1023 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1024 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
1027 } while (MBB);
1029 // Clear the availability info.
1030 Spills.clear();
1033 DOUT << "**** Post Machine Instrs ****\n";
1034 DEBUG(MF.dump());
1036 // Mark unused spill slots.
1037 MachineFrameInfo *MFI = MF.getFrameInfo();
1038 int SS = VRM.getLowSpillSlot();
1039 if (SS != VirtRegMap::NO_STACK_SLOT)
1040 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
1041 if (!VRM.isSpillSlotUsed(SS)) {
1042 MFI->RemoveStackObject(SS);
1043 ++NumDSS;
1046 return true;
1049 private:
1051 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1052 /// a scratch register is available.
1053 /// xorq %r12<kill>, %r13
1054 /// addq %rax, -184(%rbp)
1055 /// addq %r13, -184(%rbp)
1056 /// ==>
1057 /// xorq %r12<kill>, %r13
1058 /// movq -184(%rbp), %r12
1059 /// addq %rax, %r12
1060 /// addq %r13, %r12
1061 /// movq %r12, -184(%rbp)
1062 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
1063 MachineBasicBlock &MBB,
1064 MachineBasicBlock::iterator &MII,
1065 std::vector<MachineInstr*> &MaybeDeadStores,
1066 AvailableSpills &Spills,
1067 BitVector &RegKills,
1068 std::vector<MachineOperand*> &KillOps,
1069 VirtRegMap &VRM) {
1071 MachineBasicBlock::iterator NextMII = next(MII);
1072 if (NextMII == MBB.end())
1073 return false;
1075 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1076 return false;
1078 // Now let's see if the last couple of instructions happens to have freed up
1079 // a register.
1080 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1081 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
1082 if (!PhysReg)
1083 return false;
1085 MachineFunction &MF = *MBB.getParent();
1086 TRI = MF.getTarget().getRegisterInfo();
1087 MachineInstr &MI = *MII;
1088 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
1089 return false;
1091 // If the next instruction also folds the same SS modref and can be unfoled,
1092 // then it's worthwhile to issue a load from SS into the free register and
1093 // then unfold these instructions.
1094 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
1095 return false;
1097 // Back-schedule reloads and remats.
1098 MachineBasicBlock::iterator InsertLoc =
1099 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, false, SS, TII, MF);
1101 // Load from SS to the spare physical register.
1102 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
1103 // This invalidates Phys.
1104 Spills.ClobberPhysReg(PhysReg);
1105 // Remember it's available.
1106 Spills.addAvailable(SS, PhysReg);
1107 MaybeDeadStores[SS] = NULL;
1109 // Unfold current MI.
1110 SmallVector<MachineInstr*, 4> NewMIs;
1111 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1112 llvm_unreachable("Unable unfold the load / store folding instruction!");
1113 assert(NewMIs.size() == 1);
1114 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1115 VRM.transferRestorePts(&MI, NewMIs[0]);
1116 MII = MBB.insert(MII, NewMIs[0]);
1117 InvalidateKills(MI, TRI, RegKills, KillOps);
1118 VRM.RemoveMachineInstrFromMaps(&MI);
1119 MBB.erase(&MI);
1120 ++NumModRefUnfold;
1122 // Unfold next instructions that fold the same SS.
1123 do {
1124 MachineInstr &NextMI = *NextMII;
1125 NextMII = next(NextMII);
1126 NewMIs.clear();
1127 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1128 llvm_unreachable("Unable unfold the load / store folding instruction!");
1129 assert(NewMIs.size() == 1);
1130 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1131 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1132 MBB.insert(NextMII, NewMIs[0]);
1133 InvalidateKills(NextMI, TRI, RegKills, KillOps);
1134 VRM.RemoveMachineInstrFromMaps(&NextMI);
1135 MBB.erase(&NextMI);
1136 ++NumModRefUnfold;
1137 if (NextMII == MBB.end())
1138 break;
1139 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1141 // Store the value back into SS.
1142 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1143 MachineInstr *StoreMI = prior(NextMII);
1144 VRM.addSpillSlotUse(SS, StoreMI);
1145 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1147 return true;
1150 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1151 /// instruction. e.g.
1152 /// xorl %edi, %eax
1153 /// movl %eax, -32(%ebp)
1154 /// movl -36(%ebp), %eax
1155 /// orl %eax, -32(%ebp)
1156 /// ==>
1157 /// xorl %edi, %eax
1158 /// orl -36(%ebp), %eax
1159 /// mov %eax, -32(%ebp)
1160 /// This enables unfolding optimization for a subsequent instruction which will
1161 /// also eliminate the newly introduced store instruction.
1162 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1163 MachineBasicBlock::iterator &MII,
1164 std::vector<MachineInstr*> &MaybeDeadStores,
1165 AvailableSpills &Spills,
1166 BitVector &RegKills,
1167 std::vector<MachineOperand*> &KillOps,
1168 VirtRegMap &VRM) {
1169 MachineFunction &MF = *MBB.getParent();
1170 MachineInstr &MI = *MII;
1171 unsigned UnfoldedOpc = 0;
1172 unsigned UnfoldPR = 0;
1173 unsigned UnfoldVR = 0;
1174 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1175 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1176 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1177 // Only transform a MI that folds a single register.
1178 if (UnfoldedOpc)
1179 return false;
1180 UnfoldVR = I->second.first;
1181 VirtRegMap::ModRef MR = I->second.second;
1182 // MI2VirtMap be can updated which invalidate the iterator.
1183 // Increment the iterator first.
1184 ++I;
1185 if (VRM.isAssignedReg(UnfoldVR))
1186 continue;
1187 // If this reference is not a use, any previous store is now dead.
1188 // Otherwise, the store to this stack slot is not dead anymore.
1189 FoldedSS = VRM.getStackSlot(UnfoldVR);
1190 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1191 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1192 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1193 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1194 continue;
1195 UnfoldPR = PhysReg;
1196 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1197 false, true);
1201 if (!UnfoldedOpc) {
1202 if (!UnfoldVR)
1203 return false;
1205 // Look for other unfolding opportunities.
1206 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1207 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1210 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1211 MachineOperand &MO = MI.getOperand(i);
1212 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1213 continue;
1214 unsigned VirtReg = MO.getReg();
1215 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1216 continue;
1217 if (VRM.isAssignedReg(VirtReg)) {
1218 unsigned PhysReg = VRM.getPhys(VirtReg);
1219 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1220 return false;
1221 } else if (VRM.isReMaterialized(VirtReg))
1222 continue;
1223 int SS = VRM.getStackSlot(VirtReg);
1224 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1225 if (PhysReg) {
1226 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1227 return false;
1228 continue;
1230 if (VRM.hasPhys(VirtReg)) {
1231 PhysReg = VRM.getPhys(VirtReg);
1232 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1233 continue;
1236 // Ok, we'll need to reload the value into a register which makes
1237 // it impossible to perform the store unfolding optimization later.
1238 // Let's see if it is possible to fold the load if the store is
1239 // unfolded. This allows us to perform the store unfolding
1240 // optimization.
1241 SmallVector<MachineInstr*, 4> NewMIs;
1242 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1243 assert(NewMIs.size() == 1);
1244 MachineInstr *NewMI = NewMIs.back();
1245 NewMIs.clear();
1246 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1247 assert(Idx != -1);
1248 SmallVector<unsigned, 1> Ops;
1249 Ops.push_back(Idx);
1250 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1251 if (FoldedMI) {
1252 VRM.addSpillSlotUse(SS, FoldedMI);
1253 if (!VRM.hasPhys(UnfoldVR))
1254 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1255 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1256 MII = MBB.insert(MII, FoldedMI);
1257 InvalidateKills(MI, TRI, RegKills, KillOps);
1258 VRM.RemoveMachineInstrFromMaps(&MI);
1259 MBB.erase(&MI);
1260 MF.DeleteMachineInstr(NewMI);
1261 return true;
1263 MF.DeleteMachineInstr(NewMI);
1267 return false;
1270 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1271 /// where SrcReg is r1 and it is tied to r0. Return true if after
1272 /// commuting this instruction it will be r0 = op r2, r1.
1273 static bool CommuteChangesDestination(MachineInstr *DefMI,
1274 const TargetInstrDesc &TID,
1275 unsigned SrcReg,
1276 const TargetInstrInfo *TII,
1277 unsigned &DstIdx) {
1278 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1279 return false;
1280 if (!DefMI->getOperand(1).isReg() ||
1281 DefMI->getOperand(1).getReg() != SrcReg)
1282 return false;
1283 unsigned DefIdx;
1284 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1285 return false;
1286 unsigned SrcIdx1, SrcIdx2;
1287 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1288 return false;
1289 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1290 DstIdx = 2;
1291 return true;
1293 return false;
1296 /// CommuteToFoldReload -
1297 /// Look for
1298 /// r1 = load fi#1
1299 /// r1 = op r1, r2<kill>
1300 /// store r1, fi#1
1302 /// If op is commutable and r2 is killed, then we can xform these to
1303 /// r2 = op r2, fi#1
1304 /// store r2, fi#1
1305 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1306 MachineBasicBlock::iterator &MII,
1307 unsigned VirtReg, unsigned SrcReg, int SS,
1308 AvailableSpills &Spills,
1309 BitVector &RegKills,
1310 std::vector<MachineOperand*> &KillOps,
1311 const TargetRegisterInfo *TRI,
1312 VirtRegMap &VRM) {
1313 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1314 return false;
1316 MachineFunction &MF = *MBB.getParent();
1317 MachineInstr &MI = *MII;
1318 MachineBasicBlock::iterator DefMII = prior(MII);
1319 MachineInstr *DefMI = DefMII;
1320 const TargetInstrDesc &TID = DefMI->getDesc();
1321 unsigned NewDstIdx;
1322 if (DefMII != MBB.begin() &&
1323 TID.isCommutable() &&
1324 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
1325 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1326 unsigned NewReg = NewDstMO.getReg();
1327 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1328 return false;
1329 MachineInstr *ReloadMI = prior(DefMII);
1330 int FrameIdx;
1331 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1332 if (DestReg != SrcReg || FrameIdx != SS)
1333 return false;
1334 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1335 if (UseIdx == -1)
1336 return false;
1337 unsigned DefIdx;
1338 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1339 return false;
1340 assert(DefMI->getOperand(DefIdx).isReg() &&
1341 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1343 // Now commute def instruction.
1344 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1345 if (!CommutedMI)
1346 return false;
1347 SmallVector<unsigned, 1> Ops;
1348 Ops.push_back(NewDstIdx);
1349 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1350 // Not needed since foldMemoryOperand returns new MI.
1351 MF.DeleteMachineInstr(CommutedMI);
1352 if (!FoldedMI)
1353 return false;
1355 VRM.addSpillSlotUse(SS, FoldedMI);
1356 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1357 // Insert new def MI and spill MI.
1358 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1359 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1360 MII = prior(MII);
1361 MachineInstr *StoreMI = MII;
1362 VRM.addSpillSlotUse(SS, StoreMI);
1363 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1364 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1366 // Delete all 3 old instructions.
1367 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
1368 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1369 MBB.erase(ReloadMI);
1370 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
1371 VRM.RemoveMachineInstrFromMaps(DefMI);
1372 MBB.erase(DefMI);
1373 InvalidateKills(MI, TRI, RegKills, KillOps);
1374 VRM.RemoveMachineInstrFromMaps(&MI);
1375 MBB.erase(&MI);
1377 // If NewReg was previously holding value of some SS, it's now clobbered.
1378 // This has to be done now because it's a physical register. When this
1379 // instruction is re-visited, it's ignored.
1380 Spills.ClobberPhysReg(NewReg);
1382 ++NumCommutes;
1383 return true;
1386 return false;
1389 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1390 /// the last store to the same slot is now dead. If so, remove the last store.
1391 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1392 MachineBasicBlock::iterator &MII,
1393 int Idx, unsigned PhysReg, int StackSlot,
1394 const TargetRegisterClass *RC,
1395 bool isAvailable, MachineInstr *&LastStore,
1396 AvailableSpills &Spills,
1397 SmallSet<MachineInstr*, 4> &ReMatDefs,
1398 BitVector &RegKills,
1399 std::vector<MachineOperand*> &KillOps,
1400 VirtRegMap &VRM) {
1402 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1403 MachineInstr *StoreMI = next(MII);
1404 VRM.addSpillSlotUse(StackSlot, StoreMI);
1405 DOUT << "Store:\t" << *StoreMI;
1407 // If there is a dead store to this stack slot, nuke it now.
1408 if (LastStore) {
1409 DOUT << "Removed dead store:\t" << *LastStore;
1410 ++NumDSE;
1411 SmallVector<unsigned, 2> KillRegs;
1412 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
1413 MachineBasicBlock::iterator PrevMII = LastStore;
1414 bool CheckDef = PrevMII != MBB.begin();
1415 if (CheckDef)
1416 --PrevMII;
1417 VRM.RemoveMachineInstrFromMaps(LastStore);
1418 MBB.erase(LastStore);
1419 if (CheckDef) {
1420 // Look at defs of killed registers on the store. Mark the defs
1421 // as dead since the store has been deleted and they aren't
1422 // being reused.
1423 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1424 bool HasOtherDef = false;
1425 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1426 MachineInstr *DeadDef = PrevMII;
1427 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1428 // FIXME: This assumes a remat def does not have side effects.
1429 VRM.RemoveMachineInstrFromMaps(DeadDef);
1430 MBB.erase(DeadDef);
1431 ++NumDRM;
1438 LastStore = next(MII);
1440 // If the stack slot value was previously available in some other
1441 // register, change it now. Otherwise, make the register available,
1442 // in PhysReg.
1443 Spills.ModifyStackSlotOrReMat(StackSlot);
1444 Spills.ClobberPhysReg(PhysReg);
1445 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1446 ++NumStores;
1449 /// TransferDeadness - A identity copy definition is dead and it's being
1450 /// removed. Find the last def or use and mark it as dead / kill.
1451 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1452 unsigned Reg, BitVector &RegKills,
1453 std::vector<MachineOperand*> &KillOps,
1454 VirtRegMap &VRM) {
1455 SmallPtrSet<MachineInstr*, 4> Seens;
1456 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
1457 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1458 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1459 MachineInstr *UDMI = &*RI;
1460 if (UDMI->getParent() != MBB)
1461 continue;
1462 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1463 if (DI == DistanceMap.end() || DI->second > CurDist)
1464 continue;
1465 if (Seens.insert(UDMI))
1466 Refs.push_back(std::make_pair(UDMI, DI->second));
1469 if (Refs.empty())
1470 return;
1471 std::sort(Refs.begin(), Refs.end(), RefSorter());
1473 while (!Refs.empty()) {
1474 MachineInstr *LastUDMI = Refs.back().first;
1475 Refs.pop_back();
1477 MachineOperand *LastUD = NULL;
1478 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1479 MachineOperand &MO = LastUDMI->getOperand(i);
1480 if (!MO.isReg() || MO.getReg() != Reg)
1481 continue;
1482 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1483 LastUD = &MO;
1484 if (LastUDMI->isRegTiedToDefOperand(i))
1485 break;
1487 if (LastUD->isDef()) {
1488 // If the instruction has no side effect, delete it and propagate
1489 // backward further. Otherwise, mark is dead and we are done.
1490 if (!TII->isDeadInstruction(LastUDMI)) {
1491 LastUD->setIsDead();
1492 break;
1494 VRM.RemoveMachineInstrFromMaps(LastUDMI);
1495 MBB->erase(LastUDMI);
1496 } else {
1497 LastUD->setIsKill();
1498 RegKills.set(Reg);
1499 KillOps[Reg] = LastUD;
1500 break;
1505 /// rewriteMBB - Keep track of which spills are available even after the
1506 /// register allocator is done with them. If possible, avid reloading vregs.
1507 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1508 LiveIntervals *LIs,
1509 AvailableSpills &Spills, BitVector &RegKills,
1510 std::vector<MachineOperand*> &KillOps) {
1512 DEBUG(errs() << "\n**** Local spiller rewriting MBB '"
1513 << MBB.getBasicBlock()->getName() << "':\n");
1515 MachineFunction &MF = *MBB.getParent();
1517 // MaybeDeadStores - When we need to write a value back into a stack slot,
1518 // keep track of the inserted store. If the stack slot value is never read
1519 // (because the value was used from some available register, for example), and
1520 // subsequently stored to, the original store is dead. This map keeps track
1521 // of inserted stores that are not used. If we see a subsequent store to the
1522 // same stack slot, the original store is deleted.
1523 std::vector<MachineInstr*> MaybeDeadStores;
1524 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1526 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1527 SmallSet<MachineInstr*, 4> ReMatDefs;
1529 // Clear kill info.
1530 SmallSet<unsigned, 2> KilledMIRegs;
1531 RegKills.reset();
1532 KillOps.clear();
1533 KillOps.resize(TRI->getNumRegs(), NULL);
1535 unsigned Dist = 0;
1536 DistanceMap.clear();
1537 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1538 MII != E; ) {
1539 MachineBasicBlock::iterator NextMII = next(MII);
1541 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1542 bool Erased = false;
1543 bool BackTracked = false;
1544 if (OptimizeByUnfold(MBB, MII,
1545 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1546 NextMII = next(MII);
1548 MachineInstr &MI = *MII;
1550 if (VRM.hasEmergencySpills(&MI)) {
1551 // Spill physical register(s) in the rare case the allocator has run out
1552 // of registers to allocate.
1553 SmallSet<int, 4> UsedSS;
1554 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1555 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1556 unsigned PhysReg = EmSpills[i];
1557 const TargetRegisterClass *RC =
1558 TRI->getPhysicalRegisterRegClass(PhysReg);
1559 assert(RC && "Unable to determine register class!");
1560 int SS = VRM.getEmergencySpillSlot(RC);
1561 if (UsedSS.count(SS))
1562 llvm_unreachable("Need to spill more than one physical registers!");
1563 UsedSS.insert(SS);
1564 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1565 MachineInstr *StoreMI = prior(MII);
1566 VRM.addSpillSlotUse(SS, StoreMI);
1568 // Back-schedule reloads and remats.
1569 MachineBasicBlock::iterator InsertLoc =
1570 ComputeReloadLoc(next(MII), MBB.begin(), PhysReg, TRI, false,
1571 SS, TII, MF);
1573 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SS, RC);
1575 MachineInstr *LoadMI = prior(InsertLoc);
1576 VRM.addSpillSlotUse(SS, LoadMI);
1577 ++NumPSpills;
1579 NextMII = next(MII);
1582 // Insert restores here if asked to.
1583 if (VRM.isRestorePt(&MI)) {
1584 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1585 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1586 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1587 if (!VRM.getPreSplitReg(VirtReg))
1588 continue; // Split interval spilled again.
1589 unsigned Phys = VRM.getPhys(VirtReg);
1590 RegInfo->setPhysRegUsed(Phys);
1592 // Check if the value being restored if available. If so, it must be
1593 // from a predecessor BB that fallthrough into this BB. We do not
1594 // expect:
1595 // BB1:
1596 // r1 = load fi#1
1597 // ...
1598 // = r1<kill>
1599 // ... # r1 not clobbered
1600 // ...
1601 // = load fi#1
1602 bool DoReMat = VRM.isReMaterialized(VirtReg);
1603 int SSorRMId = DoReMat
1604 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1605 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1606 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1607 if (InReg == Phys) {
1608 // If the value is already available in the expected register, save
1609 // a reload / remat.
1610 if (SSorRMId)
1611 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1612 else
1613 DOUT << "Reusing SS#" << SSorRMId;
1614 DOUT << " from physreg "
1615 << TRI->getName(InReg) << " for vreg"
1616 << VirtReg <<" instead of reloading into physreg "
1617 << TRI->getName(Phys) << "\n";
1618 ++NumOmitted;
1619 continue;
1620 } else if (InReg && InReg != Phys) {
1621 if (SSorRMId)
1622 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1623 else
1624 DOUT << "Reusing SS#" << SSorRMId;
1625 DOUT << " from physreg "
1626 << TRI->getName(InReg) << " for vreg"
1627 << VirtReg <<" by copying it into physreg "
1628 << TRI->getName(Phys) << "\n";
1630 // If the reloaded / remat value is available in another register,
1631 // copy it to the desired register.
1633 // Back-schedule reloads and remats.
1634 MachineBasicBlock::iterator InsertLoc =
1635 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1636 SSorRMId, TII, MF);
1638 TII->copyRegToReg(MBB, InsertLoc, Phys, InReg, RC, RC);
1640 // This invalidates Phys.
1641 Spills.ClobberPhysReg(Phys);
1642 // Remember it's available.
1643 Spills.addAvailable(SSorRMId, Phys);
1645 // Mark is killed.
1646 MachineInstr *CopyMI = prior(InsertLoc);
1647 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1648 KillOpnd->setIsKill();
1649 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1651 DOUT << '\t' << *CopyMI;
1652 ++NumCopified;
1653 continue;
1656 // Back-schedule reloads and remats.
1657 MachineBasicBlock::iterator InsertLoc =
1658 ComputeReloadLoc(MII, MBB.begin(), Phys, TRI, DoReMat,
1659 SSorRMId, TII, MF);
1661 if (VRM.isReMaterialized(VirtReg)) {
1662 ReMaterialize(MBB, InsertLoc, Phys, VirtReg, TII, TRI, VRM);
1663 } else {
1664 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1665 TII->loadRegFromStackSlot(MBB, InsertLoc, Phys, SSorRMId, RC);
1666 MachineInstr *LoadMI = prior(InsertLoc);
1667 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1668 ++NumLoads;
1671 // This invalidates Phys.
1672 Spills.ClobberPhysReg(Phys);
1673 // Remember it's available.
1674 Spills.addAvailable(SSorRMId, Phys);
1676 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1677 DOUT << '\t' << *prior(MII);
1681 // Insert spills here if asked to.
1682 if (VRM.isSpillPt(&MI)) {
1683 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1684 VRM.getSpillPtSpills(&MI);
1685 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1686 unsigned VirtReg = SpillRegs[i].first;
1687 bool isKill = SpillRegs[i].second;
1688 if (!VRM.getPreSplitReg(VirtReg))
1689 continue; // Split interval spilled again.
1690 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1691 unsigned Phys = VRM.getPhys(VirtReg);
1692 int StackSlot = VRM.getStackSlot(VirtReg);
1693 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1694 MachineInstr *StoreMI = next(MII);
1695 VRM.addSpillSlotUse(StackSlot, StoreMI);
1696 DOUT << "Store:\t" << *StoreMI;
1697 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1699 NextMII = next(MII);
1702 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1703 /// reuse.
1704 ReuseInfo ReusedOperands(MI, TRI);
1705 SmallVector<unsigned, 4> VirtUseOps;
1706 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1707 MachineOperand &MO = MI.getOperand(i);
1708 if (!MO.isReg() || MO.getReg() == 0)
1709 continue; // Ignore non-register operands.
1711 unsigned VirtReg = MO.getReg();
1712 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1713 // Ignore physregs for spilling, but remember that it is used by this
1714 // function.
1715 RegInfo->setPhysRegUsed(VirtReg);
1716 continue;
1719 // We want to process implicit virtual register uses first.
1720 if (MO.isImplicit())
1721 // If the virtual register is implicitly defined, emit a implicit_def
1722 // before so scavenger knows it's "defined".
1723 // FIXME: This is a horrible hack done the by register allocator to
1724 // remat a definition with virtual register operand.
1725 VirtUseOps.insert(VirtUseOps.begin(), i);
1726 else
1727 VirtUseOps.push_back(i);
1730 // Process all of the spilled uses and all non spilled reg references.
1731 SmallVector<int, 2> PotentialDeadStoreSlots;
1732 KilledMIRegs.clear();
1733 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1734 unsigned i = VirtUseOps[j];
1735 MachineOperand &MO = MI.getOperand(i);
1736 unsigned VirtReg = MO.getReg();
1737 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1738 "Not a virtual register?");
1740 unsigned SubIdx = MO.getSubReg();
1741 if (VRM.isAssignedReg(VirtReg)) {
1742 // This virtual register was assigned a physreg!
1743 unsigned Phys = VRM.getPhys(VirtReg);
1744 RegInfo->setPhysRegUsed(Phys);
1745 if (MO.isDef())
1746 ReusedOperands.markClobbered(Phys);
1747 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1748 MI.getOperand(i).setReg(RReg);
1749 MI.getOperand(i).setSubReg(0);
1750 if (VRM.isImplicitlyDefined(VirtReg))
1751 // FIXME: Is this needed?
1752 BuildMI(MBB, &MI, MI.getDebugLoc(),
1753 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1754 continue;
1757 // This virtual register is now known to be a spilled value.
1758 if (!MO.isUse())
1759 continue; // Handle defs in the loop below (handle use&def here though)
1761 bool AvoidReload = MO.isUndef();
1762 // Check if it is defined by an implicit def. It should not be spilled.
1763 // Note, this is for correctness reason. e.g.
1764 // 8 %reg1024<def> = IMPLICIT_DEF
1765 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1766 // The live range [12, 14) are not part of the r1024 live interval since
1767 // it's defined by an implicit def. It will not conflicts with live
1768 // interval of r1025. Now suppose both registers are spilled, you can
1769 // easily see a situation where both registers are reloaded before
1770 // the INSERT_SUBREG and both target registers that would overlap.
1771 bool DoReMat = VRM.isReMaterialized(VirtReg);
1772 int SSorRMId = DoReMat
1773 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1774 int ReuseSlot = SSorRMId;
1776 // Check to see if this stack slot is available.
1777 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1779 // If this is a sub-register use, make sure the reuse register is in the
1780 // right register class. For example, for x86 not all of the 32-bit
1781 // registers have accessible sub-registers.
1782 // Similarly so for EXTRACT_SUBREG. Consider this:
1783 // EDI = op
1784 // MOV32_mr fi#1, EDI
1785 // ...
1786 // = EXTRACT_SUBREG fi#1
1787 // fi#1 is available in EDI, but it cannot be reused because it's not in
1788 // the right register file.
1789 if (PhysReg && !AvoidReload &&
1790 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1791 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1792 if (!RC->contains(PhysReg))
1793 PhysReg = 0;
1796 if (PhysReg && !AvoidReload) {
1797 // This spilled operand might be part of a two-address operand. If this
1798 // is the case, then changing it will necessarily require changing the
1799 // def part of the instruction as well. However, in some cases, we
1800 // aren't allowed to modify the reused register. If none of these cases
1801 // apply, reuse it.
1802 bool CanReuse = true;
1803 bool isTied = MI.isRegTiedToDefOperand(i);
1804 if (isTied) {
1805 // Okay, we have a two address operand. We can reuse this physreg as
1806 // long as we are allowed to clobber the value and there isn't an
1807 // earlier def that has already clobbered the physreg.
1808 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1809 Spills.canClobberPhysReg(PhysReg);
1812 if (CanReuse) {
1813 // If this stack slot value is already available, reuse it!
1814 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1815 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1816 else
1817 DOUT << "Reusing SS#" << ReuseSlot;
1818 DOUT << " from physreg "
1819 << TRI->getName(PhysReg) << " for vreg"
1820 << VirtReg <<" instead of reloading into physreg "
1821 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1822 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1823 MI.getOperand(i).setReg(RReg);
1824 MI.getOperand(i).setSubReg(0);
1826 // The only technical detail we have is that we don't know that
1827 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1828 // later in the instruction. In particular, consider 'op V1, V2'.
1829 // If V1 is available in physreg R0, we would choose to reuse it
1830 // here, instead of reloading it into the register the allocator
1831 // indicated (say R1). However, V2 might have to be reloaded
1832 // later, and it might indicate that it needs to live in R0. When
1833 // this occurs, we need to have information available that
1834 // indicates it is safe to use R1 for the reload instead of R0.
1836 // To further complicate matters, we might conflict with an alias,
1837 // or R0 and R1 might not be compatible with each other. In this
1838 // case, we actually insert a reload for V1 in R1, ensuring that
1839 // we can get at R0 or its alias.
1840 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1841 VRM.getPhys(VirtReg), VirtReg);
1842 if (isTied)
1843 // Only mark it clobbered if this is a use&def operand.
1844 ReusedOperands.markClobbered(PhysReg);
1845 ++NumReused;
1847 if (MI.getOperand(i).isKill() &&
1848 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1850 // The store of this spilled value is potentially dead, but we
1851 // won't know for certain until we've confirmed that the re-use
1852 // above is valid, which means waiting until the other operands
1853 // are processed. For now we just track the spill slot, we'll
1854 // remove it after the other operands are processed if valid.
1856 PotentialDeadStoreSlots.push_back(ReuseSlot);
1859 // Mark is isKill if it's there no other uses of the same virtual
1860 // register and it's not a two-address operand. IsKill will be
1861 // unset if reg is reused.
1862 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1863 MI.getOperand(i).setIsKill();
1864 KilledMIRegs.insert(VirtReg);
1867 continue;
1868 } // CanReuse
1870 // Otherwise we have a situation where we have a two-address instruction
1871 // whose mod/ref operand needs to be reloaded. This reload is already
1872 // available in some register "PhysReg", but if we used PhysReg as the
1873 // operand to our 2-addr instruction, the instruction would modify
1874 // PhysReg. This isn't cool if something later uses PhysReg and expects
1875 // to get its initial value.
1877 // To avoid this problem, and to avoid doing a load right after a store,
1878 // we emit a copy from PhysReg into the designated register for this
1879 // operand.
1880 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1881 assert(DesignatedReg && "Must map virtreg to physreg!");
1883 // Note that, if we reused a register for a previous operand, the
1884 // register we want to reload into might not actually be
1885 // available. If this occurs, use the register indicated by the
1886 // reuser.
1887 if (ReusedOperands.hasReuses())
1888 DesignatedReg = ReusedOperands.GetRegForReload(VirtReg,
1889 DesignatedReg, &MI,
1890 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1892 // If the mapped designated register is actually the physreg we have
1893 // incoming, we don't need to inserted a dead copy.
1894 if (DesignatedReg == PhysReg) {
1895 // If this stack slot value is already available, reuse it!
1896 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1897 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1898 else
1899 DOUT << "Reusing SS#" << ReuseSlot;
1900 DOUT << " from physreg " << TRI->getName(PhysReg)
1901 << " for vreg" << VirtReg
1902 << " instead of reloading into same physreg.\n";
1903 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1904 MI.getOperand(i).setReg(RReg);
1905 MI.getOperand(i).setSubReg(0);
1906 ReusedOperands.markClobbered(RReg);
1907 ++NumReused;
1908 continue;
1911 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1912 RegInfo->setPhysRegUsed(DesignatedReg);
1913 ReusedOperands.markClobbered(DesignatedReg);
1915 // Back-schedule reloads and remats.
1916 MachineBasicBlock::iterator InsertLoc =
1917 ComputeReloadLoc(&MI, MBB.begin(), PhysReg, TRI, DoReMat,
1918 SSorRMId, TII, MF);
1920 TII->copyRegToReg(MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
1922 MachineInstr *CopyMI = prior(InsertLoc);
1923 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1925 // This invalidates DesignatedReg.
1926 Spills.ClobberPhysReg(DesignatedReg);
1928 Spills.addAvailable(ReuseSlot, DesignatedReg);
1929 unsigned RReg =
1930 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1931 MI.getOperand(i).setReg(RReg);
1932 MI.getOperand(i).setSubReg(0);
1933 DOUT << '\t' << *prior(MII);
1934 ++NumReused;
1935 continue;
1936 } // if (PhysReg)
1938 // Otherwise, reload it and remember that we have it.
1939 PhysReg = VRM.getPhys(VirtReg);
1940 assert(PhysReg && "Must map virtreg to physreg!");
1942 // Note that, if we reused a register for a previous operand, the
1943 // register we want to reload into might not actually be
1944 // available. If this occurs, use the register indicated by the
1945 // reuser.
1946 if (ReusedOperands.hasReuses())
1947 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
1948 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1950 RegInfo->setPhysRegUsed(PhysReg);
1951 ReusedOperands.markClobbered(PhysReg);
1952 if (AvoidReload)
1953 ++NumAvoided;
1954 else {
1955 // Back-schedule reloads and remats.
1956 MachineBasicBlock::iterator InsertLoc =
1957 ComputeReloadLoc(MII, MBB.begin(), PhysReg, TRI, DoReMat,
1958 SSorRMId, TII, MF);
1960 if (DoReMat) {
1961 ReMaterialize(MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, VRM);
1962 } else {
1963 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1964 TII->loadRegFromStackSlot(MBB, InsertLoc, PhysReg, SSorRMId, RC);
1965 MachineInstr *LoadMI = prior(InsertLoc);
1966 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1967 ++NumLoads;
1969 // This invalidates PhysReg.
1970 Spills.ClobberPhysReg(PhysReg);
1972 // Any stores to this stack slot are not dead anymore.
1973 if (!DoReMat)
1974 MaybeDeadStores[SSorRMId] = NULL;
1975 Spills.addAvailable(SSorRMId, PhysReg);
1976 // Assumes this is the last use. IsKill will be unset if reg is reused
1977 // unless it's a two-address operand.
1978 if (!MI.isRegTiedToDefOperand(i) &&
1979 KilledMIRegs.count(VirtReg) == 0) {
1980 MI.getOperand(i).setIsKill();
1981 KilledMIRegs.insert(VirtReg);
1984 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1985 DOUT << '\t' << *prior(InsertLoc);
1987 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1988 MI.getOperand(i).setReg(RReg);
1989 MI.getOperand(i).setSubReg(0);
1992 // Ok - now we can remove stores that have been confirmed dead.
1993 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1994 // This was the last use and the spilled value is still available
1995 // for reuse. That means the spill was unnecessary!
1996 int PDSSlot = PotentialDeadStoreSlots[j];
1997 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1998 if (DeadStore) {
1999 DOUT << "Removed dead store:\t" << *DeadStore;
2000 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2001 VRM.RemoveMachineInstrFromMaps(DeadStore);
2002 MBB.erase(DeadStore);
2003 MaybeDeadStores[PDSSlot] = NULL;
2004 ++NumDSE;
2009 DOUT << '\t' << MI;
2012 // If we have folded references to memory operands, make sure we clear all
2013 // physical registers that may contain the value of the spilled virtual
2014 // register
2015 SmallSet<int, 2> FoldedSS;
2016 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
2017 unsigned VirtReg = I->second.first;
2018 VirtRegMap::ModRef MR = I->second.second;
2019 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
2021 // MI2VirtMap be can updated which invalidate the iterator.
2022 // Increment the iterator first.
2023 ++I;
2024 int SS = VRM.getStackSlot(VirtReg);
2025 if (SS == VirtRegMap::NO_STACK_SLOT)
2026 continue;
2027 FoldedSS.insert(SS);
2028 DOUT << " - StackSlot: " << SS << "\n";
2030 // If this folded instruction is just a use, check to see if it's a
2031 // straight load from the virt reg slot.
2032 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2033 int FrameIdx;
2034 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2035 if (DestReg && FrameIdx == SS) {
2036 // If this spill slot is available, turn it into a copy (or nothing)
2037 // instead of leaving it as a load!
2038 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
2039 DOUT << "Promoted Load To Copy: " << MI;
2040 if (DestReg != InReg) {
2041 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2042 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
2043 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2044 unsigned SubIdx = DefMO->getSubReg();
2045 // Revisit the copy so we make sure to notice the effects of the
2046 // operation on the destreg (either needing to RA it if it's
2047 // virtual or needing to clobber any values if it's physical).
2048 NextMII = &MI;
2049 --NextMII; // backtrack to the copy.
2050 // Propagate the sub-register index over.
2051 if (SubIdx) {
2052 DefMO = NextMII->findRegisterDefOperand(DestReg);
2053 DefMO->setSubReg(SubIdx);
2056 // Mark is killed.
2057 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
2058 KillOpnd->setIsKill();
2060 BackTracked = true;
2061 } else {
2062 DOUT << "Removing now-noop copy: " << MI;
2063 // Unset last kill since it's being reused.
2064 InvalidateKill(InReg, TRI, RegKills, KillOps);
2065 Spills.disallowClobberPhysReg(InReg);
2068 InvalidateKills(MI, TRI, RegKills, KillOps);
2069 VRM.RemoveMachineInstrFromMaps(&MI);
2070 MBB.erase(&MI);
2071 Erased = true;
2072 goto ProcessNextInst;
2074 } else {
2075 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2076 SmallVector<MachineInstr*, 4> NewMIs;
2077 if (PhysReg &&
2078 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
2079 MBB.insert(MII, NewMIs[0]);
2080 InvalidateKills(MI, TRI, RegKills, KillOps);
2081 VRM.RemoveMachineInstrFromMaps(&MI);
2082 MBB.erase(&MI);
2083 Erased = true;
2084 --NextMII; // backtrack to the unfolded instruction.
2085 BackTracked = true;
2086 goto ProcessNextInst;
2091 // If this reference is not a use, any previous store is now dead.
2092 // Otherwise, the store to this stack slot is not dead anymore.
2093 MachineInstr* DeadStore = MaybeDeadStores[SS];
2094 if (DeadStore) {
2095 bool isDead = !(MR & VirtRegMap::isRef);
2096 MachineInstr *NewStore = NULL;
2097 if (MR & VirtRegMap::isModRef) {
2098 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2099 SmallVector<MachineInstr*, 4> NewMIs;
2100 // We can reuse this physreg as long as we are allowed to clobber
2101 // the value and there isn't an earlier def that has already clobbered
2102 // the physreg.
2103 if (PhysReg &&
2104 !ReusedOperands.isClobbered(PhysReg) &&
2105 Spills.canClobberPhysReg(PhysReg) &&
2106 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2107 MachineOperand *KillOpnd =
2108 DeadStore->findRegisterUseOperand(PhysReg, true);
2109 // Note, if the store is storing a sub-register, it's possible the
2110 // super-register is needed below.
2111 if (KillOpnd && !KillOpnd->getSubReg() &&
2112 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2113 MBB.insert(MII, NewMIs[0]);
2114 NewStore = NewMIs[1];
2115 MBB.insert(MII, NewStore);
2116 VRM.addSpillSlotUse(SS, NewStore);
2117 InvalidateKills(MI, TRI, RegKills, KillOps);
2118 VRM.RemoveMachineInstrFromMaps(&MI);
2119 MBB.erase(&MI);
2120 Erased = true;
2121 --NextMII;
2122 --NextMII; // backtrack to the unfolded instruction.
2123 BackTracked = true;
2124 isDead = true;
2125 ++NumSUnfold;
2130 if (isDead) { // Previous store is dead.
2131 // If we get here, the store is dead, nuke it now.
2132 DOUT << "Removed dead store:\t" << *DeadStore;
2133 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2134 VRM.RemoveMachineInstrFromMaps(DeadStore);
2135 MBB.erase(DeadStore);
2136 if (!NewStore)
2137 ++NumDSE;
2140 MaybeDeadStores[SS] = NULL;
2141 if (NewStore) {
2142 // Treat this store as a spill merged into a copy. That makes the
2143 // stack slot value available.
2144 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2145 goto ProcessNextInst;
2149 // If the spill slot value is available, and this is a new definition of
2150 // the value, the value is not available anymore.
2151 if (MR & VirtRegMap::isMod) {
2152 // Notice that the value in this stack slot has been modified.
2153 Spills.ModifyStackSlotOrReMat(SS);
2155 // If this is *just* a mod of the value, check to see if this is just a
2156 // store to the spill slot (i.e. the spill got merged into the copy). If
2157 // so, realize that the vreg is available now, and add the store to the
2158 // MaybeDeadStore info.
2159 int StackSlot;
2160 if (!(MR & VirtRegMap::isRef)) {
2161 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2162 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2163 "Src hasn't been allocated yet?");
2165 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
2166 Spills, RegKills, KillOps, TRI, VRM)) {
2167 NextMII = next(MII);
2168 BackTracked = true;
2169 goto ProcessNextInst;
2172 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2173 // this as a potentially dead store in case there is a subsequent
2174 // store into the stack slot without a read from it.
2175 MaybeDeadStores[StackSlot] = &MI;
2177 // If the stack slot value was previously available in some other
2178 // register, change it now. Otherwise, make the register
2179 // available in PhysReg.
2180 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2186 // Process all of the spilled defs.
2187 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2188 MachineOperand &MO = MI.getOperand(i);
2189 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2190 continue;
2192 unsigned VirtReg = MO.getReg();
2193 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2194 // Check to see if this is a noop copy. If so, eliminate the
2195 // instruction before considering the dest reg to be changed.
2196 // Also check if it's copying from an "undef", if so, we can't
2197 // eliminate this or else the undef marker is lost and it will
2198 // confuses the scavenger. This is extremely rare.
2199 unsigned Src, Dst, SrcSR, DstSR;
2200 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
2201 !MI.findRegisterUseOperand(Src)->isUndef()) {
2202 ++NumDCE;
2203 DOUT << "Removing now-noop copy: " << MI;
2204 SmallVector<unsigned, 2> KillRegs;
2205 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
2206 if (MO.isDead() && !KillRegs.empty()) {
2207 // Source register or an implicit super/sub-register use is killed.
2208 assert(KillRegs[0] == Dst ||
2209 TRI->isSubRegister(KillRegs[0], Dst) ||
2210 TRI->isSuperRegister(KillRegs[0], Dst));
2211 // Last def is now dead.
2212 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
2214 VRM.RemoveMachineInstrFromMaps(&MI);
2215 MBB.erase(&MI);
2216 Erased = true;
2217 Spills.disallowClobberPhysReg(VirtReg);
2218 goto ProcessNextInst;
2221 // If it's not a no-op copy, it clobbers the value in the destreg.
2222 Spills.ClobberPhysReg(VirtReg);
2223 ReusedOperands.markClobbered(VirtReg);
2225 // Check to see if this instruction is a load from a stack slot into
2226 // a register. If so, this provides the stack slot value in the reg.
2227 int FrameIdx;
2228 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2229 assert(DestReg == VirtReg && "Unknown load situation!");
2231 // If it is a folded reference, then it's not safe to clobber.
2232 bool Folded = FoldedSS.count(FrameIdx);
2233 // Otherwise, if it wasn't available, remember that it is now!
2234 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2235 goto ProcessNextInst;
2238 continue;
2241 unsigned SubIdx = MO.getSubReg();
2242 bool DoReMat = VRM.isReMaterialized(VirtReg);
2243 if (DoReMat)
2244 ReMatDefs.insert(&MI);
2246 // The only vregs left are stack slot definitions.
2247 int StackSlot = VRM.getStackSlot(VirtReg);
2248 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2250 // If this def is part of a two-address operand, make sure to execute
2251 // the store from the correct physical register.
2252 unsigned PhysReg;
2253 unsigned TiedOp;
2254 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2255 PhysReg = MI.getOperand(TiedOp).getReg();
2256 if (SubIdx) {
2257 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2258 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2259 "Can't find corresponding super-register!");
2260 PhysReg = SuperReg;
2262 } else {
2263 PhysReg = VRM.getPhys(VirtReg);
2264 if (ReusedOperands.isClobbered(PhysReg)) {
2265 // Another def has taken the assigned physreg. It must have been a
2266 // use&def which got it due to reuse. Undo the reuse!
2267 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2268 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
2272 assert(PhysReg && "VR not assigned a physical register?");
2273 RegInfo->setPhysRegUsed(PhysReg);
2274 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2275 ReusedOperands.markClobbered(RReg);
2276 MI.getOperand(i).setReg(RReg);
2277 MI.getOperand(i).setSubReg(0);
2279 if (!MO.isDead()) {
2280 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2281 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2282 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2283 NextMII = next(MII);
2285 // Check to see if this is a noop copy. If so, eliminate the
2286 // instruction before considering the dest reg to be changed.
2288 unsigned Src, Dst, SrcSR, DstSR;
2289 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2290 ++NumDCE;
2291 DOUT << "Removing now-noop copy: " << MI;
2292 InvalidateKills(MI, TRI, RegKills, KillOps);
2293 VRM.RemoveMachineInstrFromMaps(&MI);
2294 MBB.erase(&MI);
2295 Erased = true;
2296 UpdateKills(*LastStore, TRI, RegKills, KillOps);
2297 goto ProcessNextInst;
2302 ProcessNextInst:
2303 // Delete dead instructions without side effects.
2304 if (!Erased && !BackTracked && TII->isDeadInstruction(&MI)) {
2305 InvalidateKills(MI, TRI, RegKills, KillOps);
2306 VRM.RemoveMachineInstrFromMaps(&MI);
2307 MBB.erase(&MI);
2308 Erased = true;
2310 if (!Erased)
2311 DistanceMap.insert(std::make_pair(&MI, Dist++));
2312 if (!Erased && !BackTracked) {
2313 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2314 UpdateKills(*II, TRI, RegKills, KillOps);
2316 MII = NextMII;
2323 llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2324 switch (RewriterOpt) {
2325 default: llvm_unreachable("Unreachable!");
2326 case local:
2327 return new LocalRewriter();
2328 case trivial:
2329 return new TrivialRewriter();