1 //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "virtregrewriter"
11 #include "VirtRegRewriter.h"
12 #include "llvm/Support/Compiler.h"
13 #include "llvm/Support/ErrorHandling.h"
14 #include "llvm/Support/raw_ostream.h"
15 #include "llvm/Target/TargetLowering.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/STLExtras.h"
22 STATISTIC(NumDSE
, "Number of dead stores elided");
23 STATISTIC(NumDSS
, "Number of dead spill slots removed");
24 STATISTIC(NumCommutes
, "Number of instructions commuted");
25 STATISTIC(NumDRM
, "Number of re-materializable defs elided");
26 STATISTIC(NumStores
, "Number of stores added");
27 STATISTIC(NumPSpills
, "Number of physical register spills");
28 STATISTIC(NumOmitted
, "Number of reloads omited");
29 STATISTIC(NumAvoided
, "Number of reloads deemed unnecessary");
30 STATISTIC(NumCopified
, "Number of available reloads turned into copies");
31 STATISTIC(NumReMats
, "Number of re-materialization");
32 STATISTIC(NumLoads
, "Number of loads added");
33 STATISTIC(NumReused
, "Number of values reused");
34 STATISTIC(NumDCE
, "Number of copies elided");
35 STATISTIC(NumSUnfold
, "Number of stores unfolded");
36 STATISTIC(NumModRefUnfold
, "Number of modref unfolded");
39 enum RewriterName
{ local
, trivial
};
42 static cl::opt
<RewriterName
>
43 RewriterOpt("rewriter",
44 cl::desc("Rewriter to use: (default: local)"),
46 cl::values(clEnumVal(local
, "local rewriter"),
47 clEnumVal(trivial
, "trivial rewriter"),
52 ScheduleSpills("schedule-spills",
53 cl::desc("Schedule spill code"),
56 VirtRegRewriter::~VirtRegRewriter() {}
59 /// This class is intended for use with the new spilling framework only. It
60 /// rewrites vreg def/uses to use the assigned preg, but does not insert any
62 struct VISIBILITY_HIDDEN TrivialRewriter
: public VirtRegRewriter
{
64 bool runOnMachineFunction(MachineFunction
&MF
, VirtRegMap
&VRM
,
66 DOUT
<< "********** REWRITE MACHINE CODE **********\n";
67 DEBUG(errs() << "********** Function: "
68 << MF
.getFunction()->getName() << '\n');
69 DOUT
<< "**** Machine Instrs"
70 << "(NOTE! Does not include spills and reloads!) ****\n";
73 MachineRegisterInfo
*mri
= &MF
.getRegInfo();
77 for (LiveIntervals::iterator liItr
= LIs
->begin(), liEnd
= LIs
->end();
78 liItr
!= liEnd
; ++liItr
) {
80 if (TargetRegisterInfo::isVirtualRegister(liItr
->first
)) {
81 if (VRM
.hasPhys(liItr
->first
)) {
82 unsigned preg
= VRM
.getPhys(liItr
->first
);
83 mri
->replaceRegWith(liItr
->first
, preg
);
84 mri
->setPhysRegUsed(preg
);
89 if (!liItr
->second
->empty()) {
90 mri
->setPhysRegUsed(liItr
->first
);
96 DOUT
<< "**** Post Machine Instrs ****\n";
104 // ************************************************************************ //
106 /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
107 /// from top down, keep track of which spill slots or remat are available in
110 /// Note that not all physregs are created equal here. In particular, some
111 /// physregs are reloads that we are allowed to clobber or ignore at any time.
112 /// Other physregs are values that the register allocated program is using
113 /// that we cannot CHANGE, but we can read if we like. We keep track of this
114 /// on a per-stack-slot / remat id basis as the low bit in the value of the
115 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
116 /// this bit and addAvailable sets it if.
117 class VISIBILITY_HIDDEN AvailableSpills
{
118 const TargetRegisterInfo
*TRI
;
119 const TargetInstrInfo
*TII
;
121 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
122 // or remat'ed virtual register values that are still available, due to
123 // being loaded or stored to, but not invalidated yet.
124 std::map
<int, unsigned> SpillSlotsOrReMatsAvailable
;
126 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
127 // indicating which stack slot values are currently held by a physreg. This
128 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
129 // physreg is modified.
130 std::multimap
<unsigned, int> PhysRegsAvailable
;
132 void disallowClobberPhysRegOnly(unsigned PhysReg
);
134 void ClobberPhysRegOnly(unsigned PhysReg
);
136 AvailableSpills(const TargetRegisterInfo
*tri
, const TargetInstrInfo
*tii
)
137 : TRI(tri
), TII(tii
) {
140 /// clear - Reset the state.
142 SpillSlotsOrReMatsAvailable
.clear();
143 PhysRegsAvailable
.clear();
146 const TargetRegisterInfo
*getRegInfo() const { return TRI
; }
148 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
149 /// available in a physical register, return that PhysReg, otherwise
151 unsigned getSpillSlotOrReMatPhysReg(int Slot
) const {
152 std::map
<int, unsigned>::const_iterator I
=
153 SpillSlotsOrReMatsAvailable
.find(Slot
);
154 if (I
!= SpillSlotsOrReMatsAvailable
.end()) {
155 return I
->second
>> 1; // Remove the CanClobber bit.
160 /// addAvailable - Mark that the specified stack slot / remat is available
161 /// in the specified physreg. If CanClobber is true, the physreg can be
162 /// modified at any time without changing the semantics of the program.
163 void addAvailable(int SlotOrReMat
, unsigned Reg
, bool CanClobber
= true) {
164 // If this stack slot is thought to be available in some other physreg,
165 // remove its record.
166 ModifyStackSlotOrReMat(SlotOrReMat
);
168 PhysRegsAvailable
.insert(std::make_pair(Reg
, SlotOrReMat
));
169 SpillSlotsOrReMatsAvailable
[SlotOrReMat
]= (Reg
<< 1) |
170 (unsigned)CanClobber
;
172 if (SlotOrReMat
> VirtRegMap::MAX_STACK_SLOT
)
173 DOUT
<< "Remembering RM#" << SlotOrReMat
-VirtRegMap::MAX_STACK_SLOT
-1;
175 DOUT
<< "Remembering SS#" << SlotOrReMat
;
176 DOUT
<< " in physreg " << TRI
->getName(Reg
) << "\n";
179 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
180 /// the value of the specified stackslot register if it desires. The
181 /// specified stack slot must be available in a physreg for this query to
183 bool canClobberPhysRegForSS(int SlotOrReMat
) const {
184 assert(SpillSlotsOrReMatsAvailable
.count(SlotOrReMat
) &&
185 "Value not available!");
186 return SpillSlotsOrReMatsAvailable
.find(SlotOrReMat
)->second
& 1;
189 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
190 /// physical register where values for some stack slot(s) might be
192 bool canClobberPhysReg(unsigned PhysReg
) const {
193 std::multimap
<unsigned, int>::const_iterator I
=
194 PhysRegsAvailable
.lower_bound(PhysReg
);
195 while (I
!= PhysRegsAvailable
.end() && I
->first
== PhysReg
) {
196 int SlotOrReMat
= I
->second
;
198 if (!canClobberPhysRegForSS(SlotOrReMat
))
204 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
205 /// stackslot register. The register is still available but is no longer
206 /// allowed to be modifed.
207 void disallowClobberPhysReg(unsigned PhysReg
);
209 /// ClobberPhysReg - This is called when the specified physreg changes
210 /// value. We use this to invalidate any info about stuff that lives in
211 /// it and any of its aliases.
212 void ClobberPhysReg(unsigned PhysReg
);
214 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
215 /// slot changes. This removes information about which register the
216 /// previous value for this slot lives in (as the previous value is dead
218 void ModifyStackSlotOrReMat(int SlotOrReMat
);
220 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
221 /// into the specified MBB. Add available physical registers as potential
222 /// live-in's. If they are reused in the MBB, they will be added to the
223 /// live-in set to make register scavenger and post-allocation scheduler.
224 void AddAvailableRegsToLiveIn(MachineBasicBlock
&MBB
, BitVector
&RegKills
,
225 std::vector
<MachineOperand
*> &KillOps
);
228 // ************************************************************************ //
230 // Given a location where a reload of a spilled register or a remat of
231 // a constant is to be inserted, attempt to find a safe location to
232 // insert the load at an earlier point in the basic-block, to hide
233 // latency of the load and to avoid address-generation interlock
235 static MachineBasicBlock::iterator
236 ComputeReloadLoc(MachineBasicBlock::iterator
const InsertLoc
,
237 MachineBasicBlock::iterator
const Begin
,
239 const TargetRegisterInfo
*TRI
,
242 const TargetInstrInfo
*TII
,
243 const MachineFunction
&MF
)
248 // Spill backscheduling is of primary interest to addresses, so
249 // don't do anything if the register isn't in the register class
250 // used for pointers.
252 const TargetLowering
*TL
= MF
.getTarget().getTargetLowering();
254 if (!TL
->isTypeLegal(TL
->getPointerTy()))
255 // Believe it or not, this is true on PIC16.
258 const TargetRegisterClass
*ptrRegClass
=
259 TL
->getRegClassFor(TL
->getPointerTy());
260 if (!ptrRegClass
->contains(PhysReg
))
263 // Scan upwards through the preceding instructions. If an instruction doesn't
264 // reference the stack slot or the register we're loading, we can
265 // backschedule the reload up past it.
266 MachineBasicBlock::iterator NewInsertLoc
= InsertLoc
;
267 while (NewInsertLoc
!= Begin
) {
268 MachineBasicBlock::iterator Prev
= prior(NewInsertLoc
);
269 for (unsigned i
= 0; i
< Prev
->getNumOperands(); ++i
) {
270 MachineOperand
&Op
= Prev
->getOperand(i
);
271 if (!DoReMat
&& Op
.isFI() && Op
.getIndex() == SSorRMId
)
274 if (Prev
->findRegisterUseOperandIdx(PhysReg
) != -1 ||
275 Prev
->findRegisterDefOperand(PhysReg
))
277 for (const unsigned *Alias
= TRI
->getAliasSet(PhysReg
); *Alias
; ++Alias
)
278 if (Prev
->findRegisterUseOperandIdx(*Alias
) != -1 ||
279 Prev
->findRegisterDefOperand(*Alias
))
285 // If we made it to the beginning of the block, turn around and move back
286 // down just past any existing reloads. They're likely to be reloads/remats
287 // for instructions earlier than what our current reload/remat is for, so
288 // they should be scheduled earlier.
289 if (NewInsertLoc
== Begin
) {
291 while (InsertLoc
!= NewInsertLoc
&&
292 (TII
->isLoadFromStackSlot(NewInsertLoc
, FrameIdx
) ||
293 TII
->isTriviallyReMaterializable(NewInsertLoc
)))
300 // ReusedOp - For each reused operand, we keep track of a bit of information,
301 // in case we need to rollback upon processing a new operand. See comments
304 // The MachineInstr operand that reused an available value.
307 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
308 unsigned StackSlotOrReMat
;
310 // PhysRegReused - The physical register the value was available in.
311 unsigned PhysRegReused
;
313 // AssignedPhysReg - The physreg that was assigned for use by the reload.
314 unsigned AssignedPhysReg
;
316 // VirtReg - The virtual register itself.
319 ReusedOp(unsigned o
, unsigned ss
, unsigned prr
, unsigned apr
,
321 : Operand(o
), StackSlotOrReMat(ss
), PhysRegReused(prr
),
322 AssignedPhysReg(apr
), VirtReg(vreg
) {}
325 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
326 /// is reused instead of reloaded.
327 class VISIBILITY_HIDDEN ReuseInfo
{
329 std::vector
<ReusedOp
> Reuses
;
330 BitVector PhysRegsClobbered
;
332 ReuseInfo(MachineInstr
&mi
, const TargetRegisterInfo
*tri
) : MI(mi
) {
333 PhysRegsClobbered
.resize(tri
->getNumRegs());
336 bool hasReuses() const {
337 return !Reuses
.empty();
340 /// addReuse - If we choose to reuse a virtual register that is already
341 /// available instead of reloading it, remember that we did so.
342 void addReuse(unsigned OpNo
, unsigned StackSlotOrReMat
,
343 unsigned PhysRegReused
, unsigned AssignedPhysReg
,
345 // If the reload is to the assigned register anyway, no undo will be
347 if (PhysRegReused
== AssignedPhysReg
) return;
349 // Otherwise, remember this.
350 Reuses
.push_back(ReusedOp(OpNo
, StackSlotOrReMat
, PhysRegReused
,
351 AssignedPhysReg
, VirtReg
));
354 void markClobbered(unsigned PhysReg
) {
355 PhysRegsClobbered
.set(PhysReg
);
358 bool isClobbered(unsigned PhysReg
) const {
359 return PhysRegsClobbered
.test(PhysReg
);
362 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
363 /// is some other operand that is using the specified register, either pick
364 /// a new register to use, or evict the previous reload and use this reg.
365 unsigned GetRegForReload(const TargetRegisterClass
*RC
, unsigned PhysReg
,
366 MachineFunction
&MF
, MachineInstr
*MI
,
367 AvailableSpills
&Spills
,
368 std::vector
<MachineInstr
*> &MaybeDeadStores
,
369 SmallSet
<unsigned, 8> &Rejected
,
371 std::vector
<MachineOperand
*> &KillOps
,
374 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
375 /// 'Rejected' set to remember which registers have been considered and
376 /// rejected for the reload. This avoids infinite looping in case like
379 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
380 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
382 /// sees r1 is taken by t2, tries t2's reload register r0
383 /// sees r0 is taken by t3, tries t3's reload register r1
384 /// sees r1 is taken by t2, tries t2's reload register r0 ...
385 unsigned GetRegForReload(unsigned VirtReg
, unsigned PhysReg
, MachineInstr
*MI
,
386 AvailableSpills
&Spills
,
387 std::vector
<MachineInstr
*> &MaybeDeadStores
,
389 std::vector
<MachineOperand
*> &KillOps
,
391 SmallSet
<unsigned, 8> Rejected
;
392 MachineFunction
&MF
= *MI
->getParent()->getParent();
393 const TargetRegisterClass
* RC
= MF
.getRegInfo().getRegClass(VirtReg
);
394 return GetRegForReload(RC
, PhysReg
, MF
, MI
, Spills
, MaybeDeadStores
,
395 Rejected
, RegKills
, KillOps
, VRM
);
400 // ****************** //
401 // Utility Functions //
402 // ****************** //
404 /// findSinglePredSuccessor - Return via reference a vector of machine basic
405 /// blocks each of which is a successor of the specified BB and has no other
407 static void findSinglePredSuccessor(MachineBasicBlock
*MBB
,
408 SmallVectorImpl
<MachineBasicBlock
*> &Succs
) {
409 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
410 SE
= MBB
->succ_end(); SI
!= SE
; ++SI
) {
411 MachineBasicBlock
*SuccMBB
= *SI
;
412 if (SuccMBB
->pred_size() == 1)
413 Succs
.push_back(SuccMBB
);
417 /// InvalidateKill - Invalidate register kill information for a specific
418 /// register. This also unsets the kills marker on the last kill operand.
419 static void InvalidateKill(unsigned Reg
,
420 const TargetRegisterInfo
* TRI
,
422 std::vector
<MachineOperand
*> &KillOps
) {
424 KillOps
[Reg
]->setIsKill(false);
425 // KillOps[Reg] might be a def of a super-register.
426 unsigned KReg
= KillOps
[Reg
]->getReg();
427 KillOps
[KReg
] = NULL
;
428 RegKills
.reset(KReg
);
429 for (const unsigned *SR
= TRI
->getSubRegisters(KReg
); *SR
; ++SR
) {
431 KillOps
[*SR
]->setIsKill(false);
439 /// InvalidateKills - MI is going to be deleted. If any of its operands are
440 /// marked kill, then invalidate the information.
441 static void InvalidateKills(MachineInstr
&MI
,
442 const TargetRegisterInfo
* TRI
,
444 std::vector
<MachineOperand
*> &KillOps
,
445 SmallVector
<unsigned, 2> *KillRegs
= NULL
) {
446 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
447 MachineOperand
&MO
= MI
.getOperand(i
);
448 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill() || MO
.isUndef())
450 unsigned Reg
= MO
.getReg();
451 if (TargetRegisterInfo::isVirtualRegister(Reg
))
454 KillRegs
->push_back(Reg
);
455 assert(Reg
< KillOps
.size());
456 if (KillOps
[Reg
] == &MO
) {
459 for (const unsigned *SR
= TRI
->getSubRegisters(Reg
); *SR
; ++SR
) {
469 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
470 /// (since it's spill instruction is removed), mark it isDead. Also checks if
471 /// the def MI has other definition operands that are not dead. Returns it by
473 static bool InvalidateRegDef(MachineBasicBlock::iterator I
,
474 MachineInstr
&NewDef
, unsigned Reg
,
476 // Due to remat, it's possible this reg isn't being reused. That is,
477 // the def of this reg (by prev MI) is now dead.
478 MachineInstr
*DefMI
= I
;
479 MachineOperand
*DefOp
= NULL
;
480 for (unsigned i
= 0, e
= DefMI
->getNumOperands(); i
!= e
; ++i
) {
481 MachineOperand
&MO
= DefMI
->getOperand(i
);
482 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill() || MO
.isUndef())
484 if (MO
.getReg() == Reg
)
486 else if (!MO
.isDead())
492 bool FoundUse
= false, Done
= false;
493 MachineBasicBlock::iterator E
= &NewDef
;
495 for (; !Done
&& I
!= E
; ++I
) {
496 MachineInstr
*NMI
= I
;
497 for (unsigned j
= 0, ee
= NMI
->getNumOperands(); j
!= ee
; ++j
) {
498 MachineOperand
&MO
= NMI
->getOperand(j
);
499 if (!MO
.isReg() || MO
.getReg() != Reg
)
503 Done
= true; // Stop after scanning all the operands of this MI.
514 /// UpdateKills - Track and update kill info. If a MI reads a register that is
515 /// marked kill, then it must be due to register reuse. Transfer the kill info
517 static void UpdateKills(MachineInstr
&MI
, const TargetRegisterInfo
* TRI
,
519 std::vector
<MachineOperand
*> &KillOps
) {
520 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
521 MachineOperand
&MO
= MI
.getOperand(i
);
522 if (!MO
.isReg() || !MO
.isUse() || MO
.isUndef())
524 unsigned Reg
= MO
.getReg();
528 if (RegKills
[Reg
] && KillOps
[Reg
]->getParent() != &MI
) {
529 // That can't be right. Register is killed but not re-defined and it's
530 // being reused. Let's fix that.
531 KillOps
[Reg
]->setIsKill(false);
532 // KillOps[Reg] might be a def of a super-register.
533 unsigned KReg
= KillOps
[Reg
]->getReg();
534 KillOps
[KReg
] = NULL
;
535 RegKills
.reset(KReg
);
537 // Must be a def of a super-register. Its other sub-regsters are no
538 // longer killed as well.
539 for (const unsigned *SR
= TRI
->getSubRegisters(KReg
); *SR
; ++SR
) {
544 if (!MI
.isRegTiedToDefOperand(i
))
545 // Unless it's a two-address operand, this is the new kill.
551 for (const unsigned *SR
= TRI
->getSubRegisters(Reg
); *SR
; ++SR
) {
558 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
559 const MachineOperand
&MO
= MI
.getOperand(i
);
560 if (!MO
.isReg() || !MO
.isDef())
562 unsigned Reg
= MO
.getReg();
565 // It also defines (or partially define) aliases.
566 for (const unsigned *SR
= TRI
->getSubRegisters(Reg
); *SR
; ++SR
) {
573 /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
575 static void ReMaterialize(MachineBasicBlock
&MBB
,
576 MachineBasicBlock::iterator
&MII
,
577 unsigned DestReg
, unsigned Reg
,
578 const TargetInstrInfo
*TII
,
579 const TargetRegisterInfo
*TRI
,
581 MachineInstr
*ReMatDefMI
= VRM
.getReMaterializedMI(Reg
);
583 const TargetInstrDesc
&TID
= ReMatDefMI
->getDesc();
584 assert(TID
.getNumDefs() == 1 &&
585 "Don't know how to remat instructions that define > 1 values!");
587 TII
->reMaterialize(MBB
, MII
, DestReg
,
588 ReMatDefMI
->getOperand(0).getSubReg(), ReMatDefMI
);
589 MachineInstr
*NewMI
= prior(MII
);
590 for (unsigned i
= 0, e
= NewMI
->getNumOperands(); i
!= e
; ++i
) {
591 MachineOperand
&MO
= NewMI
->getOperand(i
);
592 if (!MO
.isReg() || MO
.getReg() == 0)
594 unsigned VirtReg
= MO
.getReg();
595 if (TargetRegisterInfo::isPhysicalRegister(VirtReg
))
598 unsigned SubIdx
= MO
.getSubReg();
599 unsigned Phys
= VRM
.getPhys(VirtReg
);
601 unsigned RReg
= SubIdx
? TRI
->getSubReg(Phys
, SubIdx
) : Phys
;
608 /// findSuperReg - Find the SubReg's super-register of given register class
609 /// where its SubIdx sub-register is SubReg.
610 static unsigned findSuperReg(const TargetRegisterClass
*RC
, unsigned SubReg
,
611 unsigned SubIdx
, const TargetRegisterInfo
*TRI
) {
612 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
615 if (TRI
->getSubReg(Reg
, SubIdx
) == SubReg
)
621 // ******************************** //
622 // Available Spills Implementation //
623 // ******************************** //
625 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
626 /// stackslot register. The register is still available but is no longer
627 /// allowed to be modifed.
628 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg
) {
629 std::multimap
<unsigned, int>::iterator I
=
630 PhysRegsAvailable
.lower_bound(PhysReg
);
631 while (I
!= PhysRegsAvailable
.end() && I
->first
== PhysReg
) {
632 int SlotOrReMat
= I
->second
;
634 assert((SpillSlotsOrReMatsAvailable
[SlotOrReMat
] >> 1) == PhysReg
&&
635 "Bidirectional map mismatch!");
636 SpillSlotsOrReMatsAvailable
[SlotOrReMat
] &= ~1;
637 DOUT
<< "PhysReg " << TRI
->getName(PhysReg
)
638 << " copied, it is available for use but can no longer be modified\n";
642 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
643 /// stackslot register and its aliases. The register and its aliases may
644 /// still available but is no longer allowed to be modifed.
645 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg
) {
646 for (const unsigned *AS
= TRI
->getAliasSet(PhysReg
); *AS
; ++AS
)
647 disallowClobberPhysRegOnly(*AS
);
648 disallowClobberPhysRegOnly(PhysReg
);
651 /// ClobberPhysRegOnly - This is called when the specified physreg changes
652 /// value. We use this to invalidate any info about stuff we thing lives in it.
653 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg
) {
654 std::multimap
<unsigned, int>::iterator I
=
655 PhysRegsAvailable
.lower_bound(PhysReg
);
656 while (I
!= PhysRegsAvailable
.end() && I
->first
== PhysReg
) {
657 int SlotOrReMat
= I
->second
;
658 PhysRegsAvailable
.erase(I
++);
659 assert((SpillSlotsOrReMatsAvailable
[SlotOrReMat
] >> 1) == PhysReg
&&
660 "Bidirectional map mismatch!");
661 SpillSlotsOrReMatsAvailable
.erase(SlotOrReMat
);
662 DOUT
<< "PhysReg " << TRI
->getName(PhysReg
)
663 << " clobbered, invalidating ";
664 if (SlotOrReMat
> VirtRegMap::MAX_STACK_SLOT
)
665 DOUT
<< "RM#" << SlotOrReMat
-VirtRegMap::MAX_STACK_SLOT
-1 << "\n";
667 DOUT
<< "SS#" << SlotOrReMat
<< "\n";
671 /// ClobberPhysReg - This is called when the specified physreg changes
672 /// value. We use this to invalidate any info about stuff we thing lives in
673 /// it and any of its aliases.
674 void AvailableSpills::ClobberPhysReg(unsigned PhysReg
) {
675 for (const unsigned *AS
= TRI
->getAliasSet(PhysReg
); *AS
; ++AS
)
676 ClobberPhysRegOnly(*AS
);
677 ClobberPhysRegOnly(PhysReg
);
680 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
681 /// into the specified MBB. Add available physical registers as potential
682 /// live-in's. If they are reused in the MBB, they will be added to the
683 /// live-in set to make register scavenger and post-allocation scheduler.
684 void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock
&MBB
,
686 std::vector
<MachineOperand
*> &KillOps
) {
687 std::set
<unsigned> NotAvailable
;
688 for (std::multimap
<unsigned, int>::iterator
689 I
= PhysRegsAvailable
.begin(), E
= PhysRegsAvailable
.end();
691 unsigned Reg
= I
->first
;
692 const TargetRegisterClass
* RC
= TRI
->getPhysicalRegisterRegClass(Reg
);
693 // FIXME: A temporary workaround. We can't reuse available value if it's
694 // not safe to move the def of the virtual register's class. e.g.
695 // X86::RFP* register classes. Do not add it as a live-in.
696 if (!TII
->isSafeToMoveRegClassDefs(RC
))
697 // This is no longer available.
698 NotAvailable
.insert(Reg
);
701 InvalidateKill(Reg
, TRI
, RegKills
, KillOps
);
704 // Skip over the same register.
705 std::multimap
<unsigned, int>::iterator NI
= next(I
);
706 while (NI
!= E
&& NI
->first
== Reg
) {
712 for (std::set
<unsigned>::iterator I
= NotAvailable
.begin(),
713 E
= NotAvailable
.end(); I
!= E
; ++I
) {
715 for (const unsigned *SubRegs
= TRI
->getSubRegisters(*I
);
717 ClobberPhysReg(*SubRegs
);
721 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
722 /// slot changes. This removes information about which register the previous
723 /// value for this slot lives in (as the previous value is dead now).
724 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat
) {
725 std::map
<int, unsigned>::iterator It
=
726 SpillSlotsOrReMatsAvailable
.find(SlotOrReMat
);
727 if (It
== SpillSlotsOrReMatsAvailable
.end()) return;
728 unsigned Reg
= It
->second
>> 1;
729 SpillSlotsOrReMatsAvailable
.erase(It
);
731 // This register may hold the value of multiple stack slots, only remove this
732 // stack slot from the set of values the register contains.
733 std::multimap
<unsigned, int>::iterator I
= PhysRegsAvailable
.lower_bound(Reg
);
735 assert(I
!= PhysRegsAvailable
.end() && I
->first
== Reg
&&
736 "Map inverse broken!");
737 if (I
->second
== SlotOrReMat
) break;
739 PhysRegsAvailable
.erase(I
);
742 // ************************** //
743 // Reuse Info Implementation //
744 // ************************** //
746 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
747 /// is some other operand that is using the specified register, either pick
748 /// a new register to use, or evict the previous reload and use this reg.
749 unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass
*RC
,
752 MachineInstr
*MI
, AvailableSpills
&Spills
,
753 std::vector
<MachineInstr
*> &MaybeDeadStores
,
754 SmallSet
<unsigned, 8> &Rejected
,
756 std::vector
<MachineOperand
*> &KillOps
,
758 const TargetInstrInfo
* TII
= MF
.getTarget().getInstrInfo();
759 const TargetRegisterInfo
*TRI
= Spills
.getRegInfo();
761 if (Reuses
.empty()) return PhysReg
; // This is most often empty.
763 for (unsigned ro
= 0, e
= Reuses
.size(); ro
!= e
; ++ro
) {
764 ReusedOp
&Op
= Reuses
[ro
];
765 // If we find some other reuse that was supposed to use this register
766 // exactly for its reload, we can change this reload to use ITS reload
767 // register. That is, unless its reload register has already been
768 // considered and subsequently rejected because it has also been reused
769 // by another operand.
770 if (Op
.PhysRegReused
== PhysReg
&&
771 Rejected
.count(Op
.AssignedPhysReg
) == 0 &&
772 RC
->contains(Op
.AssignedPhysReg
)) {
773 // Yup, use the reload register that we didn't use before.
774 unsigned NewReg
= Op
.AssignedPhysReg
;
775 Rejected
.insert(PhysReg
);
776 return GetRegForReload(RC
, NewReg
, MF
, MI
, Spills
, MaybeDeadStores
, Rejected
,
777 RegKills
, KillOps
, VRM
);
779 // Otherwise, we might also have a problem if a previously reused
780 // value aliases the new register. If so, codegen the previous reload
782 unsigned PRRU
= Op
.PhysRegReused
;
783 if (TRI
->areAliases(PRRU
, PhysReg
)) {
784 // Okay, we found out that an alias of a reused register
785 // was used. This isn't good because it means we have
786 // to undo a previous reuse.
787 MachineBasicBlock
*MBB
= MI
->getParent();
788 const TargetRegisterClass
*AliasRC
=
789 MBB
->getParent()->getRegInfo().getRegClass(Op
.VirtReg
);
791 // Copy Op out of the vector and remove it, we're going to insert an
792 // explicit load for it.
794 Reuses
.erase(Reuses
.begin()+ro
);
796 // Ok, we're going to try to reload the assigned physreg into the
797 // slot that we were supposed to in the first place. However, that
798 // register could hold a reuse. Check to see if it conflicts or
799 // would prefer us to use a different register.
800 unsigned NewPhysReg
= GetRegForReload(RC
, NewOp
.AssignedPhysReg
,
801 MF
, MI
, Spills
, MaybeDeadStores
,
802 Rejected
, RegKills
, KillOps
, VRM
);
804 bool DoReMat
= NewOp
.StackSlotOrReMat
> VirtRegMap::MAX_STACK_SLOT
;
805 int SSorRMId
= DoReMat
806 ? VRM
.getReMatId(NewOp
.VirtReg
) : NewOp
.StackSlotOrReMat
;
808 // Back-schedule reloads and remats.
809 MachineBasicBlock::iterator InsertLoc
=
810 ComputeReloadLoc(MI
, MBB
->begin(), PhysReg
, TRI
,
811 DoReMat
, SSorRMId
, TII
, MF
);
814 ReMaterialize(*MBB
, InsertLoc
, NewPhysReg
, NewOp
.VirtReg
, TII
,
817 TII
->loadRegFromStackSlot(*MBB
, InsertLoc
, NewPhysReg
,
818 NewOp
.StackSlotOrReMat
, AliasRC
);
819 MachineInstr
*LoadMI
= prior(InsertLoc
);
820 VRM
.addSpillSlotUse(NewOp
.StackSlotOrReMat
, LoadMI
);
821 // Any stores to this stack slot are not dead anymore.
822 MaybeDeadStores
[NewOp
.StackSlotOrReMat
] = NULL
;
825 Spills
.ClobberPhysReg(NewPhysReg
);
826 Spills
.ClobberPhysReg(NewOp
.PhysRegReused
);
828 unsigned SubIdx
= MI
->getOperand(NewOp
.Operand
).getSubReg();
829 unsigned RReg
= SubIdx
? TRI
->getSubReg(NewPhysReg
, SubIdx
) : NewPhysReg
;
830 MI
->getOperand(NewOp
.Operand
).setReg(RReg
);
831 MI
->getOperand(NewOp
.Operand
).setSubReg(0);
833 Spills
.addAvailable(NewOp
.StackSlotOrReMat
, NewPhysReg
);
834 UpdateKills(*prior(InsertLoc
), TRI
, RegKills
, KillOps
);
835 DOUT
<< '\t' << *prior(InsertLoc
);
837 DOUT
<< "Reuse undone!\n";
840 // Finally, PhysReg is now available, go ahead and use it.
848 // ************************************************************************ //
850 /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
851 /// stack slot mod/ref. It also checks if it's possible to unfold the
852 /// instruction by having it define a specified physical register instead.
853 static bool FoldsStackSlotModRef(MachineInstr
&MI
, int SS
, unsigned PhysReg
,
854 const TargetInstrInfo
*TII
,
855 const TargetRegisterInfo
*TRI
,
857 if (VRM
.hasEmergencySpills(&MI
) || VRM
.isSpillPt(&MI
))
861 VirtRegMap::MI2VirtMapTy::const_iterator I
, End
;
862 for (tie(I
, End
) = VRM
.getFoldedVirts(&MI
); I
!= End
; ++I
) {
863 unsigned VirtReg
= I
->second
.first
;
864 VirtRegMap::ModRef MR
= I
->second
.second
;
865 if (MR
& VirtRegMap::isModRef
)
866 if (VRM
.getStackSlot(VirtReg
) == SS
) {
867 Found
= TII
->getOpcodeAfterMemoryUnfold(MI
.getOpcode(), true, true) != 0;
874 // Does the instruction uses a register that overlaps the scratch register?
875 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
876 MachineOperand
&MO
= MI
.getOperand(i
);
877 if (!MO
.isReg() || MO
.getReg() == 0)
879 unsigned Reg
= MO
.getReg();
880 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
881 if (!VRM
.hasPhys(Reg
))
883 Reg
= VRM
.getPhys(Reg
);
885 if (TRI
->regsOverlap(PhysReg
, Reg
))
891 /// FindFreeRegister - Find a free register of a given register class by looking
892 /// at (at most) the last two machine instructions.
893 static unsigned FindFreeRegister(MachineBasicBlock::iterator MII
,
894 MachineBasicBlock
&MBB
,
895 const TargetRegisterClass
*RC
,
896 const TargetRegisterInfo
*TRI
,
897 BitVector
&AllocatableRegs
) {
898 BitVector
Defs(TRI
->getNumRegs());
899 BitVector
Uses(TRI
->getNumRegs());
900 SmallVector
<unsigned, 4> LocalUses
;
901 SmallVector
<unsigned, 4> Kills
;
903 // Take a look at 2 instructions at most.
904 for (unsigned Count
= 0; Count
< 2; ++Count
) {
905 if (MII
== MBB
.begin())
907 MachineInstr
*PrevMI
= prior(MII
);
908 for (unsigned i
= 0, e
= PrevMI
->getNumOperands(); i
!= e
; ++i
) {
909 MachineOperand
&MO
= PrevMI
->getOperand(i
);
910 if (!MO
.isReg() || MO
.getReg() == 0)
912 unsigned Reg
= MO
.getReg();
915 for (const unsigned *AS
= TRI
->getAliasSet(Reg
); *AS
; ++AS
)
918 LocalUses
.push_back(Reg
);
919 if (MO
.isKill() && AllocatableRegs
[Reg
])
920 Kills
.push_back(Reg
);
924 for (unsigned i
= 0, e
= Kills
.size(); i
!= e
; ++i
) {
925 unsigned Kill
= Kills
[i
];
926 if (!Defs
[Kill
] && !Uses
[Kill
] &&
927 TRI
->getPhysicalRegisterRegClass(Kill
) == RC
)
930 for (unsigned i
= 0, e
= LocalUses
.size(); i
!= e
; ++i
) {
931 unsigned Reg
= LocalUses
[i
];
933 for (const unsigned *AS
= TRI
->getAliasSet(Reg
); *AS
; ++AS
)
944 void AssignPhysToVirtReg(MachineInstr
*MI
, unsigned VirtReg
, unsigned PhysReg
) {
945 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
946 MachineOperand
&MO
= MI
->getOperand(i
);
947 if (MO
.isReg() && MO
.getReg() == VirtReg
)
954 bool operator()(const std::pair
<MachineInstr
*, int> &A
,
955 const std::pair
<MachineInstr
*, int> &B
) {
956 return A
.second
< B
.second
;
961 // ***************************** //
962 // Local Spiller Implementation //
963 // ***************************** //
965 class VISIBILITY_HIDDEN LocalRewriter
: public VirtRegRewriter
{
966 MachineRegisterInfo
*RegInfo
;
967 const TargetRegisterInfo
*TRI
;
968 const TargetInstrInfo
*TII
;
969 BitVector AllocatableRegs
;
970 DenseMap
<MachineInstr
*, unsigned> DistanceMap
;
973 bool runOnMachineFunction(MachineFunction
&MF
, VirtRegMap
&VRM
,
974 LiveIntervals
* LIs
) {
975 RegInfo
= &MF
.getRegInfo();
976 TRI
= MF
.getTarget().getRegisterInfo();
977 TII
= MF
.getTarget().getInstrInfo();
978 AllocatableRegs
= TRI
->getAllocatableSet(MF
);
979 DEBUG(errs() << "\n**** Local spiller rewriting function '"
980 << MF
.getFunction()->getName() << "':\n");
981 DOUT
<< "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
985 // Spills - Keep track of which spilled values are available in physregs
986 // so that we can choose to reuse the physregs instead of emitting
987 // reloads. This is usually refreshed per basic block.
988 AvailableSpills
Spills(TRI
, TII
);
990 // Keep track of kill information.
991 BitVector
RegKills(TRI
->getNumRegs());
992 std::vector
<MachineOperand
*> KillOps
;
993 KillOps
.resize(TRI
->getNumRegs(), NULL
);
995 // SingleEntrySuccs - Successor blocks which have a single predecessor.
996 SmallVector
<MachineBasicBlock
*, 4> SinglePredSuccs
;
997 SmallPtrSet
<MachineBasicBlock
*,16> EarlyVisited
;
999 // Traverse the basic blocks depth first.
1000 MachineBasicBlock
*Entry
= MF
.begin();
1001 SmallPtrSet
<MachineBasicBlock
*,16> Visited
;
1002 for (df_ext_iterator
<MachineBasicBlock
*,
1003 SmallPtrSet
<MachineBasicBlock
*,16> >
1004 DFI
= df_ext_begin(Entry
, Visited
), E
= df_ext_end(Entry
, Visited
);
1006 MachineBasicBlock
*MBB
= *DFI
;
1007 if (!EarlyVisited
.count(MBB
))
1008 RewriteMBB(*MBB
, VRM
, LIs
, Spills
, RegKills
, KillOps
);
1010 // If this MBB is the only predecessor of a successor. Keep the
1011 // availability information and visit it next.
1013 // Keep visiting single predecessor successor as long as possible.
1014 SinglePredSuccs
.clear();
1015 findSinglePredSuccessor(MBB
, SinglePredSuccs
);
1016 if (SinglePredSuccs
.empty())
1019 // FIXME: More than one successors, each of which has MBB has
1020 // the only predecessor.
1021 MBB
= SinglePredSuccs
[0];
1022 if (!Visited
.count(MBB
) && EarlyVisited
.insert(MBB
)) {
1023 Spills
.AddAvailableRegsToLiveIn(*MBB
, RegKills
, KillOps
);
1024 RewriteMBB(*MBB
, VRM
, LIs
, Spills
, RegKills
, KillOps
);
1029 // Clear the availability info.
1033 DOUT
<< "**** Post Machine Instrs ****\n";
1036 // Mark unused spill slots.
1037 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1038 int SS
= VRM
.getLowSpillSlot();
1039 if (SS
!= VirtRegMap::NO_STACK_SLOT
)
1040 for (int e
= VRM
.getHighSpillSlot(); SS
<= e
; ++SS
)
1041 if (!VRM
.isSpillSlotUsed(SS
)) {
1042 MFI
->RemoveStackObject(SS
);
1051 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1052 /// a scratch register is available.
1053 /// xorq %r12<kill>, %r13
1054 /// addq %rax, -184(%rbp)
1055 /// addq %r13, -184(%rbp)
1057 /// xorq %r12<kill>, %r13
1058 /// movq -184(%rbp), %r12
1061 /// movq %r12, -184(%rbp)
1062 bool OptimizeByUnfold2(unsigned VirtReg
, int SS
,
1063 MachineBasicBlock
&MBB
,
1064 MachineBasicBlock::iterator
&MII
,
1065 std::vector
<MachineInstr
*> &MaybeDeadStores
,
1066 AvailableSpills
&Spills
,
1067 BitVector
&RegKills
,
1068 std::vector
<MachineOperand
*> &KillOps
,
1071 MachineBasicBlock::iterator NextMII
= next(MII
);
1072 if (NextMII
== MBB
.end())
1075 if (TII
->getOpcodeAfterMemoryUnfold(MII
->getOpcode(), true, true) == 0)
1078 // Now let's see if the last couple of instructions happens to have freed up
1080 const TargetRegisterClass
* RC
= RegInfo
->getRegClass(VirtReg
);
1081 unsigned PhysReg
= FindFreeRegister(MII
, MBB
, RC
, TRI
, AllocatableRegs
);
1085 MachineFunction
&MF
= *MBB
.getParent();
1086 TRI
= MF
.getTarget().getRegisterInfo();
1087 MachineInstr
&MI
= *MII
;
1088 if (!FoldsStackSlotModRef(MI
, SS
, PhysReg
, TII
, TRI
, VRM
))
1091 // If the next instruction also folds the same SS modref and can be unfoled,
1092 // then it's worthwhile to issue a load from SS into the free register and
1093 // then unfold these instructions.
1094 if (!FoldsStackSlotModRef(*NextMII
, SS
, PhysReg
, TII
, TRI
, VRM
))
1097 // Back-schedule reloads and remats.
1098 MachineBasicBlock::iterator InsertLoc
=
1099 ComputeReloadLoc(MII
, MBB
.begin(), PhysReg
, TRI
, false, SS
, TII
, MF
);
1101 // Load from SS to the spare physical register.
1102 TII
->loadRegFromStackSlot(MBB
, MII
, PhysReg
, SS
, RC
);
1103 // This invalidates Phys.
1104 Spills
.ClobberPhysReg(PhysReg
);
1105 // Remember it's available.
1106 Spills
.addAvailable(SS
, PhysReg
);
1107 MaybeDeadStores
[SS
] = NULL
;
1109 // Unfold current MI.
1110 SmallVector
<MachineInstr
*, 4> NewMIs
;
1111 if (!TII
->unfoldMemoryOperand(MF
, &MI
, VirtReg
, false, false, NewMIs
))
1112 llvm_unreachable("Unable unfold the load / store folding instruction!");
1113 assert(NewMIs
.size() == 1);
1114 AssignPhysToVirtReg(NewMIs
[0], VirtReg
, PhysReg
);
1115 VRM
.transferRestorePts(&MI
, NewMIs
[0]);
1116 MII
= MBB
.insert(MII
, NewMIs
[0]);
1117 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
1118 VRM
.RemoveMachineInstrFromMaps(&MI
);
1122 // Unfold next instructions that fold the same SS.
1124 MachineInstr
&NextMI
= *NextMII
;
1125 NextMII
= next(NextMII
);
1127 if (!TII
->unfoldMemoryOperand(MF
, &NextMI
, VirtReg
, false, false, NewMIs
))
1128 llvm_unreachable("Unable unfold the load / store folding instruction!");
1129 assert(NewMIs
.size() == 1);
1130 AssignPhysToVirtReg(NewMIs
[0], VirtReg
, PhysReg
);
1131 VRM
.transferRestorePts(&NextMI
, NewMIs
[0]);
1132 MBB
.insert(NextMII
, NewMIs
[0]);
1133 InvalidateKills(NextMI
, TRI
, RegKills
, KillOps
);
1134 VRM
.RemoveMachineInstrFromMaps(&NextMI
);
1137 if (NextMII
== MBB
.end())
1139 } while (FoldsStackSlotModRef(*NextMII
, SS
, PhysReg
, TII
, TRI
, VRM
));
1141 // Store the value back into SS.
1142 TII
->storeRegToStackSlot(MBB
, NextMII
, PhysReg
, true, SS
, RC
);
1143 MachineInstr
*StoreMI
= prior(NextMII
);
1144 VRM
.addSpillSlotUse(SS
, StoreMI
);
1145 VRM
.virtFolded(VirtReg
, StoreMI
, VirtRegMap::isMod
);
1150 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1151 /// instruction. e.g.
1153 /// movl %eax, -32(%ebp)
1154 /// movl -36(%ebp), %eax
1155 /// orl %eax, -32(%ebp)
1158 /// orl -36(%ebp), %eax
1159 /// mov %eax, -32(%ebp)
1160 /// This enables unfolding optimization for a subsequent instruction which will
1161 /// also eliminate the newly introduced store instruction.
1162 bool OptimizeByUnfold(MachineBasicBlock
&MBB
,
1163 MachineBasicBlock::iterator
&MII
,
1164 std::vector
<MachineInstr
*> &MaybeDeadStores
,
1165 AvailableSpills
&Spills
,
1166 BitVector
&RegKills
,
1167 std::vector
<MachineOperand
*> &KillOps
,
1169 MachineFunction
&MF
= *MBB
.getParent();
1170 MachineInstr
&MI
= *MII
;
1171 unsigned UnfoldedOpc
= 0;
1172 unsigned UnfoldPR
= 0;
1173 unsigned UnfoldVR
= 0;
1174 int FoldedSS
= VirtRegMap::NO_STACK_SLOT
;
1175 VirtRegMap::MI2VirtMapTy::const_iterator I
, End
;
1176 for (tie(I
, End
) = VRM
.getFoldedVirts(&MI
); I
!= End
; ) {
1177 // Only transform a MI that folds a single register.
1180 UnfoldVR
= I
->second
.first
;
1181 VirtRegMap::ModRef MR
= I
->second
.second
;
1182 // MI2VirtMap be can updated which invalidate the iterator.
1183 // Increment the iterator first.
1185 if (VRM
.isAssignedReg(UnfoldVR
))
1187 // If this reference is not a use, any previous store is now dead.
1188 // Otherwise, the store to this stack slot is not dead anymore.
1189 FoldedSS
= VRM
.getStackSlot(UnfoldVR
);
1190 MachineInstr
* DeadStore
= MaybeDeadStores
[FoldedSS
];
1191 if (DeadStore
&& (MR
& VirtRegMap::isModRef
)) {
1192 unsigned PhysReg
= Spills
.getSpillSlotOrReMatPhysReg(FoldedSS
);
1193 if (!PhysReg
|| !DeadStore
->readsRegister(PhysReg
))
1196 UnfoldedOpc
= TII
->getOpcodeAfterMemoryUnfold(MI
.getOpcode(),
1205 // Look for other unfolding opportunities.
1206 return OptimizeByUnfold2(UnfoldVR
, FoldedSS
, MBB
, MII
,
1207 MaybeDeadStores
, Spills
, RegKills
, KillOps
, VRM
);
1210 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1211 MachineOperand
&MO
= MI
.getOperand(i
);
1212 if (!MO
.isReg() || MO
.getReg() == 0 || !MO
.isUse())
1214 unsigned VirtReg
= MO
.getReg();
1215 if (TargetRegisterInfo::isPhysicalRegister(VirtReg
) || MO
.getSubReg())
1217 if (VRM
.isAssignedReg(VirtReg
)) {
1218 unsigned PhysReg
= VRM
.getPhys(VirtReg
);
1219 if (PhysReg
&& TRI
->regsOverlap(PhysReg
, UnfoldPR
))
1221 } else if (VRM
.isReMaterialized(VirtReg
))
1223 int SS
= VRM
.getStackSlot(VirtReg
);
1224 unsigned PhysReg
= Spills
.getSpillSlotOrReMatPhysReg(SS
);
1226 if (TRI
->regsOverlap(PhysReg
, UnfoldPR
))
1230 if (VRM
.hasPhys(VirtReg
)) {
1231 PhysReg
= VRM
.getPhys(VirtReg
);
1232 if (!TRI
->regsOverlap(PhysReg
, UnfoldPR
))
1236 // Ok, we'll need to reload the value into a register which makes
1237 // it impossible to perform the store unfolding optimization later.
1238 // Let's see if it is possible to fold the load if the store is
1239 // unfolded. This allows us to perform the store unfolding
1241 SmallVector
<MachineInstr
*, 4> NewMIs
;
1242 if (TII
->unfoldMemoryOperand(MF
, &MI
, UnfoldVR
, false, false, NewMIs
)) {
1243 assert(NewMIs
.size() == 1);
1244 MachineInstr
*NewMI
= NewMIs
.back();
1246 int Idx
= NewMI
->findRegisterUseOperandIdx(VirtReg
, false);
1248 SmallVector
<unsigned, 1> Ops
;
1250 MachineInstr
*FoldedMI
= TII
->foldMemoryOperand(MF
, NewMI
, Ops
, SS
);
1252 VRM
.addSpillSlotUse(SS
, FoldedMI
);
1253 if (!VRM
.hasPhys(UnfoldVR
))
1254 VRM
.assignVirt2Phys(UnfoldVR
, UnfoldPR
);
1255 VRM
.virtFolded(VirtReg
, FoldedMI
, VirtRegMap::isRef
);
1256 MII
= MBB
.insert(MII
, FoldedMI
);
1257 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
1258 VRM
.RemoveMachineInstrFromMaps(&MI
);
1260 MF
.DeleteMachineInstr(NewMI
);
1263 MF
.DeleteMachineInstr(NewMI
);
1270 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1271 /// where SrcReg is r1 and it is tied to r0. Return true if after
1272 /// commuting this instruction it will be r0 = op r2, r1.
1273 static bool CommuteChangesDestination(MachineInstr
*DefMI
,
1274 const TargetInstrDesc
&TID
,
1276 const TargetInstrInfo
*TII
,
1278 if (TID
.getNumDefs() != 1 && TID
.getNumOperands() != 3)
1280 if (!DefMI
->getOperand(1).isReg() ||
1281 DefMI
->getOperand(1).getReg() != SrcReg
)
1284 if (!DefMI
->isRegTiedToDefOperand(1, &DefIdx
) || DefIdx
!= 0)
1286 unsigned SrcIdx1
, SrcIdx2
;
1287 if (!TII
->findCommutedOpIndices(DefMI
, SrcIdx1
, SrcIdx2
))
1289 if (SrcIdx1
== 1 && SrcIdx2
== 2) {
1296 /// CommuteToFoldReload -
1299 /// r1 = op r1, r2<kill>
1302 /// If op is commutable and r2 is killed, then we can xform these to
1303 /// r2 = op r2, fi#1
1305 bool CommuteToFoldReload(MachineBasicBlock
&MBB
,
1306 MachineBasicBlock::iterator
&MII
,
1307 unsigned VirtReg
, unsigned SrcReg
, int SS
,
1308 AvailableSpills
&Spills
,
1309 BitVector
&RegKills
,
1310 std::vector
<MachineOperand
*> &KillOps
,
1311 const TargetRegisterInfo
*TRI
,
1313 if (MII
== MBB
.begin() || !MII
->killsRegister(SrcReg
))
1316 MachineFunction
&MF
= *MBB
.getParent();
1317 MachineInstr
&MI
= *MII
;
1318 MachineBasicBlock::iterator DefMII
= prior(MII
);
1319 MachineInstr
*DefMI
= DefMII
;
1320 const TargetInstrDesc
&TID
= DefMI
->getDesc();
1322 if (DefMII
!= MBB
.begin() &&
1323 TID
.isCommutable() &&
1324 CommuteChangesDestination(DefMI
, TID
, SrcReg
, TII
, NewDstIdx
)) {
1325 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
1326 unsigned NewReg
= NewDstMO
.getReg();
1327 if (!NewDstMO
.isKill() || TRI
->regsOverlap(NewReg
, SrcReg
))
1329 MachineInstr
*ReloadMI
= prior(DefMII
);
1331 unsigned DestReg
= TII
->isLoadFromStackSlot(ReloadMI
, FrameIdx
);
1332 if (DestReg
!= SrcReg
|| FrameIdx
!= SS
)
1334 int UseIdx
= DefMI
->findRegisterUseOperandIdx(DestReg
, false);
1338 if (!MI
.isRegTiedToDefOperand(UseIdx
, &DefIdx
))
1340 assert(DefMI
->getOperand(DefIdx
).isReg() &&
1341 DefMI
->getOperand(DefIdx
).getReg() == SrcReg
);
1343 // Now commute def instruction.
1344 MachineInstr
*CommutedMI
= TII
->commuteInstruction(DefMI
, true);
1347 SmallVector
<unsigned, 1> Ops
;
1348 Ops
.push_back(NewDstIdx
);
1349 MachineInstr
*FoldedMI
= TII
->foldMemoryOperand(MF
, CommutedMI
, Ops
, SS
);
1350 // Not needed since foldMemoryOperand returns new MI.
1351 MF
.DeleteMachineInstr(CommutedMI
);
1355 VRM
.addSpillSlotUse(SS
, FoldedMI
);
1356 VRM
.virtFolded(VirtReg
, FoldedMI
, VirtRegMap::isRef
);
1357 // Insert new def MI and spill MI.
1358 const TargetRegisterClass
* RC
= RegInfo
->getRegClass(VirtReg
);
1359 TII
->storeRegToStackSlot(MBB
, &MI
, NewReg
, true, SS
, RC
);
1361 MachineInstr
*StoreMI
= MII
;
1362 VRM
.addSpillSlotUse(SS
, StoreMI
);
1363 VRM
.virtFolded(VirtReg
, StoreMI
, VirtRegMap::isMod
);
1364 MII
= MBB
.insert(MII
, FoldedMI
); // Update MII to backtrack.
1366 // Delete all 3 old instructions.
1367 InvalidateKills(*ReloadMI
, TRI
, RegKills
, KillOps
);
1368 VRM
.RemoveMachineInstrFromMaps(ReloadMI
);
1369 MBB
.erase(ReloadMI
);
1370 InvalidateKills(*DefMI
, TRI
, RegKills
, KillOps
);
1371 VRM
.RemoveMachineInstrFromMaps(DefMI
);
1373 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
1374 VRM
.RemoveMachineInstrFromMaps(&MI
);
1377 // If NewReg was previously holding value of some SS, it's now clobbered.
1378 // This has to be done now because it's a physical register. When this
1379 // instruction is re-visited, it's ignored.
1380 Spills
.ClobberPhysReg(NewReg
);
1389 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1390 /// the last store to the same slot is now dead. If so, remove the last store.
1391 void SpillRegToStackSlot(MachineBasicBlock
&MBB
,
1392 MachineBasicBlock::iterator
&MII
,
1393 int Idx
, unsigned PhysReg
, int StackSlot
,
1394 const TargetRegisterClass
*RC
,
1395 bool isAvailable
, MachineInstr
*&LastStore
,
1396 AvailableSpills
&Spills
,
1397 SmallSet
<MachineInstr
*, 4> &ReMatDefs
,
1398 BitVector
&RegKills
,
1399 std::vector
<MachineOperand
*> &KillOps
,
1402 TII
->storeRegToStackSlot(MBB
, next(MII
), PhysReg
, true, StackSlot
, RC
);
1403 MachineInstr
*StoreMI
= next(MII
);
1404 VRM
.addSpillSlotUse(StackSlot
, StoreMI
);
1405 DOUT
<< "Store:\t" << *StoreMI
;
1407 // If there is a dead store to this stack slot, nuke it now.
1409 DOUT
<< "Removed dead store:\t" << *LastStore
;
1411 SmallVector
<unsigned, 2> KillRegs
;
1412 InvalidateKills(*LastStore
, TRI
, RegKills
, KillOps
, &KillRegs
);
1413 MachineBasicBlock::iterator PrevMII
= LastStore
;
1414 bool CheckDef
= PrevMII
!= MBB
.begin();
1417 VRM
.RemoveMachineInstrFromMaps(LastStore
);
1418 MBB
.erase(LastStore
);
1420 // Look at defs of killed registers on the store. Mark the defs
1421 // as dead since the store has been deleted and they aren't
1423 for (unsigned j
= 0, ee
= KillRegs
.size(); j
!= ee
; ++j
) {
1424 bool HasOtherDef
= false;
1425 if (InvalidateRegDef(PrevMII
, *MII
, KillRegs
[j
], HasOtherDef
)) {
1426 MachineInstr
*DeadDef
= PrevMII
;
1427 if (ReMatDefs
.count(DeadDef
) && !HasOtherDef
) {
1428 // FIXME: This assumes a remat def does not have side effects.
1429 VRM
.RemoveMachineInstrFromMaps(DeadDef
);
1438 LastStore
= next(MII
);
1440 // If the stack slot value was previously available in some other
1441 // register, change it now. Otherwise, make the register available,
1443 Spills
.ModifyStackSlotOrReMat(StackSlot
);
1444 Spills
.ClobberPhysReg(PhysReg
);
1445 Spills
.addAvailable(StackSlot
, PhysReg
, isAvailable
);
1449 /// TransferDeadness - A identity copy definition is dead and it's being
1450 /// removed. Find the last def or use and mark it as dead / kill.
1451 void TransferDeadness(MachineBasicBlock
*MBB
, unsigned CurDist
,
1452 unsigned Reg
, BitVector
&RegKills
,
1453 std::vector
<MachineOperand
*> &KillOps
,
1455 SmallPtrSet
<MachineInstr
*, 4> Seens
;
1456 SmallVector
<std::pair
<MachineInstr
*, int>,8> Refs
;
1457 for (MachineRegisterInfo::reg_iterator RI
= RegInfo
->reg_begin(Reg
),
1458 RE
= RegInfo
->reg_end(); RI
!= RE
; ++RI
) {
1459 MachineInstr
*UDMI
= &*RI
;
1460 if (UDMI
->getParent() != MBB
)
1462 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(UDMI
);
1463 if (DI
== DistanceMap
.end() || DI
->second
> CurDist
)
1465 if (Seens
.insert(UDMI
))
1466 Refs
.push_back(std::make_pair(UDMI
, DI
->second
));
1471 std::sort(Refs
.begin(), Refs
.end(), RefSorter());
1473 while (!Refs
.empty()) {
1474 MachineInstr
*LastUDMI
= Refs
.back().first
;
1477 MachineOperand
*LastUD
= NULL
;
1478 for (unsigned i
= 0, e
= LastUDMI
->getNumOperands(); i
!= e
; ++i
) {
1479 MachineOperand
&MO
= LastUDMI
->getOperand(i
);
1480 if (!MO
.isReg() || MO
.getReg() != Reg
)
1482 if (!LastUD
|| (LastUD
->isUse() && MO
.isDef()))
1484 if (LastUDMI
->isRegTiedToDefOperand(i
))
1487 if (LastUD
->isDef()) {
1488 // If the instruction has no side effect, delete it and propagate
1489 // backward further. Otherwise, mark is dead and we are done.
1490 if (!TII
->isDeadInstruction(LastUDMI
)) {
1491 LastUD
->setIsDead();
1494 VRM
.RemoveMachineInstrFromMaps(LastUDMI
);
1495 MBB
->erase(LastUDMI
);
1497 LastUD
->setIsKill();
1499 KillOps
[Reg
] = LastUD
;
1505 /// rewriteMBB - Keep track of which spills are available even after the
1506 /// register allocator is done with them. If possible, avid reloading vregs.
1507 void RewriteMBB(MachineBasicBlock
&MBB
, VirtRegMap
&VRM
,
1509 AvailableSpills
&Spills
, BitVector
&RegKills
,
1510 std::vector
<MachineOperand
*> &KillOps
) {
1512 DEBUG(errs() << "\n**** Local spiller rewriting MBB '"
1513 << MBB
.getBasicBlock()->getName() << "':\n");
1515 MachineFunction
&MF
= *MBB
.getParent();
1517 // MaybeDeadStores - When we need to write a value back into a stack slot,
1518 // keep track of the inserted store. If the stack slot value is never read
1519 // (because the value was used from some available register, for example), and
1520 // subsequently stored to, the original store is dead. This map keeps track
1521 // of inserted stores that are not used. If we see a subsequent store to the
1522 // same stack slot, the original store is deleted.
1523 std::vector
<MachineInstr
*> MaybeDeadStores
;
1524 MaybeDeadStores
.resize(MF
.getFrameInfo()->getObjectIndexEnd(), NULL
);
1526 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1527 SmallSet
<MachineInstr
*, 4> ReMatDefs
;
1530 SmallSet
<unsigned, 2> KilledMIRegs
;
1533 KillOps
.resize(TRI
->getNumRegs(), NULL
);
1536 DistanceMap
.clear();
1537 for (MachineBasicBlock::iterator MII
= MBB
.begin(), E
= MBB
.end();
1539 MachineBasicBlock::iterator NextMII
= next(MII
);
1541 VirtRegMap::MI2VirtMapTy::const_iterator I
, End
;
1542 bool Erased
= false;
1543 bool BackTracked
= false;
1544 if (OptimizeByUnfold(MBB
, MII
,
1545 MaybeDeadStores
, Spills
, RegKills
, KillOps
, VRM
))
1546 NextMII
= next(MII
);
1548 MachineInstr
&MI
= *MII
;
1550 if (VRM
.hasEmergencySpills(&MI
)) {
1551 // Spill physical register(s) in the rare case the allocator has run out
1552 // of registers to allocate.
1553 SmallSet
<int, 4> UsedSS
;
1554 std::vector
<unsigned> &EmSpills
= VRM
.getEmergencySpills(&MI
);
1555 for (unsigned i
= 0, e
= EmSpills
.size(); i
!= e
; ++i
) {
1556 unsigned PhysReg
= EmSpills
[i
];
1557 const TargetRegisterClass
*RC
=
1558 TRI
->getPhysicalRegisterRegClass(PhysReg
);
1559 assert(RC
&& "Unable to determine register class!");
1560 int SS
= VRM
.getEmergencySpillSlot(RC
);
1561 if (UsedSS
.count(SS
))
1562 llvm_unreachable("Need to spill more than one physical registers!");
1564 TII
->storeRegToStackSlot(MBB
, MII
, PhysReg
, true, SS
, RC
);
1565 MachineInstr
*StoreMI
= prior(MII
);
1566 VRM
.addSpillSlotUse(SS
, StoreMI
);
1568 // Back-schedule reloads and remats.
1569 MachineBasicBlock::iterator InsertLoc
=
1570 ComputeReloadLoc(next(MII
), MBB
.begin(), PhysReg
, TRI
, false,
1573 TII
->loadRegFromStackSlot(MBB
, InsertLoc
, PhysReg
, SS
, RC
);
1575 MachineInstr
*LoadMI
= prior(InsertLoc
);
1576 VRM
.addSpillSlotUse(SS
, LoadMI
);
1579 NextMII
= next(MII
);
1582 // Insert restores here if asked to.
1583 if (VRM
.isRestorePt(&MI
)) {
1584 std::vector
<unsigned> &RestoreRegs
= VRM
.getRestorePtRestores(&MI
);
1585 for (unsigned i
= 0, e
= RestoreRegs
.size(); i
!= e
; ++i
) {
1586 unsigned VirtReg
= RestoreRegs
[e
-i
-1]; // Reverse order.
1587 if (!VRM
.getPreSplitReg(VirtReg
))
1588 continue; // Split interval spilled again.
1589 unsigned Phys
= VRM
.getPhys(VirtReg
);
1590 RegInfo
->setPhysRegUsed(Phys
);
1592 // Check if the value being restored if available. If so, it must be
1593 // from a predecessor BB that fallthrough into this BB. We do not
1599 // ... # r1 not clobbered
1602 bool DoReMat
= VRM
.isReMaterialized(VirtReg
);
1603 int SSorRMId
= DoReMat
1604 ? VRM
.getReMatId(VirtReg
) : VRM
.getStackSlot(VirtReg
);
1605 const TargetRegisterClass
* RC
= RegInfo
->getRegClass(VirtReg
);
1606 unsigned InReg
= Spills
.getSpillSlotOrReMatPhysReg(SSorRMId
);
1607 if (InReg
== Phys
) {
1608 // If the value is already available in the expected register, save
1609 // a reload / remat.
1611 DOUT
<< "Reusing RM#" << SSorRMId
-VirtRegMap::MAX_STACK_SLOT
-1;
1613 DOUT
<< "Reusing SS#" << SSorRMId
;
1614 DOUT
<< " from physreg "
1615 << TRI
->getName(InReg
) << " for vreg"
1616 << VirtReg
<<" instead of reloading into physreg "
1617 << TRI
->getName(Phys
) << "\n";
1620 } else if (InReg
&& InReg
!= Phys
) {
1622 DOUT
<< "Reusing RM#" << SSorRMId
-VirtRegMap::MAX_STACK_SLOT
-1;
1624 DOUT
<< "Reusing SS#" << SSorRMId
;
1625 DOUT
<< " from physreg "
1626 << TRI
->getName(InReg
) << " for vreg"
1627 << VirtReg
<<" by copying it into physreg "
1628 << TRI
->getName(Phys
) << "\n";
1630 // If the reloaded / remat value is available in another register,
1631 // copy it to the desired register.
1633 // Back-schedule reloads and remats.
1634 MachineBasicBlock::iterator InsertLoc
=
1635 ComputeReloadLoc(MII
, MBB
.begin(), Phys
, TRI
, DoReMat
,
1638 TII
->copyRegToReg(MBB
, InsertLoc
, Phys
, InReg
, RC
, RC
);
1640 // This invalidates Phys.
1641 Spills
.ClobberPhysReg(Phys
);
1642 // Remember it's available.
1643 Spills
.addAvailable(SSorRMId
, Phys
);
1646 MachineInstr
*CopyMI
= prior(InsertLoc
);
1647 MachineOperand
*KillOpnd
= CopyMI
->findRegisterUseOperand(InReg
);
1648 KillOpnd
->setIsKill();
1649 UpdateKills(*CopyMI
, TRI
, RegKills
, KillOps
);
1651 DOUT
<< '\t' << *CopyMI
;
1656 // Back-schedule reloads and remats.
1657 MachineBasicBlock::iterator InsertLoc
=
1658 ComputeReloadLoc(MII
, MBB
.begin(), Phys
, TRI
, DoReMat
,
1661 if (VRM
.isReMaterialized(VirtReg
)) {
1662 ReMaterialize(MBB
, InsertLoc
, Phys
, VirtReg
, TII
, TRI
, VRM
);
1664 const TargetRegisterClass
* RC
= RegInfo
->getRegClass(VirtReg
);
1665 TII
->loadRegFromStackSlot(MBB
, InsertLoc
, Phys
, SSorRMId
, RC
);
1666 MachineInstr
*LoadMI
= prior(InsertLoc
);
1667 VRM
.addSpillSlotUse(SSorRMId
, LoadMI
);
1671 // This invalidates Phys.
1672 Spills
.ClobberPhysReg(Phys
);
1673 // Remember it's available.
1674 Spills
.addAvailable(SSorRMId
, Phys
);
1676 UpdateKills(*prior(InsertLoc
), TRI
, RegKills
, KillOps
);
1677 DOUT
<< '\t' << *prior(MII
);
1681 // Insert spills here if asked to.
1682 if (VRM
.isSpillPt(&MI
)) {
1683 std::vector
<std::pair
<unsigned,bool> > &SpillRegs
=
1684 VRM
.getSpillPtSpills(&MI
);
1685 for (unsigned i
= 0, e
= SpillRegs
.size(); i
!= e
; ++i
) {
1686 unsigned VirtReg
= SpillRegs
[i
].first
;
1687 bool isKill
= SpillRegs
[i
].second
;
1688 if (!VRM
.getPreSplitReg(VirtReg
))
1689 continue; // Split interval spilled again.
1690 const TargetRegisterClass
*RC
= RegInfo
->getRegClass(VirtReg
);
1691 unsigned Phys
= VRM
.getPhys(VirtReg
);
1692 int StackSlot
= VRM
.getStackSlot(VirtReg
);
1693 TII
->storeRegToStackSlot(MBB
, next(MII
), Phys
, isKill
, StackSlot
, RC
);
1694 MachineInstr
*StoreMI
= next(MII
);
1695 VRM
.addSpillSlotUse(StackSlot
, StoreMI
);
1696 DOUT
<< "Store:\t" << *StoreMI
;
1697 VRM
.virtFolded(VirtReg
, StoreMI
, VirtRegMap::isMod
);
1699 NextMII
= next(MII
);
1702 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1704 ReuseInfo
ReusedOperands(MI
, TRI
);
1705 SmallVector
<unsigned, 4> VirtUseOps
;
1706 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1707 MachineOperand
&MO
= MI
.getOperand(i
);
1708 if (!MO
.isReg() || MO
.getReg() == 0)
1709 continue; // Ignore non-register operands.
1711 unsigned VirtReg
= MO
.getReg();
1712 if (TargetRegisterInfo::isPhysicalRegister(VirtReg
)) {
1713 // Ignore physregs for spilling, but remember that it is used by this
1715 RegInfo
->setPhysRegUsed(VirtReg
);
1719 // We want to process implicit virtual register uses first.
1720 if (MO
.isImplicit())
1721 // If the virtual register is implicitly defined, emit a implicit_def
1722 // before so scavenger knows it's "defined".
1723 // FIXME: This is a horrible hack done the by register allocator to
1724 // remat a definition with virtual register operand.
1725 VirtUseOps
.insert(VirtUseOps
.begin(), i
);
1727 VirtUseOps
.push_back(i
);
1730 // Process all of the spilled uses and all non spilled reg references.
1731 SmallVector
<int, 2> PotentialDeadStoreSlots
;
1732 KilledMIRegs
.clear();
1733 for (unsigned j
= 0, e
= VirtUseOps
.size(); j
!= e
; ++j
) {
1734 unsigned i
= VirtUseOps
[j
];
1735 MachineOperand
&MO
= MI
.getOperand(i
);
1736 unsigned VirtReg
= MO
.getReg();
1737 assert(TargetRegisterInfo::isVirtualRegister(VirtReg
) &&
1738 "Not a virtual register?");
1740 unsigned SubIdx
= MO
.getSubReg();
1741 if (VRM
.isAssignedReg(VirtReg
)) {
1742 // This virtual register was assigned a physreg!
1743 unsigned Phys
= VRM
.getPhys(VirtReg
);
1744 RegInfo
->setPhysRegUsed(Phys
);
1746 ReusedOperands
.markClobbered(Phys
);
1747 unsigned RReg
= SubIdx
? TRI
->getSubReg(Phys
, SubIdx
) : Phys
;
1748 MI
.getOperand(i
).setReg(RReg
);
1749 MI
.getOperand(i
).setSubReg(0);
1750 if (VRM
.isImplicitlyDefined(VirtReg
))
1751 // FIXME: Is this needed?
1752 BuildMI(MBB
, &MI
, MI
.getDebugLoc(),
1753 TII
->get(TargetInstrInfo::IMPLICIT_DEF
), RReg
);
1757 // This virtual register is now known to be a spilled value.
1759 continue; // Handle defs in the loop below (handle use&def here though)
1761 bool AvoidReload
= MO
.isUndef();
1762 // Check if it is defined by an implicit def. It should not be spilled.
1763 // Note, this is for correctness reason. e.g.
1764 // 8 %reg1024<def> = IMPLICIT_DEF
1765 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1766 // The live range [12, 14) are not part of the r1024 live interval since
1767 // it's defined by an implicit def. It will not conflicts with live
1768 // interval of r1025. Now suppose both registers are spilled, you can
1769 // easily see a situation where both registers are reloaded before
1770 // the INSERT_SUBREG and both target registers that would overlap.
1771 bool DoReMat
= VRM
.isReMaterialized(VirtReg
);
1772 int SSorRMId
= DoReMat
1773 ? VRM
.getReMatId(VirtReg
) : VRM
.getStackSlot(VirtReg
);
1774 int ReuseSlot
= SSorRMId
;
1776 // Check to see if this stack slot is available.
1777 unsigned PhysReg
= Spills
.getSpillSlotOrReMatPhysReg(SSorRMId
);
1779 // If this is a sub-register use, make sure the reuse register is in the
1780 // right register class. For example, for x86 not all of the 32-bit
1781 // registers have accessible sub-registers.
1782 // Similarly so for EXTRACT_SUBREG. Consider this:
1784 // MOV32_mr fi#1, EDI
1786 // = EXTRACT_SUBREG fi#1
1787 // fi#1 is available in EDI, but it cannot be reused because it's not in
1788 // the right register file.
1789 if (PhysReg
&& !AvoidReload
&&
1790 (SubIdx
|| MI
.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
)) {
1791 const TargetRegisterClass
* RC
= RegInfo
->getRegClass(VirtReg
);
1792 if (!RC
->contains(PhysReg
))
1796 if (PhysReg
&& !AvoidReload
) {
1797 // This spilled operand might be part of a two-address operand. If this
1798 // is the case, then changing it will necessarily require changing the
1799 // def part of the instruction as well. However, in some cases, we
1800 // aren't allowed to modify the reused register. If none of these cases
1802 bool CanReuse
= true;
1803 bool isTied
= MI
.isRegTiedToDefOperand(i
);
1805 // Okay, we have a two address operand. We can reuse this physreg as
1806 // long as we are allowed to clobber the value and there isn't an
1807 // earlier def that has already clobbered the physreg.
1808 CanReuse
= !ReusedOperands
.isClobbered(PhysReg
) &&
1809 Spills
.canClobberPhysReg(PhysReg
);
1813 // If this stack slot value is already available, reuse it!
1814 if (ReuseSlot
> VirtRegMap::MAX_STACK_SLOT
)
1815 DOUT
<< "Reusing RM#" << ReuseSlot
-VirtRegMap::MAX_STACK_SLOT
-1;
1817 DOUT
<< "Reusing SS#" << ReuseSlot
;
1818 DOUT
<< " from physreg "
1819 << TRI
->getName(PhysReg
) << " for vreg"
1820 << VirtReg
<<" instead of reloading into physreg "
1821 << TRI
->getName(VRM
.getPhys(VirtReg
)) << "\n";
1822 unsigned RReg
= SubIdx
? TRI
->getSubReg(PhysReg
, SubIdx
) : PhysReg
;
1823 MI
.getOperand(i
).setReg(RReg
);
1824 MI
.getOperand(i
).setSubReg(0);
1826 // The only technical detail we have is that we don't know that
1827 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1828 // later in the instruction. In particular, consider 'op V1, V2'.
1829 // If V1 is available in physreg R0, we would choose to reuse it
1830 // here, instead of reloading it into the register the allocator
1831 // indicated (say R1). However, V2 might have to be reloaded
1832 // later, and it might indicate that it needs to live in R0. When
1833 // this occurs, we need to have information available that
1834 // indicates it is safe to use R1 for the reload instead of R0.
1836 // To further complicate matters, we might conflict with an alias,
1837 // or R0 and R1 might not be compatible with each other. In this
1838 // case, we actually insert a reload for V1 in R1, ensuring that
1839 // we can get at R0 or its alias.
1840 ReusedOperands
.addReuse(i
, ReuseSlot
, PhysReg
,
1841 VRM
.getPhys(VirtReg
), VirtReg
);
1843 // Only mark it clobbered if this is a use&def operand.
1844 ReusedOperands
.markClobbered(PhysReg
);
1847 if (MI
.getOperand(i
).isKill() &&
1848 ReuseSlot
<= VirtRegMap::MAX_STACK_SLOT
) {
1850 // The store of this spilled value is potentially dead, but we
1851 // won't know for certain until we've confirmed that the re-use
1852 // above is valid, which means waiting until the other operands
1853 // are processed. For now we just track the spill slot, we'll
1854 // remove it after the other operands are processed if valid.
1856 PotentialDeadStoreSlots
.push_back(ReuseSlot
);
1859 // Mark is isKill if it's there no other uses of the same virtual
1860 // register and it's not a two-address operand. IsKill will be
1861 // unset if reg is reused.
1862 if (!isTied
&& KilledMIRegs
.count(VirtReg
) == 0) {
1863 MI
.getOperand(i
).setIsKill();
1864 KilledMIRegs
.insert(VirtReg
);
1870 // Otherwise we have a situation where we have a two-address instruction
1871 // whose mod/ref operand needs to be reloaded. This reload is already
1872 // available in some register "PhysReg", but if we used PhysReg as the
1873 // operand to our 2-addr instruction, the instruction would modify
1874 // PhysReg. This isn't cool if something later uses PhysReg and expects
1875 // to get its initial value.
1877 // To avoid this problem, and to avoid doing a load right after a store,
1878 // we emit a copy from PhysReg into the designated register for this
1880 unsigned DesignatedReg
= VRM
.getPhys(VirtReg
);
1881 assert(DesignatedReg
&& "Must map virtreg to physreg!");
1883 // Note that, if we reused a register for a previous operand, the
1884 // register we want to reload into might not actually be
1885 // available. If this occurs, use the register indicated by the
1887 if (ReusedOperands
.hasReuses())
1888 DesignatedReg
= ReusedOperands
.GetRegForReload(VirtReg
,
1890 Spills
, MaybeDeadStores
, RegKills
, KillOps
, VRM
);
1892 // If the mapped designated register is actually the physreg we have
1893 // incoming, we don't need to inserted a dead copy.
1894 if (DesignatedReg
== PhysReg
) {
1895 // If this stack slot value is already available, reuse it!
1896 if (ReuseSlot
> VirtRegMap::MAX_STACK_SLOT
)
1897 DOUT
<< "Reusing RM#" << ReuseSlot
-VirtRegMap::MAX_STACK_SLOT
-1;
1899 DOUT
<< "Reusing SS#" << ReuseSlot
;
1900 DOUT
<< " from physreg " << TRI
->getName(PhysReg
)
1901 << " for vreg" << VirtReg
1902 << " instead of reloading into same physreg.\n";
1903 unsigned RReg
= SubIdx
? TRI
->getSubReg(PhysReg
, SubIdx
) : PhysReg
;
1904 MI
.getOperand(i
).setReg(RReg
);
1905 MI
.getOperand(i
).setSubReg(0);
1906 ReusedOperands
.markClobbered(RReg
);
1911 const TargetRegisterClass
* RC
= RegInfo
->getRegClass(VirtReg
);
1912 RegInfo
->setPhysRegUsed(DesignatedReg
);
1913 ReusedOperands
.markClobbered(DesignatedReg
);
1915 // Back-schedule reloads and remats.
1916 MachineBasicBlock::iterator InsertLoc
=
1917 ComputeReloadLoc(&MI
, MBB
.begin(), PhysReg
, TRI
, DoReMat
,
1920 TII
->copyRegToReg(MBB
, InsertLoc
, DesignatedReg
, PhysReg
, RC
, RC
);
1922 MachineInstr
*CopyMI
= prior(InsertLoc
);
1923 UpdateKills(*CopyMI
, TRI
, RegKills
, KillOps
);
1925 // This invalidates DesignatedReg.
1926 Spills
.ClobberPhysReg(DesignatedReg
);
1928 Spills
.addAvailable(ReuseSlot
, DesignatedReg
);
1930 SubIdx
? TRI
->getSubReg(DesignatedReg
, SubIdx
) : DesignatedReg
;
1931 MI
.getOperand(i
).setReg(RReg
);
1932 MI
.getOperand(i
).setSubReg(0);
1933 DOUT
<< '\t' << *prior(MII
);
1938 // Otherwise, reload it and remember that we have it.
1939 PhysReg
= VRM
.getPhys(VirtReg
);
1940 assert(PhysReg
&& "Must map virtreg to physreg!");
1942 // Note that, if we reused a register for a previous operand, the
1943 // register we want to reload into might not actually be
1944 // available. If this occurs, use the register indicated by the
1946 if (ReusedOperands
.hasReuses())
1947 PhysReg
= ReusedOperands
.GetRegForReload(VirtReg
, PhysReg
, &MI
,
1948 Spills
, MaybeDeadStores
, RegKills
, KillOps
, VRM
);
1950 RegInfo
->setPhysRegUsed(PhysReg
);
1951 ReusedOperands
.markClobbered(PhysReg
);
1955 // Back-schedule reloads and remats.
1956 MachineBasicBlock::iterator InsertLoc
=
1957 ComputeReloadLoc(MII
, MBB
.begin(), PhysReg
, TRI
, DoReMat
,
1961 ReMaterialize(MBB
, InsertLoc
, PhysReg
, VirtReg
, TII
, TRI
, VRM
);
1963 const TargetRegisterClass
* RC
= RegInfo
->getRegClass(VirtReg
);
1964 TII
->loadRegFromStackSlot(MBB
, InsertLoc
, PhysReg
, SSorRMId
, RC
);
1965 MachineInstr
*LoadMI
= prior(InsertLoc
);
1966 VRM
.addSpillSlotUse(SSorRMId
, LoadMI
);
1969 // This invalidates PhysReg.
1970 Spills
.ClobberPhysReg(PhysReg
);
1972 // Any stores to this stack slot are not dead anymore.
1974 MaybeDeadStores
[SSorRMId
] = NULL
;
1975 Spills
.addAvailable(SSorRMId
, PhysReg
);
1976 // Assumes this is the last use. IsKill will be unset if reg is reused
1977 // unless it's a two-address operand.
1978 if (!MI
.isRegTiedToDefOperand(i
) &&
1979 KilledMIRegs
.count(VirtReg
) == 0) {
1980 MI
.getOperand(i
).setIsKill();
1981 KilledMIRegs
.insert(VirtReg
);
1984 UpdateKills(*prior(InsertLoc
), TRI
, RegKills
, KillOps
);
1985 DOUT
<< '\t' << *prior(InsertLoc
);
1987 unsigned RReg
= SubIdx
? TRI
->getSubReg(PhysReg
, SubIdx
) : PhysReg
;
1988 MI
.getOperand(i
).setReg(RReg
);
1989 MI
.getOperand(i
).setSubReg(0);
1992 // Ok - now we can remove stores that have been confirmed dead.
1993 for (unsigned j
= 0, e
= PotentialDeadStoreSlots
.size(); j
!= e
; ++j
) {
1994 // This was the last use and the spilled value is still available
1995 // for reuse. That means the spill was unnecessary!
1996 int PDSSlot
= PotentialDeadStoreSlots
[j
];
1997 MachineInstr
* DeadStore
= MaybeDeadStores
[PDSSlot
];
1999 DOUT
<< "Removed dead store:\t" << *DeadStore
;
2000 InvalidateKills(*DeadStore
, TRI
, RegKills
, KillOps
);
2001 VRM
.RemoveMachineInstrFromMaps(DeadStore
);
2002 MBB
.erase(DeadStore
);
2003 MaybeDeadStores
[PDSSlot
] = NULL
;
2012 // If we have folded references to memory operands, make sure we clear all
2013 // physical registers that may contain the value of the spilled virtual
2015 SmallSet
<int, 2> FoldedSS
;
2016 for (tie(I
, End
) = VRM
.getFoldedVirts(&MI
); I
!= End
; ) {
2017 unsigned VirtReg
= I
->second
.first
;
2018 VirtRegMap::ModRef MR
= I
->second
.second
;
2019 DOUT
<< "Folded vreg: " << VirtReg
<< " MR: " << MR
;
2021 // MI2VirtMap be can updated which invalidate the iterator.
2022 // Increment the iterator first.
2024 int SS
= VRM
.getStackSlot(VirtReg
);
2025 if (SS
== VirtRegMap::NO_STACK_SLOT
)
2027 FoldedSS
.insert(SS
);
2028 DOUT
<< " - StackSlot: " << SS
<< "\n";
2030 // If this folded instruction is just a use, check to see if it's a
2031 // straight load from the virt reg slot.
2032 if ((MR
& VirtRegMap::isRef
) && !(MR
& VirtRegMap::isMod
)) {
2034 unsigned DestReg
= TII
->isLoadFromStackSlot(&MI
, FrameIdx
);
2035 if (DestReg
&& FrameIdx
== SS
) {
2036 // If this spill slot is available, turn it into a copy (or nothing)
2037 // instead of leaving it as a load!
2038 if (unsigned InReg
= Spills
.getSpillSlotOrReMatPhysReg(SS
)) {
2039 DOUT
<< "Promoted Load To Copy: " << MI
;
2040 if (DestReg
!= InReg
) {
2041 const TargetRegisterClass
*RC
= RegInfo
->getRegClass(VirtReg
);
2042 TII
->copyRegToReg(MBB
, &MI
, DestReg
, InReg
, RC
, RC
);
2043 MachineOperand
*DefMO
= MI
.findRegisterDefOperand(DestReg
);
2044 unsigned SubIdx
= DefMO
->getSubReg();
2045 // Revisit the copy so we make sure to notice the effects of the
2046 // operation on the destreg (either needing to RA it if it's
2047 // virtual or needing to clobber any values if it's physical).
2049 --NextMII
; // backtrack to the copy.
2050 // Propagate the sub-register index over.
2052 DefMO
= NextMII
->findRegisterDefOperand(DestReg
);
2053 DefMO
->setSubReg(SubIdx
);
2057 MachineOperand
*KillOpnd
= NextMII
->findRegisterUseOperand(InReg
);
2058 KillOpnd
->setIsKill();
2062 DOUT
<< "Removing now-noop copy: " << MI
;
2063 // Unset last kill since it's being reused.
2064 InvalidateKill(InReg
, TRI
, RegKills
, KillOps
);
2065 Spills
.disallowClobberPhysReg(InReg
);
2068 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
2069 VRM
.RemoveMachineInstrFromMaps(&MI
);
2072 goto ProcessNextInst
;
2075 unsigned PhysReg
= Spills
.getSpillSlotOrReMatPhysReg(SS
);
2076 SmallVector
<MachineInstr
*, 4> NewMIs
;
2078 TII
->unfoldMemoryOperand(MF
, &MI
, PhysReg
, false, false, NewMIs
)) {
2079 MBB
.insert(MII
, NewMIs
[0]);
2080 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
2081 VRM
.RemoveMachineInstrFromMaps(&MI
);
2084 --NextMII
; // backtrack to the unfolded instruction.
2086 goto ProcessNextInst
;
2091 // If this reference is not a use, any previous store is now dead.
2092 // Otherwise, the store to this stack slot is not dead anymore.
2093 MachineInstr
* DeadStore
= MaybeDeadStores
[SS
];
2095 bool isDead
= !(MR
& VirtRegMap::isRef
);
2096 MachineInstr
*NewStore
= NULL
;
2097 if (MR
& VirtRegMap::isModRef
) {
2098 unsigned PhysReg
= Spills
.getSpillSlotOrReMatPhysReg(SS
);
2099 SmallVector
<MachineInstr
*, 4> NewMIs
;
2100 // We can reuse this physreg as long as we are allowed to clobber
2101 // the value and there isn't an earlier def that has already clobbered
2104 !ReusedOperands
.isClobbered(PhysReg
) &&
2105 Spills
.canClobberPhysReg(PhysReg
) &&
2106 !TII
->isStoreToStackSlot(&MI
, SS
)) { // Not profitable!
2107 MachineOperand
*KillOpnd
=
2108 DeadStore
->findRegisterUseOperand(PhysReg
, true);
2109 // Note, if the store is storing a sub-register, it's possible the
2110 // super-register is needed below.
2111 if (KillOpnd
&& !KillOpnd
->getSubReg() &&
2112 TII
->unfoldMemoryOperand(MF
, &MI
, PhysReg
, false, true,NewMIs
)){
2113 MBB
.insert(MII
, NewMIs
[0]);
2114 NewStore
= NewMIs
[1];
2115 MBB
.insert(MII
, NewStore
);
2116 VRM
.addSpillSlotUse(SS
, NewStore
);
2117 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
2118 VRM
.RemoveMachineInstrFromMaps(&MI
);
2122 --NextMII
; // backtrack to the unfolded instruction.
2130 if (isDead
) { // Previous store is dead.
2131 // If we get here, the store is dead, nuke it now.
2132 DOUT
<< "Removed dead store:\t" << *DeadStore
;
2133 InvalidateKills(*DeadStore
, TRI
, RegKills
, KillOps
);
2134 VRM
.RemoveMachineInstrFromMaps(DeadStore
);
2135 MBB
.erase(DeadStore
);
2140 MaybeDeadStores
[SS
] = NULL
;
2142 // Treat this store as a spill merged into a copy. That makes the
2143 // stack slot value available.
2144 VRM
.virtFolded(VirtReg
, NewStore
, VirtRegMap::isMod
);
2145 goto ProcessNextInst
;
2149 // If the spill slot value is available, and this is a new definition of
2150 // the value, the value is not available anymore.
2151 if (MR
& VirtRegMap::isMod
) {
2152 // Notice that the value in this stack slot has been modified.
2153 Spills
.ModifyStackSlotOrReMat(SS
);
2155 // If this is *just* a mod of the value, check to see if this is just a
2156 // store to the spill slot (i.e. the spill got merged into the copy). If
2157 // so, realize that the vreg is available now, and add the store to the
2158 // MaybeDeadStore info.
2160 if (!(MR
& VirtRegMap::isRef
)) {
2161 if (unsigned SrcReg
= TII
->isStoreToStackSlot(&MI
, StackSlot
)) {
2162 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg
) &&
2163 "Src hasn't been allocated yet?");
2165 if (CommuteToFoldReload(MBB
, MII
, VirtReg
, SrcReg
, StackSlot
,
2166 Spills
, RegKills
, KillOps
, TRI
, VRM
)) {
2167 NextMII
= next(MII
);
2169 goto ProcessNextInst
;
2172 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2173 // this as a potentially dead store in case there is a subsequent
2174 // store into the stack slot without a read from it.
2175 MaybeDeadStores
[StackSlot
] = &MI
;
2177 // If the stack slot value was previously available in some other
2178 // register, change it now. Otherwise, make the register
2179 // available in PhysReg.
2180 Spills
.addAvailable(StackSlot
, SrcReg
, MI
.killsRegister(SrcReg
));
2186 // Process all of the spilled defs.
2187 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
2188 MachineOperand
&MO
= MI
.getOperand(i
);
2189 if (!(MO
.isReg() && MO
.getReg() && MO
.isDef()))
2192 unsigned VirtReg
= MO
.getReg();
2193 if (!TargetRegisterInfo::isVirtualRegister(VirtReg
)) {
2194 // Check to see if this is a noop copy. If so, eliminate the
2195 // instruction before considering the dest reg to be changed.
2196 // Also check if it's copying from an "undef", if so, we can't
2197 // eliminate this or else the undef marker is lost and it will
2198 // confuses the scavenger. This is extremely rare.
2199 unsigned Src
, Dst
, SrcSR
, DstSR
;
2200 if (TII
->isMoveInstr(MI
, Src
, Dst
, SrcSR
, DstSR
) && Src
== Dst
&&
2201 !MI
.findRegisterUseOperand(Src
)->isUndef()) {
2203 DOUT
<< "Removing now-noop copy: " << MI
;
2204 SmallVector
<unsigned, 2> KillRegs
;
2205 InvalidateKills(MI
, TRI
, RegKills
, KillOps
, &KillRegs
);
2206 if (MO
.isDead() && !KillRegs
.empty()) {
2207 // Source register or an implicit super/sub-register use is killed.
2208 assert(KillRegs
[0] == Dst
||
2209 TRI
->isSubRegister(KillRegs
[0], Dst
) ||
2210 TRI
->isSuperRegister(KillRegs
[0], Dst
));
2211 // Last def is now dead.
2212 TransferDeadness(&MBB
, Dist
, Src
, RegKills
, KillOps
, VRM
);
2214 VRM
.RemoveMachineInstrFromMaps(&MI
);
2217 Spills
.disallowClobberPhysReg(VirtReg
);
2218 goto ProcessNextInst
;
2221 // If it's not a no-op copy, it clobbers the value in the destreg.
2222 Spills
.ClobberPhysReg(VirtReg
);
2223 ReusedOperands
.markClobbered(VirtReg
);
2225 // Check to see if this instruction is a load from a stack slot into
2226 // a register. If so, this provides the stack slot value in the reg.
2228 if (unsigned DestReg
= TII
->isLoadFromStackSlot(&MI
, FrameIdx
)) {
2229 assert(DestReg
== VirtReg
&& "Unknown load situation!");
2231 // If it is a folded reference, then it's not safe to clobber.
2232 bool Folded
= FoldedSS
.count(FrameIdx
);
2233 // Otherwise, if it wasn't available, remember that it is now!
2234 Spills
.addAvailable(FrameIdx
, DestReg
, !Folded
);
2235 goto ProcessNextInst
;
2241 unsigned SubIdx
= MO
.getSubReg();
2242 bool DoReMat
= VRM
.isReMaterialized(VirtReg
);
2244 ReMatDefs
.insert(&MI
);
2246 // The only vregs left are stack slot definitions.
2247 int StackSlot
= VRM
.getStackSlot(VirtReg
);
2248 const TargetRegisterClass
*RC
= RegInfo
->getRegClass(VirtReg
);
2250 // If this def is part of a two-address operand, make sure to execute
2251 // the store from the correct physical register.
2254 if (MI
.isRegTiedToUseOperand(i
, &TiedOp
)) {
2255 PhysReg
= MI
.getOperand(TiedOp
).getReg();
2257 unsigned SuperReg
= findSuperReg(RC
, PhysReg
, SubIdx
, TRI
);
2258 assert(SuperReg
&& TRI
->getSubReg(SuperReg
, SubIdx
) == PhysReg
&&
2259 "Can't find corresponding super-register!");
2263 PhysReg
= VRM
.getPhys(VirtReg
);
2264 if (ReusedOperands
.isClobbered(PhysReg
)) {
2265 // Another def has taken the assigned physreg. It must have been a
2266 // use&def which got it due to reuse. Undo the reuse!
2267 PhysReg
= ReusedOperands
.GetRegForReload(VirtReg
, PhysReg
, &MI
,
2268 Spills
, MaybeDeadStores
, RegKills
, KillOps
, VRM
);
2272 assert(PhysReg
&& "VR not assigned a physical register?");
2273 RegInfo
->setPhysRegUsed(PhysReg
);
2274 unsigned RReg
= SubIdx
? TRI
->getSubReg(PhysReg
, SubIdx
) : PhysReg
;
2275 ReusedOperands
.markClobbered(RReg
);
2276 MI
.getOperand(i
).setReg(RReg
);
2277 MI
.getOperand(i
).setSubReg(0);
2280 MachineInstr
*&LastStore
= MaybeDeadStores
[StackSlot
];
2281 SpillRegToStackSlot(MBB
, MII
, -1, PhysReg
, StackSlot
, RC
, true,
2282 LastStore
, Spills
, ReMatDefs
, RegKills
, KillOps
, VRM
);
2283 NextMII
= next(MII
);
2285 // Check to see if this is a noop copy. If so, eliminate the
2286 // instruction before considering the dest reg to be changed.
2288 unsigned Src
, Dst
, SrcSR
, DstSR
;
2289 if (TII
->isMoveInstr(MI
, Src
, Dst
, SrcSR
, DstSR
) && Src
== Dst
) {
2291 DOUT
<< "Removing now-noop copy: " << MI
;
2292 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
2293 VRM
.RemoveMachineInstrFromMaps(&MI
);
2296 UpdateKills(*LastStore
, TRI
, RegKills
, KillOps
);
2297 goto ProcessNextInst
;
2303 // Delete dead instructions without side effects.
2304 if (!Erased
&& !BackTracked
&& TII
->isDeadInstruction(&MI
)) {
2305 InvalidateKills(MI
, TRI
, RegKills
, KillOps
);
2306 VRM
.RemoveMachineInstrFromMaps(&MI
);
2311 DistanceMap
.insert(std::make_pair(&MI
, Dist
++));
2312 if (!Erased
&& !BackTracked
) {
2313 for (MachineBasicBlock::iterator II
= &MI
; II
!= NextMII
; ++II
)
2314 UpdateKills(*II
, TRI
, RegKills
, KillOps
);
2323 llvm::VirtRegRewriter
* llvm::createVirtRegRewriter() {
2324 switch (RewriterOpt
) {
2325 default: llvm_unreachable("Unreachable!");
2327 return new LocalRewriter();
2329 return new TrivialRewriter();