Fix part 1 of pr4682. PICADD is a 16-bit instruction even in thumb2 mode.
[llvm/avr.git] / lib / Target / ARM / ARMAddressingModes.h
blobf85cb54c88dd120aa8925ec95421f6178238e611
1 //===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the ARM addressing mode implementation stuff.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
15 #define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
17 #include "llvm/CodeGen/SelectionDAGNodes.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
22 namespace llvm {
24 /// ARM_AM - ARM Addressing Mode Stuff
25 namespace ARM_AM {
26 enum ShiftOpc {
27 no_shift = 0,
28 asr,
29 lsl,
30 lsr,
31 ror,
32 rrx
35 enum AddrOpc {
36 add = '+', sub = '-'
39 static inline const char *getShiftOpcStr(ShiftOpc Op) {
40 switch (Op) {
41 default: llvm_unreachable("Unknown shift opc!");
42 case ARM_AM::asr: return "asr";
43 case ARM_AM::lsl: return "lsl";
44 case ARM_AM::lsr: return "lsr";
45 case ARM_AM::ror: return "ror";
46 case ARM_AM::rrx: return "rrx";
50 static inline ShiftOpc getShiftOpcForNode(SDValue N) {
51 switch (N.getOpcode()) {
52 default: return ARM_AM::no_shift;
53 case ISD::SHL: return ARM_AM::lsl;
54 case ISD::SRL: return ARM_AM::lsr;
55 case ISD::SRA: return ARM_AM::asr;
56 case ISD::ROTR: return ARM_AM::ror;
57 //case ISD::ROTL: // Only if imm -> turn into ROTR.
58 // Can't handle RRX here, because it would require folding a flag into
59 // the addressing mode. :( This causes us to miss certain things.
60 //case ARMISD::RRX: return ARM_AM::rrx;
64 enum AMSubMode {
65 bad_am_submode = 0,
66 ia,
67 ib,
68 da,
72 static inline const char *getAMSubModeStr(AMSubMode Mode) {
73 switch (Mode) {
74 default: llvm_unreachable("Unknown addressing sub-mode!");
75 case ARM_AM::ia: return "ia";
76 case ARM_AM::ib: return "ib";
77 case ARM_AM::da: return "da";
78 case ARM_AM::db: return "db";
82 static inline const char *getAMSubModeAltStr(AMSubMode Mode, bool isLD) {
83 switch (Mode) {
84 default: llvm_unreachable("Unknown addressing sub-mode!");
85 case ARM_AM::ia: return isLD ? "fd" : "ea";
86 case ARM_AM::ib: return isLD ? "ed" : "fa";
87 case ARM_AM::da: return isLD ? "fa" : "ed";
88 case ARM_AM::db: return isLD ? "ea" : "fd";
92 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
93 ///
94 static inline unsigned rotr32(unsigned Val, unsigned Amt) {
95 assert(Amt < 32 && "Invalid rotate amount");
96 return (Val >> Amt) | (Val << ((32-Amt)&31));
99 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
101 static inline unsigned rotl32(unsigned Val, unsigned Amt) {
102 assert(Amt < 32 && "Invalid rotate amount");
103 return (Val << Amt) | (Val >> ((32-Amt)&31));
106 //===--------------------------------------------------------------------===//
107 // Addressing Mode #1: shift_operand with registers
108 //===--------------------------------------------------------------------===//
110 // This 'addressing mode' is used for arithmetic instructions. It can
111 // represent things like:
112 // reg
113 // reg [asr|lsl|lsr|ror|rrx] reg
114 // reg [asr|lsl|lsr|ror|rrx] imm
116 // This is stored three operands [rega, regb, opc]. The first is the base
117 // reg, the second is the shift amount (or reg0 if not present or imm). The
118 // third operand encodes the shift opcode and the imm if a reg isn't present.
120 static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
121 return ShOp | (Imm << 3);
123 static inline unsigned getSORegOffset(unsigned Op) {
124 return Op >> 3;
126 static inline ShiftOpc getSORegShOp(unsigned Op) {
127 return (ShiftOpc)(Op & 7);
130 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
131 /// the 8-bit imm value.
132 static inline unsigned getSOImmValImm(unsigned Imm) {
133 return Imm & 0xFF;
135 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
136 /// the rotate amount.
137 static inline unsigned getSOImmValRot(unsigned Imm) {
138 return (Imm >> 8) * 2;
141 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
142 /// computing the rotate amount to use. If this immediate value cannot be
143 /// handled with a single shifter-op, determine a good rotate amount that will
144 /// take a maximal chunk of bits out of the immediate.
145 static inline unsigned getSOImmValRotate(unsigned Imm) {
146 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
147 // of zero.
148 if ((Imm & ~255U) == 0) return 0;
150 // Use CTZ to compute the rotate amount.
151 unsigned TZ = CountTrailingZeros_32(Imm);
153 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
154 // not 9.
155 unsigned RotAmt = TZ & ~1;
157 // If we can handle this spread, return it.
158 if ((rotr32(Imm, RotAmt) & ~255U) == 0)
159 return (32-RotAmt)&31; // HW rotates right, not left.
161 // For values like 0xF000000F, we should skip the first run of ones, then
162 // retry the hunt.
163 if (Imm & 1) {
164 unsigned TrailingOnes = CountTrailingZeros_32(~Imm);
165 if (TrailingOnes != 32) { // Avoid overflow on 0xFFFFFFFF
166 // Restart the search for a high-order bit after the initial seconds of
167 // ones.
168 unsigned TZ2 = CountTrailingZeros_32(Imm & ~((1 << TrailingOnes)-1));
170 // Rotate amount must be even.
171 unsigned RotAmt2 = TZ2 & ~1;
173 // If this fits, use it.
174 if (RotAmt2 != 32 && (rotr32(Imm, RotAmt2) & ~255U) == 0)
175 return (32-RotAmt2)&31; // HW rotates right, not left.
179 // Otherwise, we have no way to cover this span of bits with a single
180 // shifter_op immediate. Return a chunk of bits that will be useful to
181 // handle.
182 return (32-RotAmt)&31; // HW rotates right, not left.
185 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
186 /// into an shifter_operand immediate operand, return the 12-bit encoding for
187 /// it. If not, return -1.
188 static inline int getSOImmVal(unsigned Arg) {
189 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
190 // of zero.
191 if ((Arg & ~255U) == 0) return Arg;
193 unsigned RotAmt = getSOImmValRotate(Arg);
195 // If this cannot be handled with a single shifter_op, bail out.
196 if (rotr32(~255U, RotAmt) & Arg)
197 return -1;
199 // Encode this correctly.
200 return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
203 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
204 /// or'ing together two SOImmVal's.
205 static inline bool isSOImmTwoPartVal(unsigned V) {
206 // If this can be handled with a single shifter_op, bail out.
207 V = rotr32(~255U, getSOImmValRotate(V)) & V;
208 if (V == 0)
209 return false;
211 // If this can be handled with two shifter_op's, accept.
212 V = rotr32(~255U, getSOImmValRotate(V)) & V;
213 return V == 0;
216 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
217 /// return the first chunk of it.
218 static inline unsigned getSOImmTwoPartFirst(unsigned V) {
219 return rotr32(255U, getSOImmValRotate(V)) & V;
222 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
223 /// return the second chunk of it.
224 static inline unsigned getSOImmTwoPartSecond(unsigned V) {
225 // Mask out the first hunk.
226 V = rotr32(~255U, getSOImmValRotate(V)) & V;
228 // Take what's left.
229 assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
230 return V;
233 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
234 /// by a left shift. Returns the shift amount to use.
235 static inline unsigned getThumbImmValShift(unsigned Imm) {
236 // 8-bit (or less) immediates are trivially immediate operand with a shift
237 // of zero.
238 if ((Imm & ~255U) == 0) return 0;
240 // Use CTZ to compute the shift amount.
241 return CountTrailingZeros_32(Imm);
244 /// isThumbImmShiftedVal - Return true if the specified value can be obtained
245 /// by left shifting a 8-bit immediate.
246 static inline bool isThumbImmShiftedVal(unsigned V) {
247 // If this can be handled with
248 V = (~255U << getThumbImmValShift(V)) & V;
249 return V == 0;
252 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
253 /// by a left shift. Returns the shift amount to use.
254 static inline unsigned getThumbImm16ValShift(unsigned Imm) {
255 // 16-bit (or less) immediates are trivially immediate operand with a shift
256 // of zero.
257 if ((Imm & ~65535U) == 0) return 0;
259 // Use CTZ to compute the shift amount.
260 return CountTrailingZeros_32(Imm);
263 /// isThumbImm16ShiftedVal - Return true if the specified value can be
264 /// obtained by left shifting a 16-bit immediate.
265 static inline bool isThumbImm16ShiftedVal(unsigned V) {
266 // If this can be handled with
267 V = (~65535U << getThumbImm16ValShift(V)) & V;
268 return V == 0;
271 /// getThumbImmNonShiftedVal - If V is a value that satisfies
272 /// isThumbImmShiftedVal, return the non-shiftd value.
273 static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
274 return V >> getThumbImmValShift(V);
278 /// getT2SOImmValSplat - Return the 12-bit encoded representation
279 /// if the specified value can be obtained by splatting the low 8 bits
280 /// into every other byte or every byte of a 32-bit value. i.e.,
281 /// 00000000 00000000 00000000 abcdefgh control = 0
282 /// 00000000 abcdefgh 00000000 abcdefgh control = 1
283 /// abcdefgh 00000000 abcdefgh 00000000 control = 2
284 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
285 /// Return -1 if none of the above apply.
286 /// See ARM Reference Manual A6.3.2.
287 static inline int getT2SOImmValSplatVal(unsigned V) {
288 unsigned u, Vs, Imm;
289 // control = 0
290 if ((V & 0xffffff00) == 0)
291 return V;
293 // If the value is zeroes in the first byte, just shift those off
294 Vs = ((V & 0xff) == 0) ? V >> 8 : V;
295 // Any passing value only has 8 bits of payload, splatted across the word
296 Imm = Vs & 0xff;
297 // Likewise, any passing values have the payload splatted into the 3rd byte
298 u = Imm | (Imm << 16);
300 // control = 1 or 2
301 if (Vs == u)
302 return (((Vs == V) ? 1 : 2) << 8) | Imm;
304 // control = 3
305 if (Vs == (u | (u << 8)))
306 return (3 << 8) | Imm;
308 return -1;
311 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
312 /// specified value is a rotated 8-bit value. Return -1 if no rotation
313 /// encoding is possible.
314 /// See ARM Reference Manual A6.3.2.
315 static inline int getT2SOImmValRotateVal(unsigned V) {
316 unsigned RotAmt = CountLeadingZeros_32(V);
317 if (RotAmt >= 24)
318 return -1;
320 // If 'Arg' can be handled with a single shifter_op return the value.
321 if ((rotr32(0xff000000U, RotAmt) & V) == V)
322 return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
324 return -1;
327 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
328 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
329 /// encoding for it. If not, return -1.
330 /// See ARM Reference Manual A6.3.2.
331 static inline int getT2SOImmVal(unsigned Arg) {
332 // If 'Arg' is an 8-bit splat, then get the encoded value.
333 int Splat = getT2SOImmValSplatVal(Arg);
334 if (Splat != -1)
335 return Splat;
337 // If 'Arg' can be handled with a single shifter_op return the value.
338 int Rot = getT2SOImmValRotateVal(Arg);
339 if (Rot != -1)
340 return Rot;
342 return -1;
346 //===--------------------------------------------------------------------===//
347 // Addressing Mode #2
348 //===--------------------------------------------------------------------===//
350 // This is used for most simple load/store instructions.
352 // addrmode2 := reg +/- reg shop imm
353 // addrmode2 := reg +/- imm12
355 // The first operand is always a Reg. The second operand is a reg if in
356 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
357 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15.
359 // If this addressing mode is a frame index (before prolog/epilog insertion
360 // and code rewriting), this operand will have the form: FI#, reg0, <offs>
361 // with no shift amount for the frame offset.
363 static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO) {
364 assert(Imm12 < (1 << 12) && "Imm too large!");
365 bool isSub = Opc == sub;
366 return Imm12 | ((int)isSub << 12) | (SO << 13);
368 static inline unsigned getAM2Offset(unsigned AM2Opc) {
369 return AM2Opc & ((1 << 12)-1);
371 static inline AddrOpc getAM2Op(unsigned AM2Opc) {
372 return ((AM2Opc >> 12) & 1) ? sub : add;
374 static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
375 return (ShiftOpc)(AM2Opc >> 13);
379 //===--------------------------------------------------------------------===//
380 // Addressing Mode #3
381 //===--------------------------------------------------------------------===//
383 // This is used for sign-extending loads, and load/store-pair instructions.
385 // addrmode3 := reg +/- reg
386 // addrmode3 := reg +/- imm8
388 // The first operand is always a Reg. The second operand is a reg if in
389 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
390 // in bit 8, the immediate in bits 0-7.
392 /// getAM3Opc - This function encodes the addrmode3 opc field.
393 static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset) {
394 bool isSub = Opc == sub;
395 return ((int)isSub << 8) | Offset;
397 static inline unsigned char getAM3Offset(unsigned AM3Opc) {
398 return AM3Opc & 0xFF;
400 static inline AddrOpc getAM3Op(unsigned AM3Opc) {
401 return ((AM3Opc >> 8) & 1) ? sub : add;
404 //===--------------------------------------------------------------------===//
405 // Addressing Mode #4
406 //===--------------------------------------------------------------------===//
408 // This is used for load / store multiple instructions.
410 // addrmode4 := reg, <mode>
412 // The four modes are:
413 // IA - Increment after
414 // IB - Increment before
415 // DA - Decrement after
416 // DB - Decrement before
418 // If the 4th bit (writeback)is set, then the base register is updated after
419 // the memory transfer.
421 static inline AMSubMode getAM4SubMode(unsigned Mode) {
422 return (AMSubMode)(Mode & 0x7);
425 static inline unsigned getAM4ModeImm(AMSubMode SubMode, bool WB = false) {
426 return (int)SubMode | ((int)WB << 3);
429 static inline bool getAM4WBFlag(unsigned Mode) {
430 return (Mode >> 3) & 1;
433 //===--------------------------------------------------------------------===//
434 // Addressing Mode #5
435 //===--------------------------------------------------------------------===//
437 // This is used for coprocessor instructions, such as FP load/stores.
439 // addrmode5 := reg +/- imm8*4
441 // The first operand is always a Reg. The second operand encodes the
442 // operation in bit 8 and the immediate in bits 0-7.
444 // This is also used for FP load/store multiple ops. The second operand
445 // encodes the writeback mode in bit 8 and the number of registers (or 2
446 // times the number of registers for DPR ops) in bits 0-7. In addition,
447 // bits 9-11 encode one of the following two sub-modes:
449 // IA - Increment after
450 // DB - Decrement before
452 /// getAM5Opc - This function encodes the addrmode5 opc field.
453 static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
454 bool isSub = Opc == sub;
455 return ((int)isSub << 8) | Offset;
457 static inline unsigned char getAM5Offset(unsigned AM5Opc) {
458 return AM5Opc & 0xFF;
460 static inline AddrOpc getAM5Op(unsigned AM5Opc) {
461 return ((AM5Opc >> 8) & 1) ? sub : add;
464 /// getAM5Opc - This function encodes the addrmode5 opc field for FLDM and
465 /// FSTM instructions.
466 static inline unsigned getAM5Opc(AMSubMode SubMode, bool WB,
467 unsigned char Offset) {
468 assert((SubMode == ia || SubMode == db) &&
469 "Illegal addressing mode 5 sub-mode!");
470 return ((int)SubMode << 9) | ((int)WB << 8) | Offset;
472 static inline AMSubMode getAM5SubMode(unsigned AM5Opc) {
473 return (AMSubMode)((AM5Opc >> 9) & 0x7);
475 static inline bool getAM5WBFlag(unsigned AM5Opc) {
476 return ((AM5Opc >> 8) & 1);
479 //===--------------------------------------------------------------------===//
480 // Addressing Mode #6
481 //===--------------------------------------------------------------------===//
483 // This is used for NEON load / store instructions.
485 // addrmode6 := reg with optional writeback
487 // This is stored in three operands [regaddr, regupdate, opc]. The first is
488 // the address register. The second register holds the value of a post-access
489 // increment for writeback or reg0 if no writeback or if the writeback
490 // increment is the size of the memory access. The third operand encodes
491 // whether there is writeback to the address register.
493 static inline unsigned getAM6Opc(bool WB = false) {
494 return (int)WB;
497 static inline bool getAM6WBFlag(unsigned Mode) {
498 return Mode & 1;
501 } // end namespace ARM_AM
502 } // end namespace llvm
504 #endif