1 //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86JITInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "X86Relocations.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/CodeGen/MachineCodeEmitter.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/ObjectCodeEmitter.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/Function.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetOptions.h"
39 STATISTIC(NumEmitted
, "Number of machine instructions emitted");
42 template<class CodeEmitter
>
43 class VISIBILITY_HIDDEN Emitter
: public MachineFunctionPass
{
44 const X86InstrInfo
*II
;
48 intptr_t PICBaseOffset
;
53 explicit Emitter(X86TargetMachine
&tm
, CodeEmitter
&mce
)
54 : MachineFunctionPass(&ID
), II(0), TD(0), TM(tm
),
55 MCE(mce
), PICBaseOffset(0), Is64BitMode(false),
56 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
57 Emitter(X86TargetMachine
&tm
, CodeEmitter
&mce
,
58 const X86InstrInfo
&ii
, const TargetData
&td
, bool is64
)
59 : MachineFunctionPass(&ID
), II(&ii
), TD(&td
), TM(tm
),
60 MCE(mce
), PICBaseOffset(0), Is64BitMode(is64
),
61 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
63 bool runOnMachineFunction(MachineFunction
&MF
);
65 virtual const char *getPassName() const {
66 return "X86 Machine Code Emitter";
69 void emitInstruction(const MachineInstr
&MI
,
70 const TargetInstrDesc
*Desc
);
72 void getAnalysisUsage(AnalysisUsage
&AU
) const {
74 AU
.addRequired
<MachineModuleInfo
>();
75 MachineFunctionPass::getAnalysisUsage(AU
);
79 void emitPCRelativeBlockAddress(MachineBasicBlock
*MBB
);
80 void emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
81 intptr_t Disp
= 0, intptr_t PCAdj
= 0,
82 bool NeedStub
= false, bool Indirect
= false);
83 void emitExternalSymbolAddress(const char *ES
, unsigned Reloc
);
84 void emitConstPoolAddress(unsigned CPI
, unsigned Reloc
, intptr_t Disp
= 0,
86 void emitJumpTableAddress(unsigned JTI
, unsigned Reloc
,
89 void emitDisplacementField(const MachineOperand
*RelocOp
, int DispVal
,
92 void emitRegModRMByte(unsigned ModRMReg
, unsigned RegOpcodeField
);
93 void emitRegModRMByte(unsigned RegOpcodeField
);
94 void emitSIBByte(unsigned SS
, unsigned Index
, unsigned Base
);
95 void emitConstant(uint64_t Val
, unsigned Size
);
97 void emitMemModRMByte(const MachineInstr
&MI
,
98 unsigned Op
, unsigned RegOpcodeField
,
101 unsigned getX86RegNum(unsigned RegNo
) const;
104 template<class CodeEmitter
>
105 char Emitter
<CodeEmitter
>::ID
= 0;
108 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
109 /// to the specified templated MachineCodeEmitter object.
111 FunctionPass
*llvm::createX86CodeEmitterPass(X86TargetMachine
&TM
,
112 MachineCodeEmitter
&MCE
) {
113 return new Emitter
<MachineCodeEmitter
>(TM
, MCE
);
115 FunctionPass
*llvm::createX86JITCodeEmitterPass(X86TargetMachine
&TM
,
116 JITCodeEmitter
&JCE
) {
117 return new Emitter
<JITCodeEmitter
>(TM
, JCE
);
119 FunctionPass
*llvm::createX86ObjectCodeEmitterPass(X86TargetMachine
&TM
,
120 ObjectCodeEmitter
&OCE
) {
121 return new Emitter
<ObjectCodeEmitter
>(TM
, OCE
);
124 template<class CodeEmitter
>
125 bool Emitter
<CodeEmitter
>::runOnMachineFunction(MachineFunction
&MF
) {
127 MCE
.setModuleInfo(&getAnalysis
<MachineModuleInfo
>());
129 II
= TM
.getInstrInfo();
130 TD
= TM
.getTargetData();
131 Is64BitMode
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
132 IsPIC
= TM
.getRelocationModel() == Reloc::PIC_
;
135 DEBUG(errs() << "JITTing function '"
136 << MF
.getFunction()->getName() << "'\n");
137 MCE
.startFunction(MF
);
138 for (MachineFunction::iterator MBB
= MF
.begin(), E
= MF
.end();
140 MCE
.StartMachineBasicBlock(MBB
);
141 for (MachineBasicBlock::const_iterator I
= MBB
->begin(), E
= MBB
->end();
143 const TargetInstrDesc
&Desc
= I
->getDesc();
144 emitInstruction(*I
, &Desc
);
145 // MOVPC32r is basically a call plus a pop instruction.
146 if (Desc
.getOpcode() == X86::MOVPC32r
)
147 emitInstruction(*I
, &II
->get(X86::POP32r
));
148 NumEmitted
++; // Keep track of the # of mi's emitted
151 } while (MCE
.finishFunction(MF
));
156 /// emitPCRelativeBlockAddress - This method keeps track of the information
157 /// necessary to resolve the address of this block later and emits a dummy
160 template<class CodeEmitter
>
161 void Emitter
<CodeEmitter
>::emitPCRelativeBlockAddress(MachineBasicBlock
*MBB
) {
162 // Remember where this reference was and where it is to so we can
163 // deal with it later.
164 MCE
.addRelocation(MachineRelocation::getBB(MCE
.getCurrentPCOffset(),
165 X86::reloc_pcrel_word
, MBB
));
169 /// emitGlobalAddress - Emit the specified address to the code stream assuming
170 /// this is part of a "take the address of a global" instruction.
172 template<class CodeEmitter
>
173 void Emitter
<CodeEmitter
>::emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
174 intptr_t Disp
/* = 0 */,
175 intptr_t PCAdj
/* = 0 */,
176 bool NeedStub
/* = false */,
177 bool Indirect
/* = false */) {
178 intptr_t RelocCST
= 0;
179 if (Reloc
== X86::reloc_picrel_word
)
180 RelocCST
= PICBaseOffset
;
181 else if (Reloc
== X86::reloc_pcrel_word
)
183 MachineRelocation MR
= Indirect
184 ? MachineRelocation::getIndirectSymbol(MCE
.getCurrentPCOffset(), Reloc
,
185 GV
, RelocCST
, NeedStub
)
186 : MachineRelocation::getGV(MCE
.getCurrentPCOffset(), Reloc
,
187 GV
, RelocCST
, NeedStub
);
188 MCE
.addRelocation(MR
);
189 // The relocated value will be added to the displacement
190 if (Reloc
== X86::reloc_absolute_dword
)
191 MCE
.emitDWordLE(Disp
);
193 MCE
.emitWordLE((int32_t)Disp
);
196 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
197 /// be emitted to the current location in the function, and allow it to be PC
199 template<class CodeEmitter
>
200 void Emitter
<CodeEmitter
>::emitExternalSymbolAddress(const char *ES
,
202 intptr_t RelocCST
= (Reloc
== X86::reloc_picrel_word
) ? PICBaseOffset
: 0;
203 MCE
.addRelocation(MachineRelocation::getExtSym(MCE
.getCurrentPCOffset(),
204 Reloc
, ES
, RelocCST
));
205 if (Reloc
== X86::reloc_absolute_dword
)
211 /// emitConstPoolAddress - Arrange for the address of an constant pool
212 /// to be emitted to the current location in the function, and allow it to be PC
214 template<class CodeEmitter
>
215 void Emitter
<CodeEmitter
>::emitConstPoolAddress(unsigned CPI
, unsigned Reloc
,
216 intptr_t Disp
/* = 0 */,
217 intptr_t PCAdj
/* = 0 */) {
218 intptr_t RelocCST
= 0;
219 if (Reloc
== X86::reloc_picrel_word
)
220 RelocCST
= PICBaseOffset
;
221 else if (Reloc
== X86::reloc_pcrel_word
)
223 MCE
.addRelocation(MachineRelocation::getConstPool(MCE
.getCurrentPCOffset(),
224 Reloc
, CPI
, RelocCST
));
225 // The relocated value will be added to the displacement
226 if (Reloc
== X86::reloc_absolute_dword
)
227 MCE
.emitDWordLE(Disp
);
229 MCE
.emitWordLE((int32_t)Disp
);
232 /// emitJumpTableAddress - Arrange for the address of a jump table to
233 /// be emitted to the current location in the function, and allow it to be PC
235 template<class CodeEmitter
>
236 void Emitter
<CodeEmitter
>::emitJumpTableAddress(unsigned JTI
, unsigned Reloc
,
237 intptr_t PCAdj
/* = 0 */) {
238 intptr_t RelocCST
= 0;
239 if (Reloc
== X86::reloc_picrel_word
)
240 RelocCST
= PICBaseOffset
;
241 else if (Reloc
== X86::reloc_pcrel_word
)
243 MCE
.addRelocation(MachineRelocation::getJumpTable(MCE
.getCurrentPCOffset(),
244 Reloc
, JTI
, RelocCST
));
245 // The relocated value will be added to the displacement
246 if (Reloc
== X86::reloc_absolute_dword
)
252 template<class CodeEmitter
>
253 unsigned Emitter
<CodeEmitter
>::getX86RegNum(unsigned RegNo
) const {
254 return II
->getRegisterInfo().getX86RegNum(RegNo
);
257 inline static unsigned char ModRMByte(unsigned Mod
, unsigned RegOpcode
,
259 assert(Mod
< 4 && RegOpcode
< 8 && RM
< 8 && "ModRM Fields out of range!");
260 return RM
| (RegOpcode
<< 3) | (Mod
<< 6);
263 template<class CodeEmitter
>
264 void Emitter
<CodeEmitter
>::emitRegModRMByte(unsigned ModRMReg
,
265 unsigned RegOpcodeFld
){
266 MCE
.emitByte(ModRMByte(3, RegOpcodeFld
, getX86RegNum(ModRMReg
)));
269 template<class CodeEmitter
>
270 void Emitter
<CodeEmitter
>::emitRegModRMByte(unsigned RegOpcodeFld
) {
271 MCE
.emitByte(ModRMByte(3, RegOpcodeFld
, 0));
274 template<class CodeEmitter
>
275 void Emitter
<CodeEmitter
>::emitSIBByte(unsigned SS
,
278 // SIB byte is in the same format as the ModRMByte...
279 MCE
.emitByte(ModRMByte(SS
, Index
, Base
));
282 template<class CodeEmitter
>
283 void Emitter
<CodeEmitter
>::emitConstant(uint64_t Val
, unsigned Size
) {
284 // Output the constant in little endian byte order...
285 for (unsigned i
= 0; i
!= Size
; ++i
) {
286 MCE
.emitByte(Val
& 255);
291 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
292 /// sign-extended field.
293 static bool isDisp8(int Value
) {
294 return Value
== (signed char)Value
;
297 static bool gvNeedsNonLazyPtr(const MachineOperand
&GVOp
,
298 const TargetMachine
&TM
) {
299 // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
300 // mechanism as 32-bit mode.
301 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit() &&
302 !TM
.getSubtarget
<X86Subtarget
>().isTargetDarwin())
305 // Return true if this is a reference to a stub containing the address of the
306 // global, not the global itself.
307 return isGlobalStubReference(GVOp
.getTargetFlags());
310 template<class CodeEmitter
>
311 void Emitter
<CodeEmitter
>::emitDisplacementField(const MachineOperand
*RelocOp
,
312 int DispVal
, intptr_t PCAdj
) {
313 // If this is a simple integer displacement that doesn't require a relocation,
316 emitConstant(DispVal
, 4);
320 // Otherwise, this is something that requires a relocation. Emit it as such
322 if (RelocOp
->isGlobal()) {
323 // In 64-bit static small code model, we could potentially emit absolute.
324 // But it's probably not beneficial.
325 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
326 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
327 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
328 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
329 bool NeedStub
= isa
<Function
>(RelocOp
->getGlobal());
330 bool Indirect
= gvNeedsNonLazyPtr(*RelocOp
, TM
);
331 emitGlobalAddress(RelocOp
->getGlobal(), rt
, RelocOp
->getOffset(),
332 PCAdj
, NeedStub
, Indirect
);
333 } else if (RelocOp
->isCPI()) {
334 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
: X86::reloc_picrel_word
;
335 emitConstPoolAddress(RelocOp
->getIndex(), rt
,
336 RelocOp
->getOffset(), PCAdj
);
337 } else if (RelocOp
->isJTI()) {
338 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
: X86::reloc_picrel_word
;
339 emitJumpTableAddress(RelocOp
->getIndex(), rt
, PCAdj
);
341 llvm_unreachable("Unknown value to relocate!");
345 template<class CodeEmitter
>
346 void Emitter
<CodeEmitter
>::emitMemModRMByte(const MachineInstr
&MI
,
347 unsigned Op
, unsigned RegOpcodeField
,
349 const MachineOperand
&Op3
= MI
.getOperand(Op
+3);
351 const MachineOperand
*DispForReloc
= 0;
353 // Figure out what sort of displacement we have to handle here.
354 if (Op3
.isGlobal()) {
356 } else if (Op3
.isCPI()) {
357 if (Is64BitMode
|| IsPIC
) {
360 DispVal
+= MCE
.getConstantPoolEntryAddress(Op3
.getIndex());
361 DispVal
+= Op3
.getOffset();
363 } else if (Op3
.isJTI()) {
364 if (Is64BitMode
|| IsPIC
) {
367 DispVal
+= MCE
.getJumpTableEntryAddress(Op3
.getIndex());
370 DispVal
= Op3
.getImm();
373 const MachineOperand
&Base
= MI
.getOperand(Op
);
374 const MachineOperand
&Scale
= MI
.getOperand(Op
+1);
375 const MachineOperand
&IndexReg
= MI
.getOperand(Op
+2);
377 unsigned BaseReg
= Base
.getReg();
379 // Is a SIB byte needed?
380 if ((!Is64BitMode
|| DispForReloc
|| BaseReg
!= 0) &&
381 IndexReg
.getReg() == 0 &&
382 (BaseReg
== 0 || BaseReg
== X86::RIP
||
383 getX86RegNum(BaseReg
) != N86::ESP
)) {
385 BaseReg
== X86::RIP
) { // Just a displacement?
386 // Emit special case [disp32] encoding
387 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 5));
389 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
);
391 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
392 if (!DispForReloc
&& DispVal
== 0 && BaseRegNo
!= N86::EBP
) {
393 // Emit simple indirect register encoding... [EAX] f.e.
394 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, BaseRegNo
));
395 } else if (!DispForReloc
&& isDisp8(DispVal
)) {
396 // Emit the disp8 encoding... [REG+disp8]
397 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, BaseRegNo
));
398 emitConstant(DispVal
, 1);
400 // Emit the most general non-SIB encoding: [REG+disp32]
401 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, BaseRegNo
));
402 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
);
406 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
407 assert(IndexReg
.getReg() != X86::ESP
&&
408 IndexReg
.getReg() != X86::RSP
&& "Cannot use ESP as index reg!");
410 bool ForceDisp32
= false;
411 bool ForceDisp8
= false;
413 // If there is no base register, we emit the special case SIB byte with
414 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
415 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
417 } else if (DispForReloc
) {
418 // Emit the normal disp32 encoding.
419 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
421 } else if (DispVal
== 0 && getX86RegNum(BaseReg
) != N86::EBP
) {
422 // Emit no displacement ModR/M byte
423 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
424 } else if (isDisp8(DispVal
)) {
425 // Emit the disp8 encoding...
426 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, 4));
427 ForceDisp8
= true; // Make sure to force 8 bit disp if Base=EBP
429 // Emit the normal disp32 encoding...
430 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
433 // Calculate what the SS field value should be...
434 static const unsigned SSTable
[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
435 unsigned SS
= SSTable
[Scale
.getImm()];
438 // Handle the SIB byte for the case where there is no base. The
439 // displacement has already been output.
441 if (IndexReg
.getReg())
442 IndexRegNo
= getX86RegNum(IndexReg
.getReg());
444 IndexRegNo
= 4; // For example [ESP+1*<noreg>+4]
445 emitSIBByte(SS
, IndexRegNo
, 5);
447 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
449 if (IndexReg
.getReg())
450 IndexRegNo
= getX86RegNum(IndexReg
.getReg());
452 IndexRegNo
= 4; // For example [ESP+1*<noreg>+4]
453 emitSIBByte(SS
, IndexRegNo
, BaseRegNo
);
456 // Do we need to output a displacement?
458 emitConstant(DispVal
, 1);
459 } else if (DispVal
!= 0 || ForceDisp32
) {
460 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
);
465 template<class CodeEmitter
>
466 void Emitter
<CodeEmitter
>::emitInstruction(
467 const MachineInstr
&MI
,
468 const TargetInstrDesc
*Desc
) {
471 MCE
.processDebugLoc(MI
.getDebugLoc());
473 unsigned Opcode
= Desc
->Opcode
;
475 // Emit the lock opcode prefix as needed.
476 if (Desc
->TSFlags
& X86II::LOCK
) MCE
.emitByte(0xF0);
478 // Emit segment override opcode prefix as needed.
479 switch (Desc
->TSFlags
& X86II::SegOvrMask
) {
486 default: llvm_unreachable("Invalid segment!");
487 case 0: break; // No segment override!
490 // Emit the repeat opcode prefix as needed.
491 if ((Desc
->TSFlags
& X86II::Op0Mask
) == X86II::REP
) MCE
.emitByte(0xF3);
493 // Emit the operand size opcode prefix as needed.
494 if (Desc
->TSFlags
& X86II::OpSize
) MCE
.emitByte(0x66);
496 // Emit the address size opcode prefix as needed.
497 if (Desc
->TSFlags
& X86II::AdSize
) MCE
.emitByte(0x67);
499 bool Need0FPrefix
= false;
500 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
501 case X86II::TB
: // Two-byte opcode prefix
502 case X86II::T8
: // 0F 38
503 case X86II::TA
: // 0F 3A
506 case X86II::REP
: break; // already handled.
507 case X86II::XS
: // F3 0F
511 case X86II::XD
: // F2 0F
515 case X86II::D8
: case X86II::D9
: case X86II::DA
: case X86II::DB
:
516 case X86II::DC
: case X86II::DD
: case X86II::DE
: case X86II::DF
:
518 (((Desc
->TSFlags
& X86II::Op0Mask
)-X86II::D8
)
519 >> X86II::Op0Shift
));
520 break; // Two-byte opcode prefix
521 default: llvm_unreachable("Invalid prefix!");
522 case 0: break; // No prefix!
527 unsigned REX
= X86InstrInfo::determineREX(MI
);
529 MCE
.emitByte(0x40 | REX
);
532 // 0x0F escape code must be emitted just before the opcode.
536 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
537 case X86II::T8
: // 0F 38
540 case X86II::TA
: // 0F 3A
545 // If this is a two-address instruction, skip one of the register operands.
546 unsigned NumOps
= Desc
->getNumOperands();
548 if (NumOps
> 1 && Desc
->getOperandConstraint(1, TOI::TIED_TO
) != -1)
550 else if (NumOps
> 2 && Desc
->getOperandConstraint(NumOps
-1, TOI::TIED_TO
)== 0)
551 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
554 unsigned char BaseOpcode
= II
->getBaseOpcodeFor(Desc
);
555 switch (Desc
->TSFlags
& X86II::FormMask
) {
556 default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
558 // Remember the current PC offset, this is the PIC relocation
562 llvm_unreachable("psuedo instructions should be removed before code emission");
564 case TargetInstrInfo::INLINEASM
: {
565 // We allow inline assembler nodes with empty bodies - they can
566 // implicitly define registers, which is ok for JIT.
567 if (MI
.getOperand(0).getSymbolName()[0]) {
568 llvm_report_error("JIT does not support inline asm!");
572 case TargetInstrInfo::DBG_LABEL
:
573 case TargetInstrInfo::EH_LABEL
:
574 MCE
.emitLabel(MI
.getOperand(0).getImm());
576 case TargetInstrInfo::IMPLICIT_DEF
:
577 case TargetInstrInfo::DECLARE
:
579 case X86::FP_REG_KILL
:
581 case X86::MOVPC32r
: {
582 // This emits the "call" portion of this pseudo instruction.
583 MCE
.emitByte(BaseOpcode
);
584 emitConstant(0, X86InstrInfo::sizeOfImm(Desc
));
585 // Remember PIC base.
586 PICBaseOffset
= (intptr_t) MCE
.getCurrentPCOffset();
587 X86JITInfo
*JTI
= TM
.getJITInfo();
588 JTI
->setPICBase(MCE
.getCurrentPCValue());
595 MCE
.emitByte(BaseOpcode
);
597 if (CurOp
!= NumOps
) {
598 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
600 DEBUG(errs() << "RawFrm CurOp " << CurOp
<< "\n");
601 DEBUG(errs() << "isMBB " << MO
.isMBB() << "\n");
602 DEBUG(errs() << "isGlobal " << MO
.isGlobal() << "\n");
603 DEBUG(errs() << "isSymbol " << MO
.isSymbol() << "\n");
604 DEBUG(errs() << "isImm " << MO
.isImm() << "\n");
607 emitPCRelativeBlockAddress(MO
.getMBB());
608 } else if (MO
.isGlobal()) {
609 // Assume undefined functions may be outside the Small codespace.
612 (TM
.getCodeModel() == CodeModel::Large
||
613 TM
.getSubtarget
<X86Subtarget
>().isTargetDarwin())) ||
614 Opcode
== X86::TAILJMPd
;
615 emitGlobalAddress(MO
.getGlobal(), X86::reloc_pcrel_word
,
616 MO
.getOffset(), 0, NeedStub
);
617 } else if (MO
.isSymbol()) {
618 emitExternalSymbolAddress(MO
.getSymbolName(), X86::reloc_pcrel_word
);
619 } else if (MO
.isImm()) {
620 if (Opcode
== X86::CALLpcrel32
|| Opcode
== X86::CALL64pcrel32
) {
621 // Fix up immediate operand for pc relative calls.
622 intptr_t Imm
= (intptr_t)MO
.getImm();
623 Imm
= Imm
- MCE
.getCurrentPCValue() - 4;
624 emitConstant(Imm
, X86InstrInfo::sizeOfImm(Desc
));
626 emitConstant(MO
.getImm(), X86InstrInfo::sizeOfImm(Desc
));
628 llvm_unreachable("Unknown RawFrm operand!");
633 case X86II::AddRegFrm
:
634 MCE
.emitByte(BaseOpcode
+ getX86RegNum(MI
.getOperand(CurOp
++).getReg()));
636 if (CurOp
!= NumOps
) {
637 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
638 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
640 emitConstant(MO1
.getImm(), Size
);
642 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
643 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
644 if (Opcode
== X86::MOV64ri64i32
)
645 rt
= X86::reloc_absolute_word
; // FIXME: add X86II flag?
646 // This should not occur on Darwin for relocatable objects.
647 if (Opcode
== X86::MOV64ri
)
648 rt
= X86::reloc_absolute_dword
; // FIXME: add X86II flag?
649 if (MO1
.isGlobal()) {
650 bool NeedStub
= isa
<Function
>(MO1
.getGlobal());
651 bool Indirect
= gvNeedsNonLazyPtr(MO1
, TM
);
652 emitGlobalAddress(MO1
.getGlobal(), rt
, MO1
.getOffset(), 0,
654 } else if (MO1
.isSymbol())
655 emitExternalSymbolAddress(MO1
.getSymbolName(), rt
);
656 else if (MO1
.isCPI())
657 emitConstPoolAddress(MO1
.getIndex(), rt
);
658 else if (MO1
.isJTI())
659 emitJumpTableAddress(MO1
.getIndex(), rt
);
664 case X86II::MRMDestReg
: {
665 MCE
.emitByte(BaseOpcode
);
666 emitRegModRMByte(MI
.getOperand(CurOp
).getReg(),
667 getX86RegNum(MI
.getOperand(CurOp
+1).getReg()));
670 emitConstant(MI
.getOperand(CurOp
++).getImm(), X86InstrInfo::sizeOfImm(Desc
));
673 case X86II::MRMDestMem
: {
674 MCE
.emitByte(BaseOpcode
);
675 emitMemModRMByte(MI
, CurOp
,
676 getX86RegNum(MI
.getOperand(CurOp
+ X86AddrNumOperands
)
678 CurOp
+= X86AddrNumOperands
+ 1;
680 emitConstant(MI
.getOperand(CurOp
++).getImm(), X86InstrInfo::sizeOfImm(Desc
));
684 case X86II::MRMSrcReg
:
685 MCE
.emitByte(BaseOpcode
);
686 emitRegModRMByte(MI
.getOperand(CurOp
+1).getReg(),
687 getX86RegNum(MI
.getOperand(CurOp
).getReg()));
690 emitConstant(MI
.getOperand(CurOp
++).getImm(),
691 X86InstrInfo::sizeOfImm(Desc
));
694 case X86II::MRMSrcMem
: {
695 // FIXME: Maybe lea should have its own form?
697 if (Opcode
== X86::LEA64r
|| Opcode
== X86::LEA64_32r
||
698 Opcode
== X86::LEA16r
|| Opcode
== X86::LEA32r
)
699 AddrOperands
= X86AddrNumOperands
- 1; // No segment register
701 AddrOperands
= X86AddrNumOperands
;
703 intptr_t PCAdj
= (CurOp
+ AddrOperands
+ 1 != NumOps
) ?
704 X86InstrInfo::sizeOfImm(Desc
) : 0;
706 MCE
.emitByte(BaseOpcode
);
707 emitMemModRMByte(MI
, CurOp
+1, getX86RegNum(MI
.getOperand(CurOp
).getReg()),
709 CurOp
+= AddrOperands
+ 1;
711 emitConstant(MI
.getOperand(CurOp
++).getImm(),
712 X86InstrInfo::sizeOfImm(Desc
));
716 case X86II::MRM0r
: case X86II::MRM1r
:
717 case X86II::MRM2r
: case X86II::MRM3r
:
718 case X86II::MRM4r
: case X86II::MRM5r
:
719 case X86II::MRM6r
: case X86II::MRM7r
: {
720 MCE
.emitByte(BaseOpcode
);
722 // Special handling of lfence, mfence, monitor, and mwait.
723 if (Desc
->getOpcode() == X86::LFENCE
||
724 Desc
->getOpcode() == X86::MFENCE
||
725 Desc
->getOpcode() == X86::MONITOR
||
726 Desc
->getOpcode() == X86::MWAIT
) {
727 emitRegModRMByte((Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0r
);
729 switch (Desc
->getOpcode()) {
739 emitRegModRMByte(MI
.getOperand(CurOp
++).getReg(),
740 (Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0r
);
743 if (CurOp
!= NumOps
) {
744 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
745 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
747 emitConstant(MO1
.getImm(), Size
);
749 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
750 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
751 if (Opcode
== X86::MOV64ri32
)
752 rt
= X86::reloc_absolute_word
; // FIXME: add X86II flag?
753 if (MO1
.isGlobal()) {
754 bool NeedStub
= isa
<Function
>(MO1
.getGlobal());
755 bool Indirect
= gvNeedsNonLazyPtr(MO1
, TM
);
756 emitGlobalAddress(MO1
.getGlobal(), rt
, MO1
.getOffset(), 0,
758 } else if (MO1
.isSymbol())
759 emitExternalSymbolAddress(MO1
.getSymbolName(), rt
);
760 else if (MO1
.isCPI())
761 emitConstPoolAddress(MO1
.getIndex(), rt
);
762 else if (MO1
.isJTI())
763 emitJumpTableAddress(MO1
.getIndex(), rt
);
769 case X86II::MRM0m
: case X86II::MRM1m
:
770 case X86II::MRM2m
: case X86II::MRM3m
:
771 case X86II::MRM4m
: case X86II::MRM5m
:
772 case X86II::MRM6m
: case X86II::MRM7m
: {
773 intptr_t PCAdj
= (CurOp
+ X86AddrNumOperands
!= NumOps
) ?
774 (MI
.getOperand(CurOp
+X86AddrNumOperands
).isImm() ?
775 X86InstrInfo::sizeOfImm(Desc
) : 4) : 0;
777 MCE
.emitByte(BaseOpcode
);
778 emitMemModRMByte(MI
, CurOp
, (Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0m
,
780 CurOp
+= X86AddrNumOperands
;
782 if (CurOp
!= NumOps
) {
783 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
784 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
786 emitConstant(MO
.getImm(), Size
);
788 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
789 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
790 if (Opcode
== X86::MOV64mi32
)
791 rt
= X86::reloc_absolute_word
; // FIXME: add X86II flag?
793 bool NeedStub
= isa
<Function
>(MO
.getGlobal());
794 bool Indirect
= gvNeedsNonLazyPtr(MO
, TM
);
795 emitGlobalAddress(MO
.getGlobal(), rt
, MO
.getOffset(), 0,
797 } else if (MO
.isSymbol())
798 emitExternalSymbolAddress(MO
.getSymbolName(), rt
);
800 emitConstPoolAddress(MO
.getIndex(), rt
);
802 emitJumpTableAddress(MO
.getIndex(), rt
);
808 case X86II::MRMInitReg
:
809 MCE
.emitByte(BaseOpcode
);
810 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
811 emitRegModRMByte(MI
.getOperand(CurOp
).getReg(),
812 getX86RegNum(MI
.getOperand(CurOp
).getReg()));
817 if (!Desc
->isVariadic() && CurOp
!= NumOps
) {
819 errs() << "Cannot encode: " << MI
<< "\n";