Fix part 1 of pr4682. PICADD is a 16-bit instruction even in thumb2 mode.
[llvm/avr.git] / lib / Target / X86 / X86CodeEmitter.cpp
blob26504ba7d48ecac29ccde2885450e8565c51e2d5
1 //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86JITInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "X86Relocations.h"
21 #include "X86.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/CodeGen/MachineCodeEmitter.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/ObjectCodeEmitter.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/Function.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetOptions.h"
37 using namespace llvm;
39 STATISTIC(NumEmitted, "Number of machine instructions emitted");
41 namespace {
42 template<class CodeEmitter>
43 class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
44 const X86InstrInfo *II;
45 const TargetData *TD;
46 X86TargetMachine &TM;
47 CodeEmitter &MCE;
48 intptr_t PICBaseOffset;
49 bool Is64BitMode;
50 bool IsPIC;
51 public:
52 static char ID;
53 explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
54 : MachineFunctionPass(&ID), II(0), TD(0), TM(tm),
55 MCE(mce), PICBaseOffset(0), Is64BitMode(false),
56 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
57 Emitter(X86TargetMachine &tm, CodeEmitter &mce,
58 const X86InstrInfo &ii, const TargetData &td, bool is64)
59 : MachineFunctionPass(&ID), II(&ii), TD(&td), TM(tm),
60 MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
61 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
63 bool runOnMachineFunction(MachineFunction &MF);
65 virtual const char *getPassName() const {
66 return "X86 Machine Code Emitter";
69 void emitInstruction(const MachineInstr &MI,
70 const TargetInstrDesc *Desc);
72 void getAnalysisUsage(AnalysisUsage &AU) const {
73 AU.setPreservesAll();
74 AU.addRequired<MachineModuleInfo>();
75 MachineFunctionPass::getAnalysisUsage(AU);
78 private:
79 void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
80 void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
81 intptr_t Disp = 0, intptr_t PCAdj = 0,
82 bool NeedStub = false, bool Indirect = false);
83 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
84 void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
85 intptr_t PCAdj = 0);
86 void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
87 intptr_t PCAdj = 0);
89 void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
90 intptr_t PCAdj = 0);
92 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
93 void emitRegModRMByte(unsigned RegOpcodeField);
94 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
95 void emitConstant(uint64_t Val, unsigned Size);
97 void emitMemModRMByte(const MachineInstr &MI,
98 unsigned Op, unsigned RegOpcodeField,
99 intptr_t PCAdj = 0);
101 unsigned getX86RegNum(unsigned RegNo) const;
104 template<class CodeEmitter>
105 char Emitter<CodeEmitter>::ID = 0;
108 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
109 /// to the specified templated MachineCodeEmitter object.
111 FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM,
112 MachineCodeEmitter &MCE) {
113 return new Emitter<MachineCodeEmitter>(TM, MCE);
115 FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
116 JITCodeEmitter &JCE) {
117 return new Emitter<JITCodeEmitter>(TM, JCE);
119 FunctionPass *llvm::createX86ObjectCodeEmitterPass(X86TargetMachine &TM,
120 ObjectCodeEmitter &OCE) {
121 return new Emitter<ObjectCodeEmitter>(TM, OCE);
124 template<class CodeEmitter>
125 bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
127 MCE.setModuleInfo(&getAnalysis<MachineModuleInfo>());
129 II = TM.getInstrInfo();
130 TD = TM.getTargetData();
131 Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
132 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
134 do {
135 DEBUG(errs() << "JITTing function '"
136 << MF.getFunction()->getName() << "'\n");
137 MCE.startFunction(MF);
138 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
139 MBB != E; ++MBB) {
140 MCE.StartMachineBasicBlock(MBB);
141 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
142 I != E; ++I) {
143 const TargetInstrDesc &Desc = I->getDesc();
144 emitInstruction(*I, &Desc);
145 // MOVPC32r is basically a call plus a pop instruction.
146 if (Desc.getOpcode() == X86::MOVPC32r)
147 emitInstruction(*I, &II->get(X86::POP32r));
148 NumEmitted++; // Keep track of the # of mi's emitted
151 } while (MCE.finishFunction(MF));
153 return false;
156 /// emitPCRelativeBlockAddress - This method keeps track of the information
157 /// necessary to resolve the address of this block later and emits a dummy
158 /// value.
160 template<class CodeEmitter>
161 void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
162 // Remember where this reference was and where it is to so we can
163 // deal with it later.
164 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
165 X86::reloc_pcrel_word, MBB));
166 MCE.emitWordLE(0);
169 /// emitGlobalAddress - Emit the specified address to the code stream assuming
170 /// this is part of a "take the address of a global" instruction.
172 template<class CodeEmitter>
173 void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
174 intptr_t Disp /* = 0 */,
175 intptr_t PCAdj /* = 0 */,
176 bool NeedStub /* = false */,
177 bool Indirect /* = false */) {
178 intptr_t RelocCST = 0;
179 if (Reloc == X86::reloc_picrel_word)
180 RelocCST = PICBaseOffset;
181 else if (Reloc == X86::reloc_pcrel_word)
182 RelocCST = PCAdj;
183 MachineRelocation MR = Indirect
184 ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
185 GV, RelocCST, NeedStub)
186 : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
187 GV, RelocCST, NeedStub);
188 MCE.addRelocation(MR);
189 // The relocated value will be added to the displacement
190 if (Reloc == X86::reloc_absolute_dword)
191 MCE.emitDWordLE(Disp);
192 else
193 MCE.emitWordLE((int32_t)Disp);
196 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
197 /// be emitted to the current location in the function, and allow it to be PC
198 /// relative.
199 template<class CodeEmitter>
200 void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
201 unsigned Reloc) {
202 intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
203 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
204 Reloc, ES, RelocCST));
205 if (Reloc == X86::reloc_absolute_dword)
206 MCE.emitDWordLE(0);
207 else
208 MCE.emitWordLE(0);
211 /// emitConstPoolAddress - Arrange for the address of an constant pool
212 /// to be emitted to the current location in the function, and allow it to be PC
213 /// relative.
214 template<class CodeEmitter>
215 void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
216 intptr_t Disp /* = 0 */,
217 intptr_t PCAdj /* = 0 */) {
218 intptr_t RelocCST = 0;
219 if (Reloc == X86::reloc_picrel_word)
220 RelocCST = PICBaseOffset;
221 else if (Reloc == X86::reloc_pcrel_word)
222 RelocCST = PCAdj;
223 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
224 Reloc, CPI, RelocCST));
225 // The relocated value will be added to the displacement
226 if (Reloc == X86::reloc_absolute_dword)
227 MCE.emitDWordLE(Disp);
228 else
229 MCE.emitWordLE((int32_t)Disp);
232 /// emitJumpTableAddress - Arrange for the address of a jump table to
233 /// be emitted to the current location in the function, and allow it to be PC
234 /// relative.
235 template<class CodeEmitter>
236 void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
237 intptr_t PCAdj /* = 0 */) {
238 intptr_t RelocCST = 0;
239 if (Reloc == X86::reloc_picrel_word)
240 RelocCST = PICBaseOffset;
241 else if (Reloc == X86::reloc_pcrel_word)
242 RelocCST = PCAdj;
243 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
244 Reloc, JTI, RelocCST));
245 // The relocated value will be added to the displacement
246 if (Reloc == X86::reloc_absolute_dword)
247 MCE.emitDWordLE(0);
248 else
249 MCE.emitWordLE(0);
252 template<class CodeEmitter>
253 unsigned Emitter<CodeEmitter>::getX86RegNum(unsigned RegNo) const {
254 return II->getRegisterInfo().getX86RegNum(RegNo);
257 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
258 unsigned RM) {
259 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
260 return RM | (RegOpcode << 3) | (Mod << 6);
263 template<class CodeEmitter>
264 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
265 unsigned RegOpcodeFld){
266 MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
269 template<class CodeEmitter>
270 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
271 MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
274 template<class CodeEmitter>
275 void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
276 unsigned Index,
277 unsigned Base) {
278 // SIB byte is in the same format as the ModRMByte...
279 MCE.emitByte(ModRMByte(SS, Index, Base));
282 template<class CodeEmitter>
283 void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
284 // Output the constant in little endian byte order...
285 for (unsigned i = 0; i != Size; ++i) {
286 MCE.emitByte(Val & 255);
287 Val >>= 8;
291 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
292 /// sign-extended field.
293 static bool isDisp8(int Value) {
294 return Value == (signed char)Value;
297 static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
298 const TargetMachine &TM) {
299 // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
300 // mechanism as 32-bit mode.
301 if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
302 !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
303 return false;
305 // Return true if this is a reference to a stub containing the address of the
306 // global, not the global itself.
307 return isGlobalStubReference(GVOp.getTargetFlags());
310 template<class CodeEmitter>
311 void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
312 int DispVal, intptr_t PCAdj) {
313 // If this is a simple integer displacement that doesn't require a relocation,
314 // emit it now.
315 if (!RelocOp) {
316 emitConstant(DispVal, 4);
317 return;
320 // Otherwise, this is something that requires a relocation. Emit it as such
321 // now.
322 if (RelocOp->isGlobal()) {
323 // In 64-bit static small code model, we could potentially emit absolute.
324 // But it's probably not beneficial.
325 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
326 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
327 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
328 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
329 bool NeedStub = isa<Function>(RelocOp->getGlobal());
330 bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
331 emitGlobalAddress(RelocOp->getGlobal(), rt, RelocOp->getOffset(),
332 PCAdj, NeedStub, Indirect);
333 } else if (RelocOp->isCPI()) {
334 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_picrel_word;
335 emitConstPoolAddress(RelocOp->getIndex(), rt,
336 RelocOp->getOffset(), PCAdj);
337 } else if (RelocOp->isJTI()) {
338 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_picrel_word;
339 emitJumpTableAddress(RelocOp->getIndex(), rt, PCAdj);
340 } else {
341 llvm_unreachable("Unknown value to relocate!");
345 template<class CodeEmitter>
346 void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
347 unsigned Op, unsigned RegOpcodeField,
348 intptr_t PCAdj) {
349 const MachineOperand &Op3 = MI.getOperand(Op+3);
350 int DispVal = 0;
351 const MachineOperand *DispForReloc = 0;
353 // Figure out what sort of displacement we have to handle here.
354 if (Op3.isGlobal()) {
355 DispForReloc = &Op3;
356 } else if (Op3.isCPI()) {
357 if (Is64BitMode || IsPIC) {
358 DispForReloc = &Op3;
359 } else {
360 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
361 DispVal += Op3.getOffset();
363 } else if (Op3.isJTI()) {
364 if (Is64BitMode || IsPIC) {
365 DispForReloc = &Op3;
366 } else {
367 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
369 } else {
370 DispVal = Op3.getImm();
373 const MachineOperand &Base = MI.getOperand(Op);
374 const MachineOperand &Scale = MI.getOperand(Op+1);
375 const MachineOperand &IndexReg = MI.getOperand(Op+2);
377 unsigned BaseReg = Base.getReg();
379 // Is a SIB byte needed?
380 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
381 IndexReg.getReg() == 0 &&
382 (BaseReg == 0 || BaseReg == X86::RIP ||
383 getX86RegNum(BaseReg) != N86::ESP)) {
384 if (BaseReg == 0 ||
385 BaseReg == X86::RIP) { // Just a displacement?
386 // Emit special case [disp32] encoding
387 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
389 emitDisplacementField(DispForReloc, DispVal, PCAdj);
390 } else {
391 unsigned BaseRegNo = getX86RegNum(BaseReg);
392 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
393 // Emit simple indirect register encoding... [EAX] f.e.
394 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
395 } else if (!DispForReloc && isDisp8(DispVal)) {
396 // Emit the disp8 encoding... [REG+disp8]
397 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
398 emitConstant(DispVal, 1);
399 } else {
400 // Emit the most general non-SIB encoding: [REG+disp32]
401 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
402 emitDisplacementField(DispForReloc, DispVal, PCAdj);
406 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
407 assert(IndexReg.getReg() != X86::ESP &&
408 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
410 bool ForceDisp32 = false;
411 bool ForceDisp8 = false;
412 if (BaseReg == 0) {
413 // If there is no base register, we emit the special case SIB byte with
414 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
415 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
416 ForceDisp32 = true;
417 } else if (DispForReloc) {
418 // Emit the normal disp32 encoding.
419 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
420 ForceDisp32 = true;
421 } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) {
422 // Emit no displacement ModR/M byte
423 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
424 } else if (isDisp8(DispVal)) {
425 // Emit the disp8 encoding...
426 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
427 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
428 } else {
429 // Emit the normal disp32 encoding...
430 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
433 // Calculate what the SS field value should be...
434 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
435 unsigned SS = SSTable[Scale.getImm()];
437 if (BaseReg == 0) {
438 // Handle the SIB byte for the case where there is no base. The
439 // displacement has already been output.
440 unsigned IndexRegNo;
441 if (IndexReg.getReg())
442 IndexRegNo = getX86RegNum(IndexReg.getReg());
443 else
444 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
445 emitSIBByte(SS, IndexRegNo, 5);
446 } else {
447 unsigned BaseRegNo = getX86RegNum(BaseReg);
448 unsigned IndexRegNo;
449 if (IndexReg.getReg())
450 IndexRegNo = getX86RegNum(IndexReg.getReg());
451 else
452 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
453 emitSIBByte(SS, IndexRegNo, BaseRegNo);
456 // Do we need to output a displacement?
457 if (ForceDisp8) {
458 emitConstant(DispVal, 1);
459 } else if (DispVal != 0 || ForceDisp32) {
460 emitDisplacementField(DispForReloc, DispVal, PCAdj);
465 template<class CodeEmitter>
466 void Emitter<CodeEmitter>::emitInstruction(
467 const MachineInstr &MI,
468 const TargetInstrDesc *Desc) {
469 DEBUG(errs() << MI);
471 MCE.processDebugLoc(MI.getDebugLoc());
473 unsigned Opcode = Desc->Opcode;
475 // Emit the lock opcode prefix as needed.
476 if (Desc->TSFlags & X86II::LOCK) MCE.emitByte(0xF0);
478 // Emit segment override opcode prefix as needed.
479 switch (Desc->TSFlags & X86II::SegOvrMask) {
480 case X86II::FS:
481 MCE.emitByte(0x64);
482 break;
483 case X86II::GS:
484 MCE.emitByte(0x65);
485 break;
486 default: llvm_unreachable("Invalid segment!");
487 case 0: break; // No segment override!
490 // Emit the repeat opcode prefix as needed.
491 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
493 // Emit the operand size opcode prefix as needed.
494 if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66);
496 // Emit the address size opcode prefix as needed.
497 if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67);
499 bool Need0FPrefix = false;
500 switch (Desc->TSFlags & X86II::Op0Mask) {
501 case X86II::TB: // Two-byte opcode prefix
502 case X86II::T8: // 0F 38
503 case X86II::TA: // 0F 3A
504 Need0FPrefix = true;
505 break;
506 case X86II::REP: break; // already handled.
507 case X86II::XS: // F3 0F
508 MCE.emitByte(0xF3);
509 Need0FPrefix = true;
510 break;
511 case X86II::XD: // F2 0F
512 MCE.emitByte(0xF2);
513 Need0FPrefix = true;
514 break;
515 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
516 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
517 MCE.emitByte(0xD8+
518 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
519 >> X86II::Op0Shift));
520 break; // Two-byte opcode prefix
521 default: llvm_unreachable("Invalid prefix!");
522 case 0: break; // No prefix!
525 if (Is64BitMode) {
526 // REX prefix
527 unsigned REX = X86InstrInfo::determineREX(MI);
528 if (REX)
529 MCE.emitByte(0x40 | REX);
532 // 0x0F escape code must be emitted just before the opcode.
533 if (Need0FPrefix)
534 MCE.emitByte(0x0F);
536 switch (Desc->TSFlags & X86II::Op0Mask) {
537 case X86II::T8: // 0F 38
538 MCE.emitByte(0x38);
539 break;
540 case X86II::TA: // 0F 3A
541 MCE.emitByte(0x3A);
542 break;
545 // If this is a two-address instruction, skip one of the register operands.
546 unsigned NumOps = Desc->getNumOperands();
547 unsigned CurOp = 0;
548 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
549 ++CurOp;
550 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
551 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
552 --NumOps;
554 unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc);
555 switch (Desc->TSFlags & X86II::FormMask) {
556 default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
557 case X86II::Pseudo:
558 // Remember the current PC offset, this is the PIC relocation
559 // base address.
560 switch (Opcode) {
561 default:
562 llvm_unreachable("psuedo instructions should be removed before code emission");
563 break;
564 case TargetInstrInfo::INLINEASM: {
565 // We allow inline assembler nodes with empty bodies - they can
566 // implicitly define registers, which is ok for JIT.
567 if (MI.getOperand(0).getSymbolName()[0]) {
568 llvm_report_error("JIT does not support inline asm!");
570 break;
572 case TargetInstrInfo::DBG_LABEL:
573 case TargetInstrInfo::EH_LABEL:
574 MCE.emitLabel(MI.getOperand(0).getImm());
575 break;
576 case TargetInstrInfo::IMPLICIT_DEF:
577 case TargetInstrInfo::DECLARE:
578 case X86::DWARF_LOC:
579 case X86::FP_REG_KILL:
580 break;
581 case X86::MOVPC32r: {
582 // This emits the "call" portion of this pseudo instruction.
583 MCE.emitByte(BaseOpcode);
584 emitConstant(0, X86InstrInfo::sizeOfImm(Desc));
585 // Remember PIC base.
586 PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
587 X86JITInfo *JTI = TM.getJITInfo();
588 JTI->setPICBase(MCE.getCurrentPCValue());
589 break;
592 CurOp = NumOps;
593 break;
594 case X86II::RawFrm:
595 MCE.emitByte(BaseOpcode);
597 if (CurOp != NumOps) {
598 const MachineOperand &MO = MI.getOperand(CurOp++);
600 DEBUG(errs() << "RawFrm CurOp " << CurOp << "\n");
601 DEBUG(errs() << "isMBB " << MO.isMBB() << "\n");
602 DEBUG(errs() << "isGlobal " << MO.isGlobal() << "\n");
603 DEBUG(errs() << "isSymbol " << MO.isSymbol() << "\n");
604 DEBUG(errs() << "isImm " << MO.isImm() << "\n");
606 if (MO.isMBB()) {
607 emitPCRelativeBlockAddress(MO.getMBB());
608 } else if (MO.isGlobal()) {
609 // Assume undefined functions may be outside the Small codespace.
610 bool NeedStub =
611 (Is64BitMode &&
612 (TM.getCodeModel() == CodeModel::Large ||
613 TM.getSubtarget<X86Subtarget>().isTargetDarwin())) ||
614 Opcode == X86::TAILJMPd;
615 emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
616 MO.getOffset(), 0, NeedStub);
617 } else if (MO.isSymbol()) {
618 emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
619 } else if (MO.isImm()) {
620 if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
621 // Fix up immediate operand for pc relative calls.
622 intptr_t Imm = (intptr_t)MO.getImm();
623 Imm = Imm - MCE.getCurrentPCValue() - 4;
624 emitConstant(Imm, X86InstrInfo::sizeOfImm(Desc));
625 } else
626 emitConstant(MO.getImm(), X86InstrInfo::sizeOfImm(Desc));
627 } else {
628 llvm_unreachable("Unknown RawFrm operand!");
631 break;
633 case X86II::AddRegFrm:
634 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
636 if (CurOp != NumOps) {
637 const MachineOperand &MO1 = MI.getOperand(CurOp++);
638 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
639 if (MO1.isImm())
640 emitConstant(MO1.getImm(), Size);
641 else {
642 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
643 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
644 if (Opcode == X86::MOV64ri64i32)
645 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
646 // This should not occur on Darwin for relocatable objects.
647 if (Opcode == X86::MOV64ri)
648 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
649 if (MO1.isGlobal()) {
650 bool NeedStub = isa<Function>(MO1.getGlobal());
651 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
652 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
653 NeedStub, Indirect);
654 } else if (MO1.isSymbol())
655 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
656 else if (MO1.isCPI())
657 emitConstPoolAddress(MO1.getIndex(), rt);
658 else if (MO1.isJTI())
659 emitJumpTableAddress(MO1.getIndex(), rt);
662 break;
664 case X86II::MRMDestReg: {
665 MCE.emitByte(BaseOpcode);
666 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
667 getX86RegNum(MI.getOperand(CurOp+1).getReg()));
668 CurOp += 2;
669 if (CurOp != NumOps)
670 emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
671 break;
673 case X86II::MRMDestMem: {
674 MCE.emitByte(BaseOpcode);
675 emitMemModRMByte(MI, CurOp,
676 getX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)
677 .getReg()));
678 CurOp += X86AddrNumOperands + 1;
679 if (CurOp != NumOps)
680 emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
681 break;
684 case X86II::MRMSrcReg:
685 MCE.emitByte(BaseOpcode);
686 emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
687 getX86RegNum(MI.getOperand(CurOp).getReg()));
688 CurOp += 2;
689 if (CurOp != NumOps)
690 emitConstant(MI.getOperand(CurOp++).getImm(),
691 X86InstrInfo::sizeOfImm(Desc));
692 break;
694 case X86II::MRMSrcMem: {
695 // FIXME: Maybe lea should have its own form?
696 int AddrOperands;
697 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
698 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
699 AddrOperands = X86AddrNumOperands - 1; // No segment register
700 else
701 AddrOperands = X86AddrNumOperands;
703 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
704 X86InstrInfo::sizeOfImm(Desc) : 0;
706 MCE.emitByte(BaseOpcode);
707 emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
708 PCAdj);
709 CurOp += AddrOperands + 1;
710 if (CurOp != NumOps)
711 emitConstant(MI.getOperand(CurOp++).getImm(),
712 X86InstrInfo::sizeOfImm(Desc));
713 break;
716 case X86II::MRM0r: case X86II::MRM1r:
717 case X86II::MRM2r: case X86II::MRM3r:
718 case X86II::MRM4r: case X86II::MRM5r:
719 case X86II::MRM6r: case X86II::MRM7r: {
720 MCE.emitByte(BaseOpcode);
722 // Special handling of lfence, mfence, monitor, and mwait.
723 if (Desc->getOpcode() == X86::LFENCE ||
724 Desc->getOpcode() == X86::MFENCE ||
725 Desc->getOpcode() == X86::MONITOR ||
726 Desc->getOpcode() == X86::MWAIT) {
727 emitRegModRMByte((Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
729 switch (Desc->getOpcode()) {
730 default: break;
731 case X86::MONITOR:
732 MCE.emitByte(0xC8);
733 break;
734 case X86::MWAIT:
735 MCE.emitByte(0xC9);
736 break;
738 } else {
739 emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
740 (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
743 if (CurOp != NumOps) {
744 const MachineOperand &MO1 = MI.getOperand(CurOp++);
745 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
746 if (MO1.isImm())
747 emitConstant(MO1.getImm(), Size);
748 else {
749 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
750 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
751 if (Opcode == X86::MOV64ri32)
752 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
753 if (MO1.isGlobal()) {
754 bool NeedStub = isa<Function>(MO1.getGlobal());
755 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
756 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
757 NeedStub, Indirect);
758 } else if (MO1.isSymbol())
759 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
760 else if (MO1.isCPI())
761 emitConstPoolAddress(MO1.getIndex(), rt);
762 else if (MO1.isJTI())
763 emitJumpTableAddress(MO1.getIndex(), rt);
766 break;
769 case X86II::MRM0m: case X86II::MRM1m:
770 case X86II::MRM2m: case X86II::MRM3m:
771 case X86II::MRM4m: case X86II::MRM5m:
772 case X86II::MRM6m: case X86II::MRM7m: {
773 intptr_t PCAdj = (CurOp + X86AddrNumOperands != NumOps) ?
774 (MI.getOperand(CurOp+X86AddrNumOperands).isImm() ?
775 X86InstrInfo::sizeOfImm(Desc) : 4) : 0;
777 MCE.emitByte(BaseOpcode);
778 emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
779 PCAdj);
780 CurOp += X86AddrNumOperands;
782 if (CurOp != NumOps) {
783 const MachineOperand &MO = MI.getOperand(CurOp++);
784 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
785 if (MO.isImm())
786 emitConstant(MO.getImm(), Size);
787 else {
788 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
789 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
790 if (Opcode == X86::MOV64mi32)
791 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
792 if (MO.isGlobal()) {
793 bool NeedStub = isa<Function>(MO.getGlobal());
794 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
795 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
796 NeedStub, Indirect);
797 } else if (MO.isSymbol())
798 emitExternalSymbolAddress(MO.getSymbolName(), rt);
799 else if (MO.isCPI())
800 emitConstPoolAddress(MO.getIndex(), rt);
801 else if (MO.isJTI())
802 emitJumpTableAddress(MO.getIndex(), rt);
805 break;
808 case X86II::MRMInitReg:
809 MCE.emitByte(BaseOpcode);
810 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
811 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
812 getX86RegNum(MI.getOperand(CurOp).getReg()));
813 ++CurOp;
814 break;
817 if (!Desc->isVariadic() && CurOp != NumOps) {
818 #ifndef NDEBUG
819 errs() << "Cannot encode: " << MI << "\n";
820 #endif
821 llvm_unreachable(0);