Fix part 1 of pr4682. PICADD is a 16-bit instruction even in thumb2 mode.
[llvm/avr.git] / lib / Target / X86 / X86FastISel.cpp
blobde519e4feca6d0533b290f4a3862fd798798267b
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86-specific support for the FastISel class. Much
11 // of the target-specific code is generated by tablegen in the file
12 // X86GenFastISel.inc, which is #included here.
14 //===----------------------------------------------------------------------===//
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/CodeGen/FastISel.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/GetElementPtrTypeIterator.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
37 namespace {
39 class X86FastISel : public FastISel {
40 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
41 /// make the right decision when generating code for different targets.
42 const X86Subtarget *Subtarget;
44 /// StackPtr - Register used as the stack pointer.
45 ///
46 unsigned StackPtr;
48 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
49 /// floating point ops.
50 /// When SSE is available, use it for f32 operations.
51 /// When SSE2 is available, use it for f64 operations.
52 bool X86ScalarSSEf64;
53 bool X86ScalarSSEf32;
55 public:
56 explicit X86FastISel(MachineFunction &mf,
57 MachineModuleInfo *mmi,
58 DwarfWriter *dw,
59 DenseMap<const Value *, unsigned> &vm,
60 DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
61 DenseMap<const AllocaInst *, int> &am
62 #ifndef NDEBUG
63 , SmallSet<Instruction*, 8> &cil
64 #endif
66 : FastISel(mf, mmi, dw, vm, bm, am
67 #ifndef NDEBUG
68 , cil
69 #endif
70 ) {
71 Subtarget = &TM.getSubtarget<X86Subtarget>();
72 StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
73 X86ScalarSSEf64 = Subtarget->hasSSE2();
74 X86ScalarSSEf32 = Subtarget->hasSSE1();
77 virtual bool TargetSelectInstruction(Instruction *I);
79 #include "X86GenFastISel.inc"
81 private:
82 bool X86FastEmitCompare(Value *LHS, Value *RHS, MVT VT);
84 bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR);
86 bool X86FastEmitStore(MVT VT, Value *Val,
87 const X86AddressMode &AM);
88 bool X86FastEmitStore(MVT VT, unsigned Val,
89 const X86AddressMode &AM);
91 bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
92 unsigned &ResultReg);
94 bool X86SelectAddress(Value *V, X86AddressMode &AM);
95 bool X86SelectCallAddress(Value *V, X86AddressMode &AM);
97 bool X86SelectLoad(Instruction *I);
99 bool X86SelectStore(Instruction *I);
101 bool X86SelectCmp(Instruction *I);
103 bool X86SelectZExt(Instruction *I);
105 bool X86SelectBranch(Instruction *I);
107 bool X86SelectShift(Instruction *I);
109 bool X86SelectSelect(Instruction *I);
111 bool X86SelectTrunc(Instruction *I);
113 bool X86SelectFPExt(Instruction *I);
114 bool X86SelectFPTrunc(Instruction *I);
116 bool X86SelectExtractValue(Instruction *I);
118 bool X86VisitIntrinsicCall(IntrinsicInst &I);
119 bool X86SelectCall(Instruction *I);
121 CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
123 const X86InstrInfo *getInstrInfo() const {
124 return getTargetMachine()->getInstrInfo();
126 const X86TargetMachine *getTargetMachine() const {
127 return static_cast<const X86TargetMachine *>(&TM);
130 unsigned TargetMaterializeConstant(Constant *C);
132 unsigned TargetMaterializeAlloca(AllocaInst *C);
134 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
135 /// computed in an SSE register, not on the X87 floating point stack.
136 bool isScalarFPTypeInSSEReg(MVT VT) const {
137 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
138 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
141 bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
144 } // end anonymous namespace.
146 bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
147 VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
148 if (VT == MVT::Other || !VT.isSimple())
149 // Unhandled type. Halt "fast" selection and bail.
150 return false;
152 // For now, require SSE/SSE2 for performing floating-point operations,
153 // since x87 requires additional work.
154 if (VT == MVT::f64 && !X86ScalarSSEf64)
155 return false;
156 if (VT == MVT::f32 && !X86ScalarSSEf32)
157 return false;
158 // Similarly, no f80 support yet.
159 if (VT == MVT::f80)
160 return false;
161 // We only handle legal types. For example, on x86-32 the instruction
162 // selector contains all of the 64-bit instructions from x86-64,
163 // under the assumption that i64 won't be used if the target doesn't
164 // support it.
165 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
168 #include "X86GenCallingConv.inc"
170 /// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
171 /// convention.
172 CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
173 if (Subtarget->is64Bit()) {
174 if (Subtarget->isTargetWin64())
175 return CC_X86_Win64_C;
176 else
177 return CC_X86_64_C;
180 if (CC == CallingConv::X86_FastCall)
181 return CC_X86_32_FastCall;
182 else if (CC == CallingConv::Fast)
183 return CC_X86_32_FastCC;
184 else
185 return CC_X86_32_C;
188 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
189 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
190 /// Return true and the result register by reference if it is possible.
191 bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
192 unsigned &ResultReg) {
193 // Get opcode and regclass of the output for the given load instruction.
194 unsigned Opc = 0;
195 const TargetRegisterClass *RC = NULL;
196 switch (VT.getSimpleVT()) {
197 default: return false;
198 case MVT::i8:
199 Opc = X86::MOV8rm;
200 RC = X86::GR8RegisterClass;
201 break;
202 case MVT::i16:
203 Opc = X86::MOV16rm;
204 RC = X86::GR16RegisterClass;
205 break;
206 case MVT::i32:
207 Opc = X86::MOV32rm;
208 RC = X86::GR32RegisterClass;
209 break;
210 case MVT::i64:
211 // Must be in x86-64 mode.
212 Opc = X86::MOV64rm;
213 RC = X86::GR64RegisterClass;
214 break;
215 case MVT::f32:
216 if (Subtarget->hasSSE1()) {
217 Opc = X86::MOVSSrm;
218 RC = X86::FR32RegisterClass;
219 } else {
220 Opc = X86::LD_Fp32m;
221 RC = X86::RFP32RegisterClass;
223 break;
224 case MVT::f64:
225 if (Subtarget->hasSSE2()) {
226 Opc = X86::MOVSDrm;
227 RC = X86::FR64RegisterClass;
228 } else {
229 Opc = X86::LD_Fp64m;
230 RC = X86::RFP64RegisterClass;
232 break;
233 case MVT::f80:
234 // No f80 support yet.
235 return false;
238 ResultReg = createResultReg(RC);
239 addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
240 return true;
243 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
244 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
245 /// and a displacement offset, or a GlobalAddress,
246 /// i.e. V. Return true if it is possible.
247 bool
248 X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
249 const X86AddressMode &AM) {
250 // Get opcode and regclass of the output for the given store instruction.
251 unsigned Opc = 0;
252 switch (VT.getSimpleVT()) {
253 case MVT::f80: // No f80 support yet.
254 default: return false;
255 case MVT::i8: Opc = X86::MOV8mr; break;
256 case MVT::i16: Opc = X86::MOV16mr; break;
257 case MVT::i32: Opc = X86::MOV32mr; break;
258 case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
259 case MVT::f32:
260 Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
261 break;
262 case MVT::f64:
263 Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
264 break;
267 addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val);
268 return true;
271 bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
272 const X86AddressMode &AM) {
273 // Handle 'null' like i32/i64 0.
274 if (isa<ConstantPointerNull>(Val))
275 Val = Constant::getNullValue(TD.getIntPtrType());
277 // If this is a store of a simple constant, fold the constant into the store.
278 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
279 unsigned Opc = 0;
280 switch (VT.getSimpleVT()) {
281 default: break;
282 case MVT::i8: Opc = X86::MOV8mi; break;
283 case MVT::i16: Opc = X86::MOV16mi; break;
284 case MVT::i32: Opc = X86::MOV32mi; break;
285 case MVT::i64:
286 // Must be a 32-bit sign extended value.
287 if ((int)CI->getSExtValue() == CI->getSExtValue())
288 Opc = X86::MOV64mi32;
289 break;
292 if (Opc) {
293 addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
294 .addImm(CI->getSExtValue());
295 return true;
299 unsigned ValReg = getRegForValue(Val);
300 if (ValReg == 0)
301 return false;
303 return X86FastEmitStore(VT, ValReg, AM);
306 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
307 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
308 /// ISD::SIGN_EXTEND).
309 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
310 unsigned Src, MVT SrcVT,
311 unsigned &ResultReg) {
312 unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
314 if (RR != 0) {
315 ResultReg = RR;
316 return true;
317 } else
318 return false;
321 /// X86SelectAddress - Attempt to fill in an address from the given value.
323 bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM) {
324 User *U = NULL;
325 unsigned Opcode = Instruction::UserOp1;
326 if (Instruction *I = dyn_cast<Instruction>(V)) {
327 Opcode = I->getOpcode();
328 U = I;
329 } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
330 Opcode = C->getOpcode();
331 U = C;
334 switch (Opcode) {
335 default: break;
336 case Instruction::BitCast:
337 // Look past bitcasts.
338 return X86SelectAddress(U->getOperand(0), AM);
340 case Instruction::IntToPtr:
341 // Look past no-op inttoptrs.
342 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
343 return X86SelectAddress(U->getOperand(0), AM);
344 break;
346 case Instruction::PtrToInt:
347 // Look past no-op ptrtoints.
348 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
349 return X86SelectAddress(U->getOperand(0), AM);
350 break;
352 case Instruction::Alloca: {
353 // Do static allocas.
354 const AllocaInst *A = cast<AllocaInst>(V);
355 DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
356 if (SI != StaticAllocaMap.end()) {
357 AM.BaseType = X86AddressMode::FrameIndexBase;
358 AM.Base.FrameIndex = SI->second;
359 return true;
361 break;
364 case Instruction::Add: {
365 // Adds of constants are common and easy enough.
366 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
367 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
368 // They have to fit in the 32-bit signed displacement field though.
369 if (isInt32(Disp)) {
370 AM.Disp = (uint32_t)Disp;
371 return X86SelectAddress(U->getOperand(0), AM);
374 break;
377 case Instruction::GetElementPtr: {
378 // Pattern-match simple GEPs.
379 uint64_t Disp = (int32_t)AM.Disp;
380 unsigned IndexReg = AM.IndexReg;
381 unsigned Scale = AM.Scale;
382 gep_type_iterator GTI = gep_type_begin(U);
383 // Iterate through the indices, folding what we can. Constants can be
384 // folded, and one dynamic index can be handled, if the scale is supported.
385 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
386 i != e; ++i, ++GTI) {
387 Value *Op = *i;
388 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
389 const StructLayout *SL = TD.getStructLayout(STy);
390 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
391 Disp += SL->getElementOffset(Idx);
392 } else {
393 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
394 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
395 // Constant-offset addressing.
396 Disp += CI->getSExtValue() * S;
397 } else if (IndexReg == 0 &&
398 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
399 (S == 1 || S == 2 || S == 4 || S == 8)) {
400 // Scaled-index addressing.
401 Scale = S;
402 IndexReg = getRegForGEPIndex(Op);
403 if (IndexReg == 0)
404 return false;
405 } else
406 // Unsupported.
407 goto unsupported_gep;
410 // Check for displacement overflow.
411 if (!isInt32(Disp))
412 break;
413 // Ok, the GEP indices were covered by constant-offset and scaled-index
414 // addressing. Update the address state and move on to examining the base.
415 AM.IndexReg = IndexReg;
416 AM.Scale = Scale;
417 AM.Disp = (uint32_t)Disp;
418 return X86SelectAddress(U->getOperand(0), AM);
419 unsupported_gep:
420 // Ok, the GEP indices weren't all covered.
421 break;
425 // Handle constant address.
426 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
427 // Can't handle alternate code models yet.
428 if (TM.getCodeModel() != CodeModel::Small)
429 return false;
431 // RIP-relative addresses can't have additional register operands.
432 if (Subtarget->isPICStyleRIPRel() &&
433 (AM.Base.Reg != 0 || AM.IndexReg != 0))
434 return false;
436 // Can't handle TLS yet.
437 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
438 if (GVar->isThreadLocal())
439 return false;
441 // Okay, we've committed to selecting this global. Set up the basic address.
442 AM.GV = GV;
444 // Allow the subtarget to classify the global.
445 unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
447 // If this reference is relative to the pic base, set it now.
448 if (isGlobalRelativeToPICBase(GVFlags)) {
449 // FIXME: How do we know Base.Reg is free??
450 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
453 // Unless the ABI requires an extra load, return a direct reference to
454 // the global.
455 if (!isGlobalStubReference(GVFlags)) {
456 if (Subtarget->isPICStyleRIPRel()) {
457 // Use rip-relative addressing if we can. Above we verified that the
458 // base and index registers are unused.
459 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
460 AM.Base.Reg = X86::RIP;
462 AM.GVOpFlags = GVFlags;
463 return true;
466 // Ok, we need to do a load from a stub. If we've already loaded from this
467 // stub, reuse the loaded pointer, otherwise emit the load now.
468 DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
469 unsigned LoadReg;
470 if (I != LocalValueMap.end() && I->second != 0) {
471 LoadReg = I->second;
472 } else {
473 // Issue load from stub.
474 unsigned Opc = 0;
475 const TargetRegisterClass *RC = NULL;
476 X86AddressMode StubAM;
477 StubAM.Base.Reg = AM.Base.Reg;
478 StubAM.GV = GV;
479 StubAM.GVOpFlags = GVFlags;
481 if (TLI.getPointerTy() == MVT::i64) {
482 Opc = X86::MOV64rm;
483 RC = X86::GR64RegisterClass;
485 if (Subtarget->isPICStyleRIPRel())
486 StubAM.Base.Reg = X86::RIP;
487 } else {
488 Opc = X86::MOV32rm;
489 RC = X86::GR32RegisterClass;
492 LoadReg = createResultReg(RC);
493 addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM);
495 // Prevent loading GV stub multiple times in same MBB.
496 LocalValueMap[V] = LoadReg;
499 // Now construct the final address. Note that the Disp, Scale,
500 // and Index values may already be set here.
501 AM.Base.Reg = LoadReg;
502 AM.GV = 0;
503 return true;
506 // If all else fails, try to materialize the value in a register.
507 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
508 if (AM.Base.Reg == 0) {
509 AM.Base.Reg = getRegForValue(V);
510 return AM.Base.Reg != 0;
512 if (AM.IndexReg == 0) {
513 assert(AM.Scale == 1 && "Scale with no index!");
514 AM.IndexReg = getRegForValue(V);
515 return AM.IndexReg != 0;
519 return false;
522 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
524 bool X86FastISel::X86SelectCallAddress(Value *V, X86AddressMode &AM) {
525 User *U = NULL;
526 unsigned Opcode = Instruction::UserOp1;
527 if (Instruction *I = dyn_cast<Instruction>(V)) {
528 Opcode = I->getOpcode();
529 U = I;
530 } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
531 Opcode = C->getOpcode();
532 U = C;
535 switch (Opcode) {
536 default: break;
537 case Instruction::BitCast:
538 // Look past bitcasts.
539 return X86SelectCallAddress(U->getOperand(0), AM);
541 case Instruction::IntToPtr:
542 // Look past no-op inttoptrs.
543 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
544 return X86SelectCallAddress(U->getOperand(0), AM);
545 break;
547 case Instruction::PtrToInt:
548 // Look past no-op ptrtoints.
549 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
550 return X86SelectCallAddress(U->getOperand(0), AM);
551 break;
554 // Handle constant address.
555 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
556 // Can't handle alternate code models yet.
557 if (TM.getCodeModel() != CodeModel::Small)
558 return false;
560 // RIP-relative addresses can't have additional register operands.
561 if (Subtarget->isPICStyleRIPRel() &&
562 (AM.Base.Reg != 0 || AM.IndexReg != 0))
563 return false;
565 // Can't handle TLS or DLLImport.
566 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
567 if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
568 return false;
570 // Okay, we've committed to selecting this global. Set up the basic address.
571 AM.GV = GV;
573 // No ABI requires an extra load for anything other than DLLImport, which
574 // we rejected above. Return a direct reference to the global.
575 if (Subtarget->isPICStyleRIPRel()) {
576 // Use rip-relative addressing if we can. Above we verified that the
577 // base and index registers are unused.
578 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
579 AM.Base.Reg = X86::RIP;
580 } else if (Subtarget->isPICStyleStubPIC()) {
581 AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
582 } else if (Subtarget->isPICStyleGOT()) {
583 AM.GVOpFlags = X86II::MO_GOTOFF;
586 return true;
589 // If all else fails, try to materialize the value in a register.
590 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
591 if (AM.Base.Reg == 0) {
592 AM.Base.Reg = getRegForValue(V);
593 return AM.Base.Reg != 0;
595 if (AM.IndexReg == 0) {
596 assert(AM.Scale == 1 && "Scale with no index!");
597 AM.IndexReg = getRegForValue(V);
598 return AM.IndexReg != 0;
602 return false;
606 /// X86SelectStore - Select and emit code to implement store instructions.
607 bool X86FastISel::X86SelectStore(Instruction* I) {
608 MVT VT;
609 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
610 return false;
612 X86AddressMode AM;
613 if (!X86SelectAddress(I->getOperand(1), AM))
614 return false;
616 return X86FastEmitStore(VT, I->getOperand(0), AM);
619 /// X86SelectLoad - Select and emit code to implement load instructions.
621 bool X86FastISel::X86SelectLoad(Instruction *I) {
622 MVT VT;
623 if (!isTypeLegal(I->getType(), VT))
624 return false;
626 X86AddressMode AM;
627 if (!X86SelectAddress(I->getOperand(0), AM))
628 return false;
630 unsigned ResultReg = 0;
631 if (X86FastEmitLoad(VT, AM, ResultReg)) {
632 UpdateValueMap(I, ResultReg);
633 return true;
635 return false;
638 static unsigned X86ChooseCmpOpcode(MVT VT) {
639 switch (VT.getSimpleVT()) {
640 default: return 0;
641 case MVT::i8: return X86::CMP8rr;
642 case MVT::i16: return X86::CMP16rr;
643 case MVT::i32: return X86::CMP32rr;
644 case MVT::i64: return X86::CMP64rr;
645 case MVT::f32: return X86::UCOMISSrr;
646 case MVT::f64: return X86::UCOMISDrr;
650 /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
651 /// of the comparison, return an opcode that works for the compare (e.g.
652 /// CMP32ri) otherwise return 0.
653 static unsigned X86ChooseCmpImmediateOpcode(MVT VT, ConstantInt *RHSC) {
654 switch (VT.getSimpleVT()) {
655 // Otherwise, we can't fold the immediate into this comparison.
656 default: return 0;
657 case MVT::i8: return X86::CMP8ri;
658 case MVT::i16: return X86::CMP16ri;
659 case MVT::i32: return X86::CMP32ri;
660 case MVT::i64:
661 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
662 // field.
663 if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
664 return X86::CMP64ri32;
665 return 0;
669 bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
670 unsigned Op0Reg = getRegForValue(Op0);
671 if (Op0Reg == 0) return false;
673 // Handle 'null' like i32/i64 0.
674 if (isa<ConstantPointerNull>(Op1))
675 Op1 = Constant::getNullValue(TD.getIntPtrType());
677 // We have two options: compare with register or immediate. If the RHS of
678 // the compare is an immediate that we can fold into this compare, use
679 // CMPri, otherwise use CMPrr.
680 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
681 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
682 BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg)
683 .addImm(Op1C->getSExtValue());
684 return true;
688 unsigned CompareOpc = X86ChooseCmpOpcode(VT);
689 if (CompareOpc == 0) return false;
691 unsigned Op1Reg = getRegForValue(Op1);
692 if (Op1Reg == 0) return false;
693 BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
695 return true;
698 bool X86FastISel::X86SelectCmp(Instruction *I) {
699 CmpInst *CI = cast<CmpInst>(I);
701 MVT VT;
702 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
703 return false;
705 unsigned ResultReg = createResultReg(&X86::GR8RegClass);
706 unsigned SetCCOpc;
707 bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0.
708 switch (CI->getPredicate()) {
709 case CmpInst::FCMP_OEQ: {
710 if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
711 return false;
713 unsigned EReg = createResultReg(&X86::GR8RegClass);
714 unsigned NPReg = createResultReg(&X86::GR8RegClass);
715 BuildMI(MBB, DL, TII.get(X86::SETEr), EReg);
716 BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
717 BuildMI(MBB, DL,
718 TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
719 UpdateValueMap(I, ResultReg);
720 return true;
722 case CmpInst::FCMP_UNE: {
723 if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
724 return false;
726 unsigned NEReg = createResultReg(&X86::GR8RegClass);
727 unsigned PReg = createResultReg(&X86::GR8RegClass);
728 BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg);
729 BuildMI(MBB, DL, TII.get(X86::SETPr), PReg);
730 BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
731 UpdateValueMap(I, ResultReg);
732 return true;
734 case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr; break;
735 case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
736 case CmpInst::FCMP_OLT: SwapArgs = true; SetCCOpc = X86::SETAr; break;
737 case CmpInst::FCMP_OLE: SwapArgs = true; SetCCOpc = X86::SETAEr; break;
738 case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
739 case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
740 case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr; break;
741 case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr; break;
742 case CmpInst::FCMP_UGT: SwapArgs = true; SetCCOpc = X86::SETBr; break;
743 case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break;
744 case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break;
745 case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
747 case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break;
748 case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
749 case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break;
750 case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
751 case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break;
752 case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
753 case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr; break;
754 case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
755 case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr; break;
756 case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
757 default:
758 return false;
761 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
762 if (SwapArgs)
763 std::swap(Op0, Op1);
765 // Emit a compare of Op0/Op1.
766 if (!X86FastEmitCompare(Op0, Op1, VT))
767 return false;
769 BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg);
770 UpdateValueMap(I, ResultReg);
771 return true;
774 bool X86FastISel::X86SelectZExt(Instruction *I) {
775 // Handle zero-extension from i1 to i8, which is common.
776 if (I->getType() == Type::Int8Ty &&
777 I->getOperand(0)->getType() == Type::Int1Ty) {
778 unsigned ResultReg = getRegForValue(I->getOperand(0));
779 if (ResultReg == 0) return false;
780 // Set the high bits to zero.
781 ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg);
782 if (ResultReg == 0) return false;
783 UpdateValueMap(I, ResultReg);
784 return true;
787 return false;
791 bool X86FastISel::X86SelectBranch(Instruction *I) {
792 // Unconditional branches are selected by tablegen-generated code.
793 // Handle a conditional branch.
794 BranchInst *BI = cast<BranchInst>(I);
795 MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
796 MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
798 // Fold the common case of a conditional branch with a comparison.
799 if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
800 if (CI->hasOneUse()) {
801 MVT VT = TLI.getValueType(CI->getOperand(0)->getType());
803 // Try to take advantage of fallthrough opportunities.
804 CmpInst::Predicate Predicate = CI->getPredicate();
805 if (MBB->isLayoutSuccessor(TrueMBB)) {
806 std::swap(TrueMBB, FalseMBB);
807 Predicate = CmpInst::getInversePredicate(Predicate);
810 bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0.
811 unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
813 switch (Predicate) {
814 case CmpInst::FCMP_OEQ:
815 std::swap(TrueMBB, FalseMBB);
816 Predicate = CmpInst::FCMP_UNE;
817 // FALL THROUGH
818 case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE; break;
819 case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA; break;
820 case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE; break;
821 case CmpInst::FCMP_OLT: SwapArgs = true; BranchOpc = X86::JA; break;
822 case CmpInst::FCMP_OLE: SwapArgs = true; BranchOpc = X86::JAE; break;
823 case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE; break;
824 case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP; break;
825 case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP; break;
826 case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE; break;
827 case CmpInst::FCMP_UGT: SwapArgs = true; BranchOpc = X86::JB; break;
828 case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE; break;
829 case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB; break;
830 case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
832 case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE; break;
833 case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE; break;
834 case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA; break;
835 case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE; break;
836 case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB; break;
837 case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
838 case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG; break;
839 case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE; break;
840 case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL; break;
841 case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE; break;
842 default:
843 return false;
846 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
847 if (SwapArgs)
848 std::swap(Op0, Op1);
850 // Emit a compare of the LHS and RHS, setting the flags.
851 if (!X86FastEmitCompare(Op0, Op1, VT))
852 return false;
854 BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB);
856 if (Predicate == CmpInst::FCMP_UNE) {
857 // X86 requires a second branch to handle UNE (and OEQ,
858 // which is mapped to UNE above).
859 BuildMI(MBB, DL, TII.get(X86::JP)).addMBB(TrueMBB);
862 FastEmitBranch(FalseMBB);
863 MBB->addSuccessor(TrueMBB);
864 return true;
866 } else if (ExtractValueInst *EI =
867 dyn_cast<ExtractValueInst>(BI->getCondition())) {
868 // Check to see if the branch instruction is from an "arithmetic with
869 // overflow" intrinsic. The main way these intrinsics are used is:
871 // %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
872 // %sum = extractvalue { i32, i1 } %t, 0
873 // %obit = extractvalue { i32, i1 } %t, 1
874 // br i1 %obit, label %overflow, label %normal
876 // The %sum and %obit are converted in an ADD and a SETO/SETB before
877 // reaching the branch. Therefore, we search backwards through the MBB
878 // looking for the SETO/SETB instruction. If an instruction modifies the
879 // EFLAGS register before we reach the SETO/SETB instruction, then we can't
880 // convert the branch into a JO/JB instruction.
881 if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
882 if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
883 CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
884 const MachineInstr *SetMI = 0;
885 unsigned Reg = lookUpRegForValue(EI);
887 for (MachineBasicBlock::const_reverse_iterator
888 RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
889 const MachineInstr &MI = *RI;
891 if (MI.modifiesRegister(Reg)) {
892 unsigned Src, Dst, SrcSR, DstSR;
894 if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
895 Reg = Src;
896 continue;
899 SetMI = &MI;
900 break;
903 const TargetInstrDesc &TID = MI.getDesc();
904 if (TID.hasUnmodeledSideEffects() ||
905 TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
906 break;
909 if (SetMI) {
910 unsigned OpCode = SetMI->getOpcode();
912 if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
913 BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ? X86::JO : X86::JB))
914 .addMBB(TrueMBB);
915 FastEmitBranch(FalseMBB);
916 MBB->addSuccessor(TrueMBB);
917 return true;
924 // Otherwise do a clumsy setcc and re-test it.
925 unsigned OpReg = getRegForValue(BI->getCondition());
926 if (OpReg == 0) return false;
928 BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
929 BuildMI(MBB, DL, TII.get(X86::JNE)).addMBB(TrueMBB);
930 FastEmitBranch(FalseMBB);
931 MBB->addSuccessor(TrueMBB);
932 return true;
935 bool X86FastISel::X86SelectShift(Instruction *I) {
936 unsigned CReg = 0, OpReg = 0, OpImm = 0;
937 const TargetRegisterClass *RC = NULL;
938 if (I->getType() == Type::Int8Ty) {
939 CReg = X86::CL;
940 RC = &X86::GR8RegClass;
941 switch (I->getOpcode()) {
942 case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
943 case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
944 case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
945 default: return false;
947 } else if (I->getType() == Type::Int16Ty) {
948 CReg = X86::CX;
949 RC = &X86::GR16RegClass;
950 switch (I->getOpcode()) {
951 case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
952 case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
953 case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
954 default: return false;
956 } else if (I->getType() == Type::Int32Ty) {
957 CReg = X86::ECX;
958 RC = &X86::GR32RegClass;
959 switch (I->getOpcode()) {
960 case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
961 case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
962 case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
963 default: return false;
965 } else if (I->getType() == Type::Int64Ty) {
966 CReg = X86::RCX;
967 RC = &X86::GR64RegClass;
968 switch (I->getOpcode()) {
969 case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
970 case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
971 case Instruction::Shl: OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
972 default: return false;
974 } else {
975 return false;
978 MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
979 if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
980 return false;
982 unsigned Op0Reg = getRegForValue(I->getOperand(0));
983 if (Op0Reg == 0) return false;
985 // Fold immediate in shl(x,3).
986 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
987 unsigned ResultReg = createResultReg(RC);
988 BuildMI(MBB, DL, TII.get(OpImm),
989 ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
990 UpdateValueMap(I, ResultReg);
991 return true;
994 unsigned Op1Reg = getRegForValue(I->getOperand(1));
995 if (Op1Reg == 0) return false;
996 TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
998 // The shift instruction uses X86::CL. If we defined a super-register
999 // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
1000 // we're doing here.
1001 if (CReg != X86::CL)
1002 BuildMI(MBB, DL, TII.get(TargetInstrInfo::EXTRACT_SUBREG), X86::CL)
1003 .addReg(CReg).addImm(X86::SUBREG_8BIT);
1005 unsigned ResultReg = createResultReg(RC);
1006 BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg);
1007 UpdateValueMap(I, ResultReg);
1008 return true;
1011 bool X86FastISel::X86SelectSelect(Instruction *I) {
1012 MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1013 if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1014 return false;
1016 unsigned Opc = 0;
1017 const TargetRegisterClass *RC = NULL;
1018 if (VT.getSimpleVT() == MVT::i16) {
1019 Opc = X86::CMOVE16rr;
1020 RC = &X86::GR16RegClass;
1021 } else if (VT.getSimpleVT() == MVT::i32) {
1022 Opc = X86::CMOVE32rr;
1023 RC = &X86::GR32RegClass;
1024 } else if (VT.getSimpleVT() == MVT::i64) {
1025 Opc = X86::CMOVE64rr;
1026 RC = &X86::GR64RegClass;
1027 } else {
1028 return false;
1031 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1032 if (Op0Reg == 0) return false;
1033 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1034 if (Op1Reg == 0) return false;
1035 unsigned Op2Reg = getRegForValue(I->getOperand(2));
1036 if (Op2Reg == 0) return false;
1038 BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
1039 unsigned ResultReg = createResultReg(RC);
1040 BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
1041 UpdateValueMap(I, ResultReg);
1042 return true;
1045 bool X86FastISel::X86SelectFPExt(Instruction *I) {
1046 // fpext from float to double.
1047 if (Subtarget->hasSSE2() && I->getType() == Type::DoubleTy) {
1048 Value *V = I->getOperand(0);
1049 if (V->getType() == Type::FloatTy) {
1050 unsigned OpReg = getRegForValue(V);
1051 if (OpReg == 0) return false;
1052 unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1053 BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
1054 UpdateValueMap(I, ResultReg);
1055 return true;
1059 return false;
1062 bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
1063 if (Subtarget->hasSSE2()) {
1064 if (I->getType() == Type::FloatTy) {
1065 Value *V = I->getOperand(0);
1066 if (V->getType() == Type::DoubleTy) {
1067 unsigned OpReg = getRegForValue(V);
1068 if (OpReg == 0) return false;
1069 unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1070 BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
1071 UpdateValueMap(I, ResultReg);
1072 return true;
1077 return false;
1080 bool X86FastISel::X86SelectTrunc(Instruction *I) {
1081 if (Subtarget->is64Bit())
1082 // All other cases should be handled by the tblgen generated code.
1083 return false;
1084 MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1085 MVT DstVT = TLI.getValueType(I->getType());
1087 // This code only handles truncation to byte right now.
1088 if (DstVT != MVT::i8 && DstVT != MVT::i1)
1089 // All other cases should be handled by the tblgen generated code.
1090 return false;
1091 if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
1092 // All other cases should be handled by the tblgen generated code.
1093 return false;
1095 unsigned InputReg = getRegForValue(I->getOperand(0));
1096 if (!InputReg)
1097 // Unhandled operand. Halt "fast" selection and bail.
1098 return false;
1100 // First issue a copy to GR16_ABCD or GR32_ABCD.
1101 unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
1102 const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1103 ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1104 unsigned CopyReg = createResultReg(CopyRC);
1105 BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg);
1107 // Then issue an extract_subreg.
1108 unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1109 CopyReg, X86::SUBREG_8BIT);
1110 if (!ResultReg)
1111 return false;
1113 UpdateValueMap(I, ResultReg);
1114 return true;
1117 bool X86FastISel::X86SelectExtractValue(Instruction *I) {
1118 ExtractValueInst *EI = cast<ExtractValueInst>(I);
1119 Value *Agg = EI->getAggregateOperand();
1121 if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1122 switch (CI->getIntrinsicID()) {
1123 default: break;
1124 case Intrinsic::sadd_with_overflow:
1125 case Intrinsic::uadd_with_overflow:
1126 // Cheat a little. We know that the registers for "add" and "seto" are
1127 // allocated sequentially. However, we only keep track of the register
1128 // for "add" in the value map. Use extractvalue's index to get the
1129 // correct register for "seto".
1130 UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
1131 return true;
1135 return false;
1138 bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
1139 // FIXME: Handle more intrinsics.
1140 switch (I.getIntrinsicID()) {
1141 default: return false;
1142 case Intrinsic::sadd_with_overflow:
1143 case Intrinsic::uadd_with_overflow: {
1144 // Replace "add with overflow" intrinsics with an "add" instruction followed
1145 // by a seto/setc instruction. Later on, when the "extractvalue"
1146 // instructions are encountered, we use the fact that two registers were
1147 // created sequentially to get the correct registers for the "sum" and the
1148 // "overflow bit".
1149 const Function *Callee = I.getCalledFunction();
1150 const Type *RetTy =
1151 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1153 MVT VT;
1154 if (!isTypeLegal(RetTy, VT))
1155 return false;
1157 Value *Op1 = I.getOperand(1);
1158 Value *Op2 = I.getOperand(2);
1159 unsigned Reg1 = getRegForValue(Op1);
1160 unsigned Reg2 = getRegForValue(Op2);
1162 if (Reg1 == 0 || Reg2 == 0)
1163 // FIXME: Handle values *not* in registers.
1164 return false;
1166 unsigned OpC = 0;
1167 if (VT == MVT::i32)
1168 OpC = X86::ADD32rr;
1169 else if (VT == MVT::i64)
1170 OpC = X86::ADD64rr;
1171 else
1172 return false;
1174 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1175 BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
1176 unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1178 // If the add with overflow is an intra-block value then we just want to
1179 // create temporaries for it like normal. If it is a cross-block value then
1180 // UpdateValueMap will return the cross-block register used. Since we
1181 // *really* want the value to be live in the register pair known by
1182 // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1183 // the cross block case. In the non-cross-block case, we should just make
1184 // another register for the value.
1185 if (DestReg1 != ResultReg)
1186 ResultReg = DestReg1+1;
1187 else
1188 ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1190 unsigned Opc = X86::SETBr;
1191 if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1192 Opc = X86::SETOr;
1193 BuildMI(MBB, DL, TII.get(Opc), ResultReg);
1194 return true;
1199 bool X86FastISel::X86SelectCall(Instruction *I) {
1200 CallInst *CI = cast<CallInst>(I);
1201 Value *Callee = I->getOperand(0);
1203 // Can't handle inline asm yet.
1204 if (isa<InlineAsm>(Callee))
1205 return false;
1207 // Handle intrinsic calls.
1208 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1209 return X86VisitIntrinsicCall(*II);
1211 // Handle only C and fastcc calling conventions for now.
1212 CallSite CS(CI);
1213 unsigned CC = CS.getCallingConv();
1214 if (CC != CallingConv::C &&
1215 CC != CallingConv::Fast &&
1216 CC != CallingConv::X86_FastCall)
1217 return false;
1219 // On X86, -tailcallopt changes the fastcc ABI. FastISel doesn't
1220 // handle this for now.
1221 if (CC == CallingConv::Fast && PerformTailCallOpt)
1222 return false;
1224 // Let SDISel handle vararg functions.
1225 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1226 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1227 if (FTy->isVarArg())
1228 return false;
1230 // Handle *simple* calls for now.
1231 const Type *RetTy = CS.getType();
1232 MVT RetVT;
1233 if (RetTy == Type::VoidTy)
1234 RetVT = MVT::isVoid;
1235 else if (!isTypeLegal(RetTy, RetVT, true))
1236 return false;
1238 // Materialize callee address in a register. FIXME: GV address can be
1239 // handled with a CALLpcrel32 instead.
1240 X86AddressMode CalleeAM;
1241 if (!X86SelectCallAddress(Callee, CalleeAM))
1242 return false;
1243 unsigned CalleeOp = 0;
1244 GlobalValue *GV = 0;
1245 if (CalleeAM.GV != 0) {
1246 GV = CalleeAM.GV;
1247 } else if (CalleeAM.Base.Reg != 0) {
1248 CalleeOp = CalleeAM.Base.Reg;
1249 } else
1250 return false;
1252 // Allow calls which produce i1 results.
1253 bool AndToI1 = false;
1254 if (RetVT == MVT::i1) {
1255 RetVT = MVT::i8;
1256 AndToI1 = true;
1259 // Deal with call operands first.
1260 SmallVector<Value*, 8> ArgVals;
1261 SmallVector<unsigned, 8> Args;
1262 SmallVector<MVT, 8> ArgVTs;
1263 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1264 Args.reserve(CS.arg_size());
1265 ArgVals.reserve(CS.arg_size());
1266 ArgVTs.reserve(CS.arg_size());
1267 ArgFlags.reserve(CS.arg_size());
1268 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1269 i != e; ++i) {
1270 unsigned Arg = getRegForValue(*i);
1271 if (Arg == 0)
1272 return false;
1273 ISD::ArgFlagsTy Flags;
1274 unsigned AttrInd = i - CS.arg_begin() + 1;
1275 if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1276 Flags.setSExt();
1277 if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1278 Flags.setZExt();
1280 // FIXME: Only handle *easy* calls for now.
1281 if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1282 CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1283 CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1284 CS.paramHasAttr(AttrInd, Attribute::ByVal))
1285 return false;
1287 const Type *ArgTy = (*i)->getType();
1288 MVT ArgVT;
1289 if (!isTypeLegal(ArgTy, ArgVT))
1290 return false;
1291 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1292 Flags.setOrigAlign(OriginalAlignment);
1294 Args.push_back(Arg);
1295 ArgVals.push_back(*i);
1296 ArgVTs.push_back(ArgVT);
1297 ArgFlags.push_back(Flags);
1300 // Analyze operands of the call, assigning locations to each operand.
1301 SmallVector<CCValAssign, 16> ArgLocs;
1302 CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
1303 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1305 // Get a count of how many bytes are to be pushed on the stack.
1306 unsigned NumBytes = CCInfo.getNextStackOffset();
1308 // Issue CALLSEQ_START
1309 unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1310 BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes);
1312 // Process argument: walk the register/memloc assignments, inserting
1313 // copies / loads.
1314 SmallVector<unsigned, 4> RegArgs;
1315 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1316 CCValAssign &VA = ArgLocs[i];
1317 unsigned Arg = Args[VA.getValNo()];
1318 MVT ArgVT = ArgVTs[VA.getValNo()];
1320 // Promote the value if needed.
1321 switch (VA.getLocInfo()) {
1322 default: llvm_unreachable("Unknown loc info!");
1323 case CCValAssign::Full: break;
1324 case CCValAssign::SExt: {
1325 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1326 Arg, ArgVT, Arg);
1327 assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1328 Emitted = true;
1329 ArgVT = VA.getLocVT();
1330 break;
1332 case CCValAssign::ZExt: {
1333 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1334 Arg, ArgVT, Arg);
1335 assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1336 Emitted = true;
1337 ArgVT = VA.getLocVT();
1338 break;
1340 case CCValAssign::AExt: {
1341 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1342 Arg, ArgVT, Arg);
1343 if (!Emitted)
1344 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1345 Arg, ArgVT, Arg);
1346 if (!Emitted)
1347 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1348 Arg, ArgVT, Arg);
1350 assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1351 ArgVT = VA.getLocVT();
1352 break;
1356 if (VA.isRegLoc()) {
1357 TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1358 bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1359 Arg, RC, RC);
1360 assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1361 Emitted = true;
1362 RegArgs.push_back(VA.getLocReg());
1363 } else {
1364 unsigned LocMemOffset = VA.getLocMemOffset();
1365 X86AddressMode AM;
1366 AM.Base.Reg = StackPtr;
1367 AM.Disp = LocMemOffset;
1368 Value *ArgVal = ArgVals[VA.getValNo()];
1370 // If this is a really simple value, emit this with the Value* version of
1371 // X86FastEmitStore. If it isn't simple, we don't want to do this, as it
1372 // can cause us to reevaluate the argument.
1373 if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1374 X86FastEmitStore(ArgVT, ArgVal, AM);
1375 else
1376 X86FastEmitStore(ArgVT, Arg, AM);
1380 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1381 // GOT pointer.
1382 if (Subtarget->isPICStyleGOT()) {
1383 TargetRegisterClass *RC = X86::GR32RegisterClass;
1384 unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
1385 bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
1386 assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1387 Emitted = true;
1390 // Issue the call.
1391 MachineInstrBuilder MIB;
1392 if (CalleeOp) {
1393 // Register-indirect call.
1394 unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
1395 MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp);
1397 } else {
1398 // Direct call.
1399 assert(GV && "Not a direct call");
1400 unsigned CallOpc =
1401 Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
1403 // See if we need any target-specific flags on the GV operand.
1404 unsigned char OpFlags = 0;
1406 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1407 // external symbols most go through the PLT in PIC mode. If the symbol
1408 // has hidden or protected visibility, or if it is static or local, then
1409 // we don't need to use the PLT - we can directly call it.
1410 if (Subtarget->isTargetELF() &&
1411 TM.getRelocationModel() == Reloc::PIC_ &&
1412 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1413 OpFlags = X86II::MO_PLT;
1414 } else if (Subtarget->isPICStyleStubAny() &&
1415 (GV->isDeclaration() || GV->isWeakForLinker()) &&
1416 Subtarget->getDarwinVers() < 9) {
1417 // PC-relative references to external symbols should go through $stub,
1418 // unless we're building with the leopard linker or later, which
1419 // automatically synthesizes these stubs.
1420 OpFlags = X86II::MO_DARWIN_STUB;
1424 MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags);
1427 // Add an implicit use GOT pointer in EBX.
1428 if (Subtarget->isPICStyleGOT())
1429 MIB.addReg(X86::EBX);
1431 // Add implicit physical register uses to the call.
1432 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1433 MIB.addReg(RegArgs[i]);
1435 // Issue CALLSEQ_END
1436 unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1437 BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
1439 // Now handle call return value (if any).
1440 if (RetVT.getSimpleVT() != MVT::isVoid) {
1441 SmallVector<CCValAssign, 16> RVLocs;
1442 CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
1443 CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1445 // Copy all of the result registers out of their specified physreg.
1446 assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1447 MVT CopyVT = RVLocs[0].getValVT();
1448 TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1449 TargetRegisterClass *SrcRC = DstRC;
1451 // If this is a call to a function that returns an fp value on the x87 fp
1452 // stack, but where we prefer to use the value in xmm registers, copy it
1453 // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1454 if ((RVLocs[0].getLocReg() == X86::ST0 ||
1455 RVLocs[0].getLocReg() == X86::ST1) &&
1456 isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1457 CopyVT = MVT::f80;
1458 SrcRC = X86::RSTRegisterClass;
1459 DstRC = X86::RFP80RegisterClass;
1462 unsigned ResultReg = createResultReg(DstRC);
1463 bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1464 RVLocs[0].getLocReg(), DstRC, SrcRC);
1465 assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1466 Emitted = true;
1467 if (CopyVT != RVLocs[0].getValVT()) {
1468 // Round the F80 the right size, which also moves to the appropriate xmm
1469 // register. This is accomplished by storing the F80 value in memory and
1470 // then loading it back. Ewww...
1471 MVT ResVT = RVLocs[0].getValVT();
1472 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1473 unsigned MemSize = ResVT.getSizeInBits()/8;
1474 int FI = MFI.CreateStackObject(MemSize, MemSize);
1475 addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg);
1476 DstRC = ResVT == MVT::f32
1477 ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1478 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1479 ResultReg = createResultReg(DstRC);
1480 addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI);
1483 if (AndToI1) {
1484 // Mask out all but lowest bit for some call which produces an i1.
1485 unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1486 BuildMI(MBB, DL,
1487 TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1488 ResultReg = AndResult;
1491 UpdateValueMap(I, ResultReg);
1494 return true;
1498 bool
1499 X86FastISel::TargetSelectInstruction(Instruction *I) {
1500 switch (I->getOpcode()) {
1501 default: break;
1502 case Instruction::Load:
1503 return X86SelectLoad(I);
1504 case Instruction::Store:
1505 return X86SelectStore(I);
1506 case Instruction::ICmp:
1507 case Instruction::FCmp:
1508 return X86SelectCmp(I);
1509 case Instruction::ZExt:
1510 return X86SelectZExt(I);
1511 case Instruction::Br:
1512 return X86SelectBranch(I);
1513 case Instruction::Call:
1514 return X86SelectCall(I);
1515 case Instruction::LShr:
1516 case Instruction::AShr:
1517 case Instruction::Shl:
1518 return X86SelectShift(I);
1519 case Instruction::Select:
1520 return X86SelectSelect(I);
1521 case Instruction::Trunc:
1522 return X86SelectTrunc(I);
1523 case Instruction::FPExt:
1524 return X86SelectFPExt(I);
1525 case Instruction::FPTrunc:
1526 return X86SelectFPTrunc(I);
1527 case Instruction::ExtractValue:
1528 return X86SelectExtractValue(I);
1529 case Instruction::IntToPtr: // Deliberate fall-through.
1530 case Instruction::PtrToInt: {
1531 MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1532 MVT DstVT = TLI.getValueType(I->getType());
1533 if (DstVT.bitsGT(SrcVT))
1534 return X86SelectZExt(I);
1535 if (DstVT.bitsLT(SrcVT))
1536 return X86SelectTrunc(I);
1537 unsigned Reg = getRegForValue(I->getOperand(0));
1538 if (Reg == 0) return false;
1539 UpdateValueMap(I, Reg);
1540 return true;
1544 return false;
1547 unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
1548 MVT VT;
1549 if (!isTypeLegal(C->getType(), VT))
1550 return false;
1552 // Get opcode and regclass of the output for the given load instruction.
1553 unsigned Opc = 0;
1554 const TargetRegisterClass *RC = NULL;
1555 switch (VT.getSimpleVT()) {
1556 default: return false;
1557 case MVT::i8:
1558 Opc = X86::MOV8rm;
1559 RC = X86::GR8RegisterClass;
1560 break;
1561 case MVT::i16:
1562 Opc = X86::MOV16rm;
1563 RC = X86::GR16RegisterClass;
1564 break;
1565 case MVT::i32:
1566 Opc = X86::MOV32rm;
1567 RC = X86::GR32RegisterClass;
1568 break;
1569 case MVT::i64:
1570 // Must be in x86-64 mode.
1571 Opc = X86::MOV64rm;
1572 RC = X86::GR64RegisterClass;
1573 break;
1574 case MVT::f32:
1575 if (Subtarget->hasSSE1()) {
1576 Opc = X86::MOVSSrm;
1577 RC = X86::FR32RegisterClass;
1578 } else {
1579 Opc = X86::LD_Fp32m;
1580 RC = X86::RFP32RegisterClass;
1582 break;
1583 case MVT::f64:
1584 if (Subtarget->hasSSE2()) {
1585 Opc = X86::MOVSDrm;
1586 RC = X86::FR64RegisterClass;
1587 } else {
1588 Opc = X86::LD_Fp64m;
1589 RC = X86::RFP64RegisterClass;
1591 break;
1592 case MVT::f80:
1593 // No f80 support yet.
1594 return false;
1597 // Materialize addresses with LEA instructions.
1598 if (isa<GlobalValue>(C)) {
1599 X86AddressMode AM;
1600 if (X86SelectAddress(C, AM)) {
1601 if (TLI.getPointerTy() == MVT::i32)
1602 Opc = X86::LEA32r;
1603 else
1604 Opc = X86::LEA64r;
1605 unsigned ResultReg = createResultReg(RC);
1606 addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1607 return ResultReg;
1609 return 0;
1612 // MachineConstantPool wants an explicit alignment.
1613 unsigned Align = TD.getPrefTypeAlignment(C->getType());
1614 if (Align == 0) {
1615 // Alignment of vector types. FIXME!
1616 Align = TD.getTypeAllocSize(C->getType());
1619 // x86-32 PIC requires a PIC base register for constant pools.
1620 unsigned PICBase = 0;
1621 unsigned char OpFlag = 0;
1622 if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
1623 OpFlag = X86II::MO_PIC_BASE_OFFSET;
1624 PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1625 } else if (Subtarget->isPICStyleGOT()) {
1626 OpFlag = X86II::MO_GOTOFF;
1627 PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1628 } else if (Subtarget->isPICStyleRIPRel() &&
1629 TM.getCodeModel() == CodeModel::Small) {
1630 PICBase = X86::RIP;
1633 // Create the load from the constant pool.
1634 unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1635 unsigned ResultReg = createResultReg(RC);
1636 addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg),
1637 MCPOffset, PICBase, OpFlag);
1639 return ResultReg;
1642 unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1643 // Fail on dynamic allocas. At this point, getRegForValue has already
1644 // checked its CSE maps, so if we're here trying to handle a dynamic
1645 // alloca, we're not going to succeed. X86SelectAddress has a
1646 // check for dynamic allocas, because it's called directly from
1647 // various places, but TargetMaterializeAlloca also needs a check
1648 // in order to avoid recursion between getRegForValue,
1649 // X86SelectAddrss, and TargetMaterializeAlloca.
1650 if (!StaticAllocaMap.count(C))
1651 return 0;
1653 X86AddressMode AM;
1654 if (!X86SelectAddress(C, AM))
1655 return 0;
1656 unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1657 TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1658 unsigned ResultReg = createResultReg(RC);
1659 addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1660 return ResultReg;
1663 namespace llvm {
1664 llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1665 MachineModuleInfo *mmi,
1666 DwarfWriter *dw,
1667 DenseMap<const Value *, unsigned> &vm,
1668 DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1669 DenseMap<const AllocaInst *, int> &am
1670 #ifndef NDEBUG
1671 , SmallSet<Instruction*, 8> &cil
1672 #endif
1674 return new X86FastISel(mf, mmi, dw, vm, bm, am
1675 #ifndef NDEBUG
1676 , cil
1677 #endif