Fix part 1 of pr4682. PICADD is a 16-bit instruction even in thumb2 mode.
[llvm/avr.git] / lib / Target / X86 / X86ISelLowering.cpp
blob298a5a837831566bb7f8bdf9571e3bf24cd71b95
1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86ISelLowering.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/GlobalAlias.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/VectorExtras.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Target/TargetLoweringObjectFile.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/ADT/SmallSet.h"
42 #include "llvm/ADT/StringExtras.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/raw_ostream.h"
45 using namespace llvm;
47 static cl::opt<bool>
48 DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
50 // Forward declarations.
51 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
52 SDValue V2);
54 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
55 switch (TM.getSubtarget<X86Subtarget>().TargetType) {
56 default: llvm_unreachable("unknown subtarget type");
57 case X86Subtarget::isDarwin:
58 return new TargetLoweringObjectFileMachO();
59 case X86Subtarget::isELF:
60 return new TargetLoweringObjectFileELF();
61 case X86Subtarget::isMingw:
62 case X86Subtarget::isCygwin:
63 case X86Subtarget::isWindows:
64 return new TargetLoweringObjectFileCOFF();
69 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
70 : TargetLowering(TM, createTLOF(TM)) {
71 Subtarget = &TM.getSubtarget<X86Subtarget>();
72 X86ScalarSSEf64 = Subtarget->hasSSE2();
73 X86ScalarSSEf32 = Subtarget->hasSSE1();
74 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
76 RegInfo = TM.getRegisterInfo();
77 TD = getTargetData();
79 // Set up the TargetLowering object.
81 // X86 is weird, it always uses i8 for shift amounts and setcc results.
82 setShiftAmountType(MVT::i8);
83 setBooleanContents(ZeroOrOneBooleanContent);
84 setSchedulingPreference(SchedulingForRegPressure);
85 setStackPointerRegisterToSaveRestore(X86StackPtr);
87 if (Subtarget->isTargetDarwin()) {
88 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
89 setUseUnderscoreSetJmp(false);
90 setUseUnderscoreLongJmp(false);
91 } else if (Subtarget->isTargetMingw()) {
92 // MS runtime is weird: it exports _setjmp, but longjmp!
93 setUseUnderscoreSetJmp(true);
94 setUseUnderscoreLongJmp(false);
95 } else {
96 setUseUnderscoreSetJmp(true);
97 setUseUnderscoreLongJmp(true);
100 // Set up the register classes.
101 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
102 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
103 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
104 if (Subtarget->is64Bit())
105 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
107 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
109 // We don't accept any truncstore of integer registers.
110 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
111 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
112 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
113 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
114 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
115 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
117 // SETOEQ and SETUNE require checking two conditions.
118 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
119 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
120 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
121 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
122 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
123 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
125 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
126 // operation.
127 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
128 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
129 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
131 if (Subtarget->is64Bit()) {
132 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
133 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
134 } else if (!UseSoftFloat) {
135 if (X86ScalarSSEf64) {
136 // We have an impenetrably clever algorithm for ui64->double only.
137 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
139 // We have an algorithm for SSE2, and we turn this into a 64-bit
140 // FILD for other targets.
141 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
144 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
145 // this operation.
146 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
147 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
149 if (!UseSoftFloat) {
150 // SSE has no i16 to fp conversion, only i32
151 if (X86ScalarSSEf32) {
152 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
153 // f32 and f64 cases are Legal, f80 case is not
154 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
155 } else {
156 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
157 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
159 } else {
160 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
161 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
164 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
165 // are Legal, f80 is custom lowered.
166 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
167 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
169 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
170 // this operation.
171 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
172 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
174 if (X86ScalarSSEf32) {
175 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
176 // f32 and f64 cases are Legal, f80 case is not
177 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
178 } else {
179 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
180 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
183 // Handle FP_TO_UINT by promoting the destination to a larger signed
184 // conversion.
185 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
186 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
187 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
189 if (Subtarget->is64Bit()) {
190 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
191 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
192 } else if (!UseSoftFloat) {
193 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
194 // Expand FP_TO_UINT into a select.
195 // FIXME: We would like to use a Custom expander here eventually to do
196 // the optimal thing for SSE vs. the default expansion in the legalizer.
197 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
198 else
199 // With SSE3 we can use fisttpll to convert to a signed i64; without
200 // SSE, we're stuck with a fistpll.
201 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
204 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
205 if (!X86ScalarSSEf64) {
206 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
207 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
210 // Scalar integer divide and remainder are lowered to use operations that
211 // produce two results, to match the available instructions. This exposes
212 // the two-result form to trivial CSE, which is able to combine x/y and x%y
213 // into a single instruction.
215 // Scalar integer multiply-high is also lowered to use two-result
216 // operations, to match the available instructions. However, plain multiply
217 // (low) operations are left as Legal, as there are single-result
218 // instructions for this in x86. Using the two-result multiply instructions
219 // when both high and low results are needed must be arranged by dagcombine.
220 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
221 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
222 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
223 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
224 setOperationAction(ISD::SREM , MVT::i8 , Expand);
225 setOperationAction(ISD::UREM , MVT::i8 , Expand);
226 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
227 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
228 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
229 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
230 setOperationAction(ISD::SREM , MVT::i16 , Expand);
231 setOperationAction(ISD::UREM , MVT::i16 , Expand);
232 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
233 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
234 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
235 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
236 setOperationAction(ISD::SREM , MVT::i32 , Expand);
237 setOperationAction(ISD::UREM , MVT::i32 , Expand);
238 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
239 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
240 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
241 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
242 setOperationAction(ISD::SREM , MVT::i64 , Expand);
243 setOperationAction(ISD::UREM , MVT::i64 , Expand);
245 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
246 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
247 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
248 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
249 if (Subtarget->is64Bit())
250 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
251 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
252 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
253 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
254 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
255 setOperationAction(ISD::FREM , MVT::f32 , Expand);
256 setOperationAction(ISD::FREM , MVT::f64 , Expand);
257 setOperationAction(ISD::FREM , MVT::f80 , Expand);
258 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
260 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
261 setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
262 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
263 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
264 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
265 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
266 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
267 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
268 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
269 if (Subtarget->is64Bit()) {
270 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
271 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
272 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
275 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
276 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
278 // These should be promoted to a larger select which is supported.
279 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
280 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
281 // X86 wants to expand cmov itself.
282 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
283 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
284 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
285 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
286 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
287 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
288 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
289 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
290 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
291 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
292 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
293 if (Subtarget->is64Bit()) {
294 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
295 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
297 // X86 ret instruction may pop stack.
298 setOperationAction(ISD::RET , MVT::Other, Custom);
299 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
301 // Darwin ABI issue.
302 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
303 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
304 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
305 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
306 if (Subtarget->is64Bit())
307 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
308 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
309 if (Subtarget->is64Bit()) {
310 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
311 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
312 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
313 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
315 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
316 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
317 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
318 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
319 if (Subtarget->is64Bit()) {
320 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
321 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
322 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
325 if (Subtarget->hasSSE1())
326 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
328 if (!Subtarget->hasSSE2())
329 setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand);
331 // Expand certain atomics
332 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
333 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
334 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
335 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
337 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
338 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
339 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
340 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
342 if (!Subtarget->is64Bit()) {
343 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
344 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
345 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
346 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
347 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
348 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
349 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
352 // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
353 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
354 // FIXME - use subtarget debug flags
355 if (!Subtarget->isTargetDarwin() &&
356 !Subtarget->isTargetELF() &&
357 !Subtarget->isTargetCygMing()) {
358 setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
359 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
362 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
363 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
364 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
365 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
366 if (Subtarget->is64Bit()) {
367 setExceptionPointerRegister(X86::RAX);
368 setExceptionSelectorRegister(X86::RDX);
369 } else {
370 setExceptionPointerRegister(X86::EAX);
371 setExceptionSelectorRegister(X86::EDX);
373 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
374 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
376 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
378 setOperationAction(ISD::TRAP, MVT::Other, Legal);
380 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
381 setOperationAction(ISD::VASTART , MVT::Other, Custom);
382 setOperationAction(ISD::VAEND , MVT::Other, Expand);
383 if (Subtarget->is64Bit()) {
384 setOperationAction(ISD::VAARG , MVT::Other, Custom);
385 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
386 } else {
387 setOperationAction(ISD::VAARG , MVT::Other, Expand);
388 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
391 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
392 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
393 if (Subtarget->is64Bit())
394 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
395 if (Subtarget->isTargetCygMing())
396 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
397 else
398 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
400 if (!UseSoftFloat && X86ScalarSSEf64) {
401 // f32 and f64 use SSE.
402 // Set up the FP register classes.
403 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
404 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
406 // Use ANDPD to simulate FABS.
407 setOperationAction(ISD::FABS , MVT::f64, Custom);
408 setOperationAction(ISD::FABS , MVT::f32, Custom);
410 // Use XORP to simulate FNEG.
411 setOperationAction(ISD::FNEG , MVT::f64, Custom);
412 setOperationAction(ISD::FNEG , MVT::f32, Custom);
414 // Use ANDPD and ORPD to simulate FCOPYSIGN.
415 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
416 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
418 // We don't support sin/cos/fmod
419 setOperationAction(ISD::FSIN , MVT::f64, Expand);
420 setOperationAction(ISD::FCOS , MVT::f64, Expand);
421 setOperationAction(ISD::FSIN , MVT::f32, Expand);
422 setOperationAction(ISD::FCOS , MVT::f32, Expand);
424 // Expand FP immediates into loads from the stack, except for the special
425 // cases we handle.
426 addLegalFPImmediate(APFloat(+0.0)); // xorpd
427 addLegalFPImmediate(APFloat(+0.0f)); // xorps
428 } else if (!UseSoftFloat && X86ScalarSSEf32) {
429 // Use SSE for f32, x87 for f64.
430 // Set up the FP register classes.
431 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
432 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
434 // Use ANDPS to simulate FABS.
435 setOperationAction(ISD::FABS , MVT::f32, Custom);
437 // Use XORP to simulate FNEG.
438 setOperationAction(ISD::FNEG , MVT::f32, Custom);
440 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
442 // Use ANDPS and ORPS to simulate FCOPYSIGN.
443 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
444 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
446 // We don't support sin/cos/fmod
447 setOperationAction(ISD::FSIN , MVT::f32, Expand);
448 setOperationAction(ISD::FCOS , MVT::f32, Expand);
450 // Special cases we handle for FP constants.
451 addLegalFPImmediate(APFloat(+0.0f)); // xorps
452 addLegalFPImmediate(APFloat(+0.0)); // FLD0
453 addLegalFPImmediate(APFloat(+1.0)); // FLD1
454 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
455 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
457 if (!UnsafeFPMath) {
458 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
459 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
461 } else if (!UseSoftFloat) {
462 // f32 and f64 in x87.
463 // Set up the FP register classes.
464 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
467 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
468 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
469 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
470 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
472 if (!UnsafeFPMath) {
473 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
474 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
476 addLegalFPImmediate(APFloat(+0.0)); // FLD0
477 addLegalFPImmediate(APFloat(+1.0)); // FLD1
478 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
479 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
480 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
481 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
482 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
483 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
486 // Long double always uses X87.
487 if (!UseSoftFloat) {
488 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
489 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
490 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
492 bool ignored;
493 APFloat TmpFlt(+0.0);
494 TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
495 &ignored);
496 addLegalFPImmediate(TmpFlt); // FLD0
497 TmpFlt.changeSign();
498 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
499 APFloat TmpFlt2(+1.0);
500 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
501 &ignored);
502 addLegalFPImmediate(TmpFlt2); // FLD1
503 TmpFlt2.changeSign();
504 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
507 if (!UnsafeFPMath) {
508 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
509 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
513 // Always use a library call for pow.
514 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
515 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
516 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
518 setOperationAction(ISD::FLOG, MVT::f80, Expand);
519 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
520 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
521 setOperationAction(ISD::FEXP, MVT::f80, Expand);
522 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
524 // First set operation action for all vector types to either promote
525 // (for widening) or expand (for scalarization). Then we will selectively
526 // turn on ones that can be effectively codegen'd.
527 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
528 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
529 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
530 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
531 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
532 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
533 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
534 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
535 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
536 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
537 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
538 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
539 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
540 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
541 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
542 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
543 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
544 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
545 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
546 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
547 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
548 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
549 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
550 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
551 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
552 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
553 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
554 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
555 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
556 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
557 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
558 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
559 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
560 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
561 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
562 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
563 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
564 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
565 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
566 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
567 setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
568 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
569 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
570 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
571 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
572 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
573 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
574 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
575 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
576 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
579 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
580 // with -msoft-float, disable use of MMX as well.
581 if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
582 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
583 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
584 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
585 addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
586 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
588 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
589 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
590 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
591 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
593 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
594 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
595 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
596 setOperationAction(ISD::SUB, MVT::v1i64, Legal);
598 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
599 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
601 setOperationAction(ISD::AND, MVT::v8i8, Promote);
602 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
603 setOperationAction(ISD::AND, MVT::v4i16, Promote);
604 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
605 setOperationAction(ISD::AND, MVT::v2i32, Promote);
606 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
607 setOperationAction(ISD::AND, MVT::v1i64, Legal);
609 setOperationAction(ISD::OR, MVT::v8i8, Promote);
610 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
611 setOperationAction(ISD::OR, MVT::v4i16, Promote);
612 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
613 setOperationAction(ISD::OR, MVT::v2i32, Promote);
614 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
615 setOperationAction(ISD::OR, MVT::v1i64, Legal);
617 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
618 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
619 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
620 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
621 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
622 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
623 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
625 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
626 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
627 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
628 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
629 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
630 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
631 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
632 AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64);
633 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
635 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
636 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
637 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
638 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
639 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
641 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
642 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
643 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
644 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
646 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom);
647 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
648 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
649 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
651 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
653 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
654 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Expand);
655 setOperationAction(ISD::SELECT, MVT::v8i8, Promote);
656 setOperationAction(ISD::SELECT, MVT::v4i16, Promote);
657 setOperationAction(ISD::SELECT, MVT::v2i32, Promote);
658 setOperationAction(ISD::SELECT, MVT::v1i64, Custom);
659 setOperationAction(ISD::VSETCC, MVT::v8i8, Custom);
660 setOperationAction(ISD::VSETCC, MVT::v4i16, Custom);
661 setOperationAction(ISD::VSETCC, MVT::v2i32, Custom);
664 if (!UseSoftFloat && Subtarget->hasSSE1()) {
665 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
667 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
668 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
669 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
670 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
671 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
672 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
673 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
674 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
675 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
676 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
677 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
678 setOperationAction(ISD::VSETCC, MVT::v4f32, Custom);
681 if (!UseSoftFloat && Subtarget->hasSSE2()) {
682 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
684 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
685 // registers cannot be used even for integer operations.
686 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
687 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
688 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
689 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
691 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
692 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
693 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
694 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
695 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
696 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
697 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
698 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
699 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
700 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
701 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
702 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
703 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
704 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
705 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
706 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
708 setOperationAction(ISD::VSETCC, MVT::v2f64, Custom);
709 setOperationAction(ISD::VSETCC, MVT::v16i8, Custom);
710 setOperationAction(ISD::VSETCC, MVT::v8i16, Custom);
711 setOperationAction(ISD::VSETCC, MVT::v4i32, Custom);
713 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
714 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
715 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
716 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
717 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
719 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
720 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
721 MVT VT = (MVT::SimpleValueType)i;
722 // Do not attempt to custom lower non-power-of-2 vectors
723 if (!isPowerOf2_32(VT.getVectorNumElements()))
724 continue;
725 // Do not attempt to custom lower non-128-bit vectors
726 if (!VT.is128BitVector())
727 continue;
728 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
729 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
730 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
733 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
734 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
735 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
736 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
737 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
738 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
740 if (Subtarget->is64Bit()) {
741 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
742 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
745 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
746 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
747 MVT VT = (MVT::SimpleValueType)i;
749 // Do not attempt to promote non-128-bit vectors
750 if (!VT.is128BitVector()) {
751 continue;
753 setOperationAction(ISD::AND, VT, Promote);
754 AddPromotedToType (ISD::AND, VT, MVT::v2i64);
755 setOperationAction(ISD::OR, VT, Promote);
756 AddPromotedToType (ISD::OR, VT, MVT::v2i64);
757 setOperationAction(ISD::XOR, VT, Promote);
758 AddPromotedToType (ISD::XOR, VT, MVT::v2i64);
759 setOperationAction(ISD::LOAD, VT, Promote);
760 AddPromotedToType (ISD::LOAD, VT, MVT::v2i64);
761 setOperationAction(ISD::SELECT, VT, Promote);
762 AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
765 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
767 // Custom lower v2i64 and v2f64 selects.
768 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
769 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
770 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
771 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
773 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
774 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
775 if (!DisableMMX && Subtarget->hasMMX()) {
776 setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom);
777 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
781 if (Subtarget->hasSSE41()) {
782 // FIXME: Do we need to handle scalar-to-vector here?
783 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
785 // i8 and i16 vectors are custom , because the source register and source
786 // source memory operand types are not the same width. f32 vectors are
787 // custom since the immediate controlling the insert encodes additional
788 // information.
789 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
790 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
791 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
792 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
794 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
795 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
796 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
797 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
799 if (Subtarget->is64Bit()) {
800 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
801 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
805 if (Subtarget->hasSSE42()) {
806 setOperationAction(ISD::VSETCC, MVT::v2i64, Custom);
809 if (!UseSoftFloat && Subtarget->hasAVX()) {
810 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
811 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
812 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
813 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
815 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
816 setOperationAction(ISD::LOAD, MVT::v8i32, Legal);
817 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
818 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
819 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
820 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
821 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
822 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
823 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
824 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
825 //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom);
826 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
827 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
828 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
829 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
831 // Operations to consider commented out -v16i16 v32i8
832 //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
833 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
834 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
835 //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
836 //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
837 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
838 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
839 //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
840 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
841 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
842 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
843 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
844 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
845 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
847 setOperationAction(ISD::VSETCC, MVT::v4f64, Custom);
848 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
849 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
850 setOperationAction(ISD::VSETCC, MVT::v8i32, Custom);
852 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
853 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
854 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
855 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i32, Custom);
856 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8f32, Custom);
858 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
859 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i64, Custom);
860 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f64, Custom);
861 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i64, Custom);
862 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f64, Custom);
863 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
865 #if 0
866 // Not sure we want to do this since there are no 256-bit integer
867 // operations in AVX
869 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
870 // This includes 256-bit vectors
871 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
872 MVT VT = (MVT::SimpleValueType)i;
874 // Do not attempt to custom lower non-power-of-2 vectors
875 if (!isPowerOf2_32(VT.getVectorNumElements()))
876 continue;
878 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
879 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
880 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
883 if (Subtarget->is64Bit()) {
884 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom);
885 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
887 #endif
889 #if 0
890 // Not sure we want to do this since there are no 256-bit integer
891 // operations in AVX
893 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
894 // Including 256-bit vectors
895 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
896 MVT VT = (MVT::SimpleValueType)i;
898 if (!VT.is256BitVector()) {
899 continue;
901 setOperationAction(ISD::AND, VT, Promote);
902 AddPromotedToType (ISD::AND, VT, MVT::v4i64);
903 setOperationAction(ISD::OR, VT, Promote);
904 AddPromotedToType (ISD::OR, VT, MVT::v4i64);
905 setOperationAction(ISD::XOR, VT, Promote);
906 AddPromotedToType (ISD::XOR, VT, MVT::v4i64);
907 setOperationAction(ISD::LOAD, VT, Promote);
908 AddPromotedToType (ISD::LOAD, VT, MVT::v4i64);
909 setOperationAction(ISD::SELECT, VT, Promote);
910 AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
913 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
914 #endif
917 // We want to custom lower some of our intrinsics.
918 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
920 // Add/Sub/Mul with overflow operations are custom lowered.
921 setOperationAction(ISD::SADDO, MVT::i32, Custom);
922 setOperationAction(ISD::SADDO, MVT::i64, Custom);
923 setOperationAction(ISD::UADDO, MVT::i32, Custom);
924 setOperationAction(ISD::UADDO, MVT::i64, Custom);
925 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
926 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
927 setOperationAction(ISD::USUBO, MVT::i32, Custom);
928 setOperationAction(ISD::USUBO, MVT::i64, Custom);
929 setOperationAction(ISD::SMULO, MVT::i32, Custom);
930 setOperationAction(ISD::SMULO, MVT::i64, Custom);
932 if (!Subtarget->is64Bit()) {
933 // These libcalls are not available in 32-bit.
934 setLibcallName(RTLIB::SHL_I128, 0);
935 setLibcallName(RTLIB::SRL_I128, 0);
936 setLibcallName(RTLIB::SRA_I128, 0);
939 // We have target-specific dag combine patterns for the following nodes:
940 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
941 setTargetDAGCombine(ISD::BUILD_VECTOR);
942 setTargetDAGCombine(ISD::SELECT);
943 setTargetDAGCombine(ISD::SHL);
944 setTargetDAGCombine(ISD::SRA);
945 setTargetDAGCombine(ISD::SRL);
946 setTargetDAGCombine(ISD::STORE);
947 setTargetDAGCombine(ISD::MEMBARRIER);
948 if (Subtarget->is64Bit())
949 setTargetDAGCombine(ISD::MUL);
951 computeRegisterProperties();
953 // FIXME: These should be based on subtarget info. Plus, the values should
954 // be smaller when we are in optimizing for size mode.
955 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
956 maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
957 maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
958 allowUnalignedMemoryAccesses = true; // x86 supports it!
959 setPrefLoopAlignment(16);
960 benefitFromCodePlacementOpt = true;
964 MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
965 return MVT::i8;
969 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
970 /// the desired ByVal argument alignment.
971 static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
972 if (MaxAlign == 16)
973 return;
974 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
975 if (VTy->getBitWidth() == 128)
976 MaxAlign = 16;
977 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
978 unsigned EltAlign = 0;
979 getMaxByValAlign(ATy->getElementType(), EltAlign);
980 if (EltAlign > MaxAlign)
981 MaxAlign = EltAlign;
982 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
983 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
984 unsigned EltAlign = 0;
985 getMaxByValAlign(STy->getElementType(i), EltAlign);
986 if (EltAlign > MaxAlign)
987 MaxAlign = EltAlign;
988 if (MaxAlign == 16)
989 break;
992 return;
995 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
996 /// function arguments in the caller parameter area. For X86, aggregates
997 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
998 /// are at 4-byte boundaries.
999 unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1000 if (Subtarget->is64Bit()) {
1001 // Max of 8 and alignment of type.
1002 unsigned TyAlign = TD->getABITypeAlignment(Ty);
1003 if (TyAlign > 8)
1004 return TyAlign;
1005 return 8;
1008 unsigned Align = 4;
1009 if (Subtarget->hasSSE1())
1010 getMaxByValAlign(Ty, Align);
1011 return Align;
1014 /// getOptimalMemOpType - Returns the target specific optimal type for load
1015 /// and store operations as a result of memset, memcpy, and memmove
1016 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1017 /// determining it.
1019 X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1020 bool isSrcConst, bool isSrcStr,
1021 SelectionDAG &DAG) const {
1022 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1023 // linux. This is because the stack realignment code can't handle certain
1024 // cases like PR2962. This should be removed when PR2962 is fixed.
1025 const Function *F = DAG.getMachineFunction().getFunction();
1026 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1027 if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1028 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1029 return MVT::v4i32;
1030 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1031 return MVT::v4f32;
1033 if (Subtarget->is64Bit() && Size >= 8)
1034 return MVT::i64;
1035 return MVT::i32;
1038 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1039 /// jumptable.
1040 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1041 SelectionDAG &DAG) const {
1042 if (usesGlobalOffsetTable())
1043 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1044 if (!Subtarget->is64Bit())
1045 // This doesn't have DebugLoc associated with it, but is not really the
1046 // same as a Register.
1047 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1048 getPointerTy());
1049 return Table;
1052 /// getFunctionAlignment - Return the Log2 alignment of this function.
1053 unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1054 return F->hasFnAttr(Attribute::OptimizeForSize) ? 1 : 4;
1057 //===----------------------------------------------------------------------===//
1058 // Return Value Calling Convention Implementation
1059 //===----------------------------------------------------------------------===//
1061 #include "X86GenCallingConv.inc"
1063 /// LowerRET - Lower an ISD::RET node.
1064 SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
1065 DebugLoc dl = Op.getDebugLoc();
1066 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
1068 SmallVector<CCValAssign, 16> RVLocs;
1069 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1070 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1071 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext());
1072 CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
1074 // If this is the first return lowered for this function, add the regs to the
1075 // liveout set for the function.
1076 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1077 for (unsigned i = 0; i != RVLocs.size(); ++i)
1078 if (RVLocs[i].isRegLoc())
1079 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1081 SDValue Chain = Op.getOperand(0);
1083 // Handle tail call return.
1084 Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
1085 if (Chain.getOpcode() == X86ISD::TAILCALL) {
1086 SDValue TailCall = Chain;
1087 SDValue TargetAddress = TailCall.getOperand(1);
1088 SDValue StackAdjustment = TailCall.getOperand(2);
1089 assert(((TargetAddress.getOpcode() == ISD::Register &&
1090 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
1091 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R11)) ||
1092 TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
1093 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
1094 "Expecting an global address, external symbol, or register");
1095 assert(StackAdjustment.getOpcode() == ISD::Constant &&
1096 "Expecting a const value");
1098 SmallVector<SDValue,8> Operands;
1099 Operands.push_back(Chain.getOperand(0));
1100 Operands.push_back(TargetAddress);
1101 Operands.push_back(StackAdjustment);
1102 // Copy registers used by the call. Last operand is a flag so it is not
1103 // copied.
1104 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
1105 Operands.push_back(Chain.getOperand(i));
1107 return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
1108 Operands.size());
1111 // Regular return.
1112 SDValue Flag;
1114 SmallVector<SDValue, 6> RetOps;
1115 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1116 // Operand #1 = Bytes To Pop
1117 RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
1119 // Copy the result values into the output registers.
1120 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1121 CCValAssign &VA = RVLocs[i];
1122 assert(VA.isRegLoc() && "Can only return in registers!");
1123 SDValue ValToCopy = Op.getOperand(i*2+1);
1125 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1126 // the RET instruction and handled by the FP Stackifier.
1127 if (VA.getLocReg() == X86::ST0 ||
1128 VA.getLocReg() == X86::ST1) {
1129 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1130 // change the value to the FP stack register class.
1131 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1132 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1133 RetOps.push_back(ValToCopy);
1134 // Don't emit a copytoreg.
1135 continue;
1138 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1139 // which is returned in RAX / RDX.
1140 if (Subtarget->is64Bit()) {
1141 MVT ValVT = ValToCopy.getValueType();
1142 if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1143 ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1144 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1145 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1149 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1150 Flag = Chain.getValue(1);
1153 // The x86-64 ABI for returning structs by value requires that we copy
1154 // the sret argument into %rax for the return. We saved the argument into
1155 // a virtual register in the entry block, so now we copy the value out
1156 // and into %rax.
1157 if (Subtarget->is64Bit() &&
1158 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1159 MachineFunction &MF = DAG.getMachineFunction();
1160 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1161 unsigned Reg = FuncInfo->getSRetReturnReg();
1162 if (!Reg) {
1163 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1164 FuncInfo->setSRetReturnReg(Reg);
1166 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1168 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1169 Flag = Chain.getValue(1);
1172 RetOps[0] = Chain; // Update chain.
1174 // Add the flag if we have it.
1175 if (Flag.getNode())
1176 RetOps.push_back(Flag);
1178 return DAG.getNode(X86ISD::RET_FLAG, dl,
1179 MVT::Other, &RetOps[0], RetOps.size());
1183 /// LowerCallResult - Lower the result values of an ISD::CALL into the
1184 /// appropriate copies out of appropriate physical registers. This assumes that
1185 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1186 /// being lowered. The returns a SDNode with the same number of values as the
1187 /// ISD::CALL.
1188 SDNode *X86TargetLowering::
1189 LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1190 unsigned CallingConv, SelectionDAG &DAG) {
1192 DebugLoc dl = TheCall->getDebugLoc();
1193 // Assign locations to each value returned by this call.
1194 SmallVector<CCValAssign, 16> RVLocs;
1195 bool isVarArg = TheCall->isVarArg();
1196 bool Is64Bit = Subtarget->is64Bit();
1197 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(),
1198 RVLocs, *DAG.getContext());
1199 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1201 SmallVector<SDValue, 8> ResultVals;
1203 // Copy all of the result registers out of their specified physreg.
1204 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1205 CCValAssign &VA = RVLocs[i];
1206 MVT CopyVT = VA.getValVT();
1208 // If this is x86-64, and we disabled SSE, we can't return FP values
1209 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1210 ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
1211 llvm_report_error("SSE register return with SSE disabled");
1214 // If this is a call to a function that returns an fp value on the floating
1215 // point stack, but where we prefer to use the value in xmm registers, copy
1216 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1217 if ((VA.getLocReg() == X86::ST0 ||
1218 VA.getLocReg() == X86::ST1) &&
1219 isScalarFPTypeInSSEReg(VA.getValVT())) {
1220 CopyVT = MVT::f80;
1223 SDValue Val;
1224 if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1225 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1226 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1227 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1228 MVT::v2i64, InFlag).getValue(1);
1229 Val = Chain.getValue(0);
1230 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1231 Val, DAG.getConstant(0, MVT::i64));
1232 } else {
1233 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1234 MVT::i64, InFlag).getValue(1);
1235 Val = Chain.getValue(0);
1237 Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1238 } else {
1239 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1240 CopyVT, InFlag).getValue(1);
1241 Val = Chain.getValue(0);
1243 InFlag = Chain.getValue(2);
1245 if (CopyVT != VA.getValVT()) {
1246 // Round the F80 the right size, which also moves to the appropriate xmm
1247 // register.
1248 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1249 // This truncation won't change the value.
1250 DAG.getIntPtrConstant(1));
1253 ResultVals.push_back(Val);
1256 // Merge everything together with a MERGE_VALUES node.
1257 ResultVals.push_back(Chain);
1258 return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
1259 &ResultVals[0], ResultVals.size()).getNode();
1263 //===----------------------------------------------------------------------===//
1264 // C & StdCall & Fast Calling Convention implementation
1265 //===----------------------------------------------------------------------===//
1266 // StdCall calling convention seems to be standard for many Windows' API
1267 // routines and around. It differs from C calling convention just a little:
1268 // callee should clean up the stack, not caller. Symbols should be also
1269 // decorated in some fancy way :) It doesn't support any vector arguments.
1270 // For info on fast calling convention see Fast Calling Convention (tail call)
1271 // implementation LowerX86_32FastCCCallTo.
1273 /// CallIsStructReturn - Determines whether a CALL node uses struct return
1274 /// semantics.
1275 static bool CallIsStructReturn(CallSDNode *TheCall) {
1276 unsigned NumOps = TheCall->getNumArgs();
1277 if (!NumOps)
1278 return false;
1280 return TheCall->getArgFlags(0).isSRet();
1283 /// ArgsAreStructReturn - Determines whether a function uses struct
1284 /// return semantics.
1285 static bool ArgsAreStructReturn(SDValue Op) {
1286 unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1287 if (!NumArgs)
1288 return false;
1290 return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1293 /// IsCalleePop - Determines whether the callee is required to pop its
1294 /// own arguments. Callee pop is necessary to support tail calls.
1295 bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1296 if (IsVarArg)
1297 return false;
1299 switch (CallingConv) {
1300 default:
1301 return false;
1302 case CallingConv::X86_StdCall:
1303 return !Subtarget->is64Bit();
1304 case CallingConv::X86_FastCall:
1305 return !Subtarget->is64Bit();
1306 case CallingConv::Fast:
1307 return PerformTailCallOpt;
1311 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1312 /// given CallingConvention value.
1313 CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1314 if (Subtarget->is64Bit()) {
1315 if (Subtarget->isTargetWin64())
1316 return CC_X86_Win64_C;
1317 else
1318 return CC_X86_64_C;
1321 if (CC == CallingConv::X86_FastCall)
1322 return CC_X86_32_FastCall;
1323 else if (CC == CallingConv::Fast)
1324 return CC_X86_32_FastCC;
1325 else
1326 return CC_X86_32_C;
1329 /// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1330 /// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1331 NameDecorationStyle
1332 X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1333 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1334 if (CC == CallingConv::X86_FastCall)
1335 return FastCall;
1336 else if (CC == CallingConv::X86_StdCall)
1337 return StdCall;
1338 return None;
1342 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1343 /// by "Src" to address "Dst" with size and alignment information specified by
1344 /// the specific parameter attribute. The copy will be passed as a byval
1345 /// function parameter.
1346 static SDValue
1347 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1348 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1349 DebugLoc dl) {
1350 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1351 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1352 /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1355 SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1356 const CCValAssign &VA,
1357 MachineFrameInfo *MFI,
1358 unsigned CC,
1359 SDValue Root, unsigned i) {
1360 // Create the nodes corresponding to a load from this parameter slot.
1361 ISD::ArgFlagsTy Flags =
1362 cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1363 bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1364 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1366 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1367 // changed with more analysis.
1368 // In case of tail call optimization mark all arguments mutable. Since they
1369 // could be overwritten by lowering of arguments in case of a tail call.
1370 int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1371 VA.getLocMemOffset(), isImmutable);
1372 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1373 if (Flags.isByVal())
1374 return FIN;
1375 return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN,
1376 PseudoSourceValue::getFixedStack(FI), 0);
1379 SDValue
1380 X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1381 MachineFunction &MF = DAG.getMachineFunction();
1382 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1383 DebugLoc dl = Op.getDebugLoc();
1385 const Function* Fn = MF.getFunction();
1386 if (Fn->hasExternalLinkage() &&
1387 Subtarget->isTargetCygMing() &&
1388 Fn->getName() == "main")
1389 FuncInfo->setForceFramePointer(true);
1391 // Decorate the function name.
1392 FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1394 MachineFrameInfo *MFI = MF.getFrameInfo();
1395 SDValue Root = Op.getOperand(0);
1396 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1397 unsigned CC = MF.getFunction()->getCallingConv();
1398 bool Is64Bit = Subtarget->is64Bit();
1399 bool IsWin64 = Subtarget->isTargetWin64();
1401 assert(!(isVarArg && CC == CallingConv::Fast) &&
1402 "Var args not supported with calling convention fastcc");
1404 // Assign locations to all of the incoming arguments.
1405 SmallVector<CCValAssign, 16> ArgLocs;
1406 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
1407 CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1409 SmallVector<SDValue, 8> ArgValues;
1410 unsigned LastVal = ~0U;
1411 SDValue ArgValue;
1412 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1413 CCValAssign &VA = ArgLocs[i];
1414 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1415 // places.
1416 assert(VA.getValNo() != LastVal &&
1417 "Don't support value assigned to multiple locs yet");
1418 LastVal = VA.getValNo();
1420 if (VA.isRegLoc()) {
1421 MVT RegVT = VA.getLocVT();
1422 TargetRegisterClass *RC = NULL;
1423 if (RegVT == MVT::i32)
1424 RC = X86::GR32RegisterClass;
1425 else if (Is64Bit && RegVT == MVT::i64)
1426 RC = X86::GR64RegisterClass;
1427 else if (RegVT == MVT::f32)
1428 RC = X86::FR32RegisterClass;
1429 else if (RegVT == MVT::f64)
1430 RC = X86::FR64RegisterClass;
1431 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1432 RC = X86::VR128RegisterClass;
1433 else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1434 RC = X86::VR64RegisterClass;
1435 else
1436 llvm_unreachable("Unknown argument type!");
1438 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1439 ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1441 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1442 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1443 // right size.
1444 if (VA.getLocInfo() == CCValAssign::SExt)
1445 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1446 DAG.getValueType(VA.getValVT()));
1447 else if (VA.getLocInfo() == CCValAssign::ZExt)
1448 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1449 DAG.getValueType(VA.getValVT()));
1450 else if (VA.getLocInfo() == CCValAssign::BCvt)
1451 ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1453 if (VA.isExtInLoc()) {
1454 // Handle MMX values passed in XMM regs.
1455 if (RegVT.isVector()) {
1456 ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1457 ArgValue, DAG.getConstant(0, MVT::i64));
1458 ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1459 } else
1460 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1462 } else {
1463 assert(VA.isMemLoc());
1464 ArgValue = LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i);
1467 // If value is passed via pointer - do a load.
1468 if (VA.getLocInfo() == CCValAssign::Indirect)
1469 ArgValue = DAG.getLoad(VA.getValVT(), dl, Root, ArgValue, NULL, 0);
1471 ArgValues.push_back(ArgValue);
1474 // The x86-64 ABI for returning structs by value requires that we copy
1475 // the sret argument into %rax for the return. Save the argument into
1476 // a virtual register so that we can access it from the return points.
1477 if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1478 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1479 unsigned Reg = FuncInfo->getSRetReturnReg();
1480 if (!Reg) {
1481 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1482 FuncInfo->setSRetReturnReg(Reg);
1484 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
1485 Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
1488 unsigned StackSize = CCInfo.getNextStackOffset();
1489 // align stack specially for tail calls
1490 if (PerformTailCallOpt && CC == CallingConv::Fast)
1491 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1493 // If the function takes variable number of arguments, make a frame index for
1494 // the start of the first vararg value... for expansion of llvm.va_start.
1495 if (isVarArg) {
1496 if (Is64Bit || CC != CallingConv::X86_FastCall) {
1497 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1499 if (Is64Bit) {
1500 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1502 // FIXME: We should really autogenerate these arrays
1503 static const unsigned GPR64ArgRegsWin64[] = {
1504 X86::RCX, X86::RDX, X86::R8, X86::R9
1506 static const unsigned XMMArgRegsWin64[] = {
1507 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1509 static const unsigned GPR64ArgRegs64Bit[] = {
1510 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1512 static const unsigned XMMArgRegs64Bit[] = {
1513 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1514 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1516 const unsigned *GPR64ArgRegs, *XMMArgRegs;
1518 if (IsWin64) {
1519 TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1520 GPR64ArgRegs = GPR64ArgRegsWin64;
1521 XMMArgRegs = XMMArgRegsWin64;
1522 } else {
1523 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1524 GPR64ArgRegs = GPR64ArgRegs64Bit;
1525 XMMArgRegs = XMMArgRegs64Bit;
1527 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1528 TotalNumIntRegs);
1529 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1530 TotalNumXMMRegs);
1532 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1533 assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1534 "SSE register cannot be used when SSE is disabled!");
1535 assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1536 "SSE register cannot be used when SSE is disabled!");
1537 if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1538 // Kernel mode asks for SSE to be disabled, so don't push them
1539 // on the stack.
1540 TotalNumXMMRegs = 0;
1542 // For X86-64, if there are vararg parameters that are passed via
1543 // registers, then we must store them to their spots on the stack so they
1544 // may be loaded by deferencing the result of va_next.
1545 VarArgsGPOffset = NumIntRegs * 8;
1546 VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1547 RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1548 TotalNumXMMRegs * 16, 16);
1550 // Store the integer parameter registers.
1551 SmallVector<SDValue, 8> MemOps;
1552 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1553 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1554 DAG.getIntPtrConstant(VarArgsGPOffset));
1555 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1556 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1557 X86::GR64RegisterClass);
1558 SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1559 SDValue Store =
1560 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1561 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1562 MemOps.push_back(Store);
1563 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1564 DAG.getIntPtrConstant(8));
1567 // Now store the XMM (fp + vector) parameter registers.
1568 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1569 DAG.getIntPtrConstant(VarArgsFPOffset));
1570 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1571 unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1572 X86::VR128RegisterClass);
1573 SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32);
1574 SDValue Store =
1575 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1576 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1577 MemOps.push_back(Store);
1578 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1579 DAG.getIntPtrConstant(16));
1581 if (!MemOps.empty())
1582 Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1583 &MemOps[0], MemOps.size());
1587 ArgValues.push_back(Root);
1589 // Some CCs need callee pop.
1590 if (IsCalleePop(isVarArg, CC)) {
1591 BytesToPopOnReturn = StackSize; // Callee pops everything.
1592 BytesCallerReserves = 0;
1593 } else {
1594 BytesToPopOnReturn = 0; // Callee pops nothing.
1595 // If this is an sret function, the return should pop the hidden pointer.
1596 if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1597 BytesToPopOnReturn = 4;
1598 BytesCallerReserves = StackSize;
1601 if (!Is64Bit) {
1602 RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
1603 if (CC == CallingConv::X86_FastCall)
1604 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1607 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1609 // Return the new list of results.
1610 return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1611 &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1614 SDValue
1615 X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1616 const SDValue &StackPtr,
1617 const CCValAssign &VA,
1618 SDValue Chain,
1619 SDValue Arg, ISD::ArgFlagsTy Flags) {
1620 const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1621 DebugLoc dl = TheCall->getDebugLoc();
1622 unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1623 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1624 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1625 if (Flags.isByVal()) {
1626 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1628 return DAG.getStore(Chain, dl, Arg, PtrOff,
1629 PseudoSourceValue::getStack(), LocMemOffset);
1632 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1633 /// optimization is performed and it is required.
1634 SDValue
1635 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1636 SDValue &OutRetAddr,
1637 SDValue Chain,
1638 bool IsTailCall,
1639 bool Is64Bit,
1640 int FPDiff,
1641 DebugLoc dl) {
1642 if (!IsTailCall || FPDiff==0) return Chain;
1644 // Adjust the Return address stack slot.
1645 MVT VT = getPointerTy();
1646 OutRetAddr = getReturnAddressFrameIndex(DAG);
1648 // Load the "old" Return address.
1649 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1650 return SDValue(OutRetAddr.getNode(), 1);
1653 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1654 /// optimization is performed and it is required (FPDiff!=0).
1655 static SDValue
1656 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1657 SDValue Chain, SDValue RetAddrFrIdx,
1658 bool Is64Bit, int FPDiff, DebugLoc dl) {
1659 // Store the return address to the appropriate stack slot.
1660 if (!FPDiff) return Chain;
1661 // Calculate the new stack slot for the return address.
1662 int SlotSize = Is64Bit ? 8 : 4;
1663 int NewReturnAddrFI =
1664 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1665 MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1666 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1667 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1668 PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1669 return Chain;
1672 SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1673 MachineFunction &MF = DAG.getMachineFunction();
1674 CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1675 SDValue Chain = TheCall->getChain();
1676 unsigned CC = TheCall->getCallingConv();
1677 bool isVarArg = TheCall->isVarArg();
1678 bool IsTailCall = TheCall->isTailCall() &&
1679 CC == CallingConv::Fast && PerformTailCallOpt;
1680 SDValue Callee = TheCall->getCallee();
1681 bool Is64Bit = Subtarget->is64Bit();
1682 bool IsStructRet = CallIsStructReturn(TheCall);
1683 DebugLoc dl = TheCall->getDebugLoc();
1685 assert(!(isVarArg && CC == CallingConv::Fast) &&
1686 "Var args not supported with calling convention fastcc");
1688 // Analyze operands of the call, assigning locations to each operand.
1689 SmallVector<CCValAssign, 16> ArgLocs;
1690 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
1691 CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1693 // Get a count of how many bytes are to be pushed on the stack.
1694 unsigned NumBytes = CCInfo.getNextStackOffset();
1695 if (PerformTailCallOpt && CC == CallingConv::Fast)
1696 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1698 int FPDiff = 0;
1699 if (IsTailCall) {
1700 // Lower arguments at fp - stackoffset + fpdiff.
1701 unsigned NumBytesCallerPushed =
1702 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1703 FPDiff = NumBytesCallerPushed - NumBytes;
1705 // Set the delta of movement of the returnaddr stackslot.
1706 // But only set if delta is greater than previous delta.
1707 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1708 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1711 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1713 SDValue RetAddrFrIdx;
1714 // Load return adress for tail calls.
1715 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1716 FPDiff, dl);
1718 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1719 SmallVector<SDValue, 8> MemOpChains;
1720 SDValue StackPtr;
1722 // Walk the register/memloc assignments, inserting copies/loads. In the case
1723 // of tail call optimization arguments are handle later.
1724 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1725 CCValAssign &VA = ArgLocs[i];
1726 MVT RegVT = VA.getLocVT();
1727 SDValue Arg = TheCall->getArg(i);
1728 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1729 bool isByVal = Flags.isByVal();
1731 // Promote the value if needed.
1732 switch (VA.getLocInfo()) {
1733 default: llvm_unreachable("Unknown loc info!");
1734 case CCValAssign::Full: break;
1735 case CCValAssign::SExt:
1736 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1737 break;
1738 case CCValAssign::ZExt:
1739 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1740 break;
1741 case CCValAssign::AExt:
1742 if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1743 // Special case: passing MMX values in XMM registers.
1744 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1745 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1746 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1747 } else
1748 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1749 break;
1750 case CCValAssign::BCvt:
1751 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1752 break;
1753 case CCValAssign::Indirect: {
1754 // Store the argument.
1755 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1756 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1757 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1758 PseudoSourceValue::getFixedStack(FI), 0);
1759 Arg = SpillSlot;
1760 break;
1764 if (VA.isRegLoc()) {
1765 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1766 } else {
1767 if (!IsTailCall || (IsTailCall && isByVal)) {
1768 assert(VA.isMemLoc());
1769 if (StackPtr.getNode() == 0)
1770 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1772 MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1773 Chain, Arg, Flags));
1778 if (!MemOpChains.empty())
1779 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1780 &MemOpChains[0], MemOpChains.size());
1782 // Build a sequence of copy-to-reg nodes chained together with token chain
1783 // and flag operands which copy the outgoing args into registers.
1784 SDValue InFlag;
1785 // Tail call byval lowering might overwrite argument registers so in case of
1786 // tail call optimization the copies to registers are lowered later.
1787 if (!IsTailCall)
1788 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1789 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1790 RegsToPass[i].second, InFlag);
1791 InFlag = Chain.getValue(1);
1795 if (Subtarget->isPICStyleGOT()) {
1796 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1797 // GOT pointer.
1798 if (!IsTailCall) {
1799 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1800 DAG.getNode(X86ISD::GlobalBaseReg,
1801 DebugLoc::getUnknownLoc(),
1802 getPointerTy()),
1803 InFlag);
1804 InFlag = Chain.getValue(1);
1805 } else {
1806 // If we are tail calling and generating PIC/GOT style code load the
1807 // address of the callee into ECX. The value in ecx is used as target of
1808 // the tail jump. This is done to circumvent the ebx/callee-saved problem
1809 // for tail calls on PIC/GOT architectures. Normally we would just put the
1810 // address of GOT into ebx and then call target@PLT. But for tail calls
1811 // ebx would be restored (since ebx is callee saved) before jumping to the
1812 // target@PLT.
1814 // Note: The actual moving to ECX is done further down.
1815 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1816 if (G && !G->getGlobal()->hasHiddenVisibility() &&
1817 !G->getGlobal()->hasProtectedVisibility())
1818 Callee = LowerGlobalAddress(Callee, DAG);
1819 else if (isa<ExternalSymbolSDNode>(Callee))
1820 Callee = LowerExternalSymbol(Callee, DAG);
1824 if (Is64Bit && isVarArg) {
1825 // From AMD64 ABI document:
1826 // For calls that may call functions that use varargs or stdargs
1827 // (prototype-less calls or calls to functions containing ellipsis (...) in
1828 // the declaration) %al is used as hidden argument to specify the number
1829 // of SSE registers used. The contents of %al do not need to match exactly
1830 // the number of registers, but must be an ubound on the number of SSE
1831 // registers used and is in the range 0 - 8 inclusive.
1833 // FIXME: Verify this on Win64
1834 // Count the number of XMM registers allocated.
1835 static const unsigned XMMArgRegs[] = {
1836 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1837 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1839 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1840 assert((Subtarget->hasSSE1() || !NumXMMRegs)
1841 && "SSE registers cannot be used when SSE is disabled");
1843 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1844 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1845 InFlag = Chain.getValue(1);
1849 // For tail calls lower the arguments to the 'real' stack slot.
1850 if (IsTailCall) {
1851 SmallVector<SDValue, 8> MemOpChains2;
1852 SDValue FIN;
1853 int FI = 0;
1854 // Do not flag preceeding copytoreg stuff together with the following stuff.
1855 InFlag = SDValue();
1856 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1857 CCValAssign &VA = ArgLocs[i];
1858 if (!VA.isRegLoc()) {
1859 assert(VA.isMemLoc());
1860 SDValue Arg = TheCall->getArg(i);
1861 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1862 // Create frame index.
1863 int32_t Offset = VA.getLocMemOffset()+FPDiff;
1864 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1865 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1866 FIN = DAG.getFrameIndex(FI, getPointerTy());
1868 if (Flags.isByVal()) {
1869 // Copy relative to framepointer.
1870 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1871 if (StackPtr.getNode() == 0)
1872 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1873 getPointerTy());
1874 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1876 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1877 Flags, DAG, dl));
1878 } else {
1879 // Store relative to framepointer.
1880 MemOpChains2.push_back(
1881 DAG.getStore(Chain, dl, Arg, FIN,
1882 PseudoSourceValue::getFixedStack(FI), 0));
1887 if (!MemOpChains2.empty())
1888 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1889 &MemOpChains2[0], MemOpChains2.size());
1891 // Copy arguments to their registers.
1892 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1893 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1894 RegsToPass[i].second, InFlag);
1895 InFlag = Chain.getValue(1);
1897 InFlag =SDValue();
1899 // Store the return address to the appropriate stack slot.
1900 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1901 FPDiff, dl);
1904 // If the callee is a GlobalAddress node (quite common, every direct call is)
1905 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1906 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1907 // We should use extra load for direct calls to dllimported functions in
1908 // non-JIT mode.
1909 GlobalValue *GV = G->getGlobal();
1910 if (!GV->hasDLLImportLinkage()) {
1911 unsigned char OpFlags = 0;
1913 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1914 // external symbols most go through the PLT in PIC mode. If the symbol
1915 // has hidden or protected visibility, or if it is static or local, then
1916 // we don't need to use the PLT - we can directly call it.
1917 if (Subtarget->isTargetELF() &&
1918 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1919 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1920 OpFlags = X86II::MO_PLT;
1921 } else if (Subtarget->isPICStyleStubAny() &&
1922 (GV->isDeclaration() || GV->isWeakForLinker()) &&
1923 Subtarget->getDarwinVers() < 9) {
1924 // PC-relative references to external symbols should go through $stub,
1925 // unless we're building with the leopard linker or later, which
1926 // automatically synthesizes these stubs.
1927 OpFlags = X86II::MO_DARWIN_STUB;
1930 Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1931 G->getOffset(), OpFlags);
1933 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1934 unsigned char OpFlags = 0;
1936 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1937 // symbols should go through the PLT.
1938 if (Subtarget->isTargetELF() &&
1939 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1940 OpFlags = X86II::MO_PLT;
1941 } else if (Subtarget->isPICStyleStubAny() &&
1942 Subtarget->getDarwinVers() < 9) {
1943 // PC-relative references to external symbols should go through $stub,
1944 // unless we're building with the leopard linker or later, which
1945 // automatically synthesizes these stubs.
1946 OpFlags = X86II::MO_DARWIN_STUB;
1949 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
1950 OpFlags);
1951 } else if (IsTailCall) {
1952 unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1954 Chain = DAG.getCopyToReg(Chain, dl,
1955 DAG.getRegister(Opc, getPointerTy()),
1956 Callee,InFlag);
1957 Callee = DAG.getRegister(Opc, getPointerTy());
1958 // Add register as live out.
1959 MF.getRegInfo().addLiveOut(Opc);
1962 // Returns a chain & a flag for retval copy to use.
1963 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1964 SmallVector<SDValue, 8> Ops;
1966 if (IsTailCall) {
1967 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1968 DAG.getIntPtrConstant(0, true), InFlag);
1969 InFlag = Chain.getValue(1);
1971 // Returns a chain & a flag for retval copy to use.
1972 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1973 Ops.clear();
1976 Ops.push_back(Chain);
1977 Ops.push_back(Callee);
1979 if (IsTailCall)
1980 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1982 // Add argument registers to the end of the list so that they are known live
1983 // into the call.
1984 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1985 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1986 RegsToPass[i].second.getValueType()));
1988 // Add an implicit use GOT pointer in EBX.
1989 if (!IsTailCall && Subtarget->isPICStyleGOT())
1990 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1992 // Add an implicit use of AL for x86 vararg functions.
1993 if (Is64Bit && isVarArg)
1994 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1996 if (InFlag.getNode())
1997 Ops.push_back(InFlag);
1999 if (IsTailCall) {
2000 assert(InFlag.getNode() &&
2001 "Flag must be set. Depend on flag being set in LowerRET");
2002 Chain = DAG.getNode(X86ISD::TAILCALL, dl,
2003 TheCall->getVTList(), &Ops[0], Ops.size());
2005 return SDValue(Chain.getNode(), Op.getResNo());
2008 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2009 InFlag = Chain.getValue(1);
2011 // Create the CALLSEQ_END node.
2012 unsigned NumBytesForCalleeToPush;
2013 if (IsCalleePop(isVarArg, CC))
2014 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2015 else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
2016 // If this is is a call to a struct-return function, the callee
2017 // pops the hidden struct pointer, so we have to push it back.
2018 // This is common for Darwin/X86, Linux & Mingw32 targets.
2019 NumBytesForCalleeToPush = 4;
2020 else
2021 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2023 // Returns a flag for retval copy to use.
2024 Chain = DAG.getCALLSEQ_END(Chain,
2025 DAG.getIntPtrConstant(NumBytes, true),
2026 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2027 true),
2028 InFlag);
2029 InFlag = Chain.getValue(1);
2031 // Handle result values, copying them out of physregs into vregs that we
2032 // return.
2033 return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
2034 Op.getResNo());
2038 //===----------------------------------------------------------------------===//
2039 // Fast Calling Convention (tail call) implementation
2040 //===----------------------------------------------------------------------===//
2042 // Like std call, callee cleans arguments, convention except that ECX is
2043 // reserved for storing the tail called function address. Only 2 registers are
2044 // free for argument passing (inreg). Tail call optimization is performed
2045 // provided:
2046 // * tailcallopt is enabled
2047 // * caller/callee are fastcc
2048 // On X86_64 architecture with GOT-style position independent code only local
2049 // (within module) calls are supported at the moment.
2050 // To keep the stack aligned according to platform abi the function
2051 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2052 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2053 // If a tail called function callee has more arguments than the caller the
2054 // caller needs to make sure that there is room to move the RETADDR to. This is
2055 // achieved by reserving an area the size of the argument delta right after the
2056 // original REtADDR, but before the saved framepointer or the spilled registers
2057 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2058 // stack layout:
2059 // arg1
2060 // arg2
2061 // RETADDR
2062 // [ new RETADDR
2063 // move area ]
2064 // (possible EBP)
2065 // ESI
2066 // EDI
2067 // local1 ..
2069 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2070 /// for a 16 byte align requirement.
2071 unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2072 SelectionDAG& DAG) {
2073 MachineFunction &MF = DAG.getMachineFunction();
2074 const TargetMachine &TM = MF.getTarget();
2075 const TargetFrameInfo &TFI = *TM.getFrameInfo();
2076 unsigned StackAlignment = TFI.getStackAlignment();
2077 uint64_t AlignMask = StackAlignment - 1;
2078 int64_t Offset = StackSize;
2079 uint64_t SlotSize = TD->getPointerSize();
2080 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2081 // Number smaller than 12 so just add the difference.
2082 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2083 } else {
2084 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2085 Offset = ((~AlignMask) & Offset) + StackAlignment +
2086 (StackAlignment-SlotSize);
2088 return Offset;
2091 /// IsEligibleForTailCallElimination - Check to see whether the next instruction
2092 /// following the call is a return. A function is eligible if caller/callee
2093 /// calling conventions match, currently only fastcc supports tail calls, and
2094 /// the function CALL is immediatly followed by a RET.
2095 bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
2096 SDValue Ret,
2097 SelectionDAG& DAG) const {
2098 if (!PerformTailCallOpt)
2099 return false;
2101 if (CheckTailCallReturnConstraints(TheCall, Ret)) {
2102 unsigned CallerCC =
2103 DAG.getMachineFunction().getFunction()->getCallingConv();
2104 unsigned CalleeCC = TheCall->getCallingConv();
2105 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC)
2106 return true;
2109 return false;
2112 FastISel *
2113 X86TargetLowering::createFastISel(MachineFunction &mf,
2114 MachineModuleInfo *mmo,
2115 DwarfWriter *dw,
2116 DenseMap<const Value *, unsigned> &vm,
2117 DenseMap<const BasicBlock *,
2118 MachineBasicBlock *> &bm,
2119 DenseMap<const AllocaInst *, int> &am
2120 #ifndef NDEBUG
2121 , SmallSet<Instruction*, 8> &cil
2122 #endif
2124 return X86::createFastISel(mf, mmo, dw, vm, bm, am
2125 #ifndef NDEBUG
2126 , cil
2127 #endif
2132 //===----------------------------------------------------------------------===//
2133 // Other Lowering Hooks
2134 //===----------------------------------------------------------------------===//
2137 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2138 MachineFunction &MF = DAG.getMachineFunction();
2139 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2140 int ReturnAddrIndex = FuncInfo->getRAIndex();
2142 if (ReturnAddrIndex == 0) {
2143 // Set up a frame object for the return address.
2144 uint64_t SlotSize = TD->getPointerSize();
2145 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2146 FuncInfo->setRAIndex(ReturnAddrIndex);
2149 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2153 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2154 /// specific condition code, returning the condition code and the LHS/RHS of the
2155 /// comparison to make.
2156 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2157 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2158 if (!isFP) {
2159 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2160 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2161 // X > -1 -> X == 0, jump !sign.
2162 RHS = DAG.getConstant(0, RHS.getValueType());
2163 return X86::COND_NS;
2164 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2165 // X < 0 -> X == 0, jump on sign.
2166 return X86::COND_S;
2167 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2168 // X < 1 -> X <= 0
2169 RHS = DAG.getConstant(0, RHS.getValueType());
2170 return X86::COND_LE;
2174 switch (SetCCOpcode) {
2175 default: llvm_unreachable("Invalid integer condition!");
2176 case ISD::SETEQ: return X86::COND_E;
2177 case ISD::SETGT: return X86::COND_G;
2178 case ISD::SETGE: return X86::COND_GE;
2179 case ISD::SETLT: return X86::COND_L;
2180 case ISD::SETLE: return X86::COND_LE;
2181 case ISD::SETNE: return X86::COND_NE;
2182 case ISD::SETULT: return X86::COND_B;
2183 case ISD::SETUGT: return X86::COND_A;
2184 case ISD::SETULE: return X86::COND_BE;
2185 case ISD::SETUGE: return X86::COND_AE;
2189 // First determine if it is required or is profitable to flip the operands.
2191 // If LHS is a foldable load, but RHS is not, flip the condition.
2192 if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2193 !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2194 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2195 std::swap(LHS, RHS);
2198 switch (SetCCOpcode) {
2199 default: break;
2200 case ISD::SETOLT:
2201 case ISD::SETOLE:
2202 case ISD::SETUGT:
2203 case ISD::SETUGE:
2204 std::swap(LHS, RHS);
2205 break;
2208 // On a floating point condition, the flags are set as follows:
2209 // ZF PF CF op
2210 // 0 | 0 | 0 | X > Y
2211 // 0 | 0 | 1 | X < Y
2212 // 1 | 0 | 0 | X == Y
2213 // 1 | 1 | 1 | unordered
2214 switch (SetCCOpcode) {
2215 default: llvm_unreachable("Condcode should be pre-legalized away");
2216 case ISD::SETUEQ:
2217 case ISD::SETEQ: return X86::COND_E;
2218 case ISD::SETOLT: // flipped
2219 case ISD::SETOGT:
2220 case ISD::SETGT: return X86::COND_A;
2221 case ISD::SETOLE: // flipped
2222 case ISD::SETOGE:
2223 case ISD::SETGE: return X86::COND_AE;
2224 case ISD::SETUGT: // flipped
2225 case ISD::SETULT:
2226 case ISD::SETLT: return X86::COND_B;
2227 case ISD::SETUGE: // flipped
2228 case ISD::SETULE:
2229 case ISD::SETLE: return X86::COND_BE;
2230 case ISD::SETONE:
2231 case ISD::SETNE: return X86::COND_NE;
2232 case ISD::SETUO: return X86::COND_P;
2233 case ISD::SETO: return X86::COND_NP;
2237 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2238 /// code. Current x86 isa includes the following FP cmov instructions:
2239 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2240 static bool hasFPCMov(unsigned X86CC) {
2241 switch (X86CC) {
2242 default:
2243 return false;
2244 case X86::COND_B:
2245 case X86::COND_BE:
2246 case X86::COND_E:
2247 case X86::COND_P:
2248 case X86::COND_A:
2249 case X86::COND_AE:
2250 case X86::COND_NE:
2251 case X86::COND_NP:
2252 return true;
2256 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2257 /// the specified range (L, H].
2258 static bool isUndefOrInRange(int Val, int Low, int Hi) {
2259 return (Val < 0) || (Val >= Low && Val < Hi);
2262 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2263 /// specified value.
2264 static bool isUndefOrEqual(int Val, int CmpVal) {
2265 if (Val < 0 || Val == CmpVal)
2266 return true;
2267 return false;
2270 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2271 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2272 /// the second operand.
2273 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2274 if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2275 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2276 if (VT == MVT::v2f64 || VT == MVT::v2i64)
2277 return (Mask[0] < 2 && Mask[1] < 2);
2278 return false;
2281 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2282 SmallVector<int, 8> M;
2283 N->getMask(M);
2284 return ::isPSHUFDMask(M, N->getValueType(0));
2287 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2288 /// is suitable for input to PSHUFHW.
2289 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2290 if (VT != MVT::v8i16)
2291 return false;
2293 // Lower quadword copied in order or undef.
2294 for (int i = 0; i != 4; ++i)
2295 if (Mask[i] >= 0 && Mask[i] != i)
2296 return false;
2298 // Upper quadword shuffled.
2299 for (int i = 4; i != 8; ++i)
2300 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2301 return false;
2303 return true;
2306 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2307 SmallVector<int, 8> M;
2308 N->getMask(M);
2309 return ::isPSHUFHWMask(M, N->getValueType(0));
2312 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2313 /// is suitable for input to PSHUFLW.
2314 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2315 if (VT != MVT::v8i16)
2316 return false;
2318 // Upper quadword copied in order.
2319 for (int i = 4; i != 8; ++i)
2320 if (Mask[i] >= 0 && Mask[i] != i)
2321 return false;
2323 // Lower quadword shuffled.
2324 for (int i = 0; i != 4; ++i)
2325 if (Mask[i] >= 4)
2326 return false;
2328 return true;
2331 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2332 SmallVector<int, 8> M;
2333 N->getMask(M);
2334 return ::isPSHUFLWMask(M, N->getValueType(0));
2337 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2338 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2339 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2340 int NumElems = VT.getVectorNumElements();
2341 if (NumElems != 2 && NumElems != 4)
2342 return false;
2344 int Half = NumElems / 2;
2345 for (int i = 0; i < Half; ++i)
2346 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2347 return false;
2348 for (int i = Half; i < NumElems; ++i)
2349 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2350 return false;
2352 return true;
2355 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2356 SmallVector<int, 8> M;
2357 N->getMask(M);
2358 return ::isSHUFPMask(M, N->getValueType(0));
2361 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2362 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2363 /// half elements to come from vector 1 (which would equal the dest.) and
2364 /// the upper half to come from vector 2.
2365 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2366 int NumElems = VT.getVectorNumElements();
2368 if (NumElems != 2 && NumElems != 4)
2369 return false;
2371 int Half = NumElems / 2;
2372 for (int i = 0; i < Half; ++i)
2373 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2374 return false;
2375 for (int i = Half; i < NumElems; ++i)
2376 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2377 return false;
2378 return true;
2381 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2382 SmallVector<int, 8> M;
2383 N->getMask(M);
2384 return isCommutedSHUFPMask(M, N->getValueType(0));
2387 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2388 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2389 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2390 if (N->getValueType(0).getVectorNumElements() != 4)
2391 return false;
2393 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2394 return isUndefOrEqual(N->getMaskElt(0), 6) &&
2395 isUndefOrEqual(N->getMaskElt(1), 7) &&
2396 isUndefOrEqual(N->getMaskElt(2), 2) &&
2397 isUndefOrEqual(N->getMaskElt(3), 3);
2400 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2401 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2402 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2403 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2405 if (NumElems != 2 && NumElems != 4)
2406 return false;
2408 for (unsigned i = 0; i < NumElems/2; ++i)
2409 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2410 return false;
2412 for (unsigned i = NumElems/2; i < NumElems; ++i)
2413 if (!isUndefOrEqual(N->getMaskElt(i), i))
2414 return false;
2416 return true;
2419 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2420 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2421 /// and MOVLHPS.
2422 bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2423 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2425 if (NumElems != 2 && NumElems != 4)
2426 return false;
2428 for (unsigned i = 0; i < NumElems/2; ++i)
2429 if (!isUndefOrEqual(N->getMaskElt(i), i))
2430 return false;
2432 for (unsigned i = 0; i < NumElems/2; ++i)
2433 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2434 return false;
2436 return true;
2439 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2440 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2441 /// <2, 3, 2, 3>
2442 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2443 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2445 if (NumElems != 4)
2446 return false;
2448 return isUndefOrEqual(N->getMaskElt(0), 2) &&
2449 isUndefOrEqual(N->getMaskElt(1), 3) &&
2450 isUndefOrEqual(N->getMaskElt(2), 2) &&
2451 isUndefOrEqual(N->getMaskElt(3), 3);
2454 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2455 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
2456 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2457 bool V2IsSplat = false) {
2458 int NumElts = VT.getVectorNumElements();
2459 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2460 return false;
2462 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2463 int BitI = Mask[i];
2464 int BitI1 = Mask[i+1];
2465 if (!isUndefOrEqual(BitI, j))
2466 return false;
2467 if (V2IsSplat) {
2468 if (!isUndefOrEqual(BitI1, NumElts))
2469 return false;
2470 } else {
2471 if (!isUndefOrEqual(BitI1, j + NumElts))
2472 return false;
2475 return true;
2478 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2479 SmallVector<int, 8> M;
2480 N->getMask(M);
2481 return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2484 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2485 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
2486 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, MVT VT,
2487 bool V2IsSplat = false) {
2488 int NumElts = VT.getVectorNumElements();
2489 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2490 return false;
2492 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2493 int BitI = Mask[i];
2494 int BitI1 = Mask[i+1];
2495 if (!isUndefOrEqual(BitI, j + NumElts/2))
2496 return false;
2497 if (V2IsSplat) {
2498 if (isUndefOrEqual(BitI1, NumElts))
2499 return false;
2500 } else {
2501 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2502 return false;
2505 return true;
2508 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2509 SmallVector<int, 8> M;
2510 N->getMask(M);
2511 return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2514 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2515 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2516 /// <0, 0, 1, 1>
2517 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2518 int NumElems = VT.getVectorNumElements();
2519 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2520 return false;
2522 for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2523 int BitI = Mask[i];
2524 int BitI1 = Mask[i+1];
2525 if (!isUndefOrEqual(BitI, j))
2526 return false;
2527 if (!isUndefOrEqual(BitI1, j))
2528 return false;
2530 return true;
2533 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2534 SmallVector<int, 8> M;
2535 N->getMask(M);
2536 return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2539 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2540 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2541 /// <2, 2, 3, 3>
2542 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2543 int NumElems = VT.getVectorNumElements();
2544 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2545 return false;
2547 for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2548 int BitI = Mask[i];
2549 int BitI1 = Mask[i+1];
2550 if (!isUndefOrEqual(BitI, j))
2551 return false;
2552 if (!isUndefOrEqual(BitI1, j))
2553 return false;
2555 return true;
2558 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2559 SmallVector<int, 8> M;
2560 N->getMask(M);
2561 return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2564 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2565 /// specifies a shuffle of elements that is suitable for input to MOVSS,
2566 /// MOVSD, and MOVD, i.e. setting the lowest element.
2567 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2568 if (VT.getVectorElementType().getSizeInBits() < 32)
2569 return false;
2571 int NumElts = VT.getVectorNumElements();
2573 if (!isUndefOrEqual(Mask[0], NumElts))
2574 return false;
2576 for (int i = 1; i < NumElts; ++i)
2577 if (!isUndefOrEqual(Mask[i], i))
2578 return false;
2580 return true;
2583 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2584 SmallVector<int, 8> M;
2585 N->getMask(M);
2586 return ::isMOVLMask(M, N->getValueType(0));
2589 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2590 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
2591 /// element of vector 2 and the other elements to come from vector 1 in order.
2592 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2593 bool V2IsSplat = false, bool V2IsUndef = false) {
2594 int NumOps = VT.getVectorNumElements();
2595 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2596 return false;
2598 if (!isUndefOrEqual(Mask[0], 0))
2599 return false;
2601 for (int i = 1; i < NumOps; ++i)
2602 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2603 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2604 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2605 return false;
2607 return true;
2610 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2611 bool V2IsUndef = false) {
2612 SmallVector<int, 8> M;
2613 N->getMask(M);
2614 return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2617 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2618 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2619 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2620 if (N->getValueType(0).getVectorNumElements() != 4)
2621 return false;
2623 // Expect 1, 1, 3, 3
2624 for (unsigned i = 0; i < 2; ++i) {
2625 int Elt = N->getMaskElt(i);
2626 if (Elt >= 0 && Elt != 1)
2627 return false;
2630 bool HasHi = false;
2631 for (unsigned i = 2; i < 4; ++i) {
2632 int Elt = N->getMaskElt(i);
2633 if (Elt >= 0 && Elt != 3)
2634 return false;
2635 if (Elt == 3)
2636 HasHi = true;
2638 // Don't use movshdup if it can be done with a shufps.
2639 // FIXME: verify that matching u, u, 3, 3 is what we want.
2640 return HasHi;
2643 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2644 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2645 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2646 if (N->getValueType(0).getVectorNumElements() != 4)
2647 return false;
2649 // Expect 0, 0, 2, 2
2650 for (unsigned i = 0; i < 2; ++i)
2651 if (N->getMaskElt(i) > 0)
2652 return false;
2654 bool HasHi = false;
2655 for (unsigned i = 2; i < 4; ++i) {
2656 int Elt = N->getMaskElt(i);
2657 if (Elt >= 0 && Elt != 2)
2658 return false;
2659 if (Elt == 2)
2660 HasHi = true;
2662 // Don't use movsldup if it can be done with a shufps.
2663 return HasHi;
2666 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2667 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2668 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2669 int e = N->getValueType(0).getVectorNumElements() / 2;
2671 for (int i = 0; i < e; ++i)
2672 if (!isUndefOrEqual(N->getMaskElt(i), i))
2673 return false;
2674 for (int i = 0; i < e; ++i)
2675 if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2676 return false;
2677 return true;
2680 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2681 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2682 /// instructions.
2683 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2684 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2685 int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2687 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2688 unsigned Mask = 0;
2689 for (int i = 0; i < NumOperands; ++i) {
2690 int Val = SVOp->getMaskElt(NumOperands-i-1);
2691 if (Val < 0) Val = 0;
2692 if (Val >= NumOperands) Val -= NumOperands;
2693 Mask |= Val;
2694 if (i != NumOperands - 1)
2695 Mask <<= Shift;
2697 return Mask;
2700 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2701 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2702 /// instructions.
2703 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2704 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2705 unsigned Mask = 0;
2706 // 8 nodes, but we only care about the last 4.
2707 for (unsigned i = 7; i >= 4; --i) {
2708 int Val = SVOp->getMaskElt(i);
2709 if (Val >= 0)
2710 Mask |= (Val - 4);
2711 if (i != 4)
2712 Mask <<= 2;
2714 return Mask;
2717 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2718 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2719 /// instructions.
2720 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2721 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2722 unsigned Mask = 0;
2723 // 8 nodes, but we only care about the first 4.
2724 for (int i = 3; i >= 0; --i) {
2725 int Val = SVOp->getMaskElt(i);
2726 if (Val >= 0)
2727 Mask |= Val;
2728 if (i != 0)
2729 Mask <<= 2;
2731 return Mask;
2734 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
2735 /// constant +0.0.
2736 bool X86::isZeroNode(SDValue Elt) {
2737 return ((isa<ConstantSDNode>(Elt) &&
2738 cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2739 (isa<ConstantFPSDNode>(Elt) &&
2740 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2743 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2744 /// their permute mask.
2745 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2746 SelectionDAG &DAG) {
2747 MVT VT = SVOp->getValueType(0);
2748 unsigned NumElems = VT.getVectorNumElements();
2749 SmallVector<int, 8> MaskVec;
2751 for (unsigned i = 0; i != NumElems; ++i) {
2752 int idx = SVOp->getMaskElt(i);
2753 if (idx < 0)
2754 MaskVec.push_back(idx);
2755 else if (idx < (int)NumElems)
2756 MaskVec.push_back(idx + NumElems);
2757 else
2758 MaskVec.push_back(idx - NumElems);
2760 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2761 SVOp->getOperand(0), &MaskVec[0]);
2764 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2765 /// the two vector operands have swapped position.
2766 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, MVT VT) {
2767 unsigned NumElems = VT.getVectorNumElements();
2768 for (unsigned i = 0; i != NumElems; ++i) {
2769 int idx = Mask[i];
2770 if (idx < 0)
2771 continue;
2772 else if (idx < (int)NumElems)
2773 Mask[i] = idx + NumElems;
2774 else
2775 Mask[i] = idx - NumElems;
2779 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2780 /// match movhlps. The lower half elements should come from upper half of
2781 /// V1 (and in order), and the upper half elements should come from the upper
2782 /// half of V2 (and in order).
2783 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2784 if (Op->getValueType(0).getVectorNumElements() != 4)
2785 return false;
2786 for (unsigned i = 0, e = 2; i != e; ++i)
2787 if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2788 return false;
2789 for (unsigned i = 2; i != 4; ++i)
2790 if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2791 return false;
2792 return true;
2795 /// isScalarLoadToVector - Returns true if the node is a scalar load that
2796 /// is promoted to a vector. It also returns the LoadSDNode by reference if
2797 /// required.
2798 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2799 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2800 return false;
2801 N = N->getOperand(0).getNode();
2802 if (!ISD::isNON_EXTLoad(N))
2803 return false;
2804 if (LD)
2805 *LD = cast<LoadSDNode>(N);
2806 return true;
2809 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2810 /// match movlp{s|d}. The lower half elements should come from lower half of
2811 /// V1 (and in order), and the upper half elements should come from the upper
2812 /// half of V2 (and in order). And since V1 will become the source of the
2813 /// MOVLP, it must be either a vector load or a scalar load to vector.
2814 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2815 ShuffleVectorSDNode *Op) {
2816 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2817 return false;
2818 // Is V2 is a vector load, don't do this transformation. We will try to use
2819 // load folding shufps op.
2820 if (ISD::isNON_EXTLoad(V2))
2821 return false;
2823 unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2825 if (NumElems != 2 && NumElems != 4)
2826 return false;
2827 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2828 if (!isUndefOrEqual(Op->getMaskElt(i), i))
2829 return false;
2830 for (unsigned i = NumElems/2; i != NumElems; ++i)
2831 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2832 return false;
2833 return true;
2836 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2837 /// all the same.
2838 static bool isSplatVector(SDNode *N) {
2839 if (N->getOpcode() != ISD::BUILD_VECTOR)
2840 return false;
2842 SDValue SplatValue = N->getOperand(0);
2843 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2844 if (N->getOperand(i) != SplatValue)
2845 return false;
2846 return true;
2849 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2850 /// to an zero vector.
2851 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2852 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2853 SDValue V1 = N->getOperand(0);
2854 SDValue V2 = N->getOperand(1);
2855 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2856 for (unsigned i = 0; i != NumElems; ++i) {
2857 int Idx = N->getMaskElt(i);
2858 if (Idx >= (int)NumElems) {
2859 unsigned Opc = V2.getOpcode();
2860 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2861 continue;
2862 if (Opc != ISD::BUILD_VECTOR ||
2863 !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
2864 return false;
2865 } else if (Idx >= 0) {
2866 unsigned Opc = V1.getOpcode();
2867 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2868 continue;
2869 if (Opc != ISD::BUILD_VECTOR ||
2870 !X86::isZeroNode(V1.getOperand(Idx)))
2871 return false;
2874 return true;
2877 /// getZeroVector - Returns a vector of specified type with all zero elements.
2879 static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
2880 DebugLoc dl) {
2881 assert(VT.isVector() && "Expected a vector type");
2883 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2884 // type. This ensures they get CSE'd.
2885 SDValue Vec;
2886 if (VT.getSizeInBits() == 64) { // MMX
2887 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2888 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2889 } else if (HasSSE2) { // SSE2
2890 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2891 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2892 } else { // SSE1
2893 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2894 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2896 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2899 /// getOnesVector - Returns a vector of specified type with all bits set.
2901 static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2902 assert(VT.isVector() && "Expected a vector type");
2904 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2905 // type. This ensures they get CSE'd.
2906 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2907 SDValue Vec;
2908 if (VT.getSizeInBits() == 64) // MMX
2909 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2910 else // SSE
2911 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2912 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2916 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2917 /// that point to V2 points to its first element.
2918 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2919 MVT VT = SVOp->getValueType(0);
2920 unsigned NumElems = VT.getVectorNumElements();
2922 bool Changed = false;
2923 SmallVector<int, 8> MaskVec;
2924 SVOp->getMask(MaskVec);
2926 for (unsigned i = 0; i != NumElems; ++i) {
2927 if (MaskVec[i] > (int)NumElems) {
2928 MaskVec[i] = NumElems;
2929 Changed = true;
2932 if (Changed)
2933 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2934 SVOp->getOperand(1), &MaskVec[0]);
2935 return SDValue(SVOp, 0);
2938 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2939 /// operation of specified width.
2940 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2941 SDValue V2) {
2942 unsigned NumElems = VT.getVectorNumElements();
2943 SmallVector<int, 8> Mask;
2944 Mask.push_back(NumElems);
2945 for (unsigned i = 1; i != NumElems; ++i)
2946 Mask.push_back(i);
2947 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2950 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2951 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2952 SDValue V2) {
2953 unsigned NumElems = VT.getVectorNumElements();
2954 SmallVector<int, 8> Mask;
2955 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2956 Mask.push_back(i);
2957 Mask.push_back(i + NumElems);
2959 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2962 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2963 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2964 SDValue V2) {
2965 unsigned NumElems = VT.getVectorNumElements();
2966 unsigned Half = NumElems/2;
2967 SmallVector<int, 8> Mask;
2968 for (unsigned i = 0; i != Half; ++i) {
2969 Mask.push_back(i + Half);
2970 Mask.push_back(i + NumElems + Half);
2972 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2975 /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2976 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
2977 bool HasSSE2) {
2978 if (SV->getValueType(0).getVectorNumElements() <= 4)
2979 return SDValue(SV, 0);
2981 MVT PVT = MVT::v4f32;
2982 MVT VT = SV->getValueType(0);
2983 DebugLoc dl = SV->getDebugLoc();
2984 SDValue V1 = SV->getOperand(0);
2985 int NumElems = VT.getVectorNumElements();
2986 int EltNo = SV->getSplatIndex();
2988 // unpack elements to the correct location
2989 while (NumElems > 4) {
2990 if (EltNo < NumElems/2) {
2991 V1 = getUnpackl(DAG, dl, VT, V1, V1);
2992 } else {
2993 V1 = getUnpackh(DAG, dl, VT, V1, V1);
2994 EltNo -= NumElems/2;
2996 NumElems >>= 1;
2999 // Perform the splat.
3000 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3001 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3002 V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3003 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3006 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3007 /// vector of zero or undef vector. This produces a shuffle where the low
3008 /// element of V2 is swizzled into the zero/undef vector, landing at element
3009 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
3010 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3011 bool isZero, bool HasSSE2,
3012 SelectionDAG &DAG) {
3013 MVT VT = V2.getValueType();
3014 SDValue V1 = isZero
3015 ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3016 unsigned NumElems = VT.getVectorNumElements();
3017 SmallVector<int, 16> MaskVec;
3018 for (unsigned i = 0; i != NumElems; ++i)
3019 // If this is the insertion idx, put the low elt of V2 here.
3020 MaskVec.push_back(i == Idx ? NumElems : i);
3021 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3024 /// getNumOfConsecutiveZeros - Return the number of elements in a result of
3025 /// a shuffle that is zero.
3026 static
3027 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3028 bool Low, SelectionDAG &DAG) {
3029 unsigned NumZeros = 0;
3030 for (int i = 0; i < NumElems; ++i) {
3031 unsigned Index = Low ? i : NumElems-i-1;
3032 int Idx = SVOp->getMaskElt(Index);
3033 if (Idx < 0) {
3034 ++NumZeros;
3035 continue;
3037 SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3038 if (Elt.getNode() && X86::isZeroNode(Elt))
3039 ++NumZeros;
3040 else
3041 break;
3043 return NumZeros;
3046 /// isVectorShift - Returns true if the shuffle can be implemented as a
3047 /// logical left or right shift of a vector.
3048 /// FIXME: split into pslldqi, psrldqi, palignr variants.
3049 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3050 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3051 int NumElems = SVOp->getValueType(0).getVectorNumElements();
3053 isLeft = true;
3054 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3055 if (!NumZeros) {
3056 isLeft = false;
3057 NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3058 if (!NumZeros)
3059 return false;
3061 bool SeenV1 = false;
3062 bool SeenV2 = false;
3063 for (int i = NumZeros; i < NumElems; ++i) {
3064 int Val = isLeft ? (i - NumZeros) : i;
3065 int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3066 if (Idx < 0)
3067 continue;
3068 if (Idx < NumElems)
3069 SeenV1 = true;
3070 else {
3071 Idx -= NumElems;
3072 SeenV2 = true;
3074 if (Idx != Val)
3075 return false;
3077 if (SeenV1 && SeenV2)
3078 return false;
3080 ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3081 ShAmt = NumZeros;
3082 return true;
3086 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3088 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3089 unsigned NumNonZero, unsigned NumZero,
3090 SelectionDAG &DAG, TargetLowering &TLI) {
3091 if (NumNonZero > 8)
3092 return SDValue();
3094 DebugLoc dl = Op.getDebugLoc();
3095 SDValue V(0, 0);
3096 bool First = true;
3097 for (unsigned i = 0; i < 16; ++i) {
3098 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3099 if (ThisIsNonZero && First) {
3100 if (NumZero)
3101 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3102 else
3103 V = DAG.getUNDEF(MVT::v8i16);
3104 First = false;
3107 if ((i & 1) != 0) {
3108 SDValue ThisElt(0, 0), LastElt(0, 0);
3109 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3110 if (LastIsNonZero) {
3111 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3112 MVT::i16, Op.getOperand(i-1));
3114 if (ThisIsNonZero) {
3115 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3116 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3117 ThisElt, DAG.getConstant(8, MVT::i8));
3118 if (LastIsNonZero)
3119 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3120 } else
3121 ThisElt = LastElt;
3123 if (ThisElt.getNode())
3124 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3125 DAG.getIntPtrConstant(i/2));
3129 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3132 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3134 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3135 unsigned NumNonZero, unsigned NumZero,
3136 SelectionDAG &DAG, TargetLowering &TLI) {
3137 if (NumNonZero > 4)
3138 return SDValue();
3140 DebugLoc dl = Op.getDebugLoc();
3141 SDValue V(0, 0);
3142 bool First = true;
3143 for (unsigned i = 0; i < 8; ++i) {
3144 bool isNonZero = (NonZeros & (1 << i)) != 0;
3145 if (isNonZero) {
3146 if (First) {
3147 if (NumZero)
3148 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3149 else
3150 V = DAG.getUNDEF(MVT::v8i16);
3151 First = false;
3153 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3154 MVT::v8i16, V, Op.getOperand(i),
3155 DAG.getIntPtrConstant(i));
3159 return V;
3162 /// getVShift - Return a vector logical shift node.
3164 static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3165 unsigned NumBits, SelectionDAG &DAG,
3166 const TargetLowering &TLI, DebugLoc dl) {
3167 bool isMMX = VT.getSizeInBits() == 64;
3168 MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3169 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3170 SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3171 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3172 DAG.getNode(Opc, dl, ShVT, SrcOp,
3173 DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3176 SDValue
3177 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3178 DebugLoc dl = Op.getDebugLoc();
3179 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3180 if (ISD::isBuildVectorAllZeros(Op.getNode())
3181 || ISD::isBuildVectorAllOnes(Op.getNode())) {
3182 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3183 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3184 // eliminated on x86-32 hosts.
3185 if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3186 return Op;
3188 if (ISD::isBuildVectorAllOnes(Op.getNode()))
3189 return getOnesVector(Op.getValueType(), DAG, dl);
3190 return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3193 MVT VT = Op.getValueType();
3194 MVT EVT = VT.getVectorElementType();
3195 unsigned EVTBits = EVT.getSizeInBits();
3197 unsigned NumElems = Op.getNumOperands();
3198 unsigned NumZero = 0;
3199 unsigned NumNonZero = 0;
3200 unsigned NonZeros = 0;
3201 bool IsAllConstants = true;
3202 SmallSet<SDValue, 8> Values;
3203 for (unsigned i = 0; i < NumElems; ++i) {
3204 SDValue Elt = Op.getOperand(i);
3205 if (Elt.getOpcode() == ISD::UNDEF)
3206 continue;
3207 Values.insert(Elt);
3208 if (Elt.getOpcode() != ISD::Constant &&
3209 Elt.getOpcode() != ISD::ConstantFP)
3210 IsAllConstants = false;
3211 if (X86::isZeroNode(Elt))
3212 NumZero++;
3213 else {
3214 NonZeros |= (1 << i);
3215 NumNonZero++;
3219 if (NumNonZero == 0) {
3220 // All undef vector. Return an UNDEF. All zero vectors were handled above.
3221 return DAG.getUNDEF(VT);
3224 // Special case for single non-zero, non-undef, element.
3225 if (NumNonZero == 1) {
3226 unsigned Idx = CountTrailingZeros_32(NonZeros);
3227 SDValue Item = Op.getOperand(Idx);
3229 // If this is an insertion of an i64 value on x86-32, and if the top bits of
3230 // the value are obviously zero, truncate the value to i32 and do the
3231 // insertion that way. Only do this if the value is non-constant or if the
3232 // value is a constant being inserted into element 0. It is cheaper to do
3233 // a constant pool load than it is to do a movd + shuffle.
3234 if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3235 (!IsAllConstants || Idx == 0)) {
3236 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3237 // Handle MMX and SSE both.
3238 MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3239 unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3241 // Truncate the value (which may itself be a constant) to i32, and
3242 // convert it to a vector with movd (S2V+shuffle to zero extend).
3243 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3244 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3245 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3246 Subtarget->hasSSE2(), DAG);
3248 // Now we have our 32-bit value zero extended in the low element of
3249 // a vector. If Idx != 0, swizzle it into place.
3250 if (Idx != 0) {
3251 SmallVector<int, 4> Mask;
3252 Mask.push_back(Idx);
3253 for (unsigned i = 1; i != VecElts; ++i)
3254 Mask.push_back(i);
3255 Item = DAG.getVectorShuffle(VecVT, dl, Item,
3256 DAG.getUNDEF(Item.getValueType()),
3257 &Mask[0]);
3259 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3263 // If we have a constant or non-constant insertion into the low element of
3264 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3265 // the rest of the elements. This will be matched as movd/movq/movss/movsd
3266 // depending on what the source datatype is.
3267 if (Idx == 0) {
3268 if (NumZero == 0) {
3269 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3270 } else if (EVT == MVT::i32 || EVT == MVT::f32 || EVT == MVT::f64 ||
3271 (EVT == MVT::i64 && Subtarget->is64Bit())) {
3272 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3273 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3274 return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3275 DAG);
3276 } else if (EVT == MVT::i16 || EVT == MVT::i8) {
3277 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3278 MVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3279 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3280 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3281 Subtarget->hasSSE2(), DAG);
3282 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3286 // Is it a vector logical left shift?
3287 if (NumElems == 2 && Idx == 1 &&
3288 X86::isZeroNode(Op.getOperand(0)) &&
3289 !X86::isZeroNode(Op.getOperand(1))) {
3290 unsigned NumBits = VT.getSizeInBits();
3291 return getVShift(true, VT,
3292 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3293 VT, Op.getOperand(1)),
3294 NumBits/2, DAG, *this, dl);
3297 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3298 return SDValue();
3300 // Otherwise, if this is a vector with i32 or f32 elements, and the element
3301 // is a non-constant being inserted into an element other than the low one,
3302 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
3303 // movd/movss) to move this into the low element, then shuffle it into
3304 // place.
3305 if (EVTBits == 32) {
3306 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3308 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3309 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3310 Subtarget->hasSSE2(), DAG);
3311 SmallVector<int, 8> MaskVec;
3312 for (unsigned i = 0; i < NumElems; i++)
3313 MaskVec.push_back(i == Idx ? 0 : 1);
3314 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3318 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3319 if (Values.size() == 1)
3320 return SDValue();
3322 // A vector full of immediates; various special cases are already
3323 // handled, so this is best done with a single constant-pool load.
3324 if (IsAllConstants)
3325 return SDValue();
3327 // Let legalizer expand 2-wide build_vectors.
3328 if (EVTBits == 64) {
3329 if (NumNonZero == 1) {
3330 // One half is zero or undef.
3331 unsigned Idx = CountTrailingZeros_32(NonZeros);
3332 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3333 Op.getOperand(Idx));
3334 return getShuffleVectorZeroOrUndef(V2, Idx, true,
3335 Subtarget->hasSSE2(), DAG);
3337 return SDValue();
3340 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3341 if (EVTBits == 8 && NumElems == 16) {
3342 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3343 *this);
3344 if (V.getNode()) return V;
3347 if (EVTBits == 16 && NumElems == 8) {
3348 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3349 *this);
3350 if (V.getNode()) return V;
3353 // If element VT is == 32 bits, turn it into a number of shuffles.
3354 SmallVector<SDValue, 8> V;
3355 V.resize(NumElems);
3356 if (NumElems == 4 && NumZero > 0) {
3357 for (unsigned i = 0; i < 4; ++i) {
3358 bool isZero = !(NonZeros & (1 << i));
3359 if (isZero)
3360 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3361 else
3362 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3365 for (unsigned i = 0; i < 2; ++i) {
3366 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3367 default: break;
3368 case 0:
3369 V[i] = V[i*2]; // Must be a zero vector.
3370 break;
3371 case 1:
3372 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3373 break;
3374 case 2:
3375 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3376 break;
3377 case 3:
3378 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3379 break;
3383 SmallVector<int, 8> MaskVec;
3384 bool Reverse = (NonZeros & 0x3) == 2;
3385 for (unsigned i = 0; i < 2; ++i)
3386 MaskVec.push_back(Reverse ? 1-i : i);
3387 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3388 for (unsigned i = 0; i < 2; ++i)
3389 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3390 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3393 if (Values.size() > 2) {
3394 // If we have SSE 4.1, Expand into a number of inserts unless the number of
3395 // values to be inserted is equal to the number of elements, in which case
3396 // use the unpack code below in the hopes of matching the consecutive elts
3397 // load merge pattern for shuffles.
3398 // FIXME: We could probably just check that here directly.
3399 if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3400 getSubtarget()->hasSSE41()) {
3401 V[0] = DAG.getUNDEF(VT);
3402 for (unsigned i = 0; i < NumElems; ++i)
3403 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3404 V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3405 Op.getOperand(i), DAG.getIntPtrConstant(i));
3406 return V[0];
3408 // Expand into a number of unpckl*.
3409 // e.g. for v4f32
3410 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3411 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3412 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3413 for (unsigned i = 0; i < NumElems; ++i)
3414 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3415 NumElems >>= 1;
3416 while (NumElems != 0) {
3417 for (unsigned i = 0; i < NumElems; ++i)
3418 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3419 NumElems >>= 1;
3421 return V[0];
3424 return SDValue();
3427 // v8i16 shuffles - Prefer shuffles in the following order:
3428 // 1. [all] pshuflw, pshufhw, optional move
3429 // 2. [ssse3] 1 x pshufb
3430 // 3. [ssse3] 2 x pshufb + 1 x por
3431 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3432 static
3433 SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3434 SelectionDAG &DAG, X86TargetLowering &TLI) {
3435 SDValue V1 = SVOp->getOperand(0);
3436 SDValue V2 = SVOp->getOperand(1);
3437 DebugLoc dl = SVOp->getDebugLoc();
3438 SmallVector<int, 8> MaskVals;
3440 // Determine if more than 1 of the words in each of the low and high quadwords
3441 // of the result come from the same quadword of one of the two inputs. Undef
3442 // mask values count as coming from any quadword, for better codegen.
3443 SmallVector<unsigned, 4> LoQuad(4);
3444 SmallVector<unsigned, 4> HiQuad(4);
3445 BitVector InputQuads(4);
3446 for (unsigned i = 0; i < 8; ++i) {
3447 SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3448 int EltIdx = SVOp->getMaskElt(i);
3449 MaskVals.push_back(EltIdx);
3450 if (EltIdx < 0) {
3451 ++Quad[0];
3452 ++Quad[1];
3453 ++Quad[2];
3454 ++Quad[3];
3455 continue;
3457 ++Quad[EltIdx / 4];
3458 InputQuads.set(EltIdx / 4);
3461 int BestLoQuad = -1;
3462 unsigned MaxQuad = 1;
3463 for (unsigned i = 0; i < 4; ++i) {
3464 if (LoQuad[i] > MaxQuad) {
3465 BestLoQuad = i;
3466 MaxQuad = LoQuad[i];
3470 int BestHiQuad = -1;
3471 MaxQuad = 1;
3472 for (unsigned i = 0; i < 4; ++i) {
3473 if (HiQuad[i] > MaxQuad) {
3474 BestHiQuad = i;
3475 MaxQuad = HiQuad[i];
3479 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3480 // of the two input vectors, shuffle them into one input vector so only a
3481 // single pshufb instruction is necessary. If There are more than 2 input
3482 // quads, disable the next transformation since it does not help SSSE3.
3483 bool V1Used = InputQuads[0] || InputQuads[1];
3484 bool V2Used = InputQuads[2] || InputQuads[3];
3485 if (TLI.getSubtarget()->hasSSSE3()) {
3486 if (InputQuads.count() == 2 && V1Used && V2Used) {
3487 BestLoQuad = InputQuads.find_first();
3488 BestHiQuad = InputQuads.find_next(BestLoQuad);
3490 if (InputQuads.count() > 2) {
3491 BestLoQuad = -1;
3492 BestHiQuad = -1;
3496 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3497 // the shuffle mask. If a quad is scored as -1, that means that it contains
3498 // words from all 4 input quadwords.
3499 SDValue NewV;
3500 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3501 SmallVector<int, 8> MaskV;
3502 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3503 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3504 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3505 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3506 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3507 NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3509 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3510 // source words for the shuffle, to aid later transformations.
3511 bool AllWordsInNewV = true;
3512 bool InOrder[2] = { true, true };
3513 for (unsigned i = 0; i != 8; ++i) {
3514 int idx = MaskVals[i];
3515 if (idx != (int)i)
3516 InOrder[i/4] = false;
3517 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3518 continue;
3519 AllWordsInNewV = false;
3520 break;
3523 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3524 if (AllWordsInNewV) {
3525 for (int i = 0; i != 8; ++i) {
3526 int idx = MaskVals[i];
3527 if (idx < 0)
3528 continue;
3529 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3530 if ((idx != i) && idx < 4)
3531 pshufhw = false;
3532 if ((idx != i) && idx > 3)
3533 pshuflw = false;
3535 V1 = NewV;
3536 V2Used = false;
3537 BestLoQuad = 0;
3538 BestHiQuad = 1;
3541 // If we've eliminated the use of V2, and the new mask is a pshuflw or
3542 // pshufhw, that's as cheap as it gets. Return the new shuffle.
3543 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3544 return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3545 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3549 // If we have SSSE3, and all words of the result are from 1 input vector,
3550 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
3551 // is present, fall back to case 4.
3552 if (TLI.getSubtarget()->hasSSSE3()) {
3553 SmallVector<SDValue,16> pshufbMask;
3555 // If we have elements from both input vectors, set the high bit of the
3556 // shuffle mask element to zero out elements that come from V2 in the V1
3557 // mask, and elements that come from V1 in the V2 mask, so that the two
3558 // results can be OR'd together.
3559 bool TwoInputs = V1Used && V2Used;
3560 for (unsigned i = 0; i != 8; ++i) {
3561 int EltIdx = MaskVals[i] * 2;
3562 if (TwoInputs && (EltIdx >= 16)) {
3563 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3564 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3565 continue;
3567 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3568 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3570 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3571 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3572 DAG.getNode(ISD::BUILD_VECTOR, dl,
3573 MVT::v16i8, &pshufbMask[0], 16));
3574 if (!TwoInputs)
3575 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3577 // Calculate the shuffle mask for the second input, shuffle it, and
3578 // OR it with the first shuffled input.
3579 pshufbMask.clear();
3580 for (unsigned i = 0; i != 8; ++i) {
3581 int EltIdx = MaskVals[i] * 2;
3582 if (EltIdx < 16) {
3583 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3584 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3585 continue;
3587 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3588 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3590 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3591 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3592 DAG.getNode(ISD::BUILD_VECTOR, dl,
3593 MVT::v16i8, &pshufbMask[0], 16));
3594 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3595 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3598 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3599 // and update MaskVals with new element order.
3600 BitVector InOrder(8);
3601 if (BestLoQuad >= 0) {
3602 SmallVector<int, 8> MaskV;
3603 for (int i = 0; i != 4; ++i) {
3604 int idx = MaskVals[i];
3605 if (idx < 0) {
3606 MaskV.push_back(-1);
3607 InOrder.set(i);
3608 } else if ((idx / 4) == BestLoQuad) {
3609 MaskV.push_back(idx & 3);
3610 InOrder.set(i);
3611 } else {
3612 MaskV.push_back(-1);
3615 for (unsigned i = 4; i != 8; ++i)
3616 MaskV.push_back(i);
3617 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3618 &MaskV[0]);
3621 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3622 // and update MaskVals with the new element order.
3623 if (BestHiQuad >= 0) {
3624 SmallVector<int, 8> MaskV;
3625 for (unsigned i = 0; i != 4; ++i)
3626 MaskV.push_back(i);
3627 for (unsigned i = 4; i != 8; ++i) {
3628 int idx = MaskVals[i];
3629 if (idx < 0) {
3630 MaskV.push_back(-1);
3631 InOrder.set(i);
3632 } else if ((idx / 4) == BestHiQuad) {
3633 MaskV.push_back((idx & 3) + 4);
3634 InOrder.set(i);
3635 } else {
3636 MaskV.push_back(-1);
3639 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3640 &MaskV[0]);
3643 // In case BestHi & BestLo were both -1, which means each quadword has a word
3644 // from each of the four input quadwords, calculate the InOrder bitvector now
3645 // before falling through to the insert/extract cleanup.
3646 if (BestLoQuad == -1 && BestHiQuad == -1) {
3647 NewV = V1;
3648 for (int i = 0; i != 8; ++i)
3649 if (MaskVals[i] < 0 || MaskVals[i] == i)
3650 InOrder.set(i);
3653 // The other elements are put in the right place using pextrw and pinsrw.
3654 for (unsigned i = 0; i != 8; ++i) {
3655 if (InOrder[i])
3656 continue;
3657 int EltIdx = MaskVals[i];
3658 if (EltIdx < 0)
3659 continue;
3660 SDValue ExtOp = (EltIdx < 8)
3661 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3662 DAG.getIntPtrConstant(EltIdx))
3663 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3664 DAG.getIntPtrConstant(EltIdx - 8));
3665 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3666 DAG.getIntPtrConstant(i));
3668 return NewV;
3671 // v16i8 shuffles - Prefer shuffles in the following order:
3672 // 1. [ssse3] 1 x pshufb
3673 // 2. [ssse3] 2 x pshufb + 1 x por
3674 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
3675 static
3676 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3677 SelectionDAG &DAG, X86TargetLowering &TLI) {
3678 SDValue V1 = SVOp->getOperand(0);
3679 SDValue V2 = SVOp->getOperand(1);
3680 DebugLoc dl = SVOp->getDebugLoc();
3681 SmallVector<int, 16> MaskVals;
3682 SVOp->getMask(MaskVals);
3684 // If we have SSSE3, case 1 is generated when all result bytes come from
3685 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
3686 // present, fall back to case 3.
3687 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3688 bool V1Only = true;
3689 bool V2Only = true;
3690 for (unsigned i = 0; i < 16; ++i) {
3691 int EltIdx = MaskVals[i];
3692 if (EltIdx < 0)
3693 continue;
3694 if (EltIdx < 16)
3695 V2Only = false;
3696 else
3697 V1Only = false;
3700 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3701 if (TLI.getSubtarget()->hasSSSE3()) {
3702 SmallVector<SDValue,16> pshufbMask;
3704 // If all result elements are from one input vector, then only translate
3705 // undef mask values to 0x80 (zero out result) in the pshufb mask.
3707 // Otherwise, we have elements from both input vectors, and must zero out
3708 // elements that come from V2 in the first mask, and V1 in the second mask
3709 // so that we can OR them together.
3710 bool TwoInputs = !(V1Only || V2Only);
3711 for (unsigned i = 0; i != 16; ++i) {
3712 int EltIdx = MaskVals[i];
3713 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3714 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3715 continue;
3717 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3719 // If all the elements are from V2, assign it to V1 and return after
3720 // building the first pshufb.
3721 if (V2Only)
3722 V1 = V2;
3723 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3724 DAG.getNode(ISD::BUILD_VECTOR, dl,
3725 MVT::v16i8, &pshufbMask[0], 16));
3726 if (!TwoInputs)
3727 return V1;
3729 // Calculate the shuffle mask for the second input, shuffle it, and
3730 // OR it with the first shuffled input.
3731 pshufbMask.clear();
3732 for (unsigned i = 0; i != 16; ++i) {
3733 int EltIdx = MaskVals[i];
3734 if (EltIdx < 16) {
3735 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3736 continue;
3738 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3740 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3741 DAG.getNode(ISD::BUILD_VECTOR, dl,
3742 MVT::v16i8, &pshufbMask[0], 16));
3743 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3746 // No SSSE3 - Calculate in place words and then fix all out of place words
3747 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
3748 // the 16 different words that comprise the two doublequadword input vectors.
3749 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3750 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3751 SDValue NewV = V2Only ? V2 : V1;
3752 for (int i = 0; i != 8; ++i) {
3753 int Elt0 = MaskVals[i*2];
3754 int Elt1 = MaskVals[i*2+1];
3756 // This word of the result is all undef, skip it.
3757 if (Elt0 < 0 && Elt1 < 0)
3758 continue;
3760 // This word of the result is already in the correct place, skip it.
3761 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3762 continue;
3763 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3764 continue;
3766 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3767 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3768 SDValue InsElt;
3770 // If Elt0 and Elt1 are defined, are consecutive, and can be load
3771 // using a single extract together, load it and store it.
3772 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3773 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3774 DAG.getIntPtrConstant(Elt1 / 2));
3775 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3776 DAG.getIntPtrConstant(i));
3777 continue;
3780 // If Elt1 is defined, extract it from the appropriate source. If the
3781 // source byte is not also odd, shift the extracted word left 8 bits
3782 // otherwise clear the bottom 8 bits if we need to do an or.
3783 if (Elt1 >= 0) {
3784 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3785 DAG.getIntPtrConstant(Elt1 / 2));
3786 if ((Elt1 & 1) == 0)
3787 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3788 DAG.getConstant(8, TLI.getShiftAmountTy()));
3789 else if (Elt0 >= 0)
3790 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3791 DAG.getConstant(0xFF00, MVT::i16));
3793 // If Elt0 is defined, extract it from the appropriate source. If the
3794 // source byte is not also even, shift the extracted word right 8 bits. If
3795 // Elt1 was also defined, OR the extracted values together before
3796 // inserting them in the result.
3797 if (Elt0 >= 0) {
3798 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3799 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3800 if ((Elt0 & 1) != 0)
3801 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3802 DAG.getConstant(8, TLI.getShiftAmountTy()));
3803 else if (Elt1 >= 0)
3804 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3805 DAG.getConstant(0x00FF, MVT::i16));
3806 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3807 : InsElt0;
3809 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3810 DAG.getIntPtrConstant(i));
3812 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3815 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3816 /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3817 /// done when every pair / quad of shuffle mask elements point to elements in
3818 /// the right sequence. e.g.
3819 /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3820 static
3821 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3822 SelectionDAG &DAG,
3823 TargetLowering &TLI, DebugLoc dl) {
3824 MVT VT = SVOp->getValueType(0);
3825 SDValue V1 = SVOp->getOperand(0);
3826 SDValue V2 = SVOp->getOperand(1);
3827 unsigned NumElems = VT.getVectorNumElements();
3828 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3829 MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3830 MVT MaskEltVT = MaskVT.getVectorElementType();
3831 MVT NewVT = MaskVT;
3832 switch (VT.getSimpleVT()) {
3833 default: assert(false && "Unexpected!");
3834 case MVT::v4f32: NewVT = MVT::v2f64; break;
3835 case MVT::v4i32: NewVT = MVT::v2i64; break;
3836 case MVT::v8i16: NewVT = MVT::v4i32; break;
3837 case MVT::v16i8: NewVT = MVT::v4i32; break;
3840 if (NewWidth == 2) {
3841 if (VT.isInteger())
3842 NewVT = MVT::v2i64;
3843 else
3844 NewVT = MVT::v2f64;
3846 int Scale = NumElems / NewWidth;
3847 SmallVector<int, 8> MaskVec;
3848 for (unsigned i = 0; i < NumElems; i += Scale) {
3849 int StartIdx = -1;
3850 for (int j = 0; j < Scale; ++j) {
3851 int EltIdx = SVOp->getMaskElt(i+j);
3852 if (EltIdx < 0)
3853 continue;
3854 if (StartIdx == -1)
3855 StartIdx = EltIdx - (EltIdx % Scale);
3856 if (EltIdx != StartIdx + j)
3857 return SDValue();
3859 if (StartIdx == -1)
3860 MaskVec.push_back(-1);
3861 else
3862 MaskVec.push_back(StartIdx / Scale);
3865 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3866 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3867 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3870 /// getVZextMovL - Return a zero-extending vector move low node.
3872 static SDValue getVZextMovL(MVT VT, MVT OpVT,
3873 SDValue SrcOp, SelectionDAG &DAG,
3874 const X86Subtarget *Subtarget, DebugLoc dl) {
3875 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3876 LoadSDNode *LD = NULL;
3877 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3878 LD = dyn_cast<LoadSDNode>(SrcOp);
3879 if (!LD) {
3880 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3881 // instead.
3882 MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3883 if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3884 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3885 SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3886 SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3887 // PR2108
3888 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3889 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3890 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3891 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3892 OpVT,
3893 SrcOp.getOperand(0)
3894 .getOperand(0))));
3899 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3900 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3901 DAG.getNode(ISD::BIT_CONVERT, dl,
3902 OpVT, SrcOp)));
3905 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3906 /// shuffles.
3907 static SDValue
3908 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3909 SDValue V1 = SVOp->getOperand(0);
3910 SDValue V2 = SVOp->getOperand(1);
3911 DebugLoc dl = SVOp->getDebugLoc();
3912 MVT VT = SVOp->getValueType(0);
3914 SmallVector<std::pair<int, int>, 8> Locs;
3915 Locs.resize(4);
3916 SmallVector<int, 8> Mask1(4U, -1);
3917 SmallVector<int, 8> PermMask;
3918 SVOp->getMask(PermMask);
3920 unsigned NumHi = 0;
3921 unsigned NumLo = 0;
3922 for (unsigned i = 0; i != 4; ++i) {
3923 int Idx = PermMask[i];
3924 if (Idx < 0) {
3925 Locs[i] = std::make_pair(-1, -1);
3926 } else {
3927 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3928 if (Idx < 4) {
3929 Locs[i] = std::make_pair(0, NumLo);
3930 Mask1[NumLo] = Idx;
3931 NumLo++;
3932 } else {
3933 Locs[i] = std::make_pair(1, NumHi);
3934 if (2+NumHi < 4)
3935 Mask1[2+NumHi] = Idx;
3936 NumHi++;
3941 if (NumLo <= 2 && NumHi <= 2) {
3942 // If no more than two elements come from either vector. This can be
3943 // implemented with two shuffles. First shuffle gather the elements.
3944 // The second shuffle, which takes the first shuffle as both of its
3945 // vector operands, put the elements into the right order.
3946 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3948 SmallVector<int, 8> Mask2(4U, -1);
3950 for (unsigned i = 0; i != 4; ++i) {
3951 if (Locs[i].first == -1)
3952 continue;
3953 else {
3954 unsigned Idx = (i < 2) ? 0 : 4;
3955 Idx += Locs[i].first * 2 + Locs[i].second;
3956 Mask2[i] = Idx;
3960 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
3961 } else if (NumLo == 3 || NumHi == 3) {
3962 // Otherwise, we must have three elements from one vector, call it X, and
3963 // one element from the other, call it Y. First, use a shufps to build an
3964 // intermediate vector with the one element from Y and the element from X
3965 // that will be in the same half in the final destination (the indexes don't
3966 // matter). Then, use a shufps to build the final vector, taking the half
3967 // containing the element from Y from the intermediate, and the other half
3968 // from X.
3969 if (NumHi == 3) {
3970 // Normalize it so the 3 elements come from V1.
3971 CommuteVectorShuffleMask(PermMask, VT);
3972 std::swap(V1, V2);
3975 // Find the element from V2.
3976 unsigned HiIndex;
3977 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3978 int Val = PermMask[HiIndex];
3979 if (Val < 0)
3980 continue;
3981 if (Val >= 4)
3982 break;
3985 Mask1[0] = PermMask[HiIndex];
3986 Mask1[1] = -1;
3987 Mask1[2] = PermMask[HiIndex^1];
3988 Mask1[3] = -1;
3989 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3991 if (HiIndex >= 2) {
3992 Mask1[0] = PermMask[0];
3993 Mask1[1] = PermMask[1];
3994 Mask1[2] = HiIndex & 1 ? 6 : 4;
3995 Mask1[3] = HiIndex & 1 ? 4 : 6;
3996 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3997 } else {
3998 Mask1[0] = HiIndex & 1 ? 2 : 0;
3999 Mask1[1] = HiIndex & 1 ? 0 : 2;
4000 Mask1[2] = PermMask[2];
4001 Mask1[3] = PermMask[3];
4002 if (Mask1[2] >= 0)
4003 Mask1[2] += 4;
4004 if (Mask1[3] >= 0)
4005 Mask1[3] += 4;
4006 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4010 // Break it into (shuffle shuffle_hi, shuffle_lo).
4011 Locs.clear();
4012 SmallVector<int,8> LoMask(4U, -1);
4013 SmallVector<int,8> HiMask(4U, -1);
4015 SmallVector<int,8> *MaskPtr = &LoMask;
4016 unsigned MaskIdx = 0;
4017 unsigned LoIdx = 0;
4018 unsigned HiIdx = 2;
4019 for (unsigned i = 0; i != 4; ++i) {
4020 if (i == 2) {
4021 MaskPtr = &HiMask;
4022 MaskIdx = 1;
4023 LoIdx = 0;
4024 HiIdx = 2;
4026 int Idx = PermMask[i];
4027 if (Idx < 0) {
4028 Locs[i] = std::make_pair(-1, -1);
4029 } else if (Idx < 4) {
4030 Locs[i] = std::make_pair(MaskIdx, LoIdx);
4031 (*MaskPtr)[LoIdx] = Idx;
4032 LoIdx++;
4033 } else {
4034 Locs[i] = std::make_pair(MaskIdx, HiIdx);
4035 (*MaskPtr)[HiIdx] = Idx;
4036 HiIdx++;
4040 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4041 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4042 SmallVector<int, 8> MaskOps;
4043 for (unsigned i = 0; i != 4; ++i) {
4044 if (Locs[i].first == -1) {
4045 MaskOps.push_back(-1);
4046 } else {
4047 unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4048 MaskOps.push_back(Idx);
4051 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4054 SDValue
4055 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4056 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4057 SDValue V1 = Op.getOperand(0);
4058 SDValue V2 = Op.getOperand(1);
4059 MVT VT = Op.getValueType();
4060 DebugLoc dl = Op.getDebugLoc();
4061 unsigned NumElems = VT.getVectorNumElements();
4062 bool isMMX = VT.getSizeInBits() == 64;
4063 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4064 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4065 bool V1IsSplat = false;
4066 bool V2IsSplat = false;
4068 if (isZeroShuffle(SVOp))
4069 return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4071 // Promote splats to v4f32.
4072 if (SVOp->isSplat()) {
4073 if (isMMX || NumElems < 4)
4074 return Op;
4075 return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4078 // If the shuffle can be profitably rewritten as a narrower shuffle, then
4079 // do it!
4080 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4081 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4082 if (NewOp.getNode())
4083 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4084 LowerVECTOR_SHUFFLE(NewOp, DAG));
4085 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4086 // FIXME: Figure out a cleaner way to do this.
4087 // Try to make use of movq to zero out the top part.
4088 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4089 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4090 if (NewOp.getNode()) {
4091 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4092 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4093 DAG, Subtarget, dl);
4095 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4096 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4097 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4098 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4099 DAG, Subtarget, dl);
4103 if (X86::isPSHUFDMask(SVOp))
4104 return Op;
4106 // Check if this can be converted into a logical shift.
4107 bool isLeft = false;
4108 unsigned ShAmt = 0;
4109 SDValue ShVal;
4110 bool isShift = getSubtarget()->hasSSE2() &&
4111 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4112 if (isShift && ShVal.hasOneUse()) {
4113 // If the shifted value has multiple uses, it may be cheaper to use
4114 // v_set0 + movlhps or movhlps, etc.
4115 MVT EVT = VT.getVectorElementType();
4116 ShAmt *= EVT.getSizeInBits();
4117 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4120 if (X86::isMOVLMask(SVOp)) {
4121 if (V1IsUndef)
4122 return V2;
4123 if (ISD::isBuildVectorAllZeros(V1.getNode()))
4124 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4125 if (!isMMX)
4126 return Op;
4129 // FIXME: fold these into legal mask.
4130 if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4131 X86::isMOVSLDUPMask(SVOp) ||
4132 X86::isMOVHLPSMask(SVOp) ||
4133 X86::isMOVHPMask(SVOp) ||
4134 X86::isMOVLPMask(SVOp)))
4135 return Op;
4137 if (ShouldXformToMOVHLPS(SVOp) ||
4138 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4139 return CommuteVectorShuffle(SVOp, DAG);
4141 if (isShift) {
4142 // No better options. Use a vshl / vsrl.
4143 MVT EVT = VT.getVectorElementType();
4144 ShAmt *= EVT.getSizeInBits();
4145 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4148 bool Commuted = false;
4149 // FIXME: This should also accept a bitcast of a splat? Be careful, not
4150 // 1,1,1,1 -> v8i16 though.
4151 V1IsSplat = isSplatVector(V1.getNode());
4152 V2IsSplat = isSplatVector(V2.getNode());
4154 // Canonicalize the splat or undef, if present, to be on the RHS.
4155 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4156 Op = CommuteVectorShuffle(SVOp, DAG);
4157 SVOp = cast<ShuffleVectorSDNode>(Op);
4158 V1 = SVOp->getOperand(0);
4159 V2 = SVOp->getOperand(1);
4160 std::swap(V1IsSplat, V2IsSplat);
4161 std::swap(V1IsUndef, V2IsUndef);
4162 Commuted = true;
4165 if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4166 // Shuffling low element of v1 into undef, just return v1.
4167 if (V2IsUndef)
4168 return V1;
4169 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4170 // the instruction selector will not match, so get a canonical MOVL with
4171 // swapped operands to undo the commute.
4172 return getMOVL(DAG, dl, VT, V2, V1);
4175 if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4176 X86::isUNPCKH_v_undef_Mask(SVOp) ||
4177 X86::isUNPCKLMask(SVOp) ||
4178 X86::isUNPCKHMask(SVOp))
4179 return Op;
4181 if (V2IsSplat) {
4182 // Normalize mask so all entries that point to V2 points to its first
4183 // element then try to match unpck{h|l} again. If match, return a
4184 // new vector_shuffle with the corrected mask.
4185 SDValue NewMask = NormalizeMask(SVOp, DAG);
4186 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4187 if (NSVOp != SVOp) {
4188 if (X86::isUNPCKLMask(NSVOp, true)) {
4189 return NewMask;
4190 } else if (X86::isUNPCKHMask(NSVOp, true)) {
4191 return NewMask;
4196 if (Commuted) {
4197 // Commute is back and try unpck* again.
4198 // FIXME: this seems wrong.
4199 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4200 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4201 if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4202 X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4203 X86::isUNPCKLMask(NewSVOp) ||
4204 X86::isUNPCKHMask(NewSVOp))
4205 return NewOp;
4208 // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4210 // Normalize the node to match x86 shuffle ops if needed
4211 if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4212 return CommuteVectorShuffle(SVOp, DAG);
4214 // Check for legal shuffle and return?
4215 SmallVector<int, 16> PermMask;
4216 SVOp->getMask(PermMask);
4217 if (isShuffleMaskLegal(PermMask, VT))
4218 return Op;
4220 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4221 if (VT == MVT::v8i16) {
4222 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4223 if (NewOp.getNode())
4224 return NewOp;
4227 if (VT == MVT::v16i8) {
4228 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4229 if (NewOp.getNode())
4230 return NewOp;
4233 // Handle all 4 wide cases with a number of shuffles except for MMX.
4234 if (NumElems == 4 && !isMMX)
4235 return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4237 return SDValue();
4240 SDValue
4241 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4242 SelectionDAG &DAG) {
4243 MVT VT = Op.getValueType();
4244 DebugLoc dl = Op.getDebugLoc();
4245 if (VT.getSizeInBits() == 8) {
4246 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4247 Op.getOperand(0), Op.getOperand(1));
4248 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4249 DAG.getValueType(VT));
4250 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4251 } else if (VT.getSizeInBits() == 16) {
4252 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4253 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4254 if (Idx == 0)
4255 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4256 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4257 DAG.getNode(ISD::BIT_CONVERT, dl,
4258 MVT::v4i32,
4259 Op.getOperand(0)),
4260 Op.getOperand(1)));
4261 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4262 Op.getOperand(0), Op.getOperand(1));
4263 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4264 DAG.getValueType(VT));
4265 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4266 } else if (VT == MVT::f32) {
4267 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4268 // the result back to FR32 register. It's only worth matching if the
4269 // result has a single use which is a store or a bitcast to i32. And in
4270 // the case of a store, it's not worth it if the index is a constant 0,
4271 // because a MOVSSmr can be used instead, which is smaller and faster.
4272 if (!Op.hasOneUse())
4273 return SDValue();
4274 SDNode *User = *Op.getNode()->use_begin();
4275 if ((User->getOpcode() != ISD::STORE ||
4276 (isa<ConstantSDNode>(Op.getOperand(1)) &&
4277 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4278 (User->getOpcode() != ISD::BIT_CONVERT ||
4279 User->getValueType(0) != MVT::i32))
4280 return SDValue();
4281 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4282 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4283 Op.getOperand(0)),
4284 Op.getOperand(1));
4285 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4286 } else if (VT == MVT::i32) {
4287 // ExtractPS works with constant index.
4288 if (isa<ConstantSDNode>(Op.getOperand(1)))
4289 return Op;
4291 return SDValue();
4295 SDValue
4296 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4297 if (!isa<ConstantSDNode>(Op.getOperand(1)))
4298 return SDValue();
4300 if (Subtarget->hasSSE41()) {
4301 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4302 if (Res.getNode())
4303 return Res;
4306 MVT VT = Op.getValueType();
4307 DebugLoc dl = Op.getDebugLoc();
4308 // TODO: handle v16i8.
4309 if (VT.getSizeInBits() == 16) {
4310 SDValue Vec = Op.getOperand(0);
4311 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4312 if (Idx == 0)
4313 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4314 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4315 DAG.getNode(ISD::BIT_CONVERT, dl,
4316 MVT::v4i32, Vec),
4317 Op.getOperand(1)));
4318 // Transform it so it match pextrw which produces a 32-bit result.
4319 MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4320 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4321 Op.getOperand(0), Op.getOperand(1));
4322 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4323 DAG.getValueType(VT));
4324 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4325 } else if (VT.getSizeInBits() == 32) {
4326 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4327 if (Idx == 0)
4328 return Op;
4330 // SHUFPS the element to the lowest double word, then movss.
4331 int Mask[4] = { Idx, -1, -1, -1 };
4332 MVT VVT = Op.getOperand(0).getValueType();
4333 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4334 DAG.getUNDEF(VVT), Mask);
4335 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4336 DAG.getIntPtrConstant(0));
4337 } else if (VT.getSizeInBits() == 64) {
4338 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4339 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4340 // to match extract_elt for f64.
4341 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4342 if (Idx == 0)
4343 return Op;
4345 // UNPCKHPD the element to the lowest double word, then movsd.
4346 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4347 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4348 int Mask[2] = { 1, -1 };
4349 MVT VVT = Op.getOperand(0).getValueType();
4350 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4351 DAG.getUNDEF(VVT), Mask);
4352 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4353 DAG.getIntPtrConstant(0));
4356 return SDValue();
4359 SDValue
4360 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4361 MVT VT = Op.getValueType();
4362 MVT EVT = VT.getVectorElementType();
4363 DebugLoc dl = Op.getDebugLoc();
4365 SDValue N0 = Op.getOperand(0);
4366 SDValue N1 = Op.getOperand(1);
4367 SDValue N2 = Op.getOperand(2);
4369 if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4370 isa<ConstantSDNode>(N2)) {
4371 unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4372 : X86ISD::PINSRW;
4373 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4374 // argument.
4375 if (N1.getValueType() != MVT::i32)
4376 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4377 if (N2.getValueType() != MVT::i32)
4378 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4379 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4380 } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4381 // Bits [7:6] of the constant are the source select. This will always be
4382 // zero here. The DAG Combiner may combine an extract_elt index into these
4383 // bits. For example (insert (extract, 3), 2) could be matched by putting
4384 // the '3' into bits [7:6] of X86ISD::INSERTPS.
4385 // Bits [5:4] of the constant are the destination select. This is the
4386 // value of the incoming immediate.
4387 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
4388 // combine either bitwise AND or insert of float 0.0 to set these bits.
4389 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4390 // Create this as a scalar to vector..
4391 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4392 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4393 } else if (EVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4394 // PINSR* works with constant index.
4395 return Op;
4397 return SDValue();
4400 SDValue
4401 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4402 MVT VT = Op.getValueType();
4403 MVT EVT = VT.getVectorElementType();
4405 if (Subtarget->hasSSE41())
4406 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4408 if (EVT == MVT::i8)
4409 return SDValue();
4411 DebugLoc dl = Op.getDebugLoc();
4412 SDValue N0 = Op.getOperand(0);
4413 SDValue N1 = Op.getOperand(1);
4414 SDValue N2 = Op.getOperand(2);
4416 if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4417 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4418 // as its second argument.
4419 if (N1.getValueType() != MVT::i32)
4420 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4421 if (N2.getValueType() != MVT::i32)
4422 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4423 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4425 return SDValue();
4428 SDValue
4429 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4430 DebugLoc dl = Op.getDebugLoc();
4431 if (Op.getValueType() == MVT::v2f32)
4432 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4433 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4434 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4435 Op.getOperand(0))));
4437 if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4438 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4440 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4441 MVT VT = MVT::v2i32;
4442 switch (Op.getValueType().getSimpleVT()) {
4443 default: break;
4444 case MVT::v16i8:
4445 case MVT::v8i16:
4446 VT = MVT::v4i32;
4447 break;
4449 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4450 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4453 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4454 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4455 // one of the above mentioned nodes. It has to be wrapped because otherwise
4456 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4457 // be used to form addressing mode. These wrapped nodes will be selected
4458 // into MOV32ri.
4459 SDValue
4460 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4461 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4463 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4464 // global base reg.
4465 unsigned char OpFlag = 0;
4466 unsigned WrapperKind = X86ISD::Wrapper;
4468 if (Subtarget->isPICStyleRIPRel() &&
4469 getTargetMachine().getCodeModel() == CodeModel::Small)
4470 WrapperKind = X86ISD::WrapperRIP;
4471 else if (Subtarget->isPICStyleGOT())
4472 OpFlag = X86II::MO_GOTOFF;
4473 else if (Subtarget->isPICStyleStubPIC())
4474 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4476 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4477 CP->getAlignment(),
4478 CP->getOffset(), OpFlag);
4479 DebugLoc DL = CP->getDebugLoc();
4480 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4481 // With PIC, the address is actually $g + Offset.
4482 if (OpFlag) {
4483 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4484 DAG.getNode(X86ISD::GlobalBaseReg,
4485 DebugLoc::getUnknownLoc(), getPointerTy()),
4486 Result);
4489 return Result;
4492 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4493 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4495 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4496 // global base reg.
4497 unsigned char OpFlag = 0;
4498 unsigned WrapperKind = X86ISD::Wrapper;
4500 if (Subtarget->isPICStyleRIPRel() &&
4501 getTargetMachine().getCodeModel() == CodeModel::Small)
4502 WrapperKind = X86ISD::WrapperRIP;
4503 else if (Subtarget->isPICStyleGOT())
4504 OpFlag = X86II::MO_GOTOFF;
4505 else if (Subtarget->isPICStyleStubPIC())
4506 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4508 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4509 OpFlag);
4510 DebugLoc DL = JT->getDebugLoc();
4511 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4513 // With PIC, the address is actually $g + Offset.
4514 if (OpFlag) {
4515 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4516 DAG.getNode(X86ISD::GlobalBaseReg,
4517 DebugLoc::getUnknownLoc(), getPointerTy()),
4518 Result);
4521 return Result;
4524 SDValue
4525 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4526 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4528 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4529 // global base reg.
4530 unsigned char OpFlag = 0;
4531 unsigned WrapperKind = X86ISD::Wrapper;
4532 if (Subtarget->isPICStyleRIPRel() &&
4533 getTargetMachine().getCodeModel() == CodeModel::Small)
4534 WrapperKind = X86ISD::WrapperRIP;
4535 else if (Subtarget->isPICStyleGOT())
4536 OpFlag = X86II::MO_GOTOFF;
4537 else if (Subtarget->isPICStyleStubPIC())
4538 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4540 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4542 DebugLoc DL = Op.getDebugLoc();
4543 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4546 // With PIC, the address is actually $g + Offset.
4547 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4548 !Subtarget->is64Bit()) {
4549 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4550 DAG.getNode(X86ISD::GlobalBaseReg,
4551 DebugLoc::getUnknownLoc(),
4552 getPointerTy()),
4553 Result);
4556 return Result;
4559 SDValue
4560 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4561 int64_t Offset,
4562 SelectionDAG &DAG) const {
4563 // Create the TargetGlobalAddress node, folding in the constant
4564 // offset if it is legal.
4565 unsigned char OpFlags =
4566 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4567 SDValue Result;
4568 if (OpFlags == X86II::MO_NO_FLAG && isInt32(Offset)) {
4569 // A direct static reference to a global.
4570 Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4571 Offset = 0;
4572 } else {
4573 Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4576 if (Subtarget->isPICStyleRIPRel() &&
4577 getTargetMachine().getCodeModel() == CodeModel::Small)
4578 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4579 else
4580 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4582 // With PIC, the address is actually $g + Offset.
4583 if (isGlobalRelativeToPICBase(OpFlags)) {
4584 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4585 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4586 Result);
4589 // For globals that require a load from a stub to get the address, emit the
4590 // load.
4591 if (isGlobalStubReference(OpFlags))
4592 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4593 PseudoSourceValue::getGOT(), 0);
4595 // If there was a non-zero offset that we didn't fold, create an explicit
4596 // addition for it.
4597 if (Offset != 0)
4598 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4599 DAG.getConstant(Offset, getPointerTy()));
4601 return Result;
4604 SDValue
4605 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4606 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4607 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4608 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4611 static SDValue
4612 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4613 SDValue *InFlag, const MVT PtrVT, unsigned ReturnReg,
4614 unsigned char OperandFlags) {
4615 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4616 DebugLoc dl = GA->getDebugLoc();
4617 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4618 GA->getValueType(0),
4619 GA->getOffset(),
4620 OperandFlags);
4621 if (InFlag) {
4622 SDValue Ops[] = { Chain, TGA, *InFlag };
4623 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4624 } else {
4625 SDValue Ops[] = { Chain, TGA };
4626 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4628 SDValue Flag = Chain.getValue(1);
4629 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4632 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4633 static SDValue
4634 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4635 const MVT PtrVT) {
4636 SDValue InFlag;
4637 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
4638 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4639 DAG.getNode(X86ISD::GlobalBaseReg,
4640 DebugLoc::getUnknownLoc(),
4641 PtrVT), InFlag);
4642 InFlag = Chain.getValue(1);
4644 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4647 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4648 static SDValue
4649 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4650 const MVT PtrVT) {
4651 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4652 X86::RAX, X86II::MO_TLSGD);
4655 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4656 // "local exec" model.
4657 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4658 const MVT PtrVT, TLSModel::Model model,
4659 bool is64Bit) {
4660 DebugLoc dl = GA->getDebugLoc();
4661 // Get the Thread Pointer
4662 SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4663 DebugLoc::getUnknownLoc(), PtrVT,
4664 DAG.getRegister(is64Bit? X86::FS : X86::GS,
4665 MVT::i32));
4667 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4668 NULL, 0);
4670 unsigned char OperandFlags = 0;
4671 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
4672 // initialexec.
4673 unsigned WrapperKind = X86ISD::Wrapper;
4674 if (model == TLSModel::LocalExec) {
4675 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4676 } else if (is64Bit) {
4677 assert(model == TLSModel::InitialExec);
4678 OperandFlags = X86II::MO_GOTTPOFF;
4679 WrapperKind = X86ISD::WrapperRIP;
4680 } else {
4681 assert(model == TLSModel::InitialExec);
4682 OperandFlags = X86II::MO_INDNTPOFF;
4685 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4686 // exec)
4687 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4688 GA->getOffset(), OperandFlags);
4689 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4691 if (model == TLSModel::InitialExec)
4692 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4693 PseudoSourceValue::getGOT(), 0);
4695 // The address of the thread local variable is the add of the thread
4696 // pointer with the offset of the variable.
4697 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4700 SDValue
4701 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4702 // TODO: implement the "local dynamic" model
4703 // TODO: implement the "initial exec"model for pic executables
4704 assert(Subtarget->isTargetELF() &&
4705 "TLS not implemented for non-ELF targets");
4706 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4707 const GlobalValue *GV = GA->getGlobal();
4709 // If GV is an alias then use the aliasee for determining
4710 // thread-localness.
4711 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4712 GV = GA->resolveAliasedGlobal(false);
4714 TLSModel::Model model = getTLSModel(GV,
4715 getTargetMachine().getRelocationModel());
4717 switch (model) {
4718 case TLSModel::GeneralDynamic:
4719 case TLSModel::LocalDynamic: // not implemented
4720 if (Subtarget->is64Bit())
4721 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4722 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4724 case TLSModel::InitialExec:
4725 case TLSModel::LocalExec:
4726 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4727 Subtarget->is64Bit());
4730 llvm_unreachable("Unreachable");
4731 return SDValue();
4735 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4736 /// take a 2 x i32 value to shift plus a shift amount.
4737 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4738 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4739 MVT VT = Op.getValueType();
4740 unsigned VTBits = VT.getSizeInBits();
4741 DebugLoc dl = Op.getDebugLoc();
4742 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4743 SDValue ShOpLo = Op.getOperand(0);
4744 SDValue ShOpHi = Op.getOperand(1);
4745 SDValue ShAmt = Op.getOperand(2);
4746 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4747 DAG.getConstant(VTBits - 1, MVT::i8))
4748 : DAG.getConstant(0, VT);
4750 SDValue Tmp2, Tmp3;
4751 if (Op.getOpcode() == ISD::SHL_PARTS) {
4752 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4753 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4754 } else {
4755 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4756 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4759 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4760 DAG.getConstant(VTBits, MVT::i8));
4761 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4762 AndNode, DAG.getConstant(0, MVT::i8));
4764 SDValue Hi, Lo;
4765 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4766 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4767 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4769 if (Op.getOpcode() == ISD::SHL_PARTS) {
4770 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4771 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4772 } else {
4773 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4774 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4777 SDValue Ops[2] = { Lo, Hi };
4778 return DAG.getMergeValues(Ops, 2, dl);
4781 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4782 MVT SrcVT = Op.getOperand(0).getValueType();
4784 if (SrcVT.isVector()) {
4785 if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4786 return Op;
4788 return SDValue();
4791 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4792 "Unknown SINT_TO_FP to lower!");
4794 // These are really Legal; return the operand so the caller accepts it as
4795 // Legal.
4796 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4797 return Op;
4798 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4799 Subtarget->is64Bit()) {
4800 return Op;
4803 DebugLoc dl = Op.getDebugLoc();
4804 unsigned Size = SrcVT.getSizeInBits()/8;
4805 MachineFunction &MF = DAG.getMachineFunction();
4806 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4807 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4808 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4809 StackSlot,
4810 PseudoSourceValue::getFixedStack(SSFI), 0);
4811 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4814 SDValue X86TargetLowering::BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain,
4815 SDValue StackSlot,
4816 SelectionDAG &DAG) {
4817 // Build the FILD
4818 DebugLoc dl = Op.getDebugLoc();
4819 SDVTList Tys;
4820 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4821 if (useSSE)
4822 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4823 else
4824 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4825 SmallVector<SDValue, 8> Ops;
4826 Ops.push_back(Chain);
4827 Ops.push_back(StackSlot);
4828 Ops.push_back(DAG.getValueType(SrcVT));
4829 SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4830 Tys, &Ops[0], Ops.size());
4832 if (useSSE) {
4833 Chain = Result.getValue(1);
4834 SDValue InFlag = Result.getValue(2);
4836 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4837 // shouldn't be necessary except that RFP cannot be live across
4838 // multiple blocks. When stackifier is fixed, they can be uncoupled.
4839 MachineFunction &MF = DAG.getMachineFunction();
4840 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4841 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4842 Tys = DAG.getVTList(MVT::Other);
4843 SmallVector<SDValue, 8> Ops;
4844 Ops.push_back(Chain);
4845 Ops.push_back(Result);
4846 Ops.push_back(StackSlot);
4847 Ops.push_back(DAG.getValueType(Op.getValueType()));
4848 Ops.push_back(InFlag);
4849 Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4850 Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4851 PseudoSourceValue::getFixedStack(SSFI), 0);
4854 return Result;
4857 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4858 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4859 // This algorithm is not obvious. Here it is in C code, more or less:
4861 double uint64_to_double( uint32_t hi, uint32_t lo ) {
4862 static const __m128i exp = { 0x4330000045300000ULL, 0 };
4863 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4865 // Copy ints to xmm registers.
4866 __m128i xh = _mm_cvtsi32_si128( hi );
4867 __m128i xl = _mm_cvtsi32_si128( lo );
4869 // Combine into low half of a single xmm register.
4870 __m128i x = _mm_unpacklo_epi32( xh, xl );
4871 __m128d d;
4872 double sd;
4874 // Merge in appropriate exponents to give the integer bits the right
4875 // magnitude.
4876 x = _mm_unpacklo_epi32( x, exp );
4878 // Subtract away the biases to deal with the IEEE-754 double precision
4879 // implicit 1.
4880 d = _mm_sub_pd( (__m128d) x, bias );
4882 // All conversions up to here are exact. The correctly rounded result is
4883 // calculated using the current rounding mode using the following
4884 // horizontal add.
4885 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4886 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
4887 // store doesn't really need to be here (except
4888 // maybe to zero the other double)
4889 return sd;
4893 DebugLoc dl = Op.getDebugLoc();
4894 LLVMContext *Context = DAG.getContext();
4896 // Build some magic constants.
4897 std::vector<Constant*> CV0;
4898 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
4899 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
4900 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4901 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4902 Constant *C0 = ConstantVector::get(CV0);
4903 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4905 std::vector<Constant*> CV1;
4906 CV1.push_back(
4907 ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
4908 CV1.push_back(
4909 ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
4910 Constant *C1 = ConstantVector::get(CV1);
4911 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4913 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4914 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4915 Op.getOperand(0),
4916 DAG.getIntPtrConstant(1)));
4917 SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4918 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4919 Op.getOperand(0),
4920 DAG.getIntPtrConstant(0)));
4921 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4922 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4923 PseudoSourceValue::getConstantPool(), 0,
4924 false, 16);
4925 SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4926 SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4927 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4928 PseudoSourceValue::getConstantPool(), 0,
4929 false, 16);
4930 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4932 // Add the halves; easiest way is to swap them into another reg first.
4933 int ShufMask[2] = { 1, -1 };
4934 SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4935 DAG.getUNDEF(MVT::v2f64), ShufMask);
4936 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4937 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4938 DAG.getIntPtrConstant(0));
4941 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4942 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4943 DebugLoc dl = Op.getDebugLoc();
4944 // FP constant to bias correct the final result.
4945 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
4946 MVT::f64);
4948 // Load the 32-bit value into an XMM register.
4949 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4950 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4951 Op.getOperand(0),
4952 DAG.getIntPtrConstant(0)));
4954 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4955 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
4956 DAG.getIntPtrConstant(0));
4958 // Or the load with the bias.
4959 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
4960 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4961 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4962 MVT::v2f64, Load)),
4963 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4964 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4965 MVT::v2f64, Bias)));
4966 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4967 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
4968 DAG.getIntPtrConstant(0));
4970 // Subtract the bias.
4971 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
4973 // Handle final rounding.
4974 MVT DestVT = Op.getValueType();
4976 if (DestVT.bitsLT(MVT::f64)) {
4977 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
4978 DAG.getIntPtrConstant(0));
4979 } else if (DestVT.bitsGT(MVT::f64)) {
4980 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
4983 // Handle final rounding.
4984 return Sub;
4987 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4988 SDValue N0 = Op.getOperand(0);
4989 DebugLoc dl = Op.getDebugLoc();
4991 // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4992 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4993 // the optimization here.
4994 if (DAG.SignBitIsZero(N0))
4995 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
4997 MVT SrcVT = N0.getValueType();
4998 if (SrcVT == MVT::i64) {
4999 // We only handle SSE2 f64 target here; caller can expand the rest.
5000 if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5001 return SDValue();
5003 return LowerUINT_TO_FP_i64(Op, DAG);
5004 } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5005 return LowerUINT_TO_FP_i32(Op, DAG);
5008 assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5010 // Make a 64-bit buffer, and use it to build an FILD.
5011 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5012 SDValue WordOff = DAG.getConstant(4, getPointerTy());
5013 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5014 getPointerTy(), StackSlot, WordOff);
5015 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5016 StackSlot, NULL, 0);
5017 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5018 OffsetSlot, NULL, 0);
5019 return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5022 std::pair<SDValue,SDValue> X86TargetLowering::
5023 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5024 DebugLoc dl = Op.getDebugLoc();
5026 MVT DstTy = Op.getValueType();
5028 if (!IsSigned) {
5029 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5030 DstTy = MVT::i64;
5033 assert(DstTy.getSimpleVT() <= MVT::i64 &&
5034 DstTy.getSimpleVT() >= MVT::i16 &&
5035 "Unknown FP_TO_SINT to lower!");
5037 // These are really Legal.
5038 if (DstTy == MVT::i32 &&
5039 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5040 return std::make_pair(SDValue(), SDValue());
5041 if (Subtarget->is64Bit() &&
5042 DstTy == MVT::i64 &&
5043 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5044 return std::make_pair(SDValue(), SDValue());
5046 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5047 // stack slot.
5048 MachineFunction &MF = DAG.getMachineFunction();
5049 unsigned MemSize = DstTy.getSizeInBits()/8;
5050 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5051 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5053 unsigned Opc;
5054 switch (DstTy.getSimpleVT()) {
5055 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5056 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5057 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5058 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5061 SDValue Chain = DAG.getEntryNode();
5062 SDValue Value = Op.getOperand(0);
5063 if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5064 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5065 Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5066 PseudoSourceValue::getFixedStack(SSFI), 0);
5067 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5068 SDValue Ops[] = {
5069 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5071 Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5072 Chain = Value.getValue(1);
5073 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5074 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5077 // Build the FP_TO_INT*_IN_MEM
5078 SDValue Ops[] = { Chain, Value, StackSlot };
5079 SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5081 return std::make_pair(FIST, StackSlot);
5084 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5085 if (Op.getValueType().isVector()) {
5086 if (Op.getValueType() == MVT::v2i32 &&
5087 Op.getOperand(0).getValueType() == MVT::v2f64) {
5088 return Op;
5090 return SDValue();
5093 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5094 SDValue FIST = Vals.first, StackSlot = Vals.second;
5095 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5096 if (FIST.getNode() == 0) return Op;
5098 // Load the result.
5099 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5100 FIST, StackSlot, NULL, 0);
5103 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5104 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5105 SDValue FIST = Vals.first, StackSlot = Vals.second;
5106 assert(FIST.getNode() && "Unexpected failure");
5108 // Load the result.
5109 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5110 FIST, StackSlot, NULL, 0);
5113 SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5114 LLVMContext *Context = DAG.getContext();
5115 DebugLoc dl = Op.getDebugLoc();
5116 MVT VT = Op.getValueType();
5117 MVT EltVT = VT;
5118 if (VT.isVector())
5119 EltVT = VT.getVectorElementType();
5120 std::vector<Constant*> CV;
5121 if (EltVT == MVT::f64) {
5122 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5123 CV.push_back(C);
5124 CV.push_back(C);
5125 } else {
5126 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5127 CV.push_back(C);
5128 CV.push_back(C);
5129 CV.push_back(C);
5130 CV.push_back(C);
5132 Constant *C = ConstantVector::get(CV);
5133 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5134 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5135 PseudoSourceValue::getConstantPool(), 0,
5136 false, 16);
5137 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5140 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5141 LLVMContext *Context = DAG.getContext();
5142 DebugLoc dl = Op.getDebugLoc();
5143 MVT VT = Op.getValueType();
5144 MVT EltVT = VT;
5145 unsigned EltNum = 1;
5146 if (VT.isVector()) {
5147 EltVT = VT.getVectorElementType();
5148 EltNum = VT.getVectorNumElements();
5150 std::vector<Constant*> CV;
5151 if (EltVT == MVT::f64) {
5152 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5153 CV.push_back(C);
5154 CV.push_back(C);
5155 } else {
5156 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5157 CV.push_back(C);
5158 CV.push_back(C);
5159 CV.push_back(C);
5160 CV.push_back(C);
5162 Constant *C = ConstantVector::get(CV);
5163 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5164 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5165 PseudoSourceValue::getConstantPool(), 0,
5166 false, 16);
5167 if (VT.isVector()) {
5168 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5169 DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5170 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5171 Op.getOperand(0)),
5172 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5173 } else {
5174 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5178 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5179 LLVMContext *Context = DAG.getContext();
5180 SDValue Op0 = Op.getOperand(0);
5181 SDValue Op1 = Op.getOperand(1);
5182 DebugLoc dl = Op.getDebugLoc();
5183 MVT VT = Op.getValueType();
5184 MVT SrcVT = Op1.getValueType();
5186 // If second operand is smaller, extend it first.
5187 if (SrcVT.bitsLT(VT)) {
5188 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5189 SrcVT = VT;
5191 // And if it is bigger, shrink it first.
5192 if (SrcVT.bitsGT(VT)) {
5193 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5194 SrcVT = VT;
5197 // At this point the operands and the result should have the same
5198 // type, and that won't be f80 since that is not custom lowered.
5200 // First get the sign bit of second operand.
5201 std::vector<Constant*> CV;
5202 if (SrcVT == MVT::f64) {
5203 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5204 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5205 } else {
5206 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5207 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5208 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5209 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5211 Constant *C = ConstantVector::get(CV);
5212 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5213 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5214 PseudoSourceValue::getConstantPool(), 0,
5215 false, 16);
5216 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5218 // Shift sign bit right or left if the two operands have different types.
5219 if (SrcVT.bitsGT(VT)) {
5220 // Op0 is MVT::f32, Op1 is MVT::f64.
5221 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5222 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5223 DAG.getConstant(32, MVT::i32));
5224 SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5225 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5226 DAG.getIntPtrConstant(0));
5229 // Clear first operand sign bit.
5230 CV.clear();
5231 if (VT == MVT::f64) {
5232 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5233 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5234 } else {
5235 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5236 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5237 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5238 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5240 C = ConstantVector::get(CV);
5241 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5242 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5243 PseudoSourceValue::getConstantPool(), 0,
5244 false, 16);
5245 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5247 // Or the value with the sign bit.
5248 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5251 /// Emit nodes that will be selected as "test Op0,Op0", or something
5252 /// equivalent.
5253 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5254 SelectionDAG &DAG) {
5255 DebugLoc dl = Op.getDebugLoc();
5257 // CF and OF aren't always set the way we want. Determine which
5258 // of these we need.
5259 bool NeedCF = false;
5260 bool NeedOF = false;
5261 switch (X86CC) {
5262 case X86::COND_A: case X86::COND_AE:
5263 case X86::COND_B: case X86::COND_BE:
5264 NeedCF = true;
5265 break;
5266 case X86::COND_G: case X86::COND_GE:
5267 case X86::COND_L: case X86::COND_LE:
5268 case X86::COND_O: case X86::COND_NO:
5269 NeedOF = true;
5270 break;
5271 default: break;
5274 // See if we can use the EFLAGS value from the operand instead of
5275 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5276 // we prove that the arithmetic won't overflow, we can't use OF or CF.
5277 if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5278 unsigned Opcode = 0;
5279 unsigned NumOperands = 0;
5280 switch (Op.getNode()->getOpcode()) {
5281 case ISD::ADD:
5282 // Due to an isel shortcoming, be conservative if this add is likely to
5283 // be selected as part of a load-modify-store instruction. When the root
5284 // node in a match is a store, isel doesn't know how to remap non-chain
5285 // non-flag uses of other nodes in the match, such as the ADD in this
5286 // case. This leads to the ADD being left around and reselected, with
5287 // the result being two adds in the output.
5288 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5289 UE = Op.getNode()->use_end(); UI != UE; ++UI)
5290 if (UI->getOpcode() == ISD::STORE)
5291 goto default_case;
5292 if (ConstantSDNode *C =
5293 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5294 // An add of one will be selected as an INC.
5295 if (C->getAPIntValue() == 1) {
5296 Opcode = X86ISD::INC;
5297 NumOperands = 1;
5298 break;
5300 // An add of negative one (subtract of one) will be selected as a DEC.
5301 if (C->getAPIntValue().isAllOnesValue()) {
5302 Opcode = X86ISD::DEC;
5303 NumOperands = 1;
5304 break;
5307 // Otherwise use a regular EFLAGS-setting add.
5308 Opcode = X86ISD::ADD;
5309 NumOperands = 2;
5310 break;
5311 case ISD::SUB:
5312 // Due to the ISEL shortcoming noted above, be conservative if this sub is
5313 // likely to be selected as part of a load-modify-store instruction.
5314 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5315 UE = Op.getNode()->use_end(); UI != UE; ++UI)
5316 if (UI->getOpcode() == ISD::STORE)
5317 goto default_case;
5318 // Otherwise use a regular EFLAGS-setting sub.
5319 Opcode = X86ISD::SUB;
5320 NumOperands = 2;
5321 break;
5322 case X86ISD::ADD:
5323 case X86ISD::SUB:
5324 case X86ISD::INC:
5325 case X86ISD::DEC:
5326 return SDValue(Op.getNode(), 1);
5327 default:
5328 default_case:
5329 break;
5331 if (Opcode != 0) {
5332 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5333 SmallVector<SDValue, 4> Ops;
5334 for (unsigned i = 0; i != NumOperands; ++i)
5335 Ops.push_back(Op.getOperand(i));
5336 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5337 DAG.ReplaceAllUsesWith(Op, New);
5338 return SDValue(New.getNode(), 1);
5342 // Otherwise just emit a CMP with 0, which is the TEST pattern.
5343 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5344 DAG.getConstant(0, Op.getValueType()));
5347 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
5348 /// equivalent.
5349 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5350 SelectionDAG &DAG) {
5351 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5352 if (C->getAPIntValue() == 0)
5353 return EmitTest(Op0, X86CC, DAG);
5355 DebugLoc dl = Op0.getDebugLoc();
5356 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5359 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5360 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5361 SDValue Op0 = Op.getOperand(0);
5362 SDValue Op1 = Op.getOperand(1);
5363 DebugLoc dl = Op.getDebugLoc();
5364 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5366 // Lower (X & (1 << N)) == 0 to BT(X, N).
5367 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5368 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5369 if (Op0.getOpcode() == ISD::AND &&
5370 Op0.hasOneUse() &&
5371 Op1.getOpcode() == ISD::Constant &&
5372 cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5373 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5374 SDValue LHS, RHS;
5375 if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5376 if (ConstantSDNode *Op010C =
5377 dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5378 if (Op010C->getZExtValue() == 1) {
5379 LHS = Op0.getOperand(0);
5380 RHS = Op0.getOperand(1).getOperand(1);
5382 } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5383 if (ConstantSDNode *Op000C =
5384 dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5385 if (Op000C->getZExtValue() == 1) {
5386 LHS = Op0.getOperand(1);
5387 RHS = Op0.getOperand(0).getOperand(1);
5389 } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5390 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5391 SDValue AndLHS = Op0.getOperand(0);
5392 if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5393 LHS = AndLHS.getOperand(0);
5394 RHS = AndLHS.getOperand(1);
5398 if (LHS.getNode()) {
5399 // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
5400 // instruction. Since the shift amount is in-range-or-undefined, we know
5401 // that doing a bittest on the i16 value is ok. We extend to i32 because
5402 // the encoding for the i16 version is larger than the i32 version.
5403 if (LHS.getValueType() == MVT::i8)
5404 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5406 // If the operand types disagree, extend the shift amount to match. Since
5407 // BT ignores high bits (like shifts) we can use anyextend.
5408 if (LHS.getValueType() != RHS.getValueType())
5409 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5411 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5412 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5413 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5414 DAG.getConstant(Cond, MVT::i8), BT);
5418 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5419 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5421 SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5422 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5423 DAG.getConstant(X86CC, MVT::i8), Cond);
5426 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5427 SDValue Cond;
5428 SDValue Op0 = Op.getOperand(0);
5429 SDValue Op1 = Op.getOperand(1);
5430 SDValue CC = Op.getOperand(2);
5431 MVT VT = Op.getValueType();
5432 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5433 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5434 DebugLoc dl = Op.getDebugLoc();
5436 if (isFP) {
5437 unsigned SSECC = 8;
5438 MVT VT0 = Op0.getValueType();
5439 assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5440 unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5441 bool Swap = false;
5443 switch (SetCCOpcode) {
5444 default: break;
5445 case ISD::SETOEQ:
5446 case ISD::SETEQ: SSECC = 0; break;
5447 case ISD::SETOGT:
5448 case ISD::SETGT: Swap = true; // Fallthrough
5449 case ISD::SETLT:
5450 case ISD::SETOLT: SSECC = 1; break;
5451 case ISD::SETOGE:
5452 case ISD::SETGE: Swap = true; // Fallthrough
5453 case ISD::SETLE:
5454 case ISD::SETOLE: SSECC = 2; break;
5455 case ISD::SETUO: SSECC = 3; break;
5456 case ISD::SETUNE:
5457 case ISD::SETNE: SSECC = 4; break;
5458 case ISD::SETULE: Swap = true;
5459 case ISD::SETUGE: SSECC = 5; break;
5460 case ISD::SETULT: Swap = true;
5461 case ISD::SETUGT: SSECC = 6; break;
5462 case ISD::SETO: SSECC = 7; break;
5464 if (Swap)
5465 std::swap(Op0, Op1);
5467 // In the two special cases we can't handle, emit two comparisons.
5468 if (SSECC == 8) {
5469 if (SetCCOpcode == ISD::SETUEQ) {
5470 SDValue UNORD, EQ;
5471 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5472 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5473 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5475 else if (SetCCOpcode == ISD::SETONE) {
5476 SDValue ORD, NEQ;
5477 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5478 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5479 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5481 llvm_unreachable("Illegal FP comparison");
5483 // Handle all other FP comparisons here.
5484 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5487 // We are handling one of the integer comparisons here. Since SSE only has
5488 // GT and EQ comparisons for integer, swapping operands and multiple
5489 // operations may be required for some comparisons.
5490 unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5491 bool Swap = false, Invert = false, FlipSigns = false;
5493 switch (VT.getSimpleVT()) {
5494 default: break;
5495 case MVT::v8i8:
5496 case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5497 case MVT::v4i16:
5498 case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5499 case MVT::v2i32:
5500 case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5501 case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5504 switch (SetCCOpcode) {
5505 default: break;
5506 case ISD::SETNE: Invert = true;
5507 case ISD::SETEQ: Opc = EQOpc; break;
5508 case ISD::SETLT: Swap = true;
5509 case ISD::SETGT: Opc = GTOpc; break;
5510 case ISD::SETGE: Swap = true;
5511 case ISD::SETLE: Opc = GTOpc; Invert = true; break;
5512 case ISD::SETULT: Swap = true;
5513 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5514 case ISD::SETUGE: Swap = true;
5515 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5517 if (Swap)
5518 std::swap(Op0, Op1);
5520 // Since SSE has no unsigned integer comparisons, we need to flip the sign
5521 // bits of the inputs before performing those operations.
5522 if (FlipSigns) {
5523 MVT EltVT = VT.getVectorElementType();
5524 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5525 EltVT);
5526 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5527 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5528 SignBits.size());
5529 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5530 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5533 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5535 // If the logical-not of the result is required, perform that now.
5536 if (Invert)
5537 Result = DAG.getNOT(dl, Result, VT);
5539 return Result;
5542 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5543 static bool isX86LogicalCmp(SDValue Op) {
5544 unsigned Opc = Op.getNode()->getOpcode();
5545 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5546 return true;
5547 if (Op.getResNo() == 1 &&
5548 (Opc == X86ISD::ADD ||
5549 Opc == X86ISD::SUB ||
5550 Opc == X86ISD::SMUL ||
5551 Opc == X86ISD::UMUL ||
5552 Opc == X86ISD::INC ||
5553 Opc == X86ISD::DEC))
5554 return true;
5556 return false;
5559 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5560 bool addTest = true;
5561 SDValue Cond = Op.getOperand(0);
5562 DebugLoc dl = Op.getDebugLoc();
5563 SDValue CC;
5565 if (Cond.getOpcode() == ISD::SETCC)
5566 Cond = LowerSETCC(Cond, DAG);
5568 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5569 // setting operand in place of the X86ISD::SETCC.
5570 if (Cond.getOpcode() == X86ISD::SETCC) {
5571 CC = Cond.getOperand(0);
5573 SDValue Cmp = Cond.getOperand(1);
5574 unsigned Opc = Cmp.getOpcode();
5575 MVT VT = Op.getValueType();
5577 bool IllegalFPCMov = false;
5578 if (VT.isFloatingPoint() && !VT.isVector() &&
5579 !isScalarFPTypeInSSEReg(VT)) // FPStack?
5580 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5582 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5583 Opc == X86ISD::BT) { // FIXME
5584 Cond = Cmp;
5585 addTest = false;
5589 if (addTest) {
5590 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5591 Cond = EmitTest(Cond, X86::COND_NE, DAG);
5594 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5595 SmallVector<SDValue, 4> Ops;
5596 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5597 // condition is true.
5598 Ops.push_back(Op.getOperand(2));
5599 Ops.push_back(Op.getOperand(1));
5600 Ops.push_back(CC);
5601 Ops.push_back(Cond);
5602 return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5605 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5606 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5607 // from the AND / OR.
5608 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5609 Opc = Op.getOpcode();
5610 if (Opc != ISD::OR && Opc != ISD::AND)
5611 return false;
5612 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5613 Op.getOperand(0).hasOneUse() &&
5614 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5615 Op.getOperand(1).hasOneUse());
5618 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5619 // 1 and that the SETCC node has a single use.
5620 static bool isXor1OfSetCC(SDValue Op) {
5621 if (Op.getOpcode() != ISD::XOR)
5622 return false;
5623 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5624 if (N1C && N1C->getAPIntValue() == 1) {
5625 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5626 Op.getOperand(0).hasOneUse();
5628 return false;
5631 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5632 bool addTest = true;
5633 SDValue Chain = Op.getOperand(0);
5634 SDValue Cond = Op.getOperand(1);
5635 SDValue Dest = Op.getOperand(2);
5636 DebugLoc dl = Op.getDebugLoc();
5637 SDValue CC;
5639 if (Cond.getOpcode() == ISD::SETCC)
5640 Cond = LowerSETCC(Cond, DAG);
5641 #if 0
5642 // FIXME: LowerXALUO doesn't handle these!!
5643 else if (Cond.getOpcode() == X86ISD::ADD ||
5644 Cond.getOpcode() == X86ISD::SUB ||
5645 Cond.getOpcode() == X86ISD::SMUL ||
5646 Cond.getOpcode() == X86ISD::UMUL)
5647 Cond = LowerXALUO(Cond, DAG);
5648 #endif
5650 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5651 // setting operand in place of the X86ISD::SETCC.
5652 if (Cond.getOpcode() == X86ISD::SETCC) {
5653 CC = Cond.getOperand(0);
5655 SDValue Cmp = Cond.getOperand(1);
5656 unsigned Opc = Cmp.getOpcode();
5657 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5658 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5659 Cond = Cmp;
5660 addTest = false;
5661 } else {
5662 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5663 default: break;
5664 case X86::COND_O:
5665 case X86::COND_B:
5666 // These can only come from an arithmetic instruction with overflow,
5667 // e.g. SADDO, UADDO.
5668 Cond = Cond.getNode()->getOperand(1);
5669 addTest = false;
5670 break;
5673 } else {
5674 unsigned CondOpc;
5675 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5676 SDValue Cmp = Cond.getOperand(0).getOperand(1);
5677 if (CondOpc == ISD::OR) {
5678 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5679 // two branches instead of an explicit OR instruction with a
5680 // separate test.
5681 if (Cmp == Cond.getOperand(1).getOperand(1) &&
5682 isX86LogicalCmp(Cmp)) {
5683 CC = Cond.getOperand(0).getOperand(0);
5684 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5685 Chain, Dest, CC, Cmp);
5686 CC = Cond.getOperand(1).getOperand(0);
5687 Cond = Cmp;
5688 addTest = false;
5690 } else { // ISD::AND
5691 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5692 // two branches instead of an explicit AND instruction with a
5693 // separate test. However, we only do this if this block doesn't
5694 // have a fall-through edge, because this requires an explicit
5695 // jmp when the condition is false.
5696 if (Cmp == Cond.getOperand(1).getOperand(1) &&
5697 isX86LogicalCmp(Cmp) &&
5698 Op.getNode()->hasOneUse()) {
5699 X86::CondCode CCode =
5700 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5701 CCode = X86::GetOppositeBranchCondition(CCode);
5702 CC = DAG.getConstant(CCode, MVT::i8);
5703 SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5704 // Look for an unconditional branch following this conditional branch.
5705 // We need this because we need to reverse the successors in order
5706 // to implement FCMP_OEQ.
5707 if (User.getOpcode() == ISD::BR) {
5708 SDValue FalseBB = User.getOperand(1);
5709 SDValue NewBR =
5710 DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5711 assert(NewBR == User);
5712 Dest = FalseBB;
5714 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5715 Chain, Dest, CC, Cmp);
5716 X86::CondCode CCode =
5717 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5718 CCode = X86::GetOppositeBranchCondition(CCode);
5719 CC = DAG.getConstant(CCode, MVT::i8);
5720 Cond = Cmp;
5721 addTest = false;
5725 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5726 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5727 // It should be transformed during dag combiner except when the condition
5728 // is set by a arithmetics with overflow node.
5729 X86::CondCode CCode =
5730 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5731 CCode = X86::GetOppositeBranchCondition(CCode);
5732 CC = DAG.getConstant(CCode, MVT::i8);
5733 Cond = Cond.getOperand(0).getOperand(1);
5734 addTest = false;
5738 if (addTest) {
5739 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5740 Cond = EmitTest(Cond, X86::COND_NE, DAG);
5742 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5743 Chain, Dest, CC, Cond);
5747 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5748 // Calls to _alloca is needed to probe the stack when allocating more than 4k
5749 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
5750 // that the guard pages used by the OS virtual memory manager are allocated in
5751 // correct sequence.
5752 SDValue
5753 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5754 SelectionDAG &DAG) {
5755 assert(Subtarget->isTargetCygMing() &&
5756 "This should be used only on Cygwin/Mingw targets");
5757 DebugLoc dl = Op.getDebugLoc();
5759 // Get the inputs.
5760 SDValue Chain = Op.getOperand(0);
5761 SDValue Size = Op.getOperand(1);
5762 // FIXME: Ensure alignment here
5764 SDValue Flag;
5766 MVT IntPtr = getPointerTy();
5767 MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5769 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5771 Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5772 Flag = Chain.getValue(1);
5774 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5775 SDValue Ops[] = { Chain,
5776 DAG.getTargetExternalSymbol("_alloca", IntPtr),
5777 DAG.getRegister(X86::EAX, IntPtr),
5778 DAG.getRegister(X86StackPtr, SPTy),
5779 Flag };
5780 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5781 Flag = Chain.getValue(1);
5783 Chain = DAG.getCALLSEQ_END(Chain,
5784 DAG.getIntPtrConstant(0, true),
5785 DAG.getIntPtrConstant(0, true),
5786 Flag);
5788 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5790 SDValue Ops1[2] = { Chain.getValue(0), Chain };
5791 return DAG.getMergeValues(Ops1, 2, dl);
5794 SDValue
5795 X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5796 SDValue Chain,
5797 SDValue Dst, SDValue Src,
5798 SDValue Size, unsigned Align,
5799 const Value *DstSV,
5800 uint64_t DstSVOff) {
5801 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5803 // If not DWORD aligned or size is more than the threshold, call the library.
5804 // The libc version is likely to be faster for these cases. It can use the
5805 // address value and run time information about the CPU.
5806 if ((Align & 3) != 0 ||
5807 !ConstantSize ||
5808 ConstantSize->getZExtValue() >
5809 getSubtarget()->getMaxInlineSizeThreshold()) {
5810 SDValue InFlag(0, 0);
5812 // Check to see if there is a specialized entry-point for memory zeroing.
5813 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5815 if (const char *bzeroEntry = V &&
5816 V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5817 MVT IntPtr = getPointerTy();
5818 const Type *IntPtrTy = TD->getIntPtrType();
5819 TargetLowering::ArgListTy Args;
5820 TargetLowering::ArgListEntry Entry;
5821 Entry.Node = Dst;
5822 Entry.Ty = IntPtrTy;
5823 Args.push_back(Entry);
5824 Entry.Node = Size;
5825 Args.push_back(Entry);
5826 std::pair<SDValue,SDValue> CallResult =
5827 LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5828 0, CallingConv::C, false,
5829 DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5830 return CallResult.second;
5833 // Otherwise have the target-independent code call memset.
5834 return SDValue();
5837 uint64_t SizeVal = ConstantSize->getZExtValue();
5838 SDValue InFlag(0, 0);
5839 MVT AVT;
5840 SDValue Count;
5841 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5842 unsigned BytesLeft = 0;
5843 bool TwoRepStos = false;
5844 if (ValC) {
5845 unsigned ValReg;
5846 uint64_t Val = ValC->getZExtValue() & 255;
5848 // If the value is a constant, then we can potentially use larger sets.
5849 switch (Align & 3) {
5850 case 2: // WORD aligned
5851 AVT = MVT::i16;
5852 ValReg = X86::AX;
5853 Val = (Val << 8) | Val;
5854 break;
5855 case 0: // DWORD aligned
5856 AVT = MVT::i32;
5857 ValReg = X86::EAX;
5858 Val = (Val << 8) | Val;
5859 Val = (Val << 16) | Val;
5860 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
5861 AVT = MVT::i64;
5862 ValReg = X86::RAX;
5863 Val = (Val << 32) | Val;
5865 break;
5866 default: // Byte aligned
5867 AVT = MVT::i8;
5868 ValReg = X86::AL;
5869 Count = DAG.getIntPtrConstant(SizeVal);
5870 break;
5873 if (AVT.bitsGT(MVT::i8)) {
5874 unsigned UBytes = AVT.getSizeInBits() / 8;
5875 Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5876 BytesLeft = SizeVal % UBytes;
5879 Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5880 InFlag);
5881 InFlag = Chain.getValue(1);
5882 } else {
5883 AVT = MVT::i8;
5884 Count = DAG.getIntPtrConstant(SizeVal);
5885 Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5886 InFlag = Chain.getValue(1);
5889 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5890 X86::ECX,
5891 Count, InFlag);
5892 InFlag = Chain.getValue(1);
5893 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5894 X86::EDI,
5895 Dst, InFlag);
5896 InFlag = Chain.getValue(1);
5898 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5899 SmallVector<SDValue, 8> Ops;
5900 Ops.push_back(Chain);
5901 Ops.push_back(DAG.getValueType(AVT));
5902 Ops.push_back(InFlag);
5903 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5905 if (TwoRepStos) {
5906 InFlag = Chain.getValue(1);
5907 Count = Size;
5908 MVT CVT = Count.getValueType();
5909 SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5910 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5911 Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5912 X86::ECX,
5913 Left, InFlag);
5914 InFlag = Chain.getValue(1);
5915 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5916 Ops.clear();
5917 Ops.push_back(Chain);
5918 Ops.push_back(DAG.getValueType(MVT::i8));
5919 Ops.push_back(InFlag);
5920 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5921 } else if (BytesLeft) {
5922 // Handle the last 1 - 7 bytes.
5923 unsigned Offset = SizeVal - BytesLeft;
5924 MVT AddrVT = Dst.getValueType();
5925 MVT SizeVT = Size.getValueType();
5927 Chain = DAG.getMemset(Chain, dl,
5928 DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
5929 DAG.getConstant(Offset, AddrVT)),
5930 Src,
5931 DAG.getConstant(BytesLeft, SizeVT),
5932 Align, DstSV, DstSVOff + Offset);
5935 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5936 return Chain;
5939 SDValue
5940 X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
5941 SDValue Chain, SDValue Dst, SDValue Src,
5942 SDValue Size, unsigned Align,
5943 bool AlwaysInline,
5944 const Value *DstSV, uint64_t DstSVOff,
5945 const Value *SrcSV, uint64_t SrcSVOff) {
5946 // This requires the copy size to be a constant, preferrably
5947 // within a subtarget-specific limit.
5948 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5949 if (!ConstantSize)
5950 return SDValue();
5951 uint64_t SizeVal = ConstantSize->getZExtValue();
5952 if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5953 return SDValue();
5955 /// If not DWORD aligned, call the library.
5956 if ((Align & 3) != 0)
5957 return SDValue();
5959 // DWORD aligned
5960 MVT AVT = MVT::i32;
5961 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) // QWORD aligned
5962 AVT = MVT::i64;
5964 unsigned UBytes = AVT.getSizeInBits() / 8;
5965 unsigned CountVal = SizeVal / UBytes;
5966 SDValue Count = DAG.getIntPtrConstant(CountVal);
5967 unsigned BytesLeft = SizeVal % UBytes;
5969 SDValue InFlag(0, 0);
5970 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5971 X86::ECX,
5972 Count, InFlag);
5973 InFlag = Chain.getValue(1);
5974 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5975 X86::EDI,
5976 Dst, InFlag);
5977 InFlag = Chain.getValue(1);
5978 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
5979 X86::ESI,
5980 Src, InFlag);
5981 InFlag = Chain.getValue(1);
5983 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5984 SmallVector<SDValue, 8> Ops;
5985 Ops.push_back(Chain);
5986 Ops.push_back(DAG.getValueType(AVT));
5987 Ops.push_back(InFlag);
5988 SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
5990 SmallVector<SDValue, 4> Results;
5991 Results.push_back(RepMovs);
5992 if (BytesLeft) {
5993 // Handle the last 1 - 7 bytes.
5994 unsigned Offset = SizeVal - BytesLeft;
5995 MVT DstVT = Dst.getValueType();
5996 MVT SrcVT = Src.getValueType();
5997 MVT SizeVT = Size.getValueType();
5998 Results.push_back(DAG.getMemcpy(Chain, dl,
5999 DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6000 DAG.getConstant(Offset, DstVT)),
6001 DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6002 DAG.getConstant(Offset, SrcVT)),
6003 DAG.getConstant(BytesLeft, SizeVT),
6004 Align, AlwaysInline,
6005 DstSV, DstSVOff + Offset,
6006 SrcSV, SrcSVOff + Offset));
6009 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6010 &Results[0], Results.size());
6013 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6014 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6015 DebugLoc dl = Op.getDebugLoc();
6017 if (!Subtarget->is64Bit()) {
6018 // vastart just stores the address of the VarArgsFrameIndex slot into the
6019 // memory location argument.
6020 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6021 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6024 // __va_list_tag:
6025 // gp_offset (0 - 6 * 8)
6026 // fp_offset (48 - 48 + 8 * 16)
6027 // overflow_arg_area (point to parameters coming in memory).
6028 // reg_save_area
6029 SmallVector<SDValue, 8> MemOps;
6030 SDValue FIN = Op.getOperand(1);
6031 // Store gp_offset
6032 SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6033 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6034 FIN, SV, 0);
6035 MemOps.push_back(Store);
6037 // Store fp_offset
6038 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6039 FIN, DAG.getIntPtrConstant(4));
6040 Store = DAG.getStore(Op.getOperand(0), dl,
6041 DAG.getConstant(VarArgsFPOffset, MVT::i32),
6042 FIN, SV, 0);
6043 MemOps.push_back(Store);
6045 // Store ptr to overflow_arg_area
6046 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6047 FIN, DAG.getIntPtrConstant(4));
6048 SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6049 Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6050 MemOps.push_back(Store);
6052 // Store ptr to reg_save_area.
6053 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6054 FIN, DAG.getIntPtrConstant(8));
6055 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6056 Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6057 MemOps.push_back(Store);
6058 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6059 &MemOps[0], MemOps.size());
6062 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6063 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6064 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6065 SDValue Chain = Op.getOperand(0);
6066 SDValue SrcPtr = Op.getOperand(1);
6067 SDValue SrcSV = Op.getOperand(2);
6069 llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6070 return SDValue();
6073 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6074 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6075 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6076 SDValue Chain = Op.getOperand(0);
6077 SDValue DstPtr = Op.getOperand(1);
6078 SDValue SrcPtr = Op.getOperand(2);
6079 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6080 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6081 DebugLoc dl = Op.getDebugLoc();
6083 return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6084 DAG.getIntPtrConstant(24), 8, false,
6085 DstSV, 0, SrcSV, 0);
6088 SDValue
6089 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6090 DebugLoc dl = Op.getDebugLoc();
6091 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6092 switch (IntNo) {
6093 default: return SDValue(); // Don't custom lower most intrinsics.
6094 // Comparison intrinsics.
6095 case Intrinsic::x86_sse_comieq_ss:
6096 case Intrinsic::x86_sse_comilt_ss:
6097 case Intrinsic::x86_sse_comile_ss:
6098 case Intrinsic::x86_sse_comigt_ss:
6099 case Intrinsic::x86_sse_comige_ss:
6100 case Intrinsic::x86_sse_comineq_ss:
6101 case Intrinsic::x86_sse_ucomieq_ss:
6102 case Intrinsic::x86_sse_ucomilt_ss:
6103 case Intrinsic::x86_sse_ucomile_ss:
6104 case Intrinsic::x86_sse_ucomigt_ss:
6105 case Intrinsic::x86_sse_ucomige_ss:
6106 case Intrinsic::x86_sse_ucomineq_ss:
6107 case Intrinsic::x86_sse2_comieq_sd:
6108 case Intrinsic::x86_sse2_comilt_sd:
6109 case Intrinsic::x86_sse2_comile_sd:
6110 case Intrinsic::x86_sse2_comigt_sd:
6111 case Intrinsic::x86_sse2_comige_sd:
6112 case Intrinsic::x86_sse2_comineq_sd:
6113 case Intrinsic::x86_sse2_ucomieq_sd:
6114 case Intrinsic::x86_sse2_ucomilt_sd:
6115 case Intrinsic::x86_sse2_ucomile_sd:
6116 case Intrinsic::x86_sse2_ucomigt_sd:
6117 case Intrinsic::x86_sse2_ucomige_sd:
6118 case Intrinsic::x86_sse2_ucomineq_sd: {
6119 unsigned Opc = 0;
6120 ISD::CondCode CC = ISD::SETCC_INVALID;
6121 switch (IntNo) {
6122 default: break;
6123 case Intrinsic::x86_sse_comieq_ss:
6124 case Intrinsic::x86_sse2_comieq_sd:
6125 Opc = X86ISD::COMI;
6126 CC = ISD::SETEQ;
6127 break;
6128 case Intrinsic::x86_sse_comilt_ss:
6129 case Intrinsic::x86_sse2_comilt_sd:
6130 Opc = X86ISD::COMI;
6131 CC = ISD::SETLT;
6132 break;
6133 case Intrinsic::x86_sse_comile_ss:
6134 case Intrinsic::x86_sse2_comile_sd:
6135 Opc = X86ISD::COMI;
6136 CC = ISD::SETLE;
6137 break;
6138 case Intrinsic::x86_sse_comigt_ss:
6139 case Intrinsic::x86_sse2_comigt_sd:
6140 Opc = X86ISD::COMI;
6141 CC = ISD::SETGT;
6142 break;
6143 case Intrinsic::x86_sse_comige_ss:
6144 case Intrinsic::x86_sse2_comige_sd:
6145 Opc = X86ISD::COMI;
6146 CC = ISD::SETGE;
6147 break;
6148 case Intrinsic::x86_sse_comineq_ss:
6149 case Intrinsic::x86_sse2_comineq_sd:
6150 Opc = X86ISD::COMI;
6151 CC = ISD::SETNE;
6152 break;
6153 case Intrinsic::x86_sse_ucomieq_ss:
6154 case Intrinsic::x86_sse2_ucomieq_sd:
6155 Opc = X86ISD::UCOMI;
6156 CC = ISD::SETEQ;
6157 break;
6158 case Intrinsic::x86_sse_ucomilt_ss:
6159 case Intrinsic::x86_sse2_ucomilt_sd:
6160 Opc = X86ISD::UCOMI;
6161 CC = ISD::SETLT;
6162 break;
6163 case Intrinsic::x86_sse_ucomile_ss:
6164 case Intrinsic::x86_sse2_ucomile_sd:
6165 Opc = X86ISD::UCOMI;
6166 CC = ISD::SETLE;
6167 break;
6168 case Intrinsic::x86_sse_ucomigt_ss:
6169 case Intrinsic::x86_sse2_ucomigt_sd:
6170 Opc = X86ISD::UCOMI;
6171 CC = ISD::SETGT;
6172 break;
6173 case Intrinsic::x86_sse_ucomige_ss:
6174 case Intrinsic::x86_sse2_ucomige_sd:
6175 Opc = X86ISD::UCOMI;
6176 CC = ISD::SETGE;
6177 break;
6178 case Intrinsic::x86_sse_ucomineq_ss:
6179 case Intrinsic::x86_sse2_ucomineq_sd:
6180 Opc = X86ISD::UCOMI;
6181 CC = ISD::SETNE;
6182 break;
6185 SDValue LHS = Op.getOperand(1);
6186 SDValue RHS = Op.getOperand(2);
6187 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6188 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6189 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6190 DAG.getConstant(X86CC, MVT::i8), Cond);
6191 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6193 // ptest intrinsics. The intrinsic these come from are designed to return
6194 // an integer value, not just an instruction so lower it to the ptest
6195 // pattern and a setcc for the result.
6196 case Intrinsic::x86_sse41_ptestz:
6197 case Intrinsic::x86_sse41_ptestc:
6198 case Intrinsic::x86_sse41_ptestnzc:{
6199 unsigned X86CC = 0;
6200 switch (IntNo) {
6201 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6202 case Intrinsic::x86_sse41_ptestz:
6203 // ZF = 1
6204 X86CC = X86::COND_E;
6205 break;
6206 case Intrinsic::x86_sse41_ptestc:
6207 // CF = 1
6208 X86CC = X86::COND_B;
6209 break;
6210 case Intrinsic::x86_sse41_ptestnzc:
6211 // ZF and CF = 0
6212 X86CC = X86::COND_A;
6213 break;
6216 SDValue LHS = Op.getOperand(1);
6217 SDValue RHS = Op.getOperand(2);
6218 SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6219 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6220 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6221 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6224 // Fix vector shift instructions where the last operand is a non-immediate
6225 // i32 value.
6226 case Intrinsic::x86_sse2_pslli_w:
6227 case Intrinsic::x86_sse2_pslli_d:
6228 case Intrinsic::x86_sse2_pslli_q:
6229 case Intrinsic::x86_sse2_psrli_w:
6230 case Intrinsic::x86_sse2_psrli_d:
6231 case Intrinsic::x86_sse2_psrli_q:
6232 case Intrinsic::x86_sse2_psrai_w:
6233 case Intrinsic::x86_sse2_psrai_d:
6234 case Intrinsic::x86_mmx_pslli_w:
6235 case Intrinsic::x86_mmx_pslli_d:
6236 case Intrinsic::x86_mmx_pslli_q:
6237 case Intrinsic::x86_mmx_psrli_w:
6238 case Intrinsic::x86_mmx_psrli_d:
6239 case Intrinsic::x86_mmx_psrli_q:
6240 case Intrinsic::x86_mmx_psrai_w:
6241 case Intrinsic::x86_mmx_psrai_d: {
6242 SDValue ShAmt = Op.getOperand(2);
6243 if (isa<ConstantSDNode>(ShAmt))
6244 return SDValue();
6246 unsigned NewIntNo = 0;
6247 MVT ShAmtVT = MVT::v4i32;
6248 switch (IntNo) {
6249 case Intrinsic::x86_sse2_pslli_w:
6250 NewIntNo = Intrinsic::x86_sse2_psll_w;
6251 break;
6252 case Intrinsic::x86_sse2_pslli_d:
6253 NewIntNo = Intrinsic::x86_sse2_psll_d;
6254 break;
6255 case Intrinsic::x86_sse2_pslli_q:
6256 NewIntNo = Intrinsic::x86_sse2_psll_q;
6257 break;
6258 case Intrinsic::x86_sse2_psrli_w:
6259 NewIntNo = Intrinsic::x86_sse2_psrl_w;
6260 break;
6261 case Intrinsic::x86_sse2_psrli_d:
6262 NewIntNo = Intrinsic::x86_sse2_psrl_d;
6263 break;
6264 case Intrinsic::x86_sse2_psrli_q:
6265 NewIntNo = Intrinsic::x86_sse2_psrl_q;
6266 break;
6267 case Intrinsic::x86_sse2_psrai_w:
6268 NewIntNo = Intrinsic::x86_sse2_psra_w;
6269 break;
6270 case Intrinsic::x86_sse2_psrai_d:
6271 NewIntNo = Intrinsic::x86_sse2_psra_d;
6272 break;
6273 default: {
6274 ShAmtVT = MVT::v2i32;
6275 switch (IntNo) {
6276 case Intrinsic::x86_mmx_pslli_w:
6277 NewIntNo = Intrinsic::x86_mmx_psll_w;
6278 break;
6279 case Intrinsic::x86_mmx_pslli_d:
6280 NewIntNo = Intrinsic::x86_mmx_psll_d;
6281 break;
6282 case Intrinsic::x86_mmx_pslli_q:
6283 NewIntNo = Intrinsic::x86_mmx_psll_q;
6284 break;
6285 case Intrinsic::x86_mmx_psrli_w:
6286 NewIntNo = Intrinsic::x86_mmx_psrl_w;
6287 break;
6288 case Intrinsic::x86_mmx_psrli_d:
6289 NewIntNo = Intrinsic::x86_mmx_psrl_d;
6290 break;
6291 case Intrinsic::x86_mmx_psrli_q:
6292 NewIntNo = Intrinsic::x86_mmx_psrl_q;
6293 break;
6294 case Intrinsic::x86_mmx_psrai_w:
6295 NewIntNo = Intrinsic::x86_mmx_psra_w;
6296 break;
6297 case Intrinsic::x86_mmx_psrai_d:
6298 NewIntNo = Intrinsic::x86_mmx_psra_d;
6299 break;
6300 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6302 break;
6305 MVT VT = Op.getValueType();
6306 ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6307 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6308 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6309 DAG.getConstant(NewIntNo, MVT::i32),
6310 Op.getOperand(1), ShAmt);
6315 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6316 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6317 DebugLoc dl = Op.getDebugLoc();
6319 if (Depth > 0) {
6320 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6321 SDValue Offset =
6322 DAG.getConstant(TD->getPointerSize(),
6323 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6324 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6325 DAG.getNode(ISD::ADD, dl, getPointerTy(),
6326 FrameAddr, Offset),
6327 NULL, 0);
6330 // Just load the return address.
6331 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6332 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6333 RetAddrFI, NULL, 0);
6336 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6337 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6338 MFI->setFrameAddressIsTaken(true);
6339 MVT VT = Op.getValueType();
6340 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
6341 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6342 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6343 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6344 while (Depth--)
6345 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6346 return FrameAddr;
6349 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6350 SelectionDAG &DAG) {
6351 return DAG.getIntPtrConstant(2*TD->getPointerSize());
6354 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6356 MachineFunction &MF = DAG.getMachineFunction();
6357 SDValue Chain = Op.getOperand(0);
6358 SDValue Offset = Op.getOperand(1);
6359 SDValue Handler = Op.getOperand(2);
6360 DebugLoc dl = Op.getDebugLoc();
6362 SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6363 getPointerTy());
6364 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6366 SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6367 DAG.getIntPtrConstant(-TD->getPointerSize()));
6368 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6369 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6370 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6371 MF.getRegInfo().addLiveOut(StoreAddrReg);
6373 return DAG.getNode(X86ISD::EH_RETURN, dl,
6374 MVT::Other,
6375 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6378 SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6379 SelectionDAG &DAG) {
6380 SDValue Root = Op.getOperand(0);
6381 SDValue Trmp = Op.getOperand(1); // trampoline
6382 SDValue FPtr = Op.getOperand(2); // nested function
6383 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6384 DebugLoc dl = Op.getDebugLoc();
6386 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6388 const X86InstrInfo *TII =
6389 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6391 if (Subtarget->is64Bit()) {
6392 SDValue OutChains[6];
6394 // Large code-model.
6396 const unsigned char JMP64r = TII->getBaseOpcodeFor(X86::JMP64r);
6397 const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6399 const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6400 const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6402 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6404 // Load the pointer to the nested function into R11.
6405 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6406 SDValue Addr = Trmp;
6407 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6408 Addr, TrmpAddr, 0);
6410 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6411 DAG.getConstant(2, MVT::i64));
6412 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6414 // Load the 'nest' parameter value into R10.
6415 // R10 is specified in X86CallingConv.td
6416 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6417 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6418 DAG.getConstant(10, MVT::i64));
6419 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6420 Addr, TrmpAddr, 10);
6422 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6423 DAG.getConstant(12, MVT::i64));
6424 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6426 // Jump to the nested function.
6427 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6428 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6429 DAG.getConstant(20, MVT::i64));
6430 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6431 Addr, TrmpAddr, 20);
6433 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6434 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6435 DAG.getConstant(22, MVT::i64));
6436 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6437 TrmpAddr, 22);
6439 SDValue Ops[] =
6440 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6441 return DAG.getMergeValues(Ops, 2, dl);
6442 } else {
6443 const Function *Func =
6444 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6445 unsigned CC = Func->getCallingConv();
6446 unsigned NestReg;
6448 switch (CC) {
6449 default:
6450 llvm_unreachable("Unsupported calling convention");
6451 case CallingConv::C:
6452 case CallingConv::X86_StdCall: {
6453 // Pass 'nest' parameter in ECX.
6454 // Must be kept in sync with X86CallingConv.td
6455 NestReg = X86::ECX;
6457 // Check that ECX wasn't needed by an 'inreg' parameter.
6458 const FunctionType *FTy = Func->getFunctionType();
6459 const AttrListPtr &Attrs = Func->getAttributes();
6461 if (!Attrs.isEmpty() && !Func->isVarArg()) {
6462 unsigned InRegCount = 0;
6463 unsigned Idx = 1;
6465 for (FunctionType::param_iterator I = FTy->param_begin(),
6466 E = FTy->param_end(); I != E; ++I, ++Idx)
6467 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6468 // FIXME: should only count parameters that are lowered to integers.
6469 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6471 if (InRegCount > 2) {
6472 llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6475 break;
6477 case CallingConv::X86_FastCall:
6478 case CallingConv::Fast:
6479 // Pass 'nest' parameter in EAX.
6480 // Must be kept in sync with X86CallingConv.td
6481 NestReg = X86::EAX;
6482 break;
6485 SDValue OutChains[4];
6486 SDValue Addr, Disp;
6488 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6489 DAG.getConstant(10, MVT::i32));
6490 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6492 const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6493 const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6494 OutChains[0] = DAG.getStore(Root, dl,
6495 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6496 Trmp, TrmpAddr, 0);
6498 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6499 DAG.getConstant(1, MVT::i32));
6500 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6502 const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6503 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6504 DAG.getConstant(5, MVT::i32));
6505 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6506 TrmpAddr, 5, false, 1);
6508 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6509 DAG.getConstant(6, MVT::i32));
6510 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6512 SDValue Ops[] =
6513 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6514 return DAG.getMergeValues(Ops, 2, dl);
6518 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6520 The rounding mode is in bits 11:10 of FPSR, and has the following
6521 settings:
6522 00 Round to nearest
6523 01 Round to -inf
6524 10 Round to +inf
6525 11 Round to 0
6527 FLT_ROUNDS, on the other hand, expects the following:
6528 -1 Undefined
6529 0 Round to 0
6530 1 Round to nearest
6531 2 Round to +inf
6532 3 Round to -inf
6534 To perform the conversion, we do:
6535 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6538 MachineFunction &MF = DAG.getMachineFunction();
6539 const TargetMachine &TM = MF.getTarget();
6540 const TargetFrameInfo &TFI = *TM.getFrameInfo();
6541 unsigned StackAlignment = TFI.getStackAlignment();
6542 MVT VT = Op.getValueType();
6543 DebugLoc dl = Op.getDebugLoc();
6545 // Save FP Control Word to stack slot
6546 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6547 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6549 SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6550 DAG.getEntryNode(), StackSlot);
6552 // Load FP Control Word from stack slot
6553 SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6555 // Transform as necessary
6556 SDValue CWD1 =
6557 DAG.getNode(ISD::SRL, dl, MVT::i16,
6558 DAG.getNode(ISD::AND, dl, MVT::i16,
6559 CWD, DAG.getConstant(0x800, MVT::i16)),
6560 DAG.getConstant(11, MVT::i8));
6561 SDValue CWD2 =
6562 DAG.getNode(ISD::SRL, dl, MVT::i16,
6563 DAG.getNode(ISD::AND, dl, MVT::i16,
6564 CWD, DAG.getConstant(0x400, MVT::i16)),
6565 DAG.getConstant(9, MVT::i8));
6567 SDValue RetVal =
6568 DAG.getNode(ISD::AND, dl, MVT::i16,
6569 DAG.getNode(ISD::ADD, dl, MVT::i16,
6570 DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6571 DAG.getConstant(1, MVT::i16)),
6572 DAG.getConstant(3, MVT::i16));
6575 return DAG.getNode((VT.getSizeInBits() < 16 ?
6576 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6579 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6580 MVT VT = Op.getValueType();
6581 MVT OpVT = VT;
6582 unsigned NumBits = VT.getSizeInBits();
6583 DebugLoc dl = Op.getDebugLoc();
6585 Op = Op.getOperand(0);
6586 if (VT == MVT::i8) {
6587 // Zero extend to i32 since there is not an i8 bsr.
6588 OpVT = MVT::i32;
6589 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6592 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6593 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6594 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6596 // If src is zero (i.e. bsr sets ZF), returns NumBits.
6597 SmallVector<SDValue, 4> Ops;
6598 Ops.push_back(Op);
6599 Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6600 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6601 Ops.push_back(Op.getValue(1));
6602 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6604 // Finally xor with NumBits-1.
6605 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6607 if (VT == MVT::i8)
6608 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6609 return Op;
6612 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6613 MVT VT = Op.getValueType();
6614 MVT OpVT = VT;
6615 unsigned NumBits = VT.getSizeInBits();
6616 DebugLoc dl = Op.getDebugLoc();
6618 Op = Op.getOperand(0);
6619 if (VT == MVT::i8) {
6620 OpVT = MVT::i32;
6621 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6624 // Issue a bsf (scan bits forward) which also sets EFLAGS.
6625 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6626 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6628 // If src is zero (i.e. bsf sets ZF), returns NumBits.
6629 SmallVector<SDValue, 4> Ops;
6630 Ops.push_back(Op);
6631 Ops.push_back(DAG.getConstant(NumBits, OpVT));
6632 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6633 Ops.push_back(Op.getValue(1));
6634 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6636 if (VT == MVT::i8)
6637 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6638 return Op;
6641 SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6642 MVT VT = Op.getValueType();
6643 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6644 DebugLoc dl = Op.getDebugLoc();
6646 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6647 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6648 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6649 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6650 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6652 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6653 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6654 // return AloBlo + AloBhi + AhiBlo;
6656 SDValue A = Op.getOperand(0);
6657 SDValue B = Op.getOperand(1);
6659 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6660 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6661 A, DAG.getConstant(32, MVT::i32));
6662 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6663 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6664 B, DAG.getConstant(32, MVT::i32));
6665 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6666 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6667 A, B);
6668 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6669 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6670 A, Bhi);
6671 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6672 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6673 Ahi, B);
6674 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6675 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6676 AloBhi, DAG.getConstant(32, MVT::i32));
6677 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6678 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6679 AhiBlo, DAG.getConstant(32, MVT::i32));
6680 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6681 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6682 return Res;
6686 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6687 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6688 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6689 // looks for this combo and may remove the "setcc" instruction if the "setcc"
6690 // has only one use.
6691 SDNode *N = Op.getNode();
6692 SDValue LHS = N->getOperand(0);
6693 SDValue RHS = N->getOperand(1);
6694 unsigned BaseOp = 0;
6695 unsigned Cond = 0;
6696 DebugLoc dl = Op.getDebugLoc();
6698 switch (Op.getOpcode()) {
6699 default: llvm_unreachable("Unknown ovf instruction!");
6700 case ISD::SADDO:
6701 // A subtract of one will be selected as a INC. Note that INC doesn't
6702 // set CF, so we can't do this for UADDO.
6703 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6704 if (C->getAPIntValue() == 1) {
6705 BaseOp = X86ISD::INC;
6706 Cond = X86::COND_O;
6707 break;
6709 BaseOp = X86ISD::ADD;
6710 Cond = X86::COND_O;
6711 break;
6712 case ISD::UADDO:
6713 BaseOp = X86ISD::ADD;
6714 Cond = X86::COND_B;
6715 break;
6716 case ISD::SSUBO:
6717 // A subtract of one will be selected as a DEC. Note that DEC doesn't
6718 // set CF, so we can't do this for USUBO.
6719 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6720 if (C->getAPIntValue() == 1) {
6721 BaseOp = X86ISD::DEC;
6722 Cond = X86::COND_O;
6723 break;
6725 BaseOp = X86ISD::SUB;
6726 Cond = X86::COND_O;
6727 break;
6728 case ISD::USUBO:
6729 BaseOp = X86ISD::SUB;
6730 Cond = X86::COND_B;
6731 break;
6732 case ISD::SMULO:
6733 BaseOp = X86ISD::SMUL;
6734 Cond = X86::COND_O;
6735 break;
6736 case ISD::UMULO:
6737 BaseOp = X86ISD::UMUL;
6738 Cond = X86::COND_B;
6739 break;
6742 // Also sets EFLAGS.
6743 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6744 SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6746 SDValue SetCC =
6747 DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6748 DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6750 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6751 return Sum;
6754 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6755 MVT T = Op.getValueType();
6756 DebugLoc dl = Op.getDebugLoc();
6757 unsigned Reg = 0;
6758 unsigned size = 0;
6759 switch(T.getSimpleVT()) {
6760 default:
6761 assert(false && "Invalid value type!");
6762 case MVT::i8: Reg = X86::AL; size = 1; break;
6763 case MVT::i16: Reg = X86::AX; size = 2; break;
6764 case MVT::i32: Reg = X86::EAX; size = 4; break;
6765 case MVT::i64:
6766 assert(Subtarget->is64Bit() && "Node not type legal!");
6767 Reg = X86::RAX; size = 8;
6768 break;
6770 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6771 Op.getOperand(2), SDValue());
6772 SDValue Ops[] = { cpIn.getValue(0),
6773 Op.getOperand(1),
6774 Op.getOperand(3),
6775 DAG.getTargetConstant(size, MVT::i8),
6776 cpIn.getValue(1) };
6777 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6778 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6779 SDValue cpOut =
6780 DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6781 return cpOut;
6784 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6785 SelectionDAG &DAG) {
6786 assert(Subtarget->is64Bit() && "Result not type legalized?");
6787 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6788 SDValue TheChain = Op.getOperand(0);
6789 DebugLoc dl = Op.getDebugLoc();
6790 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6791 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6792 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6793 rax.getValue(2));
6794 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6795 DAG.getConstant(32, MVT::i8));
6796 SDValue Ops[] = {
6797 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6798 rdx.getValue(1)
6800 return DAG.getMergeValues(Ops, 2, dl);
6803 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6804 SDNode *Node = Op.getNode();
6805 DebugLoc dl = Node->getDebugLoc();
6806 MVT T = Node->getValueType(0);
6807 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6808 DAG.getConstant(0, T), Node->getOperand(2));
6809 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6810 cast<AtomicSDNode>(Node)->getMemoryVT(),
6811 Node->getOperand(0),
6812 Node->getOperand(1), negOp,
6813 cast<AtomicSDNode>(Node)->getSrcValue(),
6814 cast<AtomicSDNode>(Node)->getAlignment());
6817 /// LowerOperation - Provide custom lowering hooks for some operations.
6819 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6820 switch (Op.getOpcode()) {
6821 default: llvm_unreachable("Should not custom lower this!");
6822 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
6823 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
6824 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
6825 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
6826 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6827 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
6828 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
6829 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
6830 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
6831 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
6832 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
6833 case ISD::SHL_PARTS:
6834 case ISD::SRA_PARTS:
6835 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
6836 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
6837 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
6838 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
6839 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
6840 case ISD::FABS: return LowerFABS(Op, DAG);
6841 case ISD::FNEG: return LowerFNEG(Op, DAG);
6842 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
6843 case ISD::SETCC: return LowerSETCC(Op, DAG);
6844 case ISD::VSETCC: return LowerVSETCC(Op, DAG);
6845 case ISD::SELECT: return LowerSELECT(Op, DAG);
6846 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
6847 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
6848 case ISD::CALL: return LowerCALL(Op, DAG);
6849 case ISD::RET: return LowerRET(Op, DAG);
6850 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
6851 case ISD::VASTART: return LowerVASTART(Op, DAG);
6852 case ISD::VAARG: return LowerVAARG(Op, DAG);
6853 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
6854 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6855 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
6856 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
6857 case ISD::FRAME_TO_ARGS_OFFSET:
6858 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6859 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6860 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
6861 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
6862 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
6863 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
6864 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
6865 case ISD::MUL: return LowerMUL_V2I64(Op, DAG);
6866 case ISD::SADDO:
6867 case ISD::UADDO:
6868 case ISD::SSUBO:
6869 case ISD::USUBO:
6870 case ISD::SMULO:
6871 case ISD::UMULO: return LowerXALUO(Op, DAG);
6872 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
6876 void X86TargetLowering::
6877 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6878 SelectionDAG &DAG, unsigned NewOp) {
6879 MVT T = Node->getValueType(0);
6880 DebugLoc dl = Node->getDebugLoc();
6881 assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6883 SDValue Chain = Node->getOperand(0);
6884 SDValue In1 = Node->getOperand(1);
6885 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6886 Node->getOperand(2), DAG.getIntPtrConstant(0));
6887 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6888 Node->getOperand(2), DAG.getIntPtrConstant(1));
6889 // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6890 // have a MemOperand. Pass the info through as a normal operand.
6891 SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6892 SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6893 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6894 SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6895 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6896 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6897 Results.push_back(Result.getValue(2));
6900 /// ReplaceNodeResults - Replace a node with an illegal result type
6901 /// with a new node built out of custom code.
6902 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6903 SmallVectorImpl<SDValue>&Results,
6904 SelectionDAG &DAG) {
6905 DebugLoc dl = N->getDebugLoc();
6906 switch (N->getOpcode()) {
6907 default:
6908 assert(false && "Do not know how to custom type legalize this operation!");
6909 return;
6910 case ISD::FP_TO_SINT: {
6911 std::pair<SDValue,SDValue> Vals =
6912 FP_TO_INTHelper(SDValue(N, 0), DAG, true);
6913 SDValue FIST = Vals.first, StackSlot = Vals.second;
6914 if (FIST.getNode() != 0) {
6915 MVT VT = N->getValueType(0);
6916 // Return a load from the stack slot.
6917 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
6919 return;
6921 case ISD::READCYCLECOUNTER: {
6922 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6923 SDValue TheChain = N->getOperand(0);
6924 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6925 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
6926 rd.getValue(1));
6927 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
6928 eax.getValue(2));
6929 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6930 SDValue Ops[] = { eax, edx };
6931 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
6932 Results.push_back(edx.getValue(1));
6933 return;
6935 case ISD::ATOMIC_CMP_SWAP: {
6936 MVT T = N->getValueType(0);
6937 assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6938 SDValue cpInL, cpInH;
6939 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6940 DAG.getConstant(0, MVT::i32));
6941 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6942 DAG.getConstant(1, MVT::i32));
6943 cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
6944 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
6945 cpInL.getValue(1));
6946 SDValue swapInL, swapInH;
6947 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6948 DAG.getConstant(0, MVT::i32));
6949 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6950 DAG.getConstant(1, MVT::i32));
6951 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
6952 cpInH.getValue(1));
6953 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
6954 swapInL.getValue(1));
6955 SDValue Ops[] = { swapInH.getValue(0),
6956 N->getOperand(1),
6957 swapInH.getValue(1) };
6958 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6959 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
6960 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
6961 MVT::i32, Result.getValue(1));
6962 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
6963 MVT::i32, cpOutL.getValue(2));
6964 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6965 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6966 Results.push_back(cpOutH.getValue(1));
6967 return;
6969 case ISD::ATOMIC_LOAD_ADD:
6970 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6971 return;
6972 case ISD::ATOMIC_LOAD_AND:
6973 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6974 return;
6975 case ISD::ATOMIC_LOAD_NAND:
6976 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6977 return;
6978 case ISD::ATOMIC_LOAD_OR:
6979 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6980 return;
6981 case ISD::ATOMIC_LOAD_SUB:
6982 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6983 return;
6984 case ISD::ATOMIC_LOAD_XOR:
6985 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6986 return;
6987 case ISD::ATOMIC_SWAP:
6988 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6989 return;
6993 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6994 switch (Opcode) {
6995 default: return NULL;
6996 case X86ISD::BSF: return "X86ISD::BSF";
6997 case X86ISD::BSR: return "X86ISD::BSR";
6998 case X86ISD::SHLD: return "X86ISD::SHLD";
6999 case X86ISD::SHRD: return "X86ISD::SHRD";
7000 case X86ISD::FAND: return "X86ISD::FAND";
7001 case X86ISD::FOR: return "X86ISD::FOR";
7002 case X86ISD::FXOR: return "X86ISD::FXOR";
7003 case X86ISD::FSRL: return "X86ISD::FSRL";
7004 case X86ISD::FILD: return "X86ISD::FILD";
7005 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
7006 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7007 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7008 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7009 case X86ISD::FLD: return "X86ISD::FLD";
7010 case X86ISD::FST: return "X86ISD::FST";
7011 case X86ISD::CALL: return "X86ISD::CALL";
7012 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
7013 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
7014 case X86ISD::BT: return "X86ISD::BT";
7015 case X86ISD::CMP: return "X86ISD::CMP";
7016 case X86ISD::COMI: return "X86ISD::COMI";
7017 case X86ISD::UCOMI: return "X86ISD::UCOMI";
7018 case X86ISD::SETCC: return "X86ISD::SETCC";
7019 case X86ISD::CMOV: return "X86ISD::CMOV";
7020 case X86ISD::BRCOND: return "X86ISD::BRCOND";
7021 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
7022 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
7023 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
7024 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
7025 case X86ISD::Wrapper: return "X86ISD::Wrapper";
7026 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
7027 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
7028 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
7029 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
7030 case X86ISD::PINSRB: return "X86ISD::PINSRB";
7031 case X86ISD::PINSRW: return "X86ISD::PINSRW";
7032 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
7033 case X86ISD::FMAX: return "X86ISD::FMAX";
7034 case X86ISD::FMIN: return "X86ISD::FMIN";
7035 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
7036 case X86ISD::FRCP: return "X86ISD::FRCP";
7037 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
7038 case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7039 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
7040 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
7041 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
7042 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
7043 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
7044 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
7045 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
7046 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
7047 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
7048 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
7049 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
7050 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
7051 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
7052 case X86ISD::VSHL: return "X86ISD::VSHL";
7053 case X86ISD::VSRL: return "X86ISD::VSRL";
7054 case X86ISD::CMPPD: return "X86ISD::CMPPD";
7055 case X86ISD::CMPPS: return "X86ISD::CMPPS";
7056 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
7057 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
7058 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
7059 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
7060 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
7061 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
7062 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
7063 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
7064 case X86ISD::ADD: return "X86ISD::ADD";
7065 case X86ISD::SUB: return "X86ISD::SUB";
7066 case X86ISD::SMUL: return "X86ISD::SMUL";
7067 case X86ISD::UMUL: return "X86ISD::UMUL";
7068 case X86ISD::INC: return "X86ISD::INC";
7069 case X86ISD::DEC: return "X86ISD::DEC";
7070 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
7071 case X86ISD::PTEST: return "X86ISD::PTEST";
7075 // isLegalAddressingMode - Return true if the addressing mode represented
7076 // by AM is legal for this target, for a load/store of the specified type.
7077 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7078 const Type *Ty) const {
7079 // X86 supports extremely general addressing modes.
7081 // X86 allows a sign-extended 32-bit immediate field as a displacement.
7082 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
7083 return false;
7085 if (AM.BaseGV) {
7086 unsigned GVFlags =
7087 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7089 // If a reference to this global requires an extra load, we can't fold it.
7090 if (isGlobalStubReference(GVFlags))
7091 return false;
7093 // If BaseGV requires a register for the PIC base, we cannot also have a
7094 // BaseReg specified.
7095 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7096 return false;
7098 // X86-64 only supports addr of globals in small code model.
7099 if (Subtarget->is64Bit()) {
7100 if (getTargetMachine().getCodeModel() != CodeModel::Small)
7101 return false;
7102 // If lower 4G is not available, then we must use rip-relative addressing.
7103 if (AM.BaseOffs || AM.Scale > 1)
7104 return false;
7108 switch (AM.Scale) {
7109 case 0:
7110 case 1:
7111 case 2:
7112 case 4:
7113 case 8:
7114 // These scales always work.
7115 break;
7116 case 3:
7117 case 5:
7118 case 9:
7119 // These scales are formed with basereg+scalereg. Only accept if there is
7120 // no basereg yet.
7121 if (AM.HasBaseReg)
7122 return false;
7123 break;
7124 default: // Other stuff never works.
7125 return false;
7128 return true;
7132 bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7133 if (!Ty1->isInteger() || !Ty2->isInteger())
7134 return false;
7135 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7136 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7137 if (NumBits1 <= NumBits2)
7138 return false;
7139 return Subtarget->is64Bit() || NumBits1 < 64;
7142 bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
7143 if (!VT1.isInteger() || !VT2.isInteger())
7144 return false;
7145 unsigned NumBits1 = VT1.getSizeInBits();
7146 unsigned NumBits2 = VT2.getSizeInBits();
7147 if (NumBits1 <= NumBits2)
7148 return false;
7149 return Subtarget->is64Bit() || NumBits1 < 64;
7152 bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7153 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7154 return Ty1 == Type::Int32Ty && Ty2 == Type::Int64Ty && Subtarget->is64Bit();
7157 bool X86TargetLowering::isZExtFree(MVT VT1, MVT VT2) const {
7158 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7159 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7162 bool X86TargetLowering::isNarrowingProfitable(MVT VT1, MVT VT2) const {
7163 // i16 instructions are longer (0x66 prefix) and potentially slower.
7164 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7167 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7168 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7169 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7170 /// are assumed to be legal.
7171 bool
7172 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7173 MVT VT) const {
7174 // Only do shuffles on 128-bit vector types for now.
7175 if (VT.getSizeInBits() == 64)
7176 return false;
7178 // FIXME: pshufb, blends, palignr, shifts.
7179 return (VT.getVectorNumElements() == 2 ||
7180 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7181 isMOVLMask(M, VT) ||
7182 isSHUFPMask(M, VT) ||
7183 isPSHUFDMask(M, VT) ||
7184 isPSHUFHWMask(M, VT) ||
7185 isPSHUFLWMask(M, VT) ||
7186 isUNPCKLMask(M, VT) ||
7187 isUNPCKHMask(M, VT) ||
7188 isUNPCKL_v_undef_Mask(M, VT) ||
7189 isUNPCKH_v_undef_Mask(M, VT));
7192 bool
7193 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7194 MVT VT) const {
7195 unsigned NumElts = VT.getVectorNumElements();
7196 // FIXME: This collection of masks seems suspect.
7197 if (NumElts == 2)
7198 return true;
7199 if (NumElts == 4 && VT.getSizeInBits() == 128) {
7200 return (isMOVLMask(Mask, VT) ||
7201 isCommutedMOVLMask(Mask, VT, true) ||
7202 isSHUFPMask(Mask, VT) ||
7203 isCommutedSHUFPMask(Mask, VT));
7205 return false;
7208 //===----------------------------------------------------------------------===//
7209 // X86 Scheduler Hooks
7210 //===----------------------------------------------------------------------===//
7212 // private utility function
7213 MachineBasicBlock *
7214 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7215 MachineBasicBlock *MBB,
7216 unsigned regOpc,
7217 unsigned immOpc,
7218 unsigned LoadOpc,
7219 unsigned CXchgOpc,
7220 unsigned copyOpc,
7221 unsigned notOpc,
7222 unsigned EAXreg,
7223 TargetRegisterClass *RC,
7224 bool invSrc) const {
7225 // For the atomic bitwise operator, we generate
7226 // thisMBB:
7227 // newMBB:
7228 // ld t1 = [bitinstr.addr]
7229 // op t2 = t1, [bitinstr.val]
7230 // mov EAX = t1
7231 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7232 // bz newMBB
7233 // fallthrough -->nextMBB
7234 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7235 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7236 MachineFunction::iterator MBBIter = MBB;
7237 ++MBBIter;
7239 /// First build the CFG
7240 MachineFunction *F = MBB->getParent();
7241 MachineBasicBlock *thisMBB = MBB;
7242 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7243 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7244 F->insert(MBBIter, newMBB);
7245 F->insert(MBBIter, nextMBB);
7247 // Move all successors to thisMBB to nextMBB
7248 nextMBB->transferSuccessors(thisMBB);
7250 // Update thisMBB to fall through to newMBB
7251 thisMBB->addSuccessor(newMBB);
7253 // newMBB jumps to itself and fall through to nextMBB
7254 newMBB->addSuccessor(nextMBB);
7255 newMBB->addSuccessor(newMBB);
7257 // Insert instructions into newMBB based on incoming instruction
7258 assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7259 "unexpected number of operands");
7260 DebugLoc dl = bInstr->getDebugLoc();
7261 MachineOperand& destOper = bInstr->getOperand(0);
7262 MachineOperand* argOpers[2 + X86AddrNumOperands];
7263 int numArgs = bInstr->getNumOperands() - 1;
7264 for (int i=0; i < numArgs; ++i)
7265 argOpers[i] = &bInstr->getOperand(i+1);
7267 // x86 address has 4 operands: base, index, scale, and displacement
7268 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7269 int valArgIndx = lastAddrIndx + 1;
7271 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7272 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7273 for (int i=0; i <= lastAddrIndx; ++i)
7274 (*MIB).addOperand(*argOpers[i]);
7276 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7277 if (invSrc) {
7278 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7280 else
7281 tt = t1;
7283 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7284 assert((argOpers[valArgIndx]->isReg() ||
7285 argOpers[valArgIndx]->isImm()) &&
7286 "invalid operand");
7287 if (argOpers[valArgIndx]->isReg())
7288 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7289 else
7290 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7291 MIB.addReg(tt);
7292 (*MIB).addOperand(*argOpers[valArgIndx]);
7294 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7295 MIB.addReg(t1);
7297 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7298 for (int i=0; i <= lastAddrIndx; ++i)
7299 (*MIB).addOperand(*argOpers[i]);
7300 MIB.addReg(t2);
7301 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7302 (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7304 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7305 MIB.addReg(EAXreg);
7307 // insert branch
7308 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7310 F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now.
7311 return nextMBB;
7314 // private utility function: 64 bit atomics on 32 bit host.
7315 MachineBasicBlock *
7316 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7317 MachineBasicBlock *MBB,
7318 unsigned regOpcL,
7319 unsigned regOpcH,
7320 unsigned immOpcL,
7321 unsigned immOpcH,
7322 bool invSrc) const {
7323 // For the atomic bitwise operator, we generate
7324 // thisMBB (instructions are in pairs, except cmpxchg8b)
7325 // ld t1,t2 = [bitinstr.addr]
7326 // newMBB:
7327 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7328 // op t5, t6 <- out1, out2, [bitinstr.val]
7329 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
7330 // mov ECX, EBX <- t5, t6
7331 // mov EAX, EDX <- t1, t2
7332 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
7333 // mov t3, t4 <- EAX, EDX
7334 // bz newMBB
7335 // result in out1, out2
7336 // fallthrough -->nextMBB
7338 const TargetRegisterClass *RC = X86::GR32RegisterClass;
7339 const unsigned LoadOpc = X86::MOV32rm;
7340 const unsigned copyOpc = X86::MOV32rr;
7341 const unsigned NotOpc = X86::NOT32r;
7342 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7343 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7344 MachineFunction::iterator MBBIter = MBB;
7345 ++MBBIter;
7347 /// First build the CFG
7348 MachineFunction *F = MBB->getParent();
7349 MachineBasicBlock *thisMBB = MBB;
7350 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7351 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7352 F->insert(MBBIter, newMBB);
7353 F->insert(MBBIter, nextMBB);
7355 // Move all successors to thisMBB to nextMBB
7356 nextMBB->transferSuccessors(thisMBB);
7358 // Update thisMBB to fall through to newMBB
7359 thisMBB->addSuccessor(newMBB);
7361 // newMBB jumps to itself and fall through to nextMBB
7362 newMBB->addSuccessor(nextMBB);
7363 newMBB->addSuccessor(newMBB);
7365 DebugLoc dl = bInstr->getDebugLoc();
7366 // Insert instructions into newMBB based on incoming instruction
7367 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7368 assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7369 "unexpected number of operands");
7370 MachineOperand& dest1Oper = bInstr->getOperand(0);
7371 MachineOperand& dest2Oper = bInstr->getOperand(1);
7372 MachineOperand* argOpers[2 + X86AddrNumOperands];
7373 for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7374 argOpers[i] = &bInstr->getOperand(i+2);
7376 // x86 address has 4 operands: base, index, scale, and displacement
7377 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7379 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7380 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7381 for (int i=0; i <= lastAddrIndx; ++i)
7382 (*MIB).addOperand(*argOpers[i]);
7383 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7384 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7385 // add 4 to displacement.
7386 for (int i=0; i <= lastAddrIndx-2; ++i)
7387 (*MIB).addOperand(*argOpers[i]);
7388 MachineOperand newOp3 = *(argOpers[3]);
7389 if (newOp3.isImm())
7390 newOp3.setImm(newOp3.getImm()+4);
7391 else
7392 newOp3.setOffset(newOp3.getOffset()+4);
7393 (*MIB).addOperand(newOp3);
7394 (*MIB).addOperand(*argOpers[lastAddrIndx]);
7396 // t3/4 are defined later, at the bottom of the loop
7397 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7398 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7399 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7400 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7401 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7402 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7404 unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7405 unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7406 if (invSrc) {
7407 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7408 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7409 } else {
7410 tt1 = t1;
7411 tt2 = t2;
7414 int valArgIndx = lastAddrIndx + 1;
7415 assert((argOpers[valArgIndx]->isReg() ||
7416 argOpers[valArgIndx]->isImm()) &&
7417 "invalid operand");
7418 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7419 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7420 if (argOpers[valArgIndx]->isReg())
7421 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7422 else
7423 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7424 if (regOpcL != X86::MOV32rr)
7425 MIB.addReg(tt1);
7426 (*MIB).addOperand(*argOpers[valArgIndx]);
7427 assert(argOpers[valArgIndx + 1]->isReg() ==
7428 argOpers[valArgIndx]->isReg());
7429 assert(argOpers[valArgIndx + 1]->isImm() ==
7430 argOpers[valArgIndx]->isImm());
7431 if (argOpers[valArgIndx + 1]->isReg())
7432 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7433 else
7434 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7435 if (regOpcH != X86::MOV32rr)
7436 MIB.addReg(tt2);
7437 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7439 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7440 MIB.addReg(t1);
7441 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7442 MIB.addReg(t2);
7444 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7445 MIB.addReg(t5);
7446 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7447 MIB.addReg(t6);
7449 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7450 for (int i=0; i <= lastAddrIndx; ++i)
7451 (*MIB).addOperand(*argOpers[i]);
7453 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7454 (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7456 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7457 MIB.addReg(X86::EAX);
7458 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7459 MIB.addReg(X86::EDX);
7461 // insert branch
7462 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7464 F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now.
7465 return nextMBB;
7468 // private utility function
7469 MachineBasicBlock *
7470 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7471 MachineBasicBlock *MBB,
7472 unsigned cmovOpc) const {
7473 // For the atomic min/max operator, we generate
7474 // thisMBB:
7475 // newMBB:
7476 // ld t1 = [min/max.addr]
7477 // mov t2 = [min/max.val]
7478 // cmp t1, t2
7479 // cmov[cond] t2 = t1
7480 // mov EAX = t1
7481 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7482 // bz newMBB
7483 // fallthrough -->nextMBB
7485 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7486 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7487 MachineFunction::iterator MBBIter = MBB;
7488 ++MBBIter;
7490 /// First build the CFG
7491 MachineFunction *F = MBB->getParent();
7492 MachineBasicBlock *thisMBB = MBB;
7493 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7494 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7495 F->insert(MBBIter, newMBB);
7496 F->insert(MBBIter, nextMBB);
7498 // Move all successors to thisMBB to nextMBB
7499 nextMBB->transferSuccessors(thisMBB);
7501 // Update thisMBB to fall through to newMBB
7502 thisMBB->addSuccessor(newMBB);
7504 // newMBB jumps to newMBB and fall through to nextMBB
7505 newMBB->addSuccessor(nextMBB);
7506 newMBB->addSuccessor(newMBB);
7508 DebugLoc dl = mInstr->getDebugLoc();
7509 // Insert instructions into newMBB based on incoming instruction
7510 assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7511 "unexpected number of operands");
7512 MachineOperand& destOper = mInstr->getOperand(0);
7513 MachineOperand* argOpers[2 + X86AddrNumOperands];
7514 int numArgs = mInstr->getNumOperands() - 1;
7515 for (int i=0; i < numArgs; ++i)
7516 argOpers[i] = &mInstr->getOperand(i+1);
7518 // x86 address has 4 operands: base, index, scale, and displacement
7519 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7520 int valArgIndx = lastAddrIndx + 1;
7522 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7523 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7524 for (int i=0; i <= lastAddrIndx; ++i)
7525 (*MIB).addOperand(*argOpers[i]);
7527 // We only support register and immediate values
7528 assert((argOpers[valArgIndx]->isReg() ||
7529 argOpers[valArgIndx]->isImm()) &&
7530 "invalid operand");
7532 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7533 if (argOpers[valArgIndx]->isReg())
7534 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7535 else
7536 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7537 (*MIB).addOperand(*argOpers[valArgIndx]);
7539 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7540 MIB.addReg(t1);
7542 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7543 MIB.addReg(t1);
7544 MIB.addReg(t2);
7546 // Generate movc
7547 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7548 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7549 MIB.addReg(t2);
7550 MIB.addReg(t1);
7552 // Cmp and exchange if none has modified the memory location
7553 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7554 for (int i=0; i <= lastAddrIndx; ++i)
7555 (*MIB).addOperand(*argOpers[i]);
7556 MIB.addReg(t3);
7557 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7558 (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7560 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7561 MIB.addReg(X86::EAX);
7563 // insert branch
7564 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7566 F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now.
7567 return nextMBB;
7571 MachineBasicBlock *
7572 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7573 MachineBasicBlock *BB) const {
7574 DebugLoc dl = MI->getDebugLoc();
7575 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7576 switch (MI->getOpcode()) {
7577 default: assert(false && "Unexpected instr type to insert");
7578 case X86::CMOV_V1I64:
7579 case X86::CMOV_FR32:
7580 case X86::CMOV_FR64:
7581 case X86::CMOV_V4F32:
7582 case X86::CMOV_V2F64:
7583 case X86::CMOV_V2I64: {
7584 // To "insert" a SELECT_CC instruction, we actually have to insert the
7585 // diamond control-flow pattern. The incoming instruction knows the
7586 // destination vreg to set, the condition code register to branch on, the
7587 // true/false values to select between, and a branch opcode to use.
7588 const BasicBlock *LLVM_BB = BB->getBasicBlock();
7589 MachineFunction::iterator It = BB;
7590 ++It;
7592 // thisMBB:
7593 // ...
7594 // TrueVal = ...
7595 // cmpTY ccX, r1, r2
7596 // bCC copy1MBB
7597 // fallthrough --> copy0MBB
7598 MachineBasicBlock *thisMBB = BB;
7599 MachineFunction *F = BB->getParent();
7600 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7601 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7602 unsigned Opc =
7603 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7604 BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7605 F->insert(It, copy0MBB);
7606 F->insert(It, sinkMBB);
7607 // Update machine-CFG edges by transferring all successors of the current
7608 // block to the new block which will contain the Phi node for the select.
7609 sinkMBB->transferSuccessors(BB);
7611 // Add the true and fallthrough blocks as its successors.
7612 BB->addSuccessor(copy0MBB);
7613 BB->addSuccessor(sinkMBB);
7615 // copy0MBB:
7616 // %FalseValue = ...
7617 // # fallthrough to sinkMBB
7618 BB = copy0MBB;
7620 // Update machine-CFG edges
7621 BB->addSuccessor(sinkMBB);
7623 // sinkMBB:
7624 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7625 // ...
7626 BB = sinkMBB;
7627 BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7628 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7629 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7631 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
7632 return BB;
7635 case X86::FP32_TO_INT16_IN_MEM:
7636 case X86::FP32_TO_INT32_IN_MEM:
7637 case X86::FP32_TO_INT64_IN_MEM:
7638 case X86::FP64_TO_INT16_IN_MEM:
7639 case X86::FP64_TO_INT32_IN_MEM:
7640 case X86::FP64_TO_INT64_IN_MEM:
7641 case X86::FP80_TO_INT16_IN_MEM:
7642 case X86::FP80_TO_INT32_IN_MEM:
7643 case X86::FP80_TO_INT64_IN_MEM: {
7644 // Change the floating point control register to use "round towards zero"
7645 // mode when truncating to an integer value.
7646 MachineFunction *F = BB->getParent();
7647 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7648 addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7650 // Load the old value of the high byte of the control word...
7651 unsigned OldCW =
7652 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7653 addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7654 CWFrameIdx);
7656 // Set the high part to be round to zero...
7657 addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7658 .addImm(0xC7F);
7660 // Reload the modified control word now...
7661 addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7663 // Restore the memory image of control word to original value
7664 addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7665 .addReg(OldCW);
7667 // Get the X86 opcode to use.
7668 unsigned Opc;
7669 switch (MI->getOpcode()) {
7670 default: llvm_unreachable("illegal opcode!");
7671 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7672 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7673 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7674 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7675 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7676 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7677 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7678 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7679 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7682 X86AddressMode AM;
7683 MachineOperand &Op = MI->getOperand(0);
7684 if (Op.isReg()) {
7685 AM.BaseType = X86AddressMode::RegBase;
7686 AM.Base.Reg = Op.getReg();
7687 } else {
7688 AM.BaseType = X86AddressMode::FrameIndexBase;
7689 AM.Base.FrameIndex = Op.getIndex();
7691 Op = MI->getOperand(1);
7692 if (Op.isImm())
7693 AM.Scale = Op.getImm();
7694 Op = MI->getOperand(2);
7695 if (Op.isImm())
7696 AM.IndexReg = Op.getImm();
7697 Op = MI->getOperand(3);
7698 if (Op.isGlobal()) {
7699 AM.GV = Op.getGlobal();
7700 } else {
7701 AM.Disp = Op.getImm();
7703 addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7704 .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7706 // Reload the original control word now.
7707 addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7709 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
7710 return BB;
7712 case X86::ATOMAND32:
7713 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7714 X86::AND32ri, X86::MOV32rm,
7715 X86::LCMPXCHG32, X86::MOV32rr,
7716 X86::NOT32r, X86::EAX,
7717 X86::GR32RegisterClass);
7718 case X86::ATOMOR32:
7719 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7720 X86::OR32ri, X86::MOV32rm,
7721 X86::LCMPXCHG32, X86::MOV32rr,
7722 X86::NOT32r, X86::EAX,
7723 X86::GR32RegisterClass);
7724 case X86::ATOMXOR32:
7725 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7726 X86::XOR32ri, X86::MOV32rm,
7727 X86::LCMPXCHG32, X86::MOV32rr,
7728 X86::NOT32r, X86::EAX,
7729 X86::GR32RegisterClass);
7730 case X86::ATOMNAND32:
7731 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7732 X86::AND32ri, X86::MOV32rm,
7733 X86::LCMPXCHG32, X86::MOV32rr,
7734 X86::NOT32r, X86::EAX,
7735 X86::GR32RegisterClass, true);
7736 case X86::ATOMMIN32:
7737 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7738 case X86::ATOMMAX32:
7739 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7740 case X86::ATOMUMIN32:
7741 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7742 case X86::ATOMUMAX32:
7743 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7745 case X86::ATOMAND16:
7746 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7747 X86::AND16ri, X86::MOV16rm,
7748 X86::LCMPXCHG16, X86::MOV16rr,
7749 X86::NOT16r, X86::AX,
7750 X86::GR16RegisterClass);
7751 case X86::ATOMOR16:
7752 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7753 X86::OR16ri, X86::MOV16rm,
7754 X86::LCMPXCHG16, X86::MOV16rr,
7755 X86::NOT16r, X86::AX,
7756 X86::GR16RegisterClass);
7757 case X86::ATOMXOR16:
7758 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7759 X86::XOR16ri, X86::MOV16rm,
7760 X86::LCMPXCHG16, X86::MOV16rr,
7761 X86::NOT16r, X86::AX,
7762 X86::GR16RegisterClass);
7763 case X86::ATOMNAND16:
7764 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7765 X86::AND16ri, X86::MOV16rm,
7766 X86::LCMPXCHG16, X86::MOV16rr,
7767 X86::NOT16r, X86::AX,
7768 X86::GR16RegisterClass, true);
7769 case X86::ATOMMIN16:
7770 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7771 case X86::ATOMMAX16:
7772 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7773 case X86::ATOMUMIN16:
7774 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7775 case X86::ATOMUMAX16:
7776 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7778 case X86::ATOMAND8:
7779 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7780 X86::AND8ri, X86::MOV8rm,
7781 X86::LCMPXCHG8, X86::MOV8rr,
7782 X86::NOT8r, X86::AL,
7783 X86::GR8RegisterClass);
7784 case X86::ATOMOR8:
7785 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7786 X86::OR8ri, X86::MOV8rm,
7787 X86::LCMPXCHG8, X86::MOV8rr,
7788 X86::NOT8r, X86::AL,
7789 X86::GR8RegisterClass);
7790 case X86::ATOMXOR8:
7791 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7792 X86::XOR8ri, X86::MOV8rm,
7793 X86::LCMPXCHG8, X86::MOV8rr,
7794 X86::NOT8r, X86::AL,
7795 X86::GR8RegisterClass);
7796 case X86::ATOMNAND8:
7797 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7798 X86::AND8ri, X86::MOV8rm,
7799 X86::LCMPXCHG8, X86::MOV8rr,
7800 X86::NOT8r, X86::AL,
7801 X86::GR8RegisterClass, true);
7802 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7803 // This group is for 64-bit host.
7804 case X86::ATOMAND64:
7805 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7806 X86::AND64ri32, X86::MOV64rm,
7807 X86::LCMPXCHG64, X86::MOV64rr,
7808 X86::NOT64r, X86::RAX,
7809 X86::GR64RegisterClass);
7810 case X86::ATOMOR64:
7811 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7812 X86::OR64ri32, X86::MOV64rm,
7813 X86::LCMPXCHG64, X86::MOV64rr,
7814 X86::NOT64r, X86::RAX,
7815 X86::GR64RegisterClass);
7816 case X86::ATOMXOR64:
7817 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7818 X86::XOR64ri32, X86::MOV64rm,
7819 X86::LCMPXCHG64, X86::MOV64rr,
7820 X86::NOT64r, X86::RAX,
7821 X86::GR64RegisterClass);
7822 case X86::ATOMNAND64:
7823 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7824 X86::AND64ri32, X86::MOV64rm,
7825 X86::LCMPXCHG64, X86::MOV64rr,
7826 X86::NOT64r, X86::RAX,
7827 X86::GR64RegisterClass, true);
7828 case X86::ATOMMIN64:
7829 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7830 case X86::ATOMMAX64:
7831 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7832 case X86::ATOMUMIN64:
7833 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7834 case X86::ATOMUMAX64:
7835 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7837 // This group does 64-bit operations on a 32-bit host.
7838 case X86::ATOMAND6432:
7839 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7840 X86::AND32rr, X86::AND32rr,
7841 X86::AND32ri, X86::AND32ri,
7842 false);
7843 case X86::ATOMOR6432:
7844 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7845 X86::OR32rr, X86::OR32rr,
7846 X86::OR32ri, X86::OR32ri,
7847 false);
7848 case X86::ATOMXOR6432:
7849 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7850 X86::XOR32rr, X86::XOR32rr,
7851 X86::XOR32ri, X86::XOR32ri,
7852 false);
7853 case X86::ATOMNAND6432:
7854 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7855 X86::AND32rr, X86::AND32rr,
7856 X86::AND32ri, X86::AND32ri,
7857 true);
7858 case X86::ATOMADD6432:
7859 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7860 X86::ADD32rr, X86::ADC32rr,
7861 X86::ADD32ri, X86::ADC32ri,
7862 false);
7863 case X86::ATOMSUB6432:
7864 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7865 X86::SUB32rr, X86::SBB32rr,
7866 X86::SUB32ri, X86::SBB32ri,
7867 false);
7868 case X86::ATOMSWAP6432:
7869 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7870 X86::MOV32rr, X86::MOV32rr,
7871 X86::MOV32ri, X86::MOV32ri,
7872 false);
7876 //===----------------------------------------------------------------------===//
7877 // X86 Optimization Hooks
7878 //===----------------------------------------------------------------------===//
7880 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7881 const APInt &Mask,
7882 APInt &KnownZero,
7883 APInt &KnownOne,
7884 const SelectionDAG &DAG,
7885 unsigned Depth) const {
7886 unsigned Opc = Op.getOpcode();
7887 assert((Opc >= ISD::BUILTIN_OP_END ||
7888 Opc == ISD::INTRINSIC_WO_CHAIN ||
7889 Opc == ISD::INTRINSIC_W_CHAIN ||
7890 Opc == ISD::INTRINSIC_VOID) &&
7891 "Should use MaskedValueIsZero if you don't know whether Op"
7892 " is a target node!");
7894 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
7895 switch (Opc) {
7896 default: break;
7897 case X86ISD::ADD:
7898 case X86ISD::SUB:
7899 case X86ISD::SMUL:
7900 case X86ISD::UMUL:
7901 case X86ISD::INC:
7902 case X86ISD::DEC:
7903 // These nodes' second result is a boolean.
7904 if (Op.getResNo() == 0)
7905 break;
7906 // Fallthrough
7907 case X86ISD::SETCC:
7908 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7909 Mask.getBitWidth() - 1);
7910 break;
7914 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7915 /// node is a GlobalAddress + offset.
7916 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7917 GlobalValue* &GA, int64_t &Offset) const{
7918 if (N->getOpcode() == X86ISD::Wrapper) {
7919 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7920 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7921 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7922 return true;
7925 return TargetLowering::isGAPlusOffset(N, GA, Offset);
7928 static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7929 const TargetLowering &TLI) {
7930 GlobalValue *GV;
7931 int64_t Offset = 0;
7932 if (TLI.isGAPlusOffset(Base, GV, Offset))
7933 return (GV->getAlignment() >= N && (Offset % N) == 0);
7934 // DAG combine handles the stack object case.
7935 return false;
7938 static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
7939 MVT EVT, LoadSDNode *&LDBase,
7940 unsigned &LastLoadedElt,
7941 SelectionDAG &DAG, MachineFrameInfo *MFI,
7942 const TargetLowering &TLI) {
7943 LDBase = NULL;
7944 LastLoadedElt = -1U;
7945 for (unsigned i = 0; i < NumElems; ++i) {
7946 if (N->getMaskElt(i) < 0) {
7947 if (!LDBase)
7948 return false;
7949 continue;
7952 SDValue Elt = DAG.getShuffleScalarElt(N, i);
7953 if (!Elt.getNode() ||
7954 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7955 return false;
7956 if (!LDBase) {
7957 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
7958 return false;
7959 LDBase = cast<LoadSDNode>(Elt.getNode());
7960 LastLoadedElt = i;
7961 continue;
7963 if (Elt.getOpcode() == ISD::UNDEF)
7964 continue;
7966 LoadSDNode *LD = cast<LoadSDNode>(Elt);
7967 if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI))
7968 return false;
7969 LastLoadedElt = i;
7971 return true;
7974 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7975 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7976 /// if the load addresses are consecutive, non-overlapping, and in the right
7977 /// order. In the case of v2i64, it will see if it can rewrite the
7978 /// shuffle to be an appropriate build vector so it can take advantage of
7979 // performBuildVectorCombine.
7980 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7981 const TargetLowering &TLI) {
7982 DebugLoc dl = N->getDebugLoc();
7983 MVT VT = N->getValueType(0);
7984 MVT EVT = VT.getVectorElementType();
7985 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7986 unsigned NumElems = VT.getVectorNumElements();
7988 if (VT.getSizeInBits() != 128)
7989 return SDValue();
7991 // Try to combine a vector_shuffle into a 128-bit load.
7992 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7993 LoadSDNode *LD = NULL;
7994 unsigned LastLoadedElt;
7995 if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG,
7996 MFI, TLI))
7997 return SDValue();
7999 if (LastLoadedElt == NumElems - 1) {
8000 if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
8001 return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8002 LD->getSrcValue(), LD->getSrcValueOffset(),
8003 LD->isVolatile());
8004 return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8005 LD->getSrcValue(), LD->getSrcValueOffset(),
8006 LD->isVolatile(), LD->getAlignment());
8007 } else if (NumElems == 4 && LastLoadedElt == 1) {
8008 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8009 SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8010 SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8011 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8013 return SDValue();
8016 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8017 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8018 const X86Subtarget *Subtarget) {
8019 DebugLoc DL = N->getDebugLoc();
8020 SDValue Cond = N->getOperand(0);
8021 // Get the LHS/RHS of the select.
8022 SDValue LHS = N->getOperand(1);
8023 SDValue RHS = N->getOperand(2);
8025 // If we have SSE[12] support, try to form min/max nodes.
8026 if (Subtarget->hasSSE2() &&
8027 (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8028 Cond.getOpcode() == ISD::SETCC) {
8029 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8031 unsigned Opcode = 0;
8032 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8033 switch (CC) {
8034 default: break;
8035 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
8036 case ISD::SETULE:
8037 case ISD::SETLE:
8038 if (!UnsafeFPMath) break;
8039 // FALL THROUGH.
8040 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
8041 case ISD::SETLT:
8042 Opcode = X86ISD::FMIN;
8043 break;
8045 case ISD::SETOGT: // (X > Y) ? X : Y -> max
8046 case ISD::SETUGT:
8047 case ISD::SETGT:
8048 if (!UnsafeFPMath) break;
8049 // FALL THROUGH.
8050 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
8051 case ISD::SETGE:
8052 Opcode = X86ISD::FMAX;
8053 break;
8055 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8056 switch (CC) {
8057 default: break;
8058 case ISD::SETOGT: // (X > Y) ? Y : X -> min
8059 case ISD::SETUGT:
8060 case ISD::SETGT:
8061 if (!UnsafeFPMath) break;
8062 // FALL THROUGH.
8063 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
8064 case ISD::SETGE:
8065 Opcode = X86ISD::FMIN;
8066 break;
8068 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
8069 case ISD::SETULE:
8070 case ISD::SETLE:
8071 if (!UnsafeFPMath) break;
8072 // FALL THROUGH.
8073 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
8074 case ISD::SETLT:
8075 Opcode = X86ISD::FMAX;
8076 break;
8080 if (Opcode)
8081 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8084 // If this is a select between two integer constants, try to do some
8085 // optimizations.
8086 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8087 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8088 // Don't do this for crazy integer types.
8089 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8090 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8091 // so that TrueC (the true value) is larger than FalseC.
8092 bool NeedsCondInvert = false;
8094 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8095 // Efficiently invertible.
8096 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
8097 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
8098 isa<ConstantSDNode>(Cond.getOperand(1))))) {
8099 NeedsCondInvert = true;
8100 std::swap(TrueC, FalseC);
8103 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
8104 if (FalseC->getAPIntValue() == 0 &&
8105 TrueC->getAPIntValue().isPowerOf2()) {
8106 if (NeedsCondInvert) // Invert the condition if needed.
8107 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8108 DAG.getConstant(1, Cond.getValueType()));
8110 // Zero extend the condition if needed.
8111 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8113 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8114 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8115 DAG.getConstant(ShAmt, MVT::i8));
8118 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8119 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8120 if (NeedsCondInvert) // Invert the condition if needed.
8121 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8122 DAG.getConstant(1, Cond.getValueType()));
8124 // Zero extend the condition if needed.
8125 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8126 FalseC->getValueType(0), Cond);
8127 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8128 SDValue(FalseC, 0));
8131 // Optimize cases that will turn into an LEA instruction. This requires
8132 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8133 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8134 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8135 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8137 bool isFastMultiplier = false;
8138 if (Diff < 10) {
8139 switch ((unsigned char)Diff) {
8140 default: break;
8141 case 1: // result = add base, cond
8142 case 2: // result = lea base( , cond*2)
8143 case 3: // result = lea base(cond, cond*2)
8144 case 4: // result = lea base( , cond*4)
8145 case 5: // result = lea base(cond, cond*4)
8146 case 8: // result = lea base( , cond*8)
8147 case 9: // result = lea base(cond, cond*8)
8148 isFastMultiplier = true;
8149 break;
8153 if (isFastMultiplier) {
8154 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8155 if (NeedsCondInvert) // Invert the condition if needed.
8156 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8157 DAG.getConstant(1, Cond.getValueType()));
8159 // Zero extend the condition if needed.
8160 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8161 Cond);
8162 // Scale the condition by the difference.
8163 if (Diff != 1)
8164 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8165 DAG.getConstant(Diff, Cond.getValueType()));
8167 // Add the base if non-zero.
8168 if (FalseC->getAPIntValue() != 0)
8169 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8170 SDValue(FalseC, 0));
8171 return Cond;
8177 return SDValue();
8180 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8181 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8182 TargetLowering::DAGCombinerInfo &DCI) {
8183 DebugLoc DL = N->getDebugLoc();
8185 // If the flag operand isn't dead, don't touch this CMOV.
8186 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8187 return SDValue();
8189 // If this is a select between two integer constants, try to do some
8190 // optimizations. Note that the operands are ordered the opposite of SELECT
8191 // operands.
8192 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8193 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8194 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8195 // larger than FalseC (the false value).
8196 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8198 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8199 CC = X86::GetOppositeBranchCondition(CC);
8200 std::swap(TrueC, FalseC);
8203 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
8204 // This is efficient for any integer data type (including i8/i16) and
8205 // shift amount.
8206 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8207 SDValue Cond = N->getOperand(3);
8208 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8209 DAG.getConstant(CC, MVT::i8), Cond);
8211 // Zero extend the condition if needed.
8212 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8214 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8215 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8216 DAG.getConstant(ShAmt, MVT::i8));
8217 if (N->getNumValues() == 2) // Dead flag value?
8218 return DCI.CombineTo(N, Cond, SDValue());
8219 return Cond;
8222 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
8223 // for any integer data type, including i8/i16.
8224 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8225 SDValue Cond = N->getOperand(3);
8226 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8227 DAG.getConstant(CC, MVT::i8), Cond);
8229 // Zero extend the condition if needed.
8230 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8231 FalseC->getValueType(0), Cond);
8232 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8233 SDValue(FalseC, 0));
8235 if (N->getNumValues() == 2) // Dead flag value?
8236 return DCI.CombineTo(N, Cond, SDValue());
8237 return Cond;
8240 // Optimize cases that will turn into an LEA instruction. This requires
8241 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8242 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8243 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8244 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8246 bool isFastMultiplier = false;
8247 if (Diff < 10) {
8248 switch ((unsigned char)Diff) {
8249 default: break;
8250 case 1: // result = add base, cond
8251 case 2: // result = lea base( , cond*2)
8252 case 3: // result = lea base(cond, cond*2)
8253 case 4: // result = lea base( , cond*4)
8254 case 5: // result = lea base(cond, cond*4)
8255 case 8: // result = lea base( , cond*8)
8256 case 9: // result = lea base(cond, cond*8)
8257 isFastMultiplier = true;
8258 break;
8262 if (isFastMultiplier) {
8263 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8264 SDValue Cond = N->getOperand(3);
8265 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8266 DAG.getConstant(CC, MVT::i8), Cond);
8267 // Zero extend the condition if needed.
8268 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8269 Cond);
8270 // Scale the condition by the difference.
8271 if (Diff != 1)
8272 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8273 DAG.getConstant(Diff, Cond.getValueType()));
8275 // Add the base if non-zero.
8276 if (FalseC->getAPIntValue() != 0)
8277 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8278 SDValue(FalseC, 0));
8279 if (N->getNumValues() == 2) // Dead flag value?
8280 return DCI.CombineTo(N, Cond, SDValue());
8281 return Cond;
8286 return SDValue();
8290 /// PerformMulCombine - Optimize a single multiply with constant into two
8291 /// in order to implement it with two cheaper instructions, e.g.
8292 /// LEA + SHL, LEA + LEA.
8293 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8294 TargetLowering::DAGCombinerInfo &DCI) {
8295 if (DAG.getMachineFunction().
8296 getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8297 return SDValue();
8299 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8300 return SDValue();
8302 MVT VT = N->getValueType(0);
8303 if (VT != MVT::i64)
8304 return SDValue();
8306 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8307 if (!C)
8308 return SDValue();
8309 uint64_t MulAmt = C->getZExtValue();
8310 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8311 return SDValue();
8313 uint64_t MulAmt1 = 0;
8314 uint64_t MulAmt2 = 0;
8315 if ((MulAmt % 9) == 0) {
8316 MulAmt1 = 9;
8317 MulAmt2 = MulAmt / 9;
8318 } else if ((MulAmt % 5) == 0) {
8319 MulAmt1 = 5;
8320 MulAmt2 = MulAmt / 5;
8321 } else if ((MulAmt % 3) == 0) {
8322 MulAmt1 = 3;
8323 MulAmt2 = MulAmt / 3;
8325 if (MulAmt2 &&
8326 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8327 DebugLoc DL = N->getDebugLoc();
8329 if (isPowerOf2_64(MulAmt2) &&
8330 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8331 // If second multiplifer is pow2, issue it first. We want the multiply by
8332 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8333 // is an add.
8334 std::swap(MulAmt1, MulAmt2);
8336 SDValue NewMul;
8337 if (isPowerOf2_64(MulAmt1))
8338 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8339 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8340 else
8341 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8342 DAG.getConstant(MulAmt1, VT));
8344 if (isPowerOf2_64(MulAmt2))
8345 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8346 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8347 else
8348 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8349 DAG.getConstant(MulAmt2, VT));
8351 // Do not add new nodes to DAG combiner worklist.
8352 DCI.CombineTo(N, NewMul, false);
8354 return SDValue();
8358 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8359 /// when possible.
8360 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8361 const X86Subtarget *Subtarget) {
8362 // On X86 with SSE2 support, we can transform this to a vector shift if
8363 // all elements are shifted by the same amount. We can't do this in legalize
8364 // because the a constant vector is typically transformed to a constant pool
8365 // so we have no knowledge of the shift amount.
8366 if (!Subtarget->hasSSE2())
8367 return SDValue();
8369 MVT VT = N->getValueType(0);
8370 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8371 return SDValue();
8373 SDValue ShAmtOp = N->getOperand(1);
8374 MVT EltVT = VT.getVectorElementType();
8375 DebugLoc DL = N->getDebugLoc();
8376 SDValue BaseShAmt;
8377 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8378 unsigned NumElts = VT.getVectorNumElements();
8379 unsigned i = 0;
8380 for (; i != NumElts; ++i) {
8381 SDValue Arg = ShAmtOp.getOperand(i);
8382 if (Arg.getOpcode() == ISD::UNDEF) continue;
8383 BaseShAmt = Arg;
8384 break;
8386 for (; i != NumElts; ++i) {
8387 SDValue Arg = ShAmtOp.getOperand(i);
8388 if (Arg.getOpcode() == ISD::UNDEF) continue;
8389 if (Arg != BaseShAmt) {
8390 return SDValue();
8393 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8394 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8395 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8396 DAG.getIntPtrConstant(0));
8397 } else
8398 return SDValue();
8400 if (EltVT.bitsGT(MVT::i32))
8401 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8402 else if (EltVT.bitsLT(MVT::i32))
8403 BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
8405 // The shift amount is identical so we can do a vector shift.
8406 SDValue ValOp = N->getOperand(0);
8407 switch (N->getOpcode()) {
8408 default:
8409 llvm_unreachable("Unknown shift opcode!");
8410 break;
8411 case ISD::SHL:
8412 if (VT == MVT::v2i64)
8413 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8414 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8415 ValOp, BaseShAmt);
8416 if (VT == MVT::v4i32)
8417 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8418 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8419 ValOp, BaseShAmt);
8420 if (VT == MVT::v8i16)
8421 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8422 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8423 ValOp, BaseShAmt);
8424 break;
8425 case ISD::SRA:
8426 if (VT == MVT::v4i32)
8427 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8428 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8429 ValOp, BaseShAmt);
8430 if (VT == MVT::v8i16)
8431 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8432 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8433 ValOp, BaseShAmt);
8434 break;
8435 case ISD::SRL:
8436 if (VT == MVT::v2i64)
8437 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8438 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8439 ValOp, BaseShAmt);
8440 if (VT == MVT::v4i32)
8441 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8442 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8443 ValOp, BaseShAmt);
8444 if (VT == MVT::v8i16)
8445 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8446 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8447 ValOp, BaseShAmt);
8448 break;
8450 return SDValue();
8453 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8454 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8455 const X86Subtarget *Subtarget) {
8456 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
8457 // the FP state in cases where an emms may be missing.
8458 // A preferable solution to the general problem is to figure out the right
8459 // places to insert EMMS. This qualifies as a quick hack.
8461 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8462 StoreSDNode *St = cast<StoreSDNode>(N);
8463 MVT VT = St->getValue().getValueType();
8464 if (VT.getSizeInBits() != 64)
8465 return SDValue();
8467 const Function *F = DAG.getMachineFunction().getFunction();
8468 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8469 bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8470 && Subtarget->hasSSE2();
8471 if ((VT.isVector() ||
8472 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8473 isa<LoadSDNode>(St->getValue()) &&
8474 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8475 St->getChain().hasOneUse() && !St->isVolatile()) {
8476 SDNode* LdVal = St->getValue().getNode();
8477 LoadSDNode *Ld = 0;
8478 int TokenFactorIndex = -1;
8479 SmallVector<SDValue, 8> Ops;
8480 SDNode* ChainVal = St->getChain().getNode();
8481 // Must be a store of a load. We currently handle two cases: the load
8482 // is a direct child, and it's under an intervening TokenFactor. It is
8483 // possible to dig deeper under nested TokenFactors.
8484 if (ChainVal == LdVal)
8485 Ld = cast<LoadSDNode>(St->getChain());
8486 else if (St->getValue().hasOneUse() &&
8487 ChainVal->getOpcode() == ISD::TokenFactor) {
8488 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8489 if (ChainVal->getOperand(i).getNode() == LdVal) {
8490 TokenFactorIndex = i;
8491 Ld = cast<LoadSDNode>(St->getValue());
8492 } else
8493 Ops.push_back(ChainVal->getOperand(i));
8497 if (!Ld || !ISD::isNormalLoad(Ld))
8498 return SDValue();
8500 // If this is not the MMX case, i.e. we are just turning i64 load/store
8501 // into f64 load/store, avoid the transformation if there are multiple
8502 // uses of the loaded value.
8503 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8504 return SDValue();
8506 DebugLoc LdDL = Ld->getDebugLoc();
8507 DebugLoc StDL = N->getDebugLoc();
8508 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8509 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8510 // pair instead.
8511 if (Subtarget->is64Bit() || F64IsLegal) {
8512 MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8513 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8514 Ld->getBasePtr(), Ld->getSrcValue(),
8515 Ld->getSrcValueOffset(), Ld->isVolatile(),
8516 Ld->getAlignment());
8517 SDValue NewChain = NewLd.getValue(1);
8518 if (TokenFactorIndex != -1) {
8519 Ops.push_back(NewChain);
8520 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8521 Ops.size());
8523 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8524 St->getSrcValue(), St->getSrcValueOffset(),
8525 St->isVolatile(), St->getAlignment());
8528 // Otherwise, lower to two pairs of 32-bit loads / stores.
8529 SDValue LoAddr = Ld->getBasePtr();
8530 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8531 DAG.getConstant(4, MVT::i32));
8533 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8534 Ld->getSrcValue(), Ld->getSrcValueOffset(),
8535 Ld->isVolatile(), Ld->getAlignment());
8536 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8537 Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8538 Ld->isVolatile(),
8539 MinAlign(Ld->getAlignment(), 4));
8541 SDValue NewChain = LoLd.getValue(1);
8542 if (TokenFactorIndex != -1) {
8543 Ops.push_back(LoLd);
8544 Ops.push_back(HiLd);
8545 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8546 Ops.size());
8549 LoAddr = St->getBasePtr();
8550 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8551 DAG.getConstant(4, MVT::i32));
8553 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8554 St->getSrcValue(), St->getSrcValueOffset(),
8555 St->isVolatile(), St->getAlignment());
8556 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8557 St->getSrcValue(),
8558 St->getSrcValueOffset() + 4,
8559 St->isVolatile(),
8560 MinAlign(St->getAlignment(), 4));
8561 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8563 return SDValue();
8566 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8567 /// X86ISD::FXOR nodes.
8568 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8569 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8570 // F[X]OR(0.0, x) -> x
8571 // F[X]OR(x, 0.0) -> x
8572 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8573 if (C->getValueAPF().isPosZero())
8574 return N->getOperand(1);
8575 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8576 if (C->getValueAPF().isPosZero())
8577 return N->getOperand(0);
8578 return SDValue();
8581 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8582 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8583 // FAND(0.0, x) -> 0.0
8584 // FAND(x, 0.0) -> 0.0
8585 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8586 if (C->getValueAPF().isPosZero())
8587 return N->getOperand(0);
8588 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8589 if (C->getValueAPF().isPosZero())
8590 return N->getOperand(1);
8591 return SDValue();
8594 static SDValue PerformBTCombine(SDNode *N,
8595 SelectionDAG &DAG,
8596 TargetLowering::DAGCombinerInfo &DCI) {
8597 // BT ignores high bits in the bit index operand.
8598 SDValue Op1 = N->getOperand(1);
8599 if (Op1.hasOneUse()) {
8600 unsigned BitWidth = Op1.getValueSizeInBits();
8601 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8602 APInt KnownZero, KnownOne;
8603 TargetLowering::TargetLoweringOpt TLO(DAG);
8604 TargetLowering &TLI = DAG.getTargetLoweringInfo();
8605 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8606 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8607 DCI.CommitTargetLoweringOpt(TLO);
8609 return SDValue();
8612 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
8613 SDValue Op = N->getOperand(0);
8614 if (Op.getOpcode() == ISD::BIT_CONVERT)
8615 Op = Op.getOperand(0);
8616 MVT VT = N->getValueType(0), OpVT = Op.getValueType();
8617 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
8618 VT.getVectorElementType().getSizeInBits() ==
8619 OpVT.getVectorElementType().getSizeInBits()) {
8620 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
8622 return SDValue();
8625 // On X86 and X86-64, atomic operations are lowered to locked instructions.
8626 // Locked instructions, in turn, have implicit fence semantics (all memory
8627 // operations are flushed before issuing the locked instruction, and the
8628 // are not buffered), so we can fold away the common pattern of
8629 // fence-atomic-fence.
8630 static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
8631 SDValue atomic = N->getOperand(0);
8632 switch (atomic.getOpcode()) {
8633 case ISD::ATOMIC_CMP_SWAP:
8634 case ISD::ATOMIC_SWAP:
8635 case ISD::ATOMIC_LOAD_ADD:
8636 case ISD::ATOMIC_LOAD_SUB:
8637 case ISD::ATOMIC_LOAD_AND:
8638 case ISD::ATOMIC_LOAD_OR:
8639 case ISD::ATOMIC_LOAD_XOR:
8640 case ISD::ATOMIC_LOAD_NAND:
8641 case ISD::ATOMIC_LOAD_MIN:
8642 case ISD::ATOMIC_LOAD_MAX:
8643 case ISD::ATOMIC_LOAD_UMIN:
8644 case ISD::ATOMIC_LOAD_UMAX:
8645 break;
8646 default:
8647 return SDValue();
8650 SDValue fence = atomic.getOperand(0);
8651 if (fence.getOpcode() != ISD::MEMBARRIER)
8652 return SDValue();
8654 switch (atomic.getOpcode()) {
8655 case ISD::ATOMIC_CMP_SWAP:
8656 return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8657 atomic.getOperand(1), atomic.getOperand(2),
8658 atomic.getOperand(3));
8659 case ISD::ATOMIC_SWAP:
8660 case ISD::ATOMIC_LOAD_ADD:
8661 case ISD::ATOMIC_LOAD_SUB:
8662 case ISD::ATOMIC_LOAD_AND:
8663 case ISD::ATOMIC_LOAD_OR:
8664 case ISD::ATOMIC_LOAD_XOR:
8665 case ISD::ATOMIC_LOAD_NAND:
8666 case ISD::ATOMIC_LOAD_MIN:
8667 case ISD::ATOMIC_LOAD_MAX:
8668 case ISD::ATOMIC_LOAD_UMIN:
8669 case ISD::ATOMIC_LOAD_UMAX:
8670 return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8671 atomic.getOperand(1), atomic.getOperand(2));
8672 default:
8673 return SDValue();
8677 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8678 DAGCombinerInfo &DCI) const {
8679 SelectionDAG &DAG = DCI.DAG;
8680 switch (N->getOpcode()) {
8681 default: break;
8682 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8683 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
8684 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
8685 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
8686 case ISD::SHL:
8687 case ISD::SRA:
8688 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
8689 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
8690 case X86ISD::FXOR:
8691 case X86ISD::FOR: return PerformFORCombine(N, DAG);
8692 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
8693 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
8694 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
8695 case ISD::MEMBARRIER: return PerformMEMBARRIERCombine(N, DAG);
8698 return SDValue();
8701 //===----------------------------------------------------------------------===//
8702 // X86 Inline Assembly Support
8703 //===----------------------------------------------------------------------===//
8705 static bool LowerToBSwap(CallInst *CI) {
8706 // FIXME: this should verify that we are targetting a 486 or better. If not,
8707 // we will turn this bswap into something that will be lowered to logical ops
8708 // instead of emitting the bswap asm. For now, we don't support 486 or lower
8709 // so don't worry about this.
8711 // Verify this is a simple bswap.
8712 if (CI->getNumOperands() != 2 ||
8713 CI->getType() != CI->getOperand(1)->getType() ||
8714 !CI->getType()->isInteger())
8715 return false;
8717 const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8718 if (!Ty || Ty->getBitWidth() % 16 != 0)
8719 return false;
8721 // Okay, we can do this xform, do so now.
8722 const Type *Tys[] = { Ty };
8723 Module *M = CI->getParent()->getParent()->getParent();
8724 Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
8726 Value *Op = CI->getOperand(1);
8727 Op = CallInst::Create(Int, Op, CI->getName(), CI);
8729 CI->replaceAllUsesWith(Op);
8730 CI->eraseFromParent();
8731 return true;
8734 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
8735 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8736 std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
8738 std::string AsmStr = IA->getAsmString();
8740 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
8741 std::vector<std::string> AsmPieces;
8742 SplitString(AsmStr, AsmPieces, "\n"); // ; as separator?
8744 switch (AsmPieces.size()) {
8745 default: return false;
8746 case 1:
8747 AsmStr = AsmPieces[0];
8748 AsmPieces.clear();
8749 SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace.
8751 // bswap $0
8752 if (AsmPieces.size() == 2 &&
8753 (AsmPieces[0] == "bswap" ||
8754 AsmPieces[0] == "bswapq" ||
8755 AsmPieces[0] == "bswapl") &&
8756 (AsmPieces[1] == "$0" ||
8757 AsmPieces[1] == "${0:q}")) {
8758 // No need to check constraints, nothing other than the equivalent of
8759 // "=r,0" would be valid here.
8760 return LowerToBSwap(CI);
8762 // rorw $$8, ${0:w} --> llvm.bswap.i16
8763 if (CI->getType() == Type::Int16Ty &&
8764 AsmPieces.size() == 3 &&
8765 AsmPieces[0] == "rorw" &&
8766 AsmPieces[1] == "$$8," &&
8767 AsmPieces[2] == "${0:w}" &&
8768 IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
8769 return LowerToBSwap(CI);
8771 break;
8772 case 3:
8773 if (CI->getType() == Type::Int64Ty && Constraints.size() >= 2 &&
8774 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
8775 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
8776 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
8777 std::vector<std::string> Words;
8778 SplitString(AsmPieces[0], Words, " \t");
8779 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
8780 Words.clear();
8781 SplitString(AsmPieces[1], Words, " \t");
8782 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
8783 Words.clear();
8784 SplitString(AsmPieces[2], Words, " \t,");
8785 if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
8786 Words[2] == "%edx") {
8787 return LowerToBSwap(CI);
8792 break;
8794 return false;
8799 /// getConstraintType - Given a constraint letter, return the type of
8800 /// constraint it is for this target.
8801 X86TargetLowering::ConstraintType
8802 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8803 if (Constraint.size() == 1) {
8804 switch (Constraint[0]) {
8805 case 'A':
8806 return C_Register;
8807 case 'f':
8808 case 'r':
8809 case 'R':
8810 case 'l':
8811 case 'q':
8812 case 'Q':
8813 case 'x':
8814 case 'y':
8815 case 'Y':
8816 return C_RegisterClass;
8817 case 'e':
8818 case 'Z':
8819 return C_Other;
8820 default:
8821 break;
8824 return TargetLowering::getConstraintType(Constraint);
8827 /// LowerXConstraint - try to replace an X constraint, which matches anything,
8828 /// with another that has more specific requirements based on the type of the
8829 /// corresponding operand.
8830 const char *X86TargetLowering::
8831 LowerXConstraint(MVT ConstraintVT) const {
8832 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8833 // 'f' like normal targets.
8834 if (ConstraintVT.isFloatingPoint()) {
8835 if (Subtarget->hasSSE2())
8836 return "Y";
8837 if (Subtarget->hasSSE1())
8838 return "x";
8841 return TargetLowering::LowerXConstraint(ConstraintVT);
8844 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8845 /// vector. If it is invalid, don't add anything to Ops.
8846 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8847 char Constraint,
8848 bool hasMemory,
8849 std::vector<SDValue>&Ops,
8850 SelectionDAG &DAG) const {
8851 SDValue Result(0, 0);
8853 switch (Constraint) {
8854 default: break;
8855 case 'I':
8856 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8857 if (C->getZExtValue() <= 31) {
8858 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8859 break;
8862 return;
8863 case 'J':
8864 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8865 if (C->getZExtValue() <= 63) {
8866 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8867 break;
8870 return;
8871 case 'K':
8872 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8873 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
8874 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8875 break;
8878 return;
8879 case 'N':
8880 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8881 if (C->getZExtValue() <= 255) {
8882 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8883 break;
8886 return;
8887 case 'e': {
8888 // 32-bit signed value
8889 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8890 const ConstantInt *CI = C->getConstantIntValue();
8891 if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
8892 // Widen to 64 bits here to get it sign extended.
8893 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
8894 break;
8896 // FIXME gcc accepts some relocatable values here too, but only in certain
8897 // memory models; it's complicated.
8899 return;
8901 case 'Z': {
8902 // 32-bit unsigned value
8903 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8904 const ConstantInt *CI = C->getConstantIntValue();
8905 if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
8906 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8907 break;
8910 // FIXME gcc accepts some relocatable values here too, but only in certain
8911 // memory models; it's complicated.
8912 return;
8914 case 'i': {
8915 // Literal immediates are always ok.
8916 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
8917 // Widen to 64 bits here to get it sign extended.
8918 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
8919 break;
8922 // If we are in non-pic codegen mode, we allow the address of a global (with
8923 // an optional displacement) to be used with 'i'.
8924 GlobalAddressSDNode *GA = 0;
8925 int64_t Offset = 0;
8927 // Match either (GA), (GA+C), (GA+C1+C2), etc.
8928 while (1) {
8929 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
8930 Offset += GA->getOffset();
8931 break;
8932 } else if (Op.getOpcode() == ISD::ADD) {
8933 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8934 Offset += C->getZExtValue();
8935 Op = Op.getOperand(0);
8936 continue;
8938 } else if (Op.getOpcode() == ISD::SUB) {
8939 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8940 Offset += -C->getZExtValue();
8941 Op = Op.getOperand(0);
8942 continue;
8946 // Otherwise, this isn't something we can handle, reject it.
8947 return;
8950 GlobalValue *GV = GA->getGlobal();
8951 // If we require an extra load to get this address, as in PIC mode, we
8952 // can't accept it.
8953 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
8954 getTargetMachine())))
8955 return;
8957 if (hasMemory)
8958 Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
8959 else
8960 Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
8961 Result = Op;
8962 break;
8966 if (Result.getNode()) {
8967 Ops.push_back(Result);
8968 return;
8970 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
8971 Ops, DAG);
8974 std::vector<unsigned> X86TargetLowering::
8975 getRegClassForInlineAsmConstraint(const std::string &Constraint,
8976 MVT VT) const {
8977 if (Constraint.size() == 1) {
8978 // FIXME: not handling fp-stack yet!
8979 switch (Constraint[0]) { // GCC X86 Constraint Letters
8980 default: break; // Unknown constraint letter
8981 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
8982 if (Subtarget->is64Bit()) {
8983 if (VT == MVT::i32)
8984 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
8985 X86::ESI, X86::EDI, X86::R8D, X86::R9D,
8986 X86::R10D,X86::R11D,X86::R12D,
8987 X86::R13D,X86::R14D,X86::R15D,
8988 X86::EBP, X86::ESP, 0);
8989 else if (VT == MVT::i16)
8990 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
8991 X86::SI, X86::DI, X86::R8W,X86::R9W,
8992 X86::R10W,X86::R11W,X86::R12W,
8993 X86::R13W,X86::R14W,X86::R15W,
8994 X86::BP, X86::SP, 0);
8995 else if (VT == MVT::i8)
8996 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL,
8997 X86::SIL, X86::DIL, X86::R8B,X86::R9B,
8998 X86::R10B,X86::R11B,X86::R12B,
8999 X86::R13B,X86::R14B,X86::R15B,
9000 X86::BPL, X86::SPL, 0);
9002 else if (VT == MVT::i64)
9003 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
9004 X86::RSI, X86::RDI, X86::R8, X86::R9,
9005 X86::R10, X86::R11, X86::R12,
9006 X86::R13, X86::R14, X86::R15,
9007 X86::RBP, X86::RSP, 0);
9009 break;
9011 // 32-bit fallthrough
9012 case 'Q': // Q_REGS
9013 if (VT == MVT::i32)
9014 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
9015 else if (VT == MVT::i16)
9016 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
9017 else if (VT == MVT::i8)
9018 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
9019 else if (VT == MVT::i64)
9020 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
9021 break;
9025 return std::vector<unsigned>();
9028 std::pair<unsigned, const TargetRegisterClass*>
9029 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9030 MVT VT) const {
9031 // First, see if this is a constraint that directly corresponds to an LLVM
9032 // register class.
9033 if (Constraint.size() == 1) {
9034 // GCC Constraint Letters
9035 switch (Constraint[0]) {
9036 default: break;
9037 case 'r': // GENERAL_REGS
9038 case 'R': // LEGACY_REGS
9039 case 'l': // INDEX_REGS
9040 if (VT == MVT::i8)
9041 return std::make_pair(0U, X86::GR8RegisterClass);
9042 if (VT == MVT::i16)
9043 return std::make_pair(0U, X86::GR16RegisterClass);
9044 if (VT == MVT::i32 || !Subtarget->is64Bit())
9045 return std::make_pair(0U, X86::GR32RegisterClass);
9046 return std::make_pair(0U, X86::GR64RegisterClass);
9047 case 'f': // FP Stack registers.
9048 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9049 // value to the correct fpstack register class.
9050 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
9051 return std::make_pair(0U, X86::RFP32RegisterClass);
9052 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
9053 return std::make_pair(0U, X86::RFP64RegisterClass);
9054 return std::make_pair(0U, X86::RFP80RegisterClass);
9055 case 'y': // MMX_REGS if MMX allowed.
9056 if (!Subtarget->hasMMX()) break;
9057 return std::make_pair(0U, X86::VR64RegisterClass);
9058 case 'Y': // SSE_REGS if SSE2 allowed
9059 if (!Subtarget->hasSSE2()) break;
9060 // FALL THROUGH.
9061 case 'x': // SSE_REGS if SSE1 allowed
9062 if (!Subtarget->hasSSE1()) break;
9064 switch (VT.getSimpleVT()) {
9065 default: break;
9066 // Scalar SSE types.
9067 case MVT::f32:
9068 case MVT::i32:
9069 return std::make_pair(0U, X86::FR32RegisterClass);
9070 case MVT::f64:
9071 case MVT::i64:
9072 return std::make_pair(0U, X86::FR64RegisterClass);
9073 // Vector types.
9074 case MVT::v16i8:
9075 case MVT::v8i16:
9076 case MVT::v4i32:
9077 case MVT::v2i64:
9078 case MVT::v4f32:
9079 case MVT::v2f64:
9080 return std::make_pair(0U, X86::VR128RegisterClass);
9082 break;
9086 // Use the default implementation in TargetLowering to convert the register
9087 // constraint into a member of a register class.
9088 std::pair<unsigned, const TargetRegisterClass*> Res;
9089 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9091 // Not found as a standard register?
9092 if (Res.second == 0) {
9093 // GCC calls "st(0)" just plain "st".
9094 if (StringsEqualNoCase("{st}", Constraint)) {
9095 Res.first = X86::ST0;
9096 Res.second = X86::RFP80RegisterClass;
9098 // 'A' means EAX + EDX.
9099 if (Constraint == "A") {
9100 Res.first = X86::EAX;
9101 Res.second = X86::GR32_ADRegisterClass;
9103 return Res;
9106 // Otherwise, check to see if this is a register class of the wrong value
9107 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9108 // turn into {ax},{dx}.
9109 if (Res.second->hasType(VT))
9110 return Res; // Correct type already, nothing to do.
9112 // All of the single-register GCC register classes map their values onto
9113 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
9114 // really want an 8-bit or 32-bit register, map to the appropriate register
9115 // class and return the appropriate register.
9116 if (Res.second == X86::GR16RegisterClass) {
9117 if (VT == MVT::i8) {
9118 unsigned DestReg = 0;
9119 switch (Res.first) {
9120 default: break;
9121 case X86::AX: DestReg = X86::AL; break;
9122 case X86::DX: DestReg = X86::DL; break;
9123 case X86::CX: DestReg = X86::CL; break;
9124 case X86::BX: DestReg = X86::BL; break;
9126 if (DestReg) {
9127 Res.first = DestReg;
9128 Res.second = X86::GR8RegisterClass;
9130 } else if (VT == MVT::i32) {
9131 unsigned DestReg = 0;
9132 switch (Res.first) {
9133 default: break;
9134 case X86::AX: DestReg = X86::EAX; break;
9135 case X86::DX: DestReg = X86::EDX; break;
9136 case X86::CX: DestReg = X86::ECX; break;
9137 case X86::BX: DestReg = X86::EBX; break;
9138 case X86::SI: DestReg = X86::ESI; break;
9139 case X86::DI: DestReg = X86::EDI; break;
9140 case X86::BP: DestReg = X86::EBP; break;
9141 case X86::SP: DestReg = X86::ESP; break;
9143 if (DestReg) {
9144 Res.first = DestReg;
9145 Res.second = X86::GR32RegisterClass;
9147 } else if (VT == MVT::i64) {
9148 unsigned DestReg = 0;
9149 switch (Res.first) {
9150 default: break;
9151 case X86::AX: DestReg = X86::RAX; break;
9152 case X86::DX: DestReg = X86::RDX; break;
9153 case X86::CX: DestReg = X86::RCX; break;
9154 case X86::BX: DestReg = X86::RBX; break;
9155 case X86::SI: DestReg = X86::RSI; break;
9156 case X86::DI: DestReg = X86::RDI; break;
9157 case X86::BP: DestReg = X86::RBP; break;
9158 case X86::SP: DestReg = X86::RSP; break;
9160 if (DestReg) {
9161 Res.first = DestReg;
9162 Res.second = X86::GR64RegisterClass;
9165 } else if (Res.second == X86::FR32RegisterClass ||
9166 Res.second == X86::FR64RegisterClass ||
9167 Res.second == X86::VR128RegisterClass) {
9168 // Handle references to XMM physical registers that got mapped into the
9169 // wrong class. This can happen with constraints like {xmm0} where the
9170 // target independent register mapper will just pick the first match it can
9171 // find, ignoring the required type.
9172 if (VT == MVT::f32)
9173 Res.second = X86::FR32RegisterClass;
9174 else if (VT == MVT::f64)
9175 Res.second = X86::FR64RegisterClass;
9176 else if (X86::VR128RegisterClass->hasType(VT))
9177 Res.second = X86::VR128RegisterClass;
9180 return Res;
9183 //===----------------------------------------------------------------------===//
9184 // X86 Widen vector type
9185 //===----------------------------------------------------------------------===//
9187 /// getWidenVectorType: given a vector type, returns the type to widen
9188 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9189 /// If there is no vector type that we want to widen to, returns MVT::Other
9190 /// When and where to widen is target dependent based on the cost of
9191 /// scalarizing vs using the wider vector type.
9193 MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
9194 assert(VT.isVector());
9195 if (isTypeLegal(VT))
9196 return VT;
9198 // TODO: In computeRegisterProperty, we can compute the list of legal vector
9199 // type based on element type. This would speed up our search (though
9200 // it may not be worth it since the size of the list is relatively
9201 // small).
9202 MVT EltVT = VT.getVectorElementType();
9203 unsigned NElts = VT.getVectorNumElements();
9205 // On X86, it make sense to widen any vector wider than 1
9206 if (NElts <= 1)
9207 return MVT::Other;
9209 for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9210 nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9211 MVT SVT = (MVT::SimpleValueType)nVT;
9213 if (isTypeLegal(SVT) &&
9214 SVT.getVectorElementType() == EltVT &&
9215 SVT.getVectorNumElements() > NElts)
9216 return SVT;
9218 return MVT::Other;