1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
16 #include "X86InstrBuilder.h"
17 #include "X86ISelLowering.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/GlobalAlias.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/VectorExtras.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Target/TargetLoweringObjectFile.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/ADT/SmallSet.h"
42 #include "llvm/ADT/StringExtras.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/raw_ostream.h"
48 DisableMMX("disable-mmx", cl::Hidden
, cl::desc("Disable use of MMX"));
50 // Forward declarations.
51 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
54 static TargetLoweringObjectFile
*createTLOF(X86TargetMachine
&TM
) {
55 switch (TM
.getSubtarget
<X86Subtarget
>().TargetType
) {
56 default: llvm_unreachable("unknown subtarget type");
57 case X86Subtarget::isDarwin
:
58 return new TargetLoweringObjectFileMachO();
59 case X86Subtarget::isELF
:
60 return new TargetLoweringObjectFileELF();
61 case X86Subtarget::isMingw
:
62 case X86Subtarget::isCygwin
:
63 case X86Subtarget::isWindows
:
64 return new TargetLoweringObjectFileCOFF();
69 X86TargetLowering::X86TargetLowering(X86TargetMachine
&TM
)
70 : TargetLowering(TM
, createTLOF(TM
)) {
71 Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
72 X86ScalarSSEf64
= Subtarget
->hasSSE2();
73 X86ScalarSSEf32
= Subtarget
->hasSSE1();
74 X86StackPtr
= Subtarget
->is64Bit() ? X86::RSP
: X86::ESP
;
76 RegInfo
= TM
.getRegisterInfo();
79 // Set up the TargetLowering object.
81 // X86 is weird, it always uses i8 for shift amounts and setcc results.
82 setShiftAmountType(MVT::i8
);
83 setBooleanContents(ZeroOrOneBooleanContent
);
84 setSchedulingPreference(SchedulingForRegPressure
);
85 setStackPointerRegisterToSaveRestore(X86StackPtr
);
87 if (Subtarget
->isTargetDarwin()) {
88 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
89 setUseUnderscoreSetJmp(false);
90 setUseUnderscoreLongJmp(false);
91 } else if (Subtarget
->isTargetMingw()) {
92 // MS runtime is weird: it exports _setjmp, but longjmp!
93 setUseUnderscoreSetJmp(true);
94 setUseUnderscoreLongJmp(false);
96 setUseUnderscoreSetJmp(true);
97 setUseUnderscoreLongJmp(true);
100 // Set up the register classes.
101 addRegisterClass(MVT::i8
, X86::GR8RegisterClass
);
102 addRegisterClass(MVT::i16
, X86::GR16RegisterClass
);
103 addRegisterClass(MVT::i32
, X86::GR32RegisterClass
);
104 if (Subtarget
->is64Bit())
105 addRegisterClass(MVT::i64
, X86::GR64RegisterClass
);
107 setLoadExtAction(ISD::SEXTLOAD
, MVT::i1
, Promote
);
109 // We don't accept any truncstore of integer registers.
110 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
111 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
112 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
113 setTruncStoreAction(MVT::i32
, MVT::i16
, Expand
);
114 setTruncStoreAction(MVT::i32
, MVT::i8
, Expand
);
115 setTruncStoreAction(MVT::i16
, MVT::i8
, Expand
);
117 // SETOEQ and SETUNE require checking two conditions.
118 setCondCodeAction(ISD::SETOEQ
, MVT::f32
, Expand
);
119 setCondCodeAction(ISD::SETOEQ
, MVT::f64
, Expand
);
120 setCondCodeAction(ISD::SETOEQ
, MVT::f80
, Expand
);
121 setCondCodeAction(ISD::SETUNE
, MVT::f32
, Expand
);
122 setCondCodeAction(ISD::SETUNE
, MVT::f64
, Expand
);
123 setCondCodeAction(ISD::SETUNE
, MVT::f80
, Expand
);
125 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
127 setOperationAction(ISD::UINT_TO_FP
, MVT::i1
, Promote
);
128 setOperationAction(ISD::UINT_TO_FP
, MVT::i8
, Promote
);
129 setOperationAction(ISD::UINT_TO_FP
, MVT::i16
, Promote
);
131 if (Subtarget
->is64Bit()) {
132 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Promote
);
133 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
134 } else if (!UseSoftFloat
) {
135 if (X86ScalarSSEf64
) {
136 // We have an impenetrably clever algorithm for ui64->double only.
137 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
139 // We have an algorithm for SSE2, and we turn this into a 64-bit
140 // FILD for other targets.
141 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
144 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
146 setOperationAction(ISD::SINT_TO_FP
, MVT::i1
, Promote
);
147 setOperationAction(ISD::SINT_TO_FP
, MVT::i8
, Promote
);
150 // SSE has no i16 to fp conversion, only i32
151 if (X86ScalarSSEf32
) {
152 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
153 // f32 and f64 cases are Legal, f80 case is not
154 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
156 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Custom
);
157 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
160 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
161 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Promote
);
164 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
165 // are Legal, f80 is custom lowered.
166 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
167 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
169 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
171 setOperationAction(ISD::FP_TO_SINT
, MVT::i1
, Promote
);
172 setOperationAction(ISD::FP_TO_SINT
, MVT::i8
, Promote
);
174 if (X86ScalarSSEf32
) {
175 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Promote
);
176 // f32 and f64 cases are Legal, f80 case is not
177 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
179 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Custom
);
180 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
183 // Handle FP_TO_UINT by promoting the destination to a larger signed
185 setOperationAction(ISD::FP_TO_UINT
, MVT::i1
, Promote
);
186 setOperationAction(ISD::FP_TO_UINT
, MVT::i8
, Promote
);
187 setOperationAction(ISD::FP_TO_UINT
, MVT::i16
, Promote
);
189 if (Subtarget
->is64Bit()) {
190 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
191 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Promote
);
192 } else if (!UseSoftFloat
) {
193 if (X86ScalarSSEf32
&& !Subtarget
->hasSSE3())
194 // Expand FP_TO_UINT into a select.
195 // FIXME: We would like to use a Custom expander here eventually to do
196 // the optimal thing for SSE vs. the default expansion in the legalizer.
197 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
199 // With SSE3 we can use fisttpll to convert to a signed i64; without
200 // SSE, we're stuck with a fistpll.
201 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
204 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
205 if (!X86ScalarSSEf64
) {
206 setOperationAction(ISD::BIT_CONVERT
, MVT::f32
, Expand
);
207 setOperationAction(ISD::BIT_CONVERT
, MVT::i32
, Expand
);
210 // Scalar integer divide and remainder are lowered to use operations that
211 // produce two results, to match the available instructions. This exposes
212 // the two-result form to trivial CSE, which is able to combine x/y and x%y
213 // into a single instruction.
215 // Scalar integer multiply-high is also lowered to use two-result
216 // operations, to match the available instructions. However, plain multiply
217 // (low) operations are left as Legal, as there are single-result
218 // instructions for this in x86. Using the two-result multiply instructions
219 // when both high and low results are needed must be arranged by dagcombine.
220 setOperationAction(ISD::MULHS
, MVT::i8
, Expand
);
221 setOperationAction(ISD::MULHU
, MVT::i8
, Expand
);
222 setOperationAction(ISD::SDIV
, MVT::i8
, Expand
);
223 setOperationAction(ISD::UDIV
, MVT::i8
, Expand
);
224 setOperationAction(ISD::SREM
, MVT::i8
, Expand
);
225 setOperationAction(ISD::UREM
, MVT::i8
, Expand
);
226 setOperationAction(ISD::MULHS
, MVT::i16
, Expand
);
227 setOperationAction(ISD::MULHU
, MVT::i16
, Expand
);
228 setOperationAction(ISD::SDIV
, MVT::i16
, Expand
);
229 setOperationAction(ISD::UDIV
, MVT::i16
, Expand
);
230 setOperationAction(ISD::SREM
, MVT::i16
, Expand
);
231 setOperationAction(ISD::UREM
, MVT::i16
, Expand
);
232 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
233 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
234 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
235 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
236 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
237 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
238 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
239 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
240 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
241 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
242 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
243 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
245 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
246 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
247 setOperationAction(ISD::BR_CC
, MVT::Other
, Expand
);
248 setOperationAction(ISD::SELECT_CC
, MVT::Other
, Expand
);
249 if (Subtarget
->is64Bit())
250 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i32
, Legal
);
251 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Legal
);
252 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Legal
);
253 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
254 setOperationAction(ISD::FP_ROUND_INREG
, MVT::f32
, Expand
);
255 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
256 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
257 setOperationAction(ISD::FREM
, MVT::f80
, Expand
);
258 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
260 setOperationAction(ISD::CTPOP
, MVT::i8
, Expand
);
261 setOperationAction(ISD::CTTZ
, MVT::i8
, Custom
);
262 setOperationAction(ISD::CTLZ
, MVT::i8
, Custom
);
263 setOperationAction(ISD::CTPOP
, MVT::i16
, Expand
);
264 setOperationAction(ISD::CTTZ
, MVT::i16
, Custom
);
265 setOperationAction(ISD::CTLZ
, MVT::i16
, Custom
);
266 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
267 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
268 setOperationAction(ISD::CTLZ
, MVT::i32
, Custom
);
269 if (Subtarget
->is64Bit()) {
270 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
271 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
272 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
275 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
276 setOperationAction(ISD::BSWAP
, MVT::i16
, Expand
);
278 // These should be promoted to a larger select which is supported.
279 setOperationAction(ISD::SELECT
, MVT::i1
, Promote
);
280 setOperationAction(ISD::SELECT
, MVT::i8
, Promote
);
281 // X86 wants to expand cmov itself.
282 setOperationAction(ISD::SELECT
, MVT::i16
, Custom
);
283 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
284 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
285 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
286 setOperationAction(ISD::SELECT
, MVT::f80
, Custom
);
287 setOperationAction(ISD::SETCC
, MVT::i8
, Custom
);
288 setOperationAction(ISD::SETCC
, MVT::i16
, Custom
);
289 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
290 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
291 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
292 setOperationAction(ISD::SETCC
, MVT::f80
, Custom
);
293 if (Subtarget
->is64Bit()) {
294 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
295 setOperationAction(ISD::SETCC
, MVT::i64
, Custom
);
297 // X86 ret instruction may pop stack.
298 setOperationAction(ISD::RET
, MVT::Other
, Custom
);
299 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
302 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
303 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
304 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
305 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
306 if (Subtarget
->is64Bit())
307 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
308 setOperationAction(ISD::ExternalSymbol
, MVT::i32
, Custom
);
309 if (Subtarget
->is64Bit()) {
310 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
311 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
312 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
313 setOperationAction(ISD::ExternalSymbol
, MVT::i64
, Custom
);
315 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
316 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
317 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
318 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
319 if (Subtarget
->is64Bit()) {
320 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
321 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
322 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
325 if (Subtarget
->hasSSE1())
326 setOperationAction(ISD::PREFETCH
, MVT::Other
, Legal
);
328 if (!Subtarget
->hasSSE2())
329 setOperationAction(ISD::MEMBARRIER
, MVT::Other
, Expand
);
331 // Expand certain atomics
332 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i8
, Custom
);
333 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i16
, Custom
);
334 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Custom
);
335 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
337 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i8
, Custom
);
338 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i16
, Custom
);
339 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Custom
);
340 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
342 if (!Subtarget
->is64Bit()) {
343 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i64
, Custom
);
344 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
345 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i64
, Custom
);
346 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i64
, Custom
);
347 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i64
, Custom
);
348 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i64
, Custom
);
349 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i64
, Custom
);
352 // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
353 setOperationAction(ISD::DBG_STOPPOINT
, MVT::Other
, Expand
);
354 // FIXME - use subtarget debug flags
355 if (!Subtarget
->isTargetDarwin() &&
356 !Subtarget
->isTargetELF() &&
357 !Subtarget
->isTargetCygMing()) {
358 setOperationAction(ISD::DBG_LABEL
, MVT::Other
, Expand
);
359 setOperationAction(ISD::EH_LABEL
, MVT::Other
, Expand
);
362 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i64
, Expand
);
363 setOperationAction(ISD::EHSELECTION
, MVT::i64
, Expand
);
364 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i32
, Expand
);
365 setOperationAction(ISD::EHSELECTION
, MVT::i32
, Expand
);
366 if (Subtarget
->is64Bit()) {
367 setExceptionPointerRegister(X86::RAX
);
368 setExceptionSelectorRegister(X86::RDX
);
370 setExceptionPointerRegister(X86::EAX
);
371 setExceptionSelectorRegister(X86::EDX
);
373 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i32
, Custom
);
374 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i64
, Custom
);
376 setOperationAction(ISD::TRAMPOLINE
, MVT::Other
, Custom
);
378 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
380 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
381 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
382 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
383 if (Subtarget
->is64Bit()) {
384 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
385 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
387 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
388 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
391 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
392 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
393 if (Subtarget
->is64Bit())
394 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
395 if (Subtarget
->isTargetCygMing())
396 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
398 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
400 if (!UseSoftFloat
&& X86ScalarSSEf64
) {
401 // f32 and f64 use SSE.
402 // Set up the FP register classes.
403 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
404 addRegisterClass(MVT::f64
, X86::FR64RegisterClass
);
406 // Use ANDPD to simulate FABS.
407 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
408 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
410 // Use XORP to simulate FNEG.
411 setOperationAction(ISD::FNEG
, MVT::f64
, Custom
);
412 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
414 // Use ANDPD and ORPD to simulate FCOPYSIGN.
415 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
416 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
418 // We don't support sin/cos/fmod
419 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
420 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
421 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
422 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
424 // Expand FP immediates into loads from the stack, except for the special
426 addLegalFPImmediate(APFloat(+0.0)); // xorpd
427 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
428 } else if (!UseSoftFloat
&& X86ScalarSSEf32
) {
429 // Use SSE for f32, x87 for f64.
430 // Set up the FP register classes.
431 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
432 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
434 // Use ANDPS to simulate FABS.
435 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
437 // Use XORP to simulate FNEG.
438 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
440 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
442 // Use ANDPS and ORPS to simulate FCOPYSIGN.
443 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
444 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
446 // We don't support sin/cos/fmod
447 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
448 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
450 // Special cases we handle for FP constants.
451 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
452 addLegalFPImmediate(APFloat(+0.0)); // FLD0
453 addLegalFPImmediate(APFloat(+1.0)); // FLD1
454 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
455 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
458 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
459 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
461 } else if (!UseSoftFloat
) {
462 // f32 and f64 in x87.
463 // Set up the FP register classes.
464 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
465 addRegisterClass(MVT::f32
, X86::RFP32RegisterClass
);
467 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
468 setOperationAction(ISD::UNDEF
, MVT::f32
, Expand
);
469 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
470 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
473 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
474 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
476 addLegalFPImmediate(APFloat(+0.0)); // FLD0
477 addLegalFPImmediate(APFloat(+1.0)); // FLD1
478 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
479 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
480 addLegalFPImmediate(APFloat(+0.0f
)); // FLD0
481 addLegalFPImmediate(APFloat(+1.0f
)); // FLD1
482 addLegalFPImmediate(APFloat(-0.0f
)); // FLD0/FCHS
483 addLegalFPImmediate(APFloat(-1.0f
)); // FLD1/FCHS
486 // Long double always uses X87.
488 addRegisterClass(MVT::f80
, X86::RFP80RegisterClass
);
489 setOperationAction(ISD::UNDEF
, MVT::f80
, Expand
);
490 setOperationAction(ISD::FCOPYSIGN
, MVT::f80
, Expand
);
493 APFloat
TmpFlt(+0.0);
494 TmpFlt
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
496 addLegalFPImmediate(TmpFlt
); // FLD0
498 addLegalFPImmediate(TmpFlt
); // FLD0/FCHS
499 APFloat
TmpFlt2(+1.0);
500 TmpFlt2
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
502 addLegalFPImmediate(TmpFlt2
); // FLD1
503 TmpFlt2
.changeSign();
504 addLegalFPImmediate(TmpFlt2
); // FLD1/FCHS
508 setOperationAction(ISD::FSIN
, MVT::f80
, Expand
);
509 setOperationAction(ISD::FCOS
, MVT::f80
, Expand
);
513 // Always use a library call for pow.
514 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
515 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
516 setOperationAction(ISD::FPOW
, MVT::f80
, Expand
);
518 setOperationAction(ISD::FLOG
, MVT::f80
, Expand
);
519 setOperationAction(ISD::FLOG2
, MVT::f80
, Expand
);
520 setOperationAction(ISD::FLOG10
, MVT::f80
, Expand
);
521 setOperationAction(ISD::FEXP
, MVT::f80
, Expand
);
522 setOperationAction(ISD::FEXP2
, MVT::f80
, Expand
);
524 // First set operation action for all vector types to either promote
525 // (for widening) or expand (for scalarization). Then we will selectively
526 // turn on ones that can be effectively codegen'd.
527 for (unsigned VT
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
528 VT
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++VT
) {
529 setOperationAction(ISD::ADD
, (MVT::SimpleValueType
)VT
, Expand
);
530 setOperationAction(ISD::SUB
, (MVT::SimpleValueType
)VT
, Expand
);
531 setOperationAction(ISD::FADD
, (MVT::SimpleValueType
)VT
, Expand
);
532 setOperationAction(ISD::FNEG
, (MVT::SimpleValueType
)VT
, Expand
);
533 setOperationAction(ISD::FSUB
, (MVT::SimpleValueType
)VT
, Expand
);
534 setOperationAction(ISD::MUL
, (MVT::SimpleValueType
)VT
, Expand
);
535 setOperationAction(ISD::FMUL
, (MVT::SimpleValueType
)VT
, Expand
);
536 setOperationAction(ISD::SDIV
, (MVT::SimpleValueType
)VT
, Expand
);
537 setOperationAction(ISD::UDIV
, (MVT::SimpleValueType
)VT
, Expand
);
538 setOperationAction(ISD::FDIV
, (MVT::SimpleValueType
)VT
, Expand
);
539 setOperationAction(ISD::SREM
, (MVT::SimpleValueType
)VT
, Expand
);
540 setOperationAction(ISD::UREM
, (MVT::SimpleValueType
)VT
, Expand
);
541 setOperationAction(ISD::LOAD
, (MVT::SimpleValueType
)VT
, Expand
);
542 setOperationAction(ISD::VECTOR_SHUFFLE
, (MVT::SimpleValueType
)VT
, Expand
);
543 setOperationAction(ISD::EXTRACT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
,Expand
);
544 setOperationAction(ISD::EXTRACT_SUBVECTOR
,(MVT::SimpleValueType
)VT
,Expand
);
545 setOperationAction(ISD::INSERT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
, Expand
);
546 setOperationAction(ISD::FABS
, (MVT::SimpleValueType
)VT
, Expand
);
547 setOperationAction(ISD::FSIN
, (MVT::SimpleValueType
)VT
, Expand
);
548 setOperationAction(ISD::FCOS
, (MVT::SimpleValueType
)VT
, Expand
);
549 setOperationAction(ISD::FREM
, (MVT::SimpleValueType
)VT
, Expand
);
550 setOperationAction(ISD::FPOWI
, (MVT::SimpleValueType
)VT
, Expand
);
551 setOperationAction(ISD::FSQRT
, (MVT::SimpleValueType
)VT
, Expand
);
552 setOperationAction(ISD::FCOPYSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
553 setOperationAction(ISD::SMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
554 setOperationAction(ISD::UMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
555 setOperationAction(ISD::SDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
556 setOperationAction(ISD::UDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
557 setOperationAction(ISD::FPOW
, (MVT::SimpleValueType
)VT
, Expand
);
558 setOperationAction(ISD::CTPOP
, (MVT::SimpleValueType
)VT
, Expand
);
559 setOperationAction(ISD::CTTZ
, (MVT::SimpleValueType
)VT
, Expand
);
560 setOperationAction(ISD::CTLZ
, (MVT::SimpleValueType
)VT
, Expand
);
561 setOperationAction(ISD::SHL
, (MVT::SimpleValueType
)VT
, Expand
);
562 setOperationAction(ISD::SRA
, (MVT::SimpleValueType
)VT
, Expand
);
563 setOperationAction(ISD::SRL
, (MVT::SimpleValueType
)VT
, Expand
);
564 setOperationAction(ISD::ROTL
, (MVT::SimpleValueType
)VT
, Expand
);
565 setOperationAction(ISD::ROTR
, (MVT::SimpleValueType
)VT
, Expand
);
566 setOperationAction(ISD::BSWAP
, (MVT::SimpleValueType
)VT
, Expand
);
567 setOperationAction(ISD::VSETCC
, (MVT::SimpleValueType
)VT
, Expand
);
568 setOperationAction(ISD::FLOG
, (MVT::SimpleValueType
)VT
, Expand
);
569 setOperationAction(ISD::FLOG2
, (MVT::SimpleValueType
)VT
, Expand
);
570 setOperationAction(ISD::FLOG10
, (MVT::SimpleValueType
)VT
, Expand
);
571 setOperationAction(ISD::FEXP
, (MVT::SimpleValueType
)VT
, Expand
);
572 setOperationAction(ISD::FEXP2
, (MVT::SimpleValueType
)VT
, Expand
);
573 setOperationAction(ISD::FP_TO_UINT
, (MVT::SimpleValueType
)VT
, Expand
);
574 setOperationAction(ISD::FP_TO_SINT
, (MVT::SimpleValueType
)VT
, Expand
);
575 setOperationAction(ISD::UINT_TO_FP
, (MVT::SimpleValueType
)VT
, Expand
);
576 setOperationAction(ISD::SINT_TO_FP
, (MVT::SimpleValueType
)VT
, Expand
);
579 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
580 // with -msoft-float, disable use of MMX as well.
581 if (!UseSoftFloat
&& !DisableMMX
&& Subtarget
->hasMMX()) {
582 addRegisterClass(MVT::v8i8
, X86::VR64RegisterClass
);
583 addRegisterClass(MVT::v4i16
, X86::VR64RegisterClass
);
584 addRegisterClass(MVT::v2i32
, X86::VR64RegisterClass
);
585 addRegisterClass(MVT::v2f32
, X86::VR64RegisterClass
);
586 addRegisterClass(MVT::v1i64
, X86::VR64RegisterClass
);
588 setOperationAction(ISD::ADD
, MVT::v8i8
, Legal
);
589 setOperationAction(ISD::ADD
, MVT::v4i16
, Legal
);
590 setOperationAction(ISD::ADD
, MVT::v2i32
, Legal
);
591 setOperationAction(ISD::ADD
, MVT::v1i64
, Legal
);
593 setOperationAction(ISD::SUB
, MVT::v8i8
, Legal
);
594 setOperationAction(ISD::SUB
, MVT::v4i16
, Legal
);
595 setOperationAction(ISD::SUB
, MVT::v2i32
, Legal
);
596 setOperationAction(ISD::SUB
, MVT::v1i64
, Legal
);
598 setOperationAction(ISD::MULHS
, MVT::v4i16
, Legal
);
599 setOperationAction(ISD::MUL
, MVT::v4i16
, Legal
);
601 setOperationAction(ISD::AND
, MVT::v8i8
, Promote
);
602 AddPromotedToType (ISD::AND
, MVT::v8i8
, MVT::v1i64
);
603 setOperationAction(ISD::AND
, MVT::v4i16
, Promote
);
604 AddPromotedToType (ISD::AND
, MVT::v4i16
, MVT::v1i64
);
605 setOperationAction(ISD::AND
, MVT::v2i32
, Promote
);
606 AddPromotedToType (ISD::AND
, MVT::v2i32
, MVT::v1i64
);
607 setOperationAction(ISD::AND
, MVT::v1i64
, Legal
);
609 setOperationAction(ISD::OR
, MVT::v8i8
, Promote
);
610 AddPromotedToType (ISD::OR
, MVT::v8i8
, MVT::v1i64
);
611 setOperationAction(ISD::OR
, MVT::v4i16
, Promote
);
612 AddPromotedToType (ISD::OR
, MVT::v4i16
, MVT::v1i64
);
613 setOperationAction(ISD::OR
, MVT::v2i32
, Promote
);
614 AddPromotedToType (ISD::OR
, MVT::v2i32
, MVT::v1i64
);
615 setOperationAction(ISD::OR
, MVT::v1i64
, Legal
);
617 setOperationAction(ISD::XOR
, MVT::v8i8
, Promote
);
618 AddPromotedToType (ISD::XOR
, MVT::v8i8
, MVT::v1i64
);
619 setOperationAction(ISD::XOR
, MVT::v4i16
, Promote
);
620 AddPromotedToType (ISD::XOR
, MVT::v4i16
, MVT::v1i64
);
621 setOperationAction(ISD::XOR
, MVT::v2i32
, Promote
);
622 AddPromotedToType (ISD::XOR
, MVT::v2i32
, MVT::v1i64
);
623 setOperationAction(ISD::XOR
, MVT::v1i64
, Legal
);
625 setOperationAction(ISD::LOAD
, MVT::v8i8
, Promote
);
626 AddPromotedToType (ISD::LOAD
, MVT::v8i8
, MVT::v1i64
);
627 setOperationAction(ISD::LOAD
, MVT::v4i16
, Promote
);
628 AddPromotedToType (ISD::LOAD
, MVT::v4i16
, MVT::v1i64
);
629 setOperationAction(ISD::LOAD
, MVT::v2i32
, Promote
);
630 AddPromotedToType (ISD::LOAD
, MVT::v2i32
, MVT::v1i64
);
631 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
632 AddPromotedToType (ISD::LOAD
, MVT::v2f32
, MVT::v1i64
);
633 setOperationAction(ISD::LOAD
, MVT::v1i64
, Legal
);
635 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i8
, Custom
);
636 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i16
, Custom
);
637 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i32
, Custom
);
638 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f32
, Custom
);
639 setOperationAction(ISD::BUILD_VECTOR
, MVT::v1i64
, Custom
);
641 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v8i8
, Custom
);
642 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i16
, Custom
);
643 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i32
, Custom
);
644 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v1i64
, Custom
);
646 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2f32
, Custom
);
647 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i8
, Custom
);
648 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i16
, Custom
);
649 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v1i64
, Custom
);
651 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i16
, Custom
);
653 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Expand
);
654 setOperationAction(ISD::TRUNCATE
, MVT::v8i8
, Expand
);
655 setOperationAction(ISD::SELECT
, MVT::v8i8
, Promote
);
656 setOperationAction(ISD::SELECT
, MVT::v4i16
, Promote
);
657 setOperationAction(ISD::SELECT
, MVT::v2i32
, Promote
);
658 setOperationAction(ISD::SELECT
, MVT::v1i64
, Custom
);
659 setOperationAction(ISD::VSETCC
, MVT::v8i8
, Custom
);
660 setOperationAction(ISD::VSETCC
, MVT::v4i16
, Custom
);
661 setOperationAction(ISD::VSETCC
, MVT::v2i32
, Custom
);
664 if (!UseSoftFloat
&& Subtarget
->hasSSE1()) {
665 addRegisterClass(MVT::v4f32
, X86::VR128RegisterClass
);
667 setOperationAction(ISD::FADD
, MVT::v4f32
, Legal
);
668 setOperationAction(ISD::FSUB
, MVT::v4f32
, Legal
);
669 setOperationAction(ISD::FMUL
, MVT::v4f32
, Legal
);
670 setOperationAction(ISD::FDIV
, MVT::v4f32
, Legal
);
671 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Legal
);
672 setOperationAction(ISD::FNEG
, MVT::v4f32
, Custom
);
673 setOperationAction(ISD::LOAD
, MVT::v4f32
, Legal
);
674 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
675 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f32
, Custom
);
676 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
677 setOperationAction(ISD::SELECT
, MVT::v4f32
, Custom
);
678 setOperationAction(ISD::VSETCC
, MVT::v4f32
, Custom
);
681 if (!UseSoftFloat
&& Subtarget
->hasSSE2()) {
682 addRegisterClass(MVT::v2f64
, X86::VR128RegisterClass
);
684 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
685 // registers cannot be used even for integer operations.
686 addRegisterClass(MVT::v16i8
, X86::VR128RegisterClass
);
687 addRegisterClass(MVT::v8i16
, X86::VR128RegisterClass
);
688 addRegisterClass(MVT::v4i32
, X86::VR128RegisterClass
);
689 addRegisterClass(MVT::v2i64
, X86::VR128RegisterClass
);
691 setOperationAction(ISD::ADD
, MVT::v16i8
, Legal
);
692 setOperationAction(ISD::ADD
, MVT::v8i16
, Legal
);
693 setOperationAction(ISD::ADD
, MVT::v4i32
, Legal
);
694 setOperationAction(ISD::ADD
, MVT::v2i64
, Legal
);
695 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
696 setOperationAction(ISD::SUB
, MVT::v16i8
, Legal
);
697 setOperationAction(ISD::SUB
, MVT::v8i16
, Legal
);
698 setOperationAction(ISD::SUB
, MVT::v4i32
, Legal
);
699 setOperationAction(ISD::SUB
, MVT::v2i64
, Legal
);
700 setOperationAction(ISD::MUL
, MVT::v8i16
, Legal
);
701 setOperationAction(ISD::FADD
, MVT::v2f64
, Legal
);
702 setOperationAction(ISD::FSUB
, MVT::v2f64
, Legal
);
703 setOperationAction(ISD::FMUL
, MVT::v2f64
, Legal
);
704 setOperationAction(ISD::FDIV
, MVT::v2f64
, Legal
);
705 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Legal
);
706 setOperationAction(ISD::FNEG
, MVT::v2f64
, Custom
);
708 setOperationAction(ISD::VSETCC
, MVT::v2f64
, Custom
);
709 setOperationAction(ISD::VSETCC
, MVT::v16i8
, Custom
);
710 setOperationAction(ISD::VSETCC
, MVT::v8i16
, Custom
);
711 setOperationAction(ISD::VSETCC
, MVT::v4i32
, Custom
);
713 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v16i8
, Custom
);
714 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i16
, Custom
);
715 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
716 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
717 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
719 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
720 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; ++i
) {
721 MVT VT
= (MVT::SimpleValueType
)i
;
722 // Do not attempt to custom lower non-power-of-2 vectors
723 if (!isPowerOf2_32(VT
.getVectorNumElements()))
725 // Do not attempt to custom lower non-128-bit vectors
726 if (!VT
.is128BitVector())
728 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
729 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
730 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
733 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f64
, Custom
);
734 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i64
, Custom
);
735 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2f64
, Custom
);
736 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i64
, Custom
);
737 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2f64
, Custom
);
738 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f64
, Custom
);
740 if (Subtarget
->is64Bit()) {
741 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Custom
);
742 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Custom
);
745 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
746 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; i
++) {
747 MVT VT
= (MVT::SimpleValueType
)i
;
749 // Do not attempt to promote non-128-bit vectors
750 if (!VT
.is128BitVector()) {
753 setOperationAction(ISD::AND
, VT
, Promote
);
754 AddPromotedToType (ISD::AND
, VT
, MVT::v2i64
);
755 setOperationAction(ISD::OR
, VT
, Promote
);
756 AddPromotedToType (ISD::OR
, VT
, MVT::v2i64
);
757 setOperationAction(ISD::XOR
, VT
, Promote
);
758 AddPromotedToType (ISD::XOR
, VT
, MVT::v2i64
);
759 setOperationAction(ISD::LOAD
, VT
, Promote
);
760 AddPromotedToType (ISD::LOAD
, VT
, MVT::v2i64
);
761 setOperationAction(ISD::SELECT
, VT
, Promote
);
762 AddPromotedToType (ISD::SELECT
, VT
, MVT::v2i64
);
765 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
767 // Custom lower v2i64 and v2f64 selects.
768 setOperationAction(ISD::LOAD
, MVT::v2f64
, Legal
);
769 setOperationAction(ISD::LOAD
, MVT::v2i64
, Legal
);
770 setOperationAction(ISD::SELECT
, MVT::v2f64
, Custom
);
771 setOperationAction(ISD::SELECT
, MVT::v2i64
, Custom
);
773 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i32
, Legal
);
774 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i32
, Legal
);
775 if (!DisableMMX
&& Subtarget
->hasMMX()) {
776 setOperationAction(ISD::FP_TO_SINT
, MVT::v2i32
, Custom
);
777 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i32
, Custom
);
781 if (Subtarget
->hasSSE41()) {
782 // FIXME: Do we need to handle scalar-to-vector here?
783 setOperationAction(ISD::MUL
, MVT::v4i32
, Legal
);
785 // i8 and i16 vectors are custom , because the source register and source
786 // source memory operand types are not the same width. f32 vectors are
787 // custom since the immediate controlling the insert encodes additional
789 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v16i8
, Custom
);
790 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
791 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
792 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
794 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v16i8
, Custom
);
795 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v8i16
, Custom
);
796 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i32
, Custom
);
797 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
799 if (Subtarget
->is64Bit()) {
800 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Legal
);
801 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Legal
);
805 if (Subtarget
->hasSSE42()) {
806 setOperationAction(ISD::VSETCC
, MVT::v2i64
, Custom
);
809 if (!UseSoftFloat
&& Subtarget
->hasAVX()) {
810 addRegisterClass(MVT::v8f32
, X86::VR256RegisterClass
);
811 addRegisterClass(MVT::v4f64
, X86::VR256RegisterClass
);
812 addRegisterClass(MVT::v8i32
, X86::VR256RegisterClass
);
813 addRegisterClass(MVT::v4i64
, X86::VR256RegisterClass
);
815 setOperationAction(ISD::LOAD
, MVT::v8f32
, Legal
);
816 setOperationAction(ISD::LOAD
, MVT::v8i32
, Legal
);
817 setOperationAction(ISD::LOAD
, MVT::v4f64
, Legal
);
818 setOperationAction(ISD::LOAD
, MVT::v4i64
, Legal
);
819 setOperationAction(ISD::FADD
, MVT::v8f32
, Legal
);
820 setOperationAction(ISD::FSUB
, MVT::v8f32
, Legal
);
821 setOperationAction(ISD::FMUL
, MVT::v8f32
, Legal
);
822 setOperationAction(ISD::FDIV
, MVT::v8f32
, Legal
);
823 setOperationAction(ISD::FSQRT
, MVT::v8f32
, Legal
);
824 setOperationAction(ISD::FNEG
, MVT::v8f32
, Custom
);
825 //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom);
826 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
827 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
828 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
829 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
831 // Operations to consider commented out -v16i16 v32i8
832 //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
833 setOperationAction(ISD::ADD
, MVT::v8i32
, Custom
);
834 setOperationAction(ISD::ADD
, MVT::v4i64
, Custom
);
835 //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
836 //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
837 setOperationAction(ISD::SUB
, MVT::v8i32
, Custom
);
838 setOperationAction(ISD::SUB
, MVT::v4i64
, Custom
);
839 //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
840 setOperationAction(ISD::FADD
, MVT::v4f64
, Legal
);
841 setOperationAction(ISD::FSUB
, MVT::v4f64
, Legal
);
842 setOperationAction(ISD::FMUL
, MVT::v4f64
, Legal
);
843 setOperationAction(ISD::FDIV
, MVT::v4f64
, Legal
);
844 setOperationAction(ISD::FSQRT
, MVT::v4f64
, Legal
);
845 setOperationAction(ISD::FNEG
, MVT::v4f64
, Custom
);
847 setOperationAction(ISD::VSETCC
, MVT::v4f64
, Custom
);
848 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
849 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
850 setOperationAction(ISD::VSETCC
, MVT::v8i32
, Custom
);
852 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
853 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
854 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
855 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i32
, Custom
);
856 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8f32
, Custom
);
858 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f64
, Custom
);
859 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i64
, Custom
);
860 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f64
, Custom
);
861 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i64
, Custom
);
862 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f64
, Custom
);
863 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f64
, Custom
);
866 // Not sure we want to do this since there are no 256-bit integer
869 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
870 // This includes 256-bit vectors
871 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v4i64
; ++i
) {
872 MVT VT
= (MVT::SimpleValueType
)i
;
874 // Do not attempt to custom lower non-power-of-2 vectors
875 if (!isPowerOf2_32(VT
.getVectorNumElements()))
878 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
879 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
880 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
883 if (Subtarget
->is64Bit()) {
884 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i64
, Custom
);
885 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i64
, Custom
);
890 // Not sure we want to do this since there are no 256-bit integer
893 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
894 // Including 256-bit vectors
895 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v4i64
; i
++) {
896 MVT VT
= (MVT::SimpleValueType
)i
;
898 if (!VT
.is256BitVector()) {
901 setOperationAction(ISD::AND
, VT
, Promote
);
902 AddPromotedToType (ISD::AND
, VT
, MVT::v4i64
);
903 setOperationAction(ISD::OR
, VT
, Promote
);
904 AddPromotedToType (ISD::OR
, VT
, MVT::v4i64
);
905 setOperationAction(ISD::XOR
, VT
, Promote
);
906 AddPromotedToType (ISD::XOR
, VT
, MVT::v4i64
);
907 setOperationAction(ISD::LOAD
, VT
, Promote
);
908 AddPromotedToType (ISD::LOAD
, VT
, MVT::v4i64
);
909 setOperationAction(ISD::SELECT
, VT
, Promote
);
910 AddPromotedToType (ISD::SELECT
, VT
, MVT::v4i64
);
913 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
917 // We want to custom lower some of our intrinsics.
918 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
920 // Add/Sub/Mul with overflow operations are custom lowered.
921 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
922 setOperationAction(ISD::SADDO
, MVT::i64
, Custom
);
923 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
924 setOperationAction(ISD::UADDO
, MVT::i64
, Custom
);
925 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
926 setOperationAction(ISD::SSUBO
, MVT::i64
, Custom
);
927 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
928 setOperationAction(ISD::USUBO
, MVT::i64
, Custom
);
929 setOperationAction(ISD::SMULO
, MVT::i32
, Custom
);
930 setOperationAction(ISD::SMULO
, MVT::i64
, Custom
);
932 if (!Subtarget
->is64Bit()) {
933 // These libcalls are not available in 32-bit.
934 setLibcallName(RTLIB::SHL_I128
, 0);
935 setLibcallName(RTLIB::SRL_I128
, 0);
936 setLibcallName(RTLIB::SRA_I128
, 0);
939 // We have target-specific dag combine patterns for the following nodes:
940 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
941 setTargetDAGCombine(ISD::BUILD_VECTOR
);
942 setTargetDAGCombine(ISD::SELECT
);
943 setTargetDAGCombine(ISD::SHL
);
944 setTargetDAGCombine(ISD::SRA
);
945 setTargetDAGCombine(ISD::SRL
);
946 setTargetDAGCombine(ISD::STORE
);
947 setTargetDAGCombine(ISD::MEMBARRIER
);
948 if (Subtarget
->is64Bit())
949 setTargetDAGCombine(ISD::MUL
);
951 computeRegisterProperties();
953 // FIXME: These should be based on subtarget info. Plus, the values should
954 // be smaller when we are in optimizing for size mode.
955 maxStoresPerMemset
= 16; // For @llvm.memset -> sequence of stores
956 maxStoresPerMemcpy
= 16; // For @llvm.memcpy -> sequence of stores
957 maxStoresPerMemmove
= 3; // For @llvm.memmove -> sequence of stores
958 allowUnalignedMemoryAccesses
= true; // x86 supports it!
959 setPrefLoopAlignment(16);
960 benefitFromCodePlacementOpt
= true;
964 MVT
X86TargetLowering::getSetCCResultType(MVT VT
) const {
969 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
970 /// the desired ByVal argument alignment.
971 static void getMaxByValAlign(const Type
*Ty
, unsigned &MaxAlign
) {
974 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
975 if (VTy
->getBitWidth() == 128)
977 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
978 unsigned EltAlign
= 0;
979 getMaxByValAlign(ATy
->getElementType(), EltAlign
);
980 if (EltAlign
> MaxAlign
)
982 } else if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
983 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
984 unsigned EltAlign
= 0;
985 getMaxByValAlign(STy
->getElementType(i
), EltAlign
);
986 if (EltAlign
> MaxAlign
)
995 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
996 /// function arguments in the caller parameter area. For X86, aggregates
997 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
998 /// are at 4-byte boundaries.
999 unsigned X86TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
1000 if (Subtarget
->is64Bit()) {
1001 // Max of 8 and alignment of type.
1002 unsigned TyAlign
= TD
->getABITypeAlignment(Ty
);
1009 if (Subtarget
->hasSSE1())
1010 getMaxByValAlign(Ty
, Align
);
1014 /// getOptimalMemOpType - Returns the target specific optimal type for load
1015 /// and store operations as a result of memset, memcpy, and memmove
1016 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1019 X86TargetLowering::getOptimalMemOpType(uint64_t Size
, unsigned Align
,
1020 bool isSrcConst
, bool isSrcStr
,
1021 SelectionDAG
&DAG
) const {
1022 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1023 // linux. This is because the stack realignment code can't handle certain
1024 // cases like PR2962. This should be removed when PR2962 is fixed.
1025 const Function
*F
= DAG
.getMachineFunction().getFunction();
1026 bool NoImplicitFloatOps
= F
->hasFnAttr(Attribute::NoImplicitFloat
);
1027 if (!NoImplicitFloatOps
&& Subtarget
->getStackAlignment() >= 16) {
1028 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE2() && Size
>= 16)
1030 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE1() && Size
>= 16)
1033 if (Subtarget
->is64Bit() && Size
>= 8)
1038 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1040 SDValue
X86TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
1041 SelectionDAG
&DAG
) const {
1042 if (usesGlobalOffsetTable())
1043 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
1044 if (!Subtarget
->is64Bit())
1045 // This doesn't have DebugLoc associated with it, but is not really the
1046 // same as a Register.
1047 return DAG
.getNode(X86ISD::GlobalBaseReg
, DebugLoc::getUnknownLoc(),
1052 /// getFunctionAlignment - Return the Log2 alignment of this function.
1053 unsigned X86TargetLowering::getFunctionAlignment(const Function
*F
) const {
1054 return F
->hasFnAttr(Attribute::OptimizeForSize
) ? 1 : 4;
1057 //===----------------------------------------------------------------------===//
1058 // Return Value Calling Convention Implementation
1059 //===----------------------------------------------------------------------===//
1061 #include "X86GenCallingConv.inc"
1063 /// LowerRET - Lower an ISD::RET node.
1064 SDValue
X86TargetLowering::LowerRET(SDValue Op
, SelectionDAG
&DAG
) {
1065 DebugLoc dl
= Op
.getDebugLoc();
1066 assert((Op
.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
1068 SmallVector
<CCValAssign
, 16> RVLocs
;
1069 unsigned CC
= DAG
.getMachineFunction().getFunction()->getCallingConv();
1070 bool isVarArg
= DAG
.getMachineFunction().getFunction()->isVarArg();
1071 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), RVLocs
, *DAG
.getContext());
1072 CCInfo
.AnalyzeReturn(Op
.getNode(), RetCC_X86
);
1074 // If this is the first return lowered for this function, add the regs to the
1075 // liveout set for the function.
1076 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
1077 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
1078 if (RVLocs
[i
].isRegLoc())
1079 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
1081 SDValue Chain
= Op
.getOperand(0);
1083 // Handle tail call return.
1084 Chain
= GetPossiblePreceedingTailCall(Chain
, X86ISD::TAILCALL
);
1085 if (Chain
.getOpcode() == X86ISD::TAILCALL
) {
1086 SDValue TailCall
= Chain
;
1087 SDValue TargetAddress
= TailCall
.getOperand(1);
1088 SDValue StackAdjustment
= TailCall
.getOperand(2);
1089 assert(((TargetAddress
.getOpcode() == ISD::Register
&&
1090 (cast
<RegisterSDNode
>(TargetAddress
)->getReg() == X86::EAX
||
1091 cast
<RegisterSDNode
>(TargetAddress
)->getReg() == X86::R11
)) ||
1092 TargetAddress
.getOpcode() == ISD::TargetExternalSymbol
||
1093 TargetAddress
.getOpcode() == ISD::TargetGlobalAddress
) &&
1094 "Expecting an global address, external symbol, or register");
1095 assert(StackAdjustment
.getOpcode() == ISD::Constant
&&
1096 "Expecting a const value");
1098 SmallVector
<SDValue
,8> Operands
;
1099 Operands
.push_back(Chain
.getOperand(0));
1100 Operands
.push_back(TargetAddress
);
1101 Operands
.push_back(StackAdjustment
);
1102 // Copy registers used by the call. Last operand is a flag so it is not
1104 for (unsigned i
=3; i
< TailCall
.getNumOperands()-1; i
++) {
1105 Operands
.push_back(Chain
.getOperand(i
));
1107 return DAG
.getNode(X86ISD::TC_RETURN
, dl
, MVT::Other
, &Operands
[0],
1114 SmallVector
<SDValue
, 6> RetOps
;
1115 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
1116 // Operand #1 = Bytes To Pop
1117 RetOps
.push_back(DAG
.getConstant(getBytesToPopOnReturn(), MVT::i16
));
1119 // Copy the result values into the output registers.
1120 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1121 CCValAssign
&VA
= RVLocs
[i
];
1122 assert(VA
.isRegLoc() && "Can only return in registers!");
1123 SDValue ValToCopy
= Op
.getOperand(i
*2+1);
1125 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1126 // the RET instruction and handled by the FP Stackifier.
1127 if (VA
.getLocReg() == X86::ST0
||
1128 VA
.getLocReg() == X86::ST1
) {
1129 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1130 // change the value to the FP stack register class.
1131 if (isScalarFPTypeInSSEReg(VA
.getValVT()))
1132 ValToCopy
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f80
, ValToCopy
);
1133 RetOps
.push_back(ValToCopy
);
1134 // Don't emit a copytoreg.
1138 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1139 // which is returned in RAX / RDX.
1140 if (Subtarget
->is64Bit()) {
1141 MVT ValVT
= ValToCopy
.getValueType();
1142 if (ValVT
.isVector() && ValVT
.getSizeInBits() == 64) {
1143 ValToCopy
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, ValToCopy
);
1144 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
)
1145 ValToCopy
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, ValToCopy
);
1149 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), ValToCopy
, Flag
);
1150 Flag
= Chain
.getValue(1);
1153 // The x86-64 ABI for returning structs by value requires that we copy
1154 // the sret argument into %rax for the return. We saved the argument into
1155 // a virtual register in the entry block, so now we copy the value out
1157 if (Subtarget
->is64Bit() &&
1158 DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1159 MachineFunction
&MF
= DAG
.getMachineFunction();
1160 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1161 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1163 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1164 FuncInfo
->setSRetReturnReg(Reg
);
1166 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, getPointerTy());
1168 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::RAX
, Val
, Flag
);
1169 Flag
= Chain
.getValue(1);
1172 RetOps
[0] = Chain
; // Update chain.
1174 // Add the flag if we have it.
1176 RetOps
.push_back(Flag
);
1178 return DAG
.getNode(X86ISD::RET_FLAG
, dl
,
1179 MVT::Other
, &RetOps
[0], RetOps
.size());
1183 /// LowerCallResult - Lower the result values of an ISD::CALL into the
1184 /// appropriate copies out of appropriate physical registers. This assumes that
1185 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1186 /// being lowered. The returns a SDNode with the same number of values as the
1188 SDNode
*X86TargetLowering::
1189 LowerCallResult(SDValue Chain
, SDValue InFlag
, CallSDNode
*TheCall
,
1190 unsigned CallingConv
, SelectionDAG
&DAG
) {
1192 DebugLoc dl
= TheCall
->getDebugLoc();
1193 // Assign locations to each value returned by this call.
1194 SmallVector
<CCValAssign
, 16> RVLocs
;
1195 bool isVarArg
= TheCall
->isVarArg();
1196 bool Is64Bit
= Subtarget
->is64Bit();
1197 CCState
CCInfo(CallingConv
, isVarArg
, getTargetMachine(),
1198 RVLocs
, *DAG
.getContext());
1199 CCInfo
.AnalyzeCallResult(TheCall
, RetCC_X86
);
1201 SmallVector
<SDValue
, 8> ResultVals
;
1203 // Copy all of the result registers out of their specified physreg.
1204 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1205 CCValAssign
&VA
= RVLocs
[i
];
1206 MVT CopyVT
= VA
.getValVT();
1208 // If this is x86-64, and we disabled SSE, we can't return FP values
1209 if ((CopyVT
== MVT::f32
|| CopyVT
== MVT::f64
) &&
1210 ((Is64Bit
|| TheCall
->isInreg()) && !Subtarget
->hasSSE1())) {
1211 llvm_report_error("SSE register return with SSE disabled");
1214 // If this is a call to a function that returns an fp value on the floating
1215 // point stack, but where we prefer to use the value in xmm registers, copy
1216 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1217 if ((VA
.getLocReg() == X86::ST0
||
1218 VA
.getLocReg() == X86::ST1
) &&
1219 isScalarFPTypeInSSEReg(VA
.getValVT())) {
1224 if (Is64Bit
&& CopyVT
.isVector() && CopyVT
.getSizeInBits() == 64) {
1225 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1226 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
) {
1227 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1228 MVT::v2i64
, InFlag
).getValue(1);
1229 Val
= Chain
.getValue(0);
1230 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1231 Val
, DAG
.getConstant(0, MVT::i64
));
1233 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1234 MVT::i64
, InFlag
).getValue(1);
1235 Val
= Chain
.getValue(0);
1237 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, CopyVT
, Val
);
1239 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1240 CopyVT
, InFlag
).getValue(1);
1241 Val
= Chain
.getValue(0);
1243 InFlag
= Chain
.getValue(2);
1245 if (CopyVT
!= VA
.getValVT()) {
1246 // Round the F80 the right size, which also moves to the appropriate xmm
1248 Val
= DAG
.getNode(ISD::FP_ROUND
, dl
, VA
.getValVT(), Val
,
1249 // This truncation won't change the value.
1250 DAG
.getIntPtrConstant(1));
1253 ResultVals
.push_back(Val
);
1256 // Merge everything together with a MERGE_VALUES node.
1257 ResultVals
.push_back(Chain
);
1258 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, TheCall
->getVTList(),
1259 &ResultVals
[0], ResultVals
.size()).getNode();
1263 //===----------------------------------------------------------------------===//
1264 // C & StdCall & Fast Calling Convention implementation
1265 //===----------------------------------------------------------------------===//
1266 // StdCall calling convention seems to be standard for many Windows' API
1267 // routines and around. It differs from C calling convention just a little:
1268 // callee should clean up the stack, not caller. Symbols should be also
1269 // decorated in some fancy way :) It doesn't support any vector arguments.
1270 // For info on fast calling convention see Fast Calling Convention (tail call)
1271 // implementation LowerX86_32FastCCCallTo.
1273 /// CallIsStructReturn - Determines whether a CALL node uses struct return
1275 static bool CallIsStructReturn(CallSDNode
*TheCall
) {
1276 unsigned NumOps
= TheCall
->getNumArgs();
1280 return TheCall
->getArgFlags(0).isSRet();
1283 /// ArgsAreStructReturn - Determines whether a function uses struct
1284 /// return semantics.
1285 static bool ArgsAreStructReturn(SDValue Op
) {
1286 unsigned NumArgs
= Op
.getNode()->getNumValues() - 1;
1290 return cast
<ARG_FLAGSSDNode
>(Op
.getOperand(3))->getArgFlags().isSRet();
1293 /// IsCalleePop - Determines whether the callee is required to pop its
1294 /// own arguments. Callee pop is necessary to support tail calls.
1295 bool X86TargetLowering::IsCalleePop(bool IsVarArg
, unsigned CallingConv
) {
1299 switch (CallingConv
) {
1302 case CallingConv::X86_StdCall
:
1303 return !Subtarget
->is64Bit();
1304 case CallingConv::X86_FastCall
:
1305 return !Subtarget
->is64Bit();
1306 case CallingConv::Fast
:
1307 return PerformTailCallOpt
;
1311 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1312 /// given CallingConvention value.
1313 CCAssignFn
*X86TargetLowering::CCAssignFnForNode(unsigned CC
) const {
1314 if (Subtarget
->is64Bit()) {
1315 if (Subtarget
->isTargetWin64())
1316 return CC_X86_Win64_C
;
1321 if (CC
== CallingConv::X86_FastCall
)
1322 return CC_X86_32_FastCall
;
1323 else if (CC
== CallingConv::Fast
)
1324 return CC_X86_32_FastCC
;
1329 /// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1330 /// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1332 X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op
) {
1333 unsigned CC
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1334 if (CC
== CallingConv::X86_FastCall
)
1336 else if (CC
== CallingConv::X86_StdCall
)
1342 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1343 /// by "Src" to address "Dst" with size and alignment information specified by
1344 /// the specific parameter attribute. The copy will be passed as a byval
1345 /// function parameter.
1347 CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
, SDValue Chain
,
1348 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1350 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), MVT::i32
);
1351 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
, Flags
.getByValAlign(),
1352 /*AlwaysInline=*/true, NULL
, 0, NULL
, 0);
1355 SDValue
X86TargetLowering::LowerMemArgument(SDValue Op
, SelectionDAG
&DAG
,
1356 const CCValAssign
&VA
,
1357 MachineFrameInfo
*MFI
,
1359 SDValue Root
, unsigned i
) {
1360 // Create the nodes corresponding to a load from this parameter slot.
1361 ISD::ArgFlagsTy Flags
=
1362 cast
<ARG_FLAGSSDNode
>(Op
.getOperand(3 + i
))->getArgFlags();
1363 bool AlwaysUseMutable
= (CC
==CallingConv::Fast
) && PerformTailCallOpt
;
1364 bool isImmutable
= !AlwaysUseMutable
&& !Flags
.isByVal();
1366 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1367 // changed with more analysis.
1368 // In case of tail call optimization mark all arguments mutable. Since they
1369 // could be overwritten by lowering of arguments in case of a tail call.
1370 int FI
= MFI
->CreateFixedObject(VA
.getValVT().getSizeInBits()/8,
1371 VA
.getLocMemOffset(), isImmutable
);
1372 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1373 if (Flags
.isByVal())
1375 return DAG
.getLoad(VA
.getValVT(), Op
.getDebugLoc(), Root
, FIN
,
1376 PseudoSourceValue::getFixedStack(FI
), 0);
1380 X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op
, SelectionDAG
&DAG
) {
1381 MachineFunction
&MF
= DAG
.getMachineFunction();
1382 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1383 DebugLoc dl
= Op
.getDebugLoc();
1385 const Function
* Fn
= MF
.getFunction();
1386 if (Fn
->hasExternalLinkage() &&
1387 Subtarget
->isTargetCygMing() &&
1388 Fn
->getName() == "main")
1389 FuncInfo
->setForceFramePointer(true);
1391 // Decorate the function name.
1392 FuncInfo
->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op
));
1394 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1395 SDValue Root
= Op
.getOperand(0);
1396 bool isVarArg
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() != 0;
1397 unsigned CC
= MF
.getFunction()->getCallingConv();
1398 bool Is64Bit
= Subtarget
->is64Bit();
1399 bool IsWin64
= Subtarget
->isTargetWin64();
1401 assert(!(isVarArg
&& CC
== CallingConv::Fast
) &&
1402 "Var args not supported with calling convention fastcc");
1404 // Assign locations to all of the incoming arguments.
1405 SmallVector
<CCValAssign
, 16> ArgLocs
;
1406 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
, *DAG
.getContext());
1407 CCInfo
.AnalyzeFormalArguments(Op
.getNode(), CCAssignFnForNode(CC
));
1409 SmallVector
<SDValue
, 8> ArgValues
;
1410 unsigned LastVal
= ~0U;
1412 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1413 CCValAssign
&VA
= ArgLocs
[i
];
1414 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1416 assert(VA
.getValNo() != LastVal
&&
1417 "Don't support value assigned to multiple locs yet");
1418 LastVal
= VA
.getValNo();
1420 if (VA
.isRegLoc()) {
1421 MVT RegVT
= VA
.getLocVT();
1422 TargetRegisterClass
*RC
= NULL
;
1423 if (RegVT
== MVT::i32
)
1424 RC
= X86::GR32RegisterClass
;
1425 else if (Is64Bit
&& RegVT
== MVT::i64
)
1426 RC
= X86::GR64RegisterClass
;
1427 else if (RegVT
== MVT::f32
)
1428 RC
= X86::FR32RegisterClass
;
1429 else if (RegVT
== MVT::f64
)
1430 RC
= X86::FR64RegisterClass
;
1431 else if (RegVT
.isVector() && RegVT
.getSizeInBits() == 128)
1432 RC
= X86::VR128RegisterClass
;
1433 else if (RegVT
.isVector() && RegVT
.getSizeInBits() == 64)
1434 RC
= X86::VR64RegisterClass
;
1436 llvm_unreachable("Unknown argument type!");
1438 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
1439 ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, RegVT
);
1441 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1442 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1444 if (VA
.getLocInfo() == CCValAssign::SExt
)
1445 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
1446 DAG
.getValueType(VA
.getValVT()));
1447 else if (VA
.getLocInfo() == CCValAssign::ZExt
)
1448 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
1449 DAG
.getValueType(VA
.getValVT()));
1450 else if (VA
.getLocInfo() == CCValAssign::BCvt
)
1451 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getValVT(), ArgValue
);
1453 if (VA
.isExtInLoc()) {
1454 // Handle MMX values passed in XMM regs.
1455 if (RegVT
.isVector()) {
1456 ArgValue
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1457 ArgValue
, DAG
.getConstant(0, MVT::i64
));
1458 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getValVT(), ArgValue
);
1460 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
1463 assert(VA
.isMemLoc());
1464 ArgValue
= LowerMemArgument(Op
, DAG
, VA
, MFI
, CC
, Root
, i
);
1467 // If value is passed via pointer - do a load.
1468 if (VA
.getLocInfo() == CCValAssign::Indirect
)
1469 ArgValue
= DAG
.getLoad(VA
.getValVT(), dl
, Root
, ArgValue
, NULL
, 0);
1471 ArgValues
.push_back(ArgValue
);
1474 // The x86-64 ABI for returning structs by value requires that we copy
1475 // the sret argument into %rax for the return. Save the argument into
1476 // a virtual register so that we can access it from the return points.
1477 if (Is64Bit
&& MF
.getFunction()->hasStructRetAttr()) {
1478 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1479 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1481 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1482 FuncInfo
->setSRetReturnReg(Reg
);
1484 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, Reg
, ArgValues
[0]);
1485 Root
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Copy
, Root
);
1488 unsigned StackSize
= CCInfo
.getNextStackOffset();
1489 // align stack specially for tail calls
1490 if (PerformTailCallOpt
&& CC
== CallingConv::Fast
)
1491 StackSize
= GetAlignedArgumentStackSize(StackSize
, DAG
);
1493 // If the function takes variable number of arguments, make a frame index for
1494 // the start of the first vararg value... for expansion of llvm.va_start.
1496 if (Is64Bit
|| CC
!= CallingConv::X86_FastCall
) {
1497 VarArgsFrameIndex
= MFI
->CreateFixedObject(1, StackSize
);
1500 unsigned TotalNumIntRegs
= 0, TotalNumXMMRegs
= 0;
1502 // FIXME: We should really autogenerate these arrays
1503 static const unsigned GPR64ArgRegsWin64
[] = {
1504 X86::RCX
, X86::RDX
, X86::R8
, X86::R9
1506 static const unsigned XMMArgRegsWin64
[] = {
1507 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
1509 static const unsigned GPR64ArgRegs64Bit
[] = {
1510 X86::RDI
, X86::RSI
, X86::RDX
, X86::RCX
, X86::R8
, X86::R9
1512 static const unsigned XMMArgRegs64Bit
[] = {
1513 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1514 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1516 const unsigned *GPR64ArgRegs
, *XMMArgRegs
;
1519 TotalNumIntRegs
= 4; TotalNumXMMRegs
= 4;
1520 GPR64ArgRegs
= GPR64ArgRegsWin64
;
1521 XMMArgRegs
= XMMArgRegsWin64
;
1523 TotalNumIntRegs
= 6; TotalNumXMMRegs
= 8;
1524 GPR64ArgRegs
= GPR64ArgRegs64Bit
;
1525 XMMArgRegs
= XMMArgRegs64Bit
;
1527 unsigned NumIntRegs
= CCInfo
.getFirstUnallocated(GPR64ArgRegs
,
1529 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
,
1532 bool NoImplicitFloatOps
= Fn
->hasFnAttr(Attribute::NoImplicitFloat
);
1533 assert(!(NumXMMRegs
&& !Subtarget
->hasSSE1()) &&
1534 "SSE register cannot be used when SSE is disabled!");
1535 assert(!(NumXMMRegs
&& UseSoftFloat
&& NoImplicitFloatOps
) &&
1536 "SSE register cannot be used when SSE is disabled!");
1537 if (UseSoftFloat
|| NoImplicitFloatOps
|| !Subtarget
->hasSSE1())
1538 // Kernel mode asks for SSE to be disabled, so don't push them
1540 TotalNumXMMRegs
= 0;
1542 // For X86-64, if there are vararg parameters that are passed via
1543 // registers, then we must store them to their spots on the stack so they
1544 // may be loaded by deferencing the result of va_next.
1545 VarArgsGPOffset
= NumIntRegs
* 8;
1546 VarArgsFPOffset
= TotalNumIntRegs
* 8 + NumXMMRegs
* 16;
1547 RegSaveFrameIndex
= MFI
->CreateStackObject(TotalNumIntRegs
* 8 +
1548 TotalNumXMMRegs
* 16, 16);
1550 // Store the integer parameter registers.
1551 SmallVector
<SDValue
, 8> MemOps
;
1552 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
1553 SDValue FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1554 DAG
.getIntPtrConstant(VarArgsGPOffset
));
1555 for (; NumIntRegs
!= TotalNumIntRegs
; ++NumIntRegs
) {
1556 unsigned VReg
= MF
.addLiveIn(GPR64ArgRegs
[NumIntRegs
],
1557 X86::GR64RegisterClass
);
1558 SDValue Val
= DAG
.getCopyFromReg(Root
, dl
, VReg
, MVT::i64
);
1560 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1561 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
), 0);
1562 MemOps
.push_back(Store
);
1563 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), FIN
,
1564 DAG
.getIntPtrConstant(8));
1567 // Now store the XMM (fp + vector) parameter registers.
1568 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1569 DAG
.getIntPtrConstant(VarArgsFPOffset
));
1570 for (; NumXMMRegs
!= TotalNumXMMRegs
; ++NumXMMRegs
) {
1571 unsigned VReg
= MF
.addLiveIn(XMMArgRegs
[NumXMMRegs
],
1572 X86::VR128RegisterClass
);
1573 SDValue Val
= DAG
.getCopyFromReg(Root
, dl
, VReg
, MVT::v4f32
);
1575 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1576 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
), 0);
1577 MemOps
.push_back(Store
);
1578 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), FIN
,
1579 DAG
.getIntPtrConstant(16));
1581 if (!MemOps
.empty())
1582 Root
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1583 &MemOps
[0], MemOps
.size());
1587 ArgValues
.push_back(Root
);
1589 // Some CCs need callee pop.
1590 if (IsCalleePop(isVarArg
, CC
)) {
1591 BytesToPopOnReturn
= StackSize
; // Callee pops everything.
1592 BytesCallerReserves
= 0;
1594 BytesToPopOnReturn
= 0; // Callee pops nothing.
1595 // If this is an sret function, the return should pop the hidden pointer.
1596 if (!Is64Bit
&& CC
!= CallingConv::Fast
&& ArgsAreStructReturn(Op
))
1597 BytesToPopOnReturn
= 4;
1598 BytesCallerReserves
= StackSize
;
1602 RegSaveFrameIndex
= 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
1603 if (CC
== CallingConv::X86_FastCall
)
1604 VarArgsFrameIndex
= 0xAAAAAAA; // fastcc functions can't have varargs.
1607 FuncInfo
->setBytesToPopOnReturn(BytesToPopOnReturn
);
1609 // Return the new list of results.
1610 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Op
.getNode()->getVTList(),
1611 &ArgValues
[0], ArgValues
.size()).getValue(Op
.getResNo());
1615 X86TargetLowering::LowerMemOpCallTo(CallSDNode
*TheCall
, SelectionDAG
&DAG
,
1616 const SDValue
&StackPtr
,
1617 const CCValAssign
&VA
,
1619 SDValue Arg
, ISD::ArgFlagsTy Flags
) {
1620 const unsigned FirstStackArgOffset
= (Subtarget
->isTargetWin64() ? 32 : 0);
1621 DebugLoc dl
= TheCall
->getDebugLoc();
1622 unsigned LocMemOffset
= FirstStackArgOffset
+ VA
.getLocMemOffset();
1623 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
1624 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
1625 if (Flags
.isByVal()) {
1626 return CreateCopyOfByValArgument(Arg
, PtrOff
, Chain
, Flags
, DAG
, dl
);
1628 return DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
1629 PseudoSourceValue::getStack(), LocMemOffset
);
1632 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1633 /// optimization is performed and it is required.
1635 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG
&DAG
,
1636 SDValue
&OutRetAddr
,
1642 if (!IsTailCall
|| FPDiff
==0) return Chain
;
1644 // Adjust the Return address stack slot.
1645 MVT VT
= getPointerTy();
1646 OutRetAddr
= getReturnAddressFrameIndex(DAG
);
1648 // Load the "old" Return address.
1649 OutRetAddr
= DAG
.getLoad(VT
, dl
, Chain
, OutRetAddr
, NULL
, 0);
1650 return SDValue(OutRetAddr
.getNode(), 1);
1653 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1654 /// optimization is performed and it is required (FPDiff!=0).
1656 EmitTailCallStoreRetAddr(SelectionDAG
& DAG
, MachineFunction
&MF
,
1657 SDValue Chain
, SDValue RetAddrFrIdx
,
1658 bool Is64Bit
, int FPDiff
, DebugLoc dl
) {
1659 // Store the return address to the appropriate stack slot.
1660 if (!FPDiff
) return Chain
;
1661 // Calculate the new stack slot for the return address.
1662 int SlotSize
= Is64Bit
? 8 : 4;
1663 int NewReturnAddrFI
=
1664 MF
.getFrameInfo()->CreateFixedObject(SlotSize
, FPDiff
-SlotSize
);
1665 MVT VT
= Is64Bit
? MVT::i64
: MVT::i32
;
1666 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewReturnAddrFI
, VT
);
1667 Chain
= DAG
.getStore(Chain
, dl
, RetAddrFrIdx
, NewRetAddrFrIdx
,
1668 PseudoSourceValue::getFixedStack(NewReturnAddrFI
), 0);
1672 SDValue
X86TargetLowering::LowerCALL(SDValue Op
, SelectionDAG
&DAG
) {
1673 MachineFunction
&MF
= DAG
.getMachineFunction();
1674 CallSDNode
*TheCall
= cast
<CallSDNode
>(Op
.getNode());
1675 SDValue Chain
= TheCall
->getChain();
1676 unsigned CC
= TheCall
->getCallingConv();
1677 bool isVarArg
= TheCall
->isVarArg();
1678 bool IsTailCall
= TheCall
->isTailCall() &&
1679 CC
== CallingConv::Fast
&& PerformTailCallOpt
;
1680 SDValue Callee
= TheCall
->getCallee();
1681 bool Is64Bit
= Subtarget
->is64Bit();
1682 bool IsStructRet
= CallIsStructReturn(TheCall
);
1683 DebugLoc dl
= TheCall
->getDebugLoc();
1685 assert(!(isVarArg
&& CC
== CallingConv::Fast
) &&
1686 "Var args not supported with calling convention fastcc");
1688 // Analyze operands of the call, assigning locations to each operand.
1689 SmallVector
<CCValAssign
, 16> ArgLocs
;
1690 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
, *DAG
.getContext());
1691 CCInfo
.AnalyzeCallOperands(TheCall
, CCAssignFnForNode(CC
));
1693 // Get a count of how many bytes are to be pushed on the stack.
1694 unsigned NumBytes
= CCInfo
.getNextStackOffset();
1695 if (PerformTailCallOpt
&& CC
== CallingConv::Fast
)
1696 NumBytes
= GetAlignedArgumentStackSize(NumBytes
, DAG
);
1700 // Lower arguments at fp - stackoffset + fpdiff.
1701 unsigned NumBytesCallerPushed
=
1702 MF
.getInfo
<X86MachineFunctionInfo
>()->getBytesToPopOnReturn();
1703 FPDiff
= NumBytesCallerPushed
- NumBytes
;
1705 // Set the delta of movement of the returnaddr stackslot.
1706 // But only set if delta is greater than previous delta.
1707 if (FPDiff
< (MF
.getInfo
<X86MachineFunctionInfo
>()->getTCReturnAddrDelta()))
1708 MF
.getInfo
<X86MachineFunctionInfo
>()->setTCReturnAddrDelta(FPDiff
);
1711 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
1713 SDValue RetAddrFrIdx
;
1714 // Load return adress for tail calls.
1715 Chain
= EmitTailCallLoadRetAddr(DAG
, RetAddrFrIdx
, Chain
, IsTailCall
, Is64Bit
,
1718 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
1719 SmallVector
<SDValue
, 8> MemOpChains
;
1722 // Walk the register/memloc assignments, inserting copies/loads. In the case
1723 // of tail call optimization arguments are handle later.
1724 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1725 CCValAssign
&VA
= ArgLocs
[i
];
1726 MVT RegVT
= VA
.getLocVT();
1727 SDValue Arg
= TheCall
->getArg(i
);
1728 ISD::ArgFlagsTy Flags
= TheCall
->getArgFlags(i
);
1729 bool isByVal
= Flags
.isByVal();
1731 // Promote the value if needed.
1732 switch (VA
.getLocInfo()) {
1733 default: llvm_unreachable("Unknown loc info!");
1734 case CCValAssign::Full
: break;
1735 case CCValAssign::SExt
:
1736 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, RegVT
, Arg
);
1738 case CCValAssign::ZExt
:
1739 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, RegVT
, Arg
);
1741 case CCValAssign::AExt
:
1742 if (RegVT
.isVector() && RegVT
.getSizeInBits() == 128) {
1743 // Special case: passing MMX values in XMM registers.
1744 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
1745 Arg
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, Arg
);
1746 Arg
= getMOVL(DAG
, dl
, MVT::v2i64
, DAG
.getUNDEF(MVT::v2i64
), Arg
);
1748 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, RegVT
, Arg
);
1750 case CCValAssign::BCvt
:
1751 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, RegVT
, Arg
);
1753 case CCValAssign::Indirect
: {
1754 // Store the argument.
1755 SDValue SpillSlot
= DAG
.CreateStackTemporary(VA
.getValVT());
1756 int FI
= cast
<FrameIndexSDNode
>(SpillSlot
)->getIndex();
1757 Chain
= DAG
.getStore(Chain
, dl
, Arg
, SpillSlot
,
1758 PseudoSourceValue::getFixedStack(FI
), 0);
1764 if (VA
.isRegLoc()) {
1765 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
1767 if (!IsTailCall
|| (IsTailCall
&& isByVal
)) {
1768 assert(VA
.isMemLoc());
1769 if (StackPtr
.getNode() == 0)
1770 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, getPointerTy());
1772 MemOpChains
.push_back(LowerMemOpCallTo(TheCall
, DAG
, StackPtr
, VA
,
1773 Chain
, Arg
, Flags
));
1778 if (!MemOpChains
.empty())
1779 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1780 &MemOpChains
[0], MemOpChains
.size());
1782 // Build a sequence of copy-to-reg nodes chained together with token chain
1783 // and flag operands which copy the outgoing args into registers.
1785 // Tail call byval lowering might overwrite argument registers so in case of
1786 // tail call optimization the copies to registers are lowered later.
1788 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1789 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1790 RegsToPass
[i
].second
, InFlag
);
1791 InFlag
= Chain
.getValue(1);
1795 if (Subtarget
->isPICStyleGOT()) {
1796 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1799 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EBX
,
1800 DAG
.getNode(X86ISD::GlobalBaseReg
,
1801 DebugLoc::getUnknownLoc(),
1804 InFlag
= Chain
.getValue(1);
1806 // If we are tail calling and generating PIC/GOT style code load the
1807 // address of the callee into ECX. The value in ecx is used as target of
1808 // the tail jump. This is done to circumvent the ebx/callee-saved problem
1809 // for tail calls on PIC/GOT architectures. Normally we would just put the
1810 // address of GOT into ebx and then call target@PLT. But for tail calls
1811 // ebx would be restored (since ebx is callee saved) before jumping to the
1814 // Note: The actual moving to ECX is done further down.
1815 GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
);
1816 if (G
&& !G
->getGlobal()->hasHiddenVisibility() &&
1817 !G
->getGlobal()->hasProtectedVisibility())
1818 Callee
= LowerGlobalAddress(Callee
, DAG
);
1819 else if (isa
<ExternalSymbolSDNode
>(Callee
))
1820 Callee
= LowerExternalSymbol(Callee
, DAG
);
1824 if (Is64Bit
&& isVarArg
) {
1825 // From AMD64 ABI document:
1826 // For calls that may call functions that use varargs or stdargs
1827 // (prototype-less calls or calls to functions containing ellipsis (...) in
1828 // the declaration) %al is used as hidden argument to specify the number
1829 // of SSE registers used. The contents of %al do not need to match exactly
1830 // the number of registers, but must be an ubound on the number of SSE
1831 // registers used and is in the range 0 - 8 inclusive.
1833 // FIXME: Verify this on Win64
1834 // Count the number of XMM registers allocated.
1835 static const unsigned XMMArgRegs
[] = {
1836 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1837 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1839 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
, 8);
1840 assert((Subtarget
->hasSSE1() || !NumXMMRegs
)
1841 && "SSE registers cannot be used when SSE is disabled");
1843 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
,
1844 DAG
.getConstant(NumXMMRegs
, MVT::i8
), InFlag
);
1845 InFlag
= Chain
.getValue(1);
1849 // For tail calls lower the arguments to the 'real' stack slot.
1851 SmallVector
<SDValue
, 8> MemOpChains2
;
1854 // Do not flag preceeding copytoreg stuff together with the following stuff.
1856 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1857 CCValAssign
&VA
= ArgLocs
[i
];
1858 if (!VA
.isRegLoc()) {
1859 assert(VA
.isMemLoc());
1860 SDValue Arg
= TheCall
->getArg(i
);
1861 ISD::ArgFlagsTy Flags
= TheCall
->getArgFlags(i
);
1862 // Create frame index.
1863 int32_t Offset
= VA
.getLocMemOffset()+FPDiff
;
1864 uint32_t OpSize
= (VA
.getLocVT().getSizeInBits()+7)/8;
1865 FI
= MF
.getFrameInfo()->CreateFixedObject(OpSize
, Offset
);
1866 FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1868 if (Flags
.isByVal()) {
1869 // Copy relative to framepointer.
1870 SDValue Source
= DAG
.getIntPtrConstant(VA
.getLocMemOffset());
1871 if (StackPtr
.getNode() == 0)
1872 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
,
1874 Source
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, Source
);
1876 MemOpChains2
.push_back(CreateCopyOfByValArgument(Source
, FIN
, Chain
,
1879 // Store relative to framepointer.
1880 MemOpChains2
.push_back(
1881 DAG
.getStore(Chain
, dl
, Arg
, FIN
,
1882 PseudoSourceValue::getFixedStack(FI
), 0));
1887 if (!MemOpChains2
.empty())
1888 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1889 &MemOpChains2
[0], MemOpChains2
.size());
1891 // Copy arguments to their registers.
1892 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1893 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1894 RegsToPass
[i
].second
, InFlag
);
1895 InFlag
= Chain
.getValue(1);
1899 // Store the return address to the appropriate stack slot.
1900 Chain
= EmitTailCallStoreRetAddr(DAG
, MF
, Chain
, RetAddrFrIdx
, Is64Bit
,
1904 // If the callee is a GlobalAddress node (quite common, every direct call is)
1905 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1906 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
1907 // We should use extra load for direct calls to dllimported functions in
1909 GlobalValue
*GV
= G
->getGlobal();
1910 if (!GV
->hasDLLImportLinkage()) {
1911 unsigned char OpFlags
= 0;
1913 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1914 // external symbols most go through the PLT in PIC mode. If the symbol
1915 // has hidden or protected visibility, or if it is static or local, then
1916 // we don't need to use the PLT - we can directly call it.
1917 if (Subtarget
->isTargetELF() &&
1918 getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1919 GV
->hasDefaultVisibility() && !GV
->hasLocalLinkage()) {
1920 OpFlags
= X86II::MO_PLT
;
1921 } else if (Subtarget
->isPICStyleStubAny() &&
1922 (GV
->isDeclaration() || GV
->isWeakForLinker()) &&
1923 Subtarget
->getDarwinVers() < 9) {
1924 // PC-relative references to external symbols should go through $stub,
1925 // unless we're building with the leopard linker or later, which
1926 // automatically synthesizes these stubs.
1927 OpFlags
= X86II::MO_DARWIN_STUB
;
1930 Callee
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(),
1931 G
->getOffset(), OpFlags
);
1933 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
1934 unsigned char OpFlags
= 0;
1936 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1937 // symbols should go through the PLT.
1938 if (Subtarget
->isTargetELF() &&
1939 getTargetMachine().getRelocationModel() == Reloc::PIC_
) {
1940 OpFlags
= X86II::MO_PLT
;
1941 } else if (Subtarget
->isPICStyleStubAny() &&
1942 Subtarget
->getDarwinVers() < 9) {
1943 // PC-relative references to external symbols should go through $stub,
1944 // unless we're building with the leopard linker or later, which
1945 // automatically synthesizes these stubs.
1946 OpFlags
= X86II::MO_DARWIN_STUB
;
1949 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), getPointerTy(),
1951 } else if (IsTailCall
) {
1952 unsigned Opc
= Is64Bit
? X86::R11
: X86::EAX
;
1954 Chain
= DAG
.getCopyToReg(Chain
, dl
,
1955 DAG
.getRegister(Opc
, getPointerTy()),
1957 Callee
= DAG
.getRegister(Opc
, getPointerTy());
1958 // Add register as live out.
1959 MF
.getRegInfo().addLiveOut(Opc
);
1962 // Returns a chain & a flag for retval copy to use.
1963 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1964 SmallVector
<SDValue
, 8> Ops
;
1967 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
1968 DAG
.getIntPtrConstant(0, true), InFlag
);
1969 InFlag
= Chain
.getValue(1);
1971 // Returns a chain & a flag for retval copy to use.
1972 NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1976 Ops
.push_back(Chain
);
1977 Ops
.push_back(Callee
);
1980 Ops
.push_back(DAG
.getConstant(FPDiff
, MVT::i32
));
1982 // Add argument registers to the end of the list so that they are known live
1984 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
1985 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
1986 RegsToPass
[i
].second
.getValueType()));
1988 // Add an implicit use GOT pointer in EBX.
1989 if (!IsTailCall
&& Subtarget
->isPICStyleGOT())
1990 Ops
.push_back(DAG
.getRegister(X86::EBX
, getPointerTy()));
1992 // Add an implicit use of AL for x86 vararg functions.
1993 if (Is64Bit
&& isVarArg
)
1994 Ops
.push_back(DAG
.getRegister(X86::AL
, MVT::i8
));
1996 if (InFlag
.getNode())
1997 Ops
.push_back(InFlag
);
2000 assert(InFlag
.getNode() &&
2001 "Flag must be set. Depend on flag being set in LowerRET");
2002 Chain
= DAG
.getNode(X86ISD::TAILCALL
, dl
,
2003 TheCall
->getVTList(), &Ops
[0], Ops
.size());
2005 return SDValue(Chain
.getNode(), Op
.getResNo());
2008 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, &Ops
[0], Ops
.size());
2009 InFlag
= Chain
.getValue(1);
2011 // Create the CALLSEQ_END node.
2012 unsigned NumBytesForCalleeToPush
;
2013 if (IsCalleePop(isVarArg
, CC
))
2014 NumBytesForCalleeToPush
= NumBytes
; // Callee pops everything
2015 else if (!Is64Bit
&& CC
!= CallingConv::Fast
&& IsStructRet
)
2016 // If this is is a call to a struct-return function, the callee
2017 // pops the hidden struct pointer, so we have to push it back.
2018 // This is common for Darwin/X86, Linux & Mingw32 targets.
2019 NumBytesForCalleeToPush
= 4;
2021 NumBytesForCalleeToPush
= 0; // Callee pops nothing.
2023 // Returns a flag for retval copy to use.
2024 Chain
= DAG
.getCALLSEQ_END(Chain
,
2025 DAG
.getIntPtrConstant(NumBytes
, true),
2026 DAG
.getIntPtrConstant(NumBytesForCalleeToPush
,
2029 InFlag
= Chain
.getValue(1);
2031 // Handle result values, copying them out of physregs into vregs that we
2033 return SDValue(LowerCallResult(Chain
, InFlag
, TheCall
, CC
, DAG
),
2038 //===----------------------------------------------------------------------===//
2039 // Fast Calling Convention (tail call) implementation
2040 //===----------------------------------------------------------------------===//
2042 // Like std call, callee cleans arguments, convention except that ECX is
2043 // reserved for storing the tail called function address. Only 2 registers are
2044 // free for argument passing (inreg). Tail call optimization is performed
2046 // * tailcallopt is enabled
2047 // * caller/callee are fastcc
2048 // On X86_64 architecture with GOT-style position independent code only local
2049 // (within module) calls are supported at the moment.
2050 // To keep the stack aligned according to platform abi the function
2051 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2052 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2053 // If a tail called function callee has more arguments than the caller the
2054 // caller needs to make sure that there is room to move the RETADDR to. This is
2055 // achieved by reserving an area the size of the argument delta right after the
2056 // original REtADDR, but before the saved framepointer or the spilled registers
2057 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2069 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2070 /// for a 16 byte align requirement.
2071 unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize
,
2072 SelectionDAG
& DAG
) {
2073 MachineFunction
&MF
= DAG
.getMachineFunction();
2074 const TargetMachine
&TM
= MF
.getTarget();
2075 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
2076 unsigned StackAlignment
= TFI
.getStackAlignment();
2077 uint64_t AlignMask
= StackAlignment
- 1;
2078 int64_t Offset
= StackSize
;
2079 uint64_t SlotSize
= TD
->getPointerSize();
2080 if ( (Offset
& AlignMask
) <= (StackAlignment
- SlotSize
) ) {
2081 // Number smaller than 12 so just add the difference.
2082 Offset
+= ((StackAlignment
- SlotSize
) - (Offset
& AlignMask
));
2084 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2085 Offset
= ((~AlignMask
) & Offset
) + StackAlignment
+
2086 (StackAlignment
-SlotSize
);
2091 /// IsEligibleForTailCallElimination - Check to see whether the next instruction
2092 /// following the call is a return. A function is eligible if caller/callee
2093 /// calling conventions match, currently only fastcc supports tail calls, and
2094 /// the function CALL is immediatly followed by a RET.
2095 bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode
*TheCall
,
2097 SelectionDAG
& DAG
) const {
2098 if (!PerformTailCallOpt
)
2101 if (CheckTailCallReturnConstraints(TheCall
, Ret
)) {
2103 DAG
.getMachineFunction().getFunction()->getCallingConv();
2104 unsigned CalleeCC
= TheCall
->getCallingConv();
2105 if (CalleeCC
== CallingConv::Fast
&& CallerCC
== CalleeCC
)
2113 X86TargetLowering::createFastISel(MachineFunction
&mf
,
2114 MachineModuleInfo
*mmo
,
2116 DenseMap
<const Value
*, unsigned> &vm
,
2117 DenseMap
<const BasicBlock
*,
2118 MachineBasicBlock
*> &bm
,
2119 DenseMap
<const AllocaInst
*, int> &am
2121 , SmallSet
<Instruction
*, 8> &cil
2124 return X86::createFastISel(mf
, mmo
, dw
, vm
, bm
, am
2132 //===----------------------------------------------------------------------===//
2133 // Other Lowering Hooks
2134 //===----------------------------------------------------------------------===//
2137 SDValue
X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG
&DAG
) {
2138 MachineFunction
&MF
= DAG
.getMachineFunction();
2139 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
2140 int ReturnAddrIndex
= FuncInfo
->getRAIndex();
2142 if (ReturnAddrIndex
== 0) {
2143 // Set up a frame object for the return address.
2144 uint64_t SlotSize
= TD
->getPointerSize();
2145 ReturnAddrIndex
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
, -SlotSize
);
2146 FuncInfo
->setRAIndex(ReturnAddrIndex
);
2149 return DAG
.getFrameIndex(ReturnAddrIndex
, getPointerTy());
2153 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2154 /// specific condition code, returning the condition code and the LHS/RHS of the
2155 /// comparison to make.
2156 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode
, bool isFP
,
2157 SDValue
&LHS
, SDValue
&RHS
, SelectionDAG
&DAG
) {
2159 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
2160 if (SetCCOpcode
== ISD::SETGT
&& RHSC
->isAllOnesValue()) {
2161 // X > -1 -> X == 0, jump !sign.
2162 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2163 return X86::COND_NS
;
2164 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->isNullValue()) {
2165 // X < 0 -> X == 0, jump on sign.
2167 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->getZExtValue() == 1) {
2169 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2170 return X86::COND_LE
;
2174 switch (SetCCOpcode
) {
2175 default: llvm_unreachable("Invalid integer condition!");
2176 case ISD::SETEQ
: return X86::COND_E
;
2177 case ISD::SETGT
: return X86::COND_G
;
2178 case ISD::SETGE
: return X86::COND_GE
;
2179 case ISD::SETLT
: return X86::COND_L
;
2180 case ISD::SETLE
: return X86::COND_LE
;
2181 case ISD::SETNE
: return X86::COND_NE
;
2182 case ISD::SETULT
: return X86::COND_B
;
2183 case ISD::SETUGT
: return X86::COND_A
;
2184 case ISD::SETULE
: return X86::COND_BE
;
2185 case ISD::SETUGE
: return X86::COND_AE
;
2189 // First determine if it is required or is profitable to flip the operands.
2191 // If LHS is a foldable load, but RHS is not, flip the condition.
2192 if ((ISD::isNON_EXTLoad(LHS
.getNode()) && LHS
.hasOneUse()) &&
2193 !(ISD::isNON_EXTLoad(RHS
.getNode()) && RHS
.hasOneUse())) {
2194 SetCCOpcode
= getSetCCSwappedOperands(SetCCOpcode
);
2195 std::swap(LHS
, RHS
);
2198 switch (SetCCOpcode
) {
2204 std::swap(LHS
, RHS
);
2208 // On a floating point condition, the flags are set as follows:
2210 // 0 | 0 | 0 | X > Y
2211 // 0 | 0 | 1 | X < Y
2212 // 1 | 0 | 0 | X == Y
2213 // 1 | 1 | 1 | unordered
2214 switch (SetCCOpcode
) {
2215 default: llvm_unreachable("Condcode should be pre-legalized away");
2217 case ISD::SETEQ
: return X86::COND_E
;
2218 case ISD::SETOLT
: // flipped
2220 case ISD::SETGT
: return X86::COND_A
;
2221 case ISD::SETOLE
: // flipped
2223 case ISD::SETGE
: return X86::COND_AE
;
2224 case ISD::SETUGT
: // flipped
2226 case ISD::SETLT
: return X86::COND_B
;
2227 case ISD::SETUGE
: // flipped
2229 case ISD::SETLE
: return X86::COND_BE
;
2231 case ISD::SETNE
: return X86::COND_NE
;
2232 case ISD::SETUO
: return X86::COND_P
;
2233 case ISD::SETO
: return X86::COND_NP
;
2237 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2238 /// code. Current x86 isa includes the following FP cmov instructions:
2239 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2240 static bool hasFPCMov(unsigned X86CC
) {
2256 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2257 /// the specified range (L, H].
2258 static bool isUndefOrInRange(int Val
, int Low
, int Hi
) {
2259 return (Val
< 0) || (Val
>= Low
&& Val
< Hi
);
2262 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2263 /// specified value.
2264 static bool isUndefOrEqual(int Val
, int CmpVal
) {
2265 if (Val
< 0 || Val
== CmpVal
)
2270 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2271 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2272 /// the second operand.
2273 static bool isPSHUFDMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2274 if (VT
== MVT::v4f32
|| VT
== MVT::v4i32
|| VT
== MVT::v4i16
)
2275 return (Mask
[0] < 4 && Mask
[1] < 4 && Mask
[2] < 4 && Mask
[3] < 4);
2276 if (VT
== MVT::v2f64
|| VT
== MVT::v2i64
)
2277 return (Mask
[0] < 2 && Mask
[1] < 2);
2281 bool X86::isPSHUFDMask(ShuffleVectorSDNode
*N
) {
2282 SmallVector
<int, 8> M
;
2284 return ::isPSHUFDMask(M
, N
->getValueType(0));
2287 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2288 /// is suitable for input to PSHUFHW.
2289 static bool isPSHUFHWMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2290 if (VT
!= MVT::v8i16
)
2293 // Lower quadword copied in order or undef.
2294 for (int i
= 0; i
!= 4; ++i
)
2295 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2298 // Upper quadword shuffled.
2299 for (int i
= 4; i
!= 8; ++i
)
2300 if (Mask
[i
] >= 0 && (Mask
[i
] < 4 || Mask
[i
] > 7))
2306 bool X86::isPSHUFHWMask(ShuffleVectorSDNode
*N
) {
2307 SmallVector
<int, 8> M
;
2309 return ::isPSHUFHWMask(M
, N
->getValueType(0));
2312 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2313 /// is suitable for input to PSHUFLW.
2314 static bool isPSHUFLWMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2315 if (VT
!= MVT::v8i16
)
2318 // Upper quadword copied in order.
2319 for (int i
= 4; i
!= 8; ++i
)
2320 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2323 // Lower quadword shuffled.
2324 for (int i
= 0; i
!= 4; ++i
)
2331 bool X86::isPSHUFLWMask(ShuffleVectorSDNode
*N
) {
2332 SmallVector
<int, 8> M
;
2334 return ::isPSHUFLWMask(M
, N
->getValueType(0));
2337 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2338 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2339 static bool isSHUFPMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2340 int NumElems
= VT
.getVectorNumElements();
2341 if (NumElems
!= 2 && NumElems
!= 4)
2344 int Half
= NumElems
/ 2;
2345 for (int i
= 0; i
< Half
; ++i
)
2346 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2348 for (int i
= Half
; i
< NumElems
; ++i
)
2349 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2355 bool X86::isSHUFPMask(ShuffleVectorSDNode
*N
) {
2356 SmallVector
<int, 8> M
;
2358 return ::isSHUFPMask(M
, N
->getValueType(0));
2361 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2362 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2363 /// half elements to come from vector 1 (which would equal the dest.) and
2364 /// the upper half to come from vector 2.
2365 static bool isCommutedSHUFPMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2366 int NumElems
= VT
.getVectorNumElements();
2368 if (NumElems
!= 2 && NumElems
!= 4)
2371 int Half
= NumElems
/ 2;
2372 for (int i
= 0; i
< Half
; ++i
)
2373 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2375 for (int i
= Half
; i
< NumElems
; ++i
)
2376 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2381 static bool isCommutedSHUFP(ShuffleVectorSDNode
*N
) {
2382 SmallVector
<int, 8> M
;
2384 return isCommutedSHUFPMask(M
, N
->getValueType(0));
2387 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2388 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2389 bool X86::isMOVHLPSMask(ShuffleVectorSDNode
*N
) {
2390 if (N
->getValueType(0).getVectorNumElements() != 4)
2393 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2394 return isUndefOrEqual(N
->getMaskElt(0), 6) &&
2395 isUndefOrEqual(N
->getMaskElt(1), 7) &&
2396 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2397 isUndefOrEqual(N
->getMaskElt(3), 3);
2400 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2401 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2402 bool X86::isMOVLPMask(ShuffleVectorSDNode
*N
) {
2403 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2405 if (NumElems
!= 2 && NumElems
!= 4)
2408 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2409 if (!isUndefOrEqual(N
->getMaskElt(i
), i
+ NumElems
))
2412 for (unsigned i
= NumElems
/2; i
< NumElems
; ++i
)
2413 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2419 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2420 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2422 bool X86::isMOVHPMask(ShuffleVectorSDNode
*N
) {
2423 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2425 if (NumElems
!= 2 && NumElems
!= 4)
2428 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2429 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2432 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2433 if (!isUndefOrEqual(N
->getMaskElt(i
+ NumElems
/2), i
+ NumElems
))
2439 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2440 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2442 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2443 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2448 return isUndefOrEqual(N
->getMaskElt(0), 2) &&
2449 isUndefOrEqual(N
->getMaskElt(1), 3) &&
2450 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2451 isUndefOrEqual(N
->getMaskElt(3), 3);
2454 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2455 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
2456 static bool isUNPCKLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2457 bool V2IsSplat
= false) {
2458 int NumElts
= VT
.getVectorNumElements();
2459 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2462 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2464 int BitI1
= Mask
[i
+1];
2465 if (!isUndefOrEqual(BitI
, j
))
2468 if (!isUndefOrEqual(BitI1
, NumElts
))
2471 if (!isUndefOrEqual(BitI1
, j
+ NumElts
))
2478 bool X86::isUNPCKLMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2479 SmallVector
<int, 8> M
;
2481 return ::isUNPCKLMask(M
, N
->getValueType(0), V2IsSplat
);
2484 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2485 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
2486 static bool isUNPCKHMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2487 bool V2IsSplat
= false) {
2488 int NumElts
= VT
.getVectorNumElements();
2489 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2492 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2494 int BitI1
= Mask
[i
+1];
2495 if (!isUndefOrEqual(BitI
, j
+ NumElts
/2))
2498 if (isUndefOrEqual(BitI1
, NumElts
))
2501 if (!isUndefOrEqual(BitI1
, j
+ NumElts
/2 + NumElts
))
2508 bool X86::isUNPCKHMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2509 SmallVector
<int, 8> M
;
2511 return ::isUNPCKHMask(M
, N
->getValueType(0), V2IsSplat
);
2514 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2515 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2517 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2518 int NumElems
= VT
.getVectorNumElements();
2519 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2522 for (int i
= 0, j
= 0; i
!= NumElems
; i
+= 2, ++j
) {
2524 int BitI1
= Mask
[i
+1];
2525 if (!isUndefOrEqual(BitI
, j
))
2527 if (!isUndefOrEqual(BitI1
, j
))
2533 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2534 SmallVector
<int, 8> M
;
2536 return ::isUNPCKL_v_undef_Mask(M
, N
->getValueType(0));
2539 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2540 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2542 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2543 int NumElems
= VT
.getVectorNumElements();
2544 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2547 for (int i
= 0, j
= NumElems
/ 2; i
!= NumElems
; i
+= 2, ++j
) {
2549 int BitI1
= Mask
[i
+1];
2550 if (!isUndefOrEqual(BitI
, j
))
2552 if (!isUndefOrEqual(BitI1
, j
))
2558 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2559 SmallVector
<int, 8> M
;
2561 return ::isUNPCKH_v_undef_Mask(M
, N
->getValueType(0));
2564 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2565 /// specifies a shuffle of elements that is suitable for input to MOVSS,
2566 /// MOVSD, and MOVD, i.e. setting the lowest element.
2567 static bool isMOVLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2568 if (VT
.getVectorElementType().getSizeInBits() < 32)
2571 int NumElts
= VT
.getVectorNumElements();
2573 if (!isUndefOrEqual(Mask
[0], NumElts
))
2576 for (int i
= 1; i
< NumElts
; ++i
)
2577 if (!isUndefOrEqual(Mask
[i
], i
))
2583 bool X86::isMOVLMask(ShuffleVectorSDNode
*N
) {
2584 SmallVector
<int, 8> M
;
2586 return ::isMOVLMask(M
, N
->getValueType(0));
2589 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2590 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
2591 /// element of vector 2 and the other elements to come from vector 1 in order.
2592 static bool isCommutedMOVLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2593 bool V2IsSplat
= false, bool V2IsUndef
= false) {
2594 int NumOps
= VT
.getVectorNumElements();
2595 if (NumOps
!= 2 && NumOps
!= 4 && NumOps
!= 8 && NumOps
!= 16)
2598 if (!isUndefOrEqual(Mask
[0], 0))
2601 for (int i
= 1; i
< NumOps
; ++i
)
2602 if (!(isUndefOrEqual(Mask
[i
], i
+NumOps
) ||
2603 (V2IsUndef
&& isUndefOrInRange(Mask
[i
], NumOps
, NumOps
*2)) ||
2604 (V2IsSplat
&& isUndefOrEqual(Mask
[i
], NumOps
))))
2610 static bool isCommutedMOVL(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false,
2611 bool V2IsUndef
= false) {
2612 SmallVector
<int, 8> M
;
2614 return isCommutedMOVLMask(M
, N
->getValueType(0), V2IsSplat
, V2IsUndef
);
2617 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2618 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2619 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode
*N
) {
2620 if (N
->getValueType(0).getVectorNumElements() != 4)
2623 // Expect 1, 1, 3, 3
2624 for (unsigned i
= 0; i
< 2; ++i
) {
2625 int Elt
= N
->getMaskElt(i
);
2626 if (Elt
>= 0 && Elt
!= 1)
2631 for (unsigned i
= 2; i
< 4; ++i
) {
2632 int Elt
= N
->getMaskElt(i
);
2633 if (Elt
>= 0 && Elt
!= 3)
2638 // Don't use movshdup if it can be done with a shufps.
2639 // FIXME: verify that matching u, u, 3, 3 is what we want.
2643 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2644 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2645 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode
*N
) {
2646 if (N
->getValueType(0).getVectorNumElements() != 4)
2649 // Expect 0, 0, 2, 2
2650 for (unsigned i
= 0; i
< 2; ++i
)
2651 if (N
->getMaskElt(i
) > 0)
2655 for (unsigned i
= 2; i
< 4; ++i
) {
2656 int Elt
= N
->getMaskElt(i
);
2657 if (Elt
>= 0 && Elt
!= 2)
2662 // Don't use movsldup if it can be done with a shufps.
2666 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2667 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2668 bool X86::isMOVDDUPMask(ShuffleVectorSDNode
*N
) {
2669 int e
= N
->getValueType(0).getVectorNumElements() / 2;
2671 for (int i
= 0; i
< e
; ++i
)
2672 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2674 for (int i
= 0; i
< e
; ++i
)
2675 if (!isUndefOrEqual(N
->getMaskElt(e
+i
), i
))
2680 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2681 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2683 unsigned X86::getShuffleSHUFImmediate(SDNode
*N
) {
2684 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2685 int NumOperands
= SVOp
->getValueType(0).getVectorNumElements();
2687 unsigned Shift
= (NumOperands
== 4) ? 2 : 1;
2689 for (int i
= 0; i
< NumOperands
; ++i
) {
2690 int Val
= SVOp
->getMaskElt(NumOperands
-i
-1);
2691 if (Val
< 0) Val
= 0;
2692 if (Val
>= NumOperands
) Val
-= NumOperands
;
2694 if (i
!= NumOperands
- 1)
2700 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2701 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2703 unsigned X86::getShufflePSHUFHWImmediate(SDNode
*N
) {
2704 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2706 // 8 nodes, but we only care about the last 4.
2707 for (unsigned i
= 7; i
>= 4; --i
) {
2708 int Val
= SVOp
->getMaskElt(i
);
2717 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2718 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2720 unsigned X86::getShufflePSHUFLWImmediate(SDNode
*N
) {
2721 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2723 // 8 nodes, but we only care about the first 4.
2724 for (int i
= 3; i
>= 0; --i
) {
2725 int Val
= SVOp
->getMaskElt(i
);
2734 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
2736 bool X86::isZeroNode(SDValue Elt
) {
2737 return ((isa
<ConstantSDNode
>(Elt
) &&
2738 cast
<ConstantSDNode
>(Elt
)->getZExtValue() == 0) ||
2739 (isa
<ConstantFPSDNode
>(Elt
) &&
2740 cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().isPosZero()));
2743 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2744 /// their permute mask.
2745 static SDValue
CommuteVectorShuffle(ShuffleVectorSDNode
*SVOp
,
2746 SelectionDAG
&DAG
) {
2747 MVT VT
= SVOp
->getValueType(0);
2748 unsigned NumElems
= VT
.getVectorNumElements();
2749 SmallVector
<int, 8> MaskVec
;
2751 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2752 int idx
= SVOp
->getMaskElt(i
);
2754 MaskVec
.push_back(idx
);
2755 else if (idx
< (int)NumElems
)
2756 MaskVec
.push_back(idx
+ NumElems
);
2758 MaskVec
.push_back(idx
- NumElems
);
2760 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(1),
2761 SVOp
->getOperand(0), &MaskVec
[0]);
2764 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2765 /// the two vector operands have swapped position.
2766 static void CommuteVectorShuffleMask(SmallVectorImpl
<int> &Mask
, MVT VT
) {
2767 unsigned NumElems
= VT
.getVectorNumElements();
2768 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2772 else if (idx
< (int)NumElems
)
2773 Mask
[i
] = idx
+ NumElems
;
2775 Mask
[i
] = idx
- NumElems
;
2779 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2780 /// match movhlps. The lower half elements should come from upper half of
2781 /// V1 (and in order), and the upper half elements should come from the upper
2782 /// half of V2 (and in order).
2783 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode
*Op
) {
2784 if (Op
->getValueType(0).getVectorNumElements() != 4)
2786 for (unsigned i
= 0, e
= 2; i
!= e
; ++i
)
2787 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+2))
2789 for (unsigned i
= 2; i
!= 4; ++i
)
2790 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+4))
2795 /// isScalarLoadToVector - Returns true if the node is a scalar load that
2796 /// is promoted to a vector. It also returns the LoadSDNode by reference if
2798 static bool isScalarLoadToVector(SDNode
*N
, LoadSDNode
**LD
= NULL
) {
2799 if (N
->getOpcode() != ISD::SCALAR_TO_VECTOR
)
2801 N
= N
->getOperand(0).getNode();
2802 if (!ISD::isNON_EXTLoad(N
))
2805 *LD
= cast
<LoadSDNode
>(N
);
2809 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2810 /// match movlp{s|d}. The lower half elements should come from lower half of
2811 /// V1 (and in order), and the upper half elements should come from the upper
2812 /// half of V2 (and in order). And since V1 will become the source of the
2813 /// MOVLP, it must be either a vector load or a scalar load to vector.
2814 static bool ShouldXformToMOVLP(SDNode
*V1
, SDNode
*V2
,
2815 ShuffleVectorSDNode
*Op
) {
2816 if (!ISD::isNON_EXTLoad(V1
) && !isScalarLoadToVector(V1
))
2818 // Is V2 is a vector load, don't do this transformation. We will try to use
2819 // load folding shufps op.
2820 if (ISD::isNON_EXTLoad(V2
))
2823 unsigned NumElems
= Op
->getValueType(0).getVectorNumElements();
2825 if (NumElems
!= 2 && NumElems
!= 4)
2827 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
)
2828 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
))
2830 for (unsigned i
= NumElems
/2; i
!= NumElems
; ++i
)
2831 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+NumElems
))
2836 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2838 static bool isSplatVector(SDNode
*N
) {
2839 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
2842 SDValue SplatValue
= N
->getOperand(0);
2843 for (unsigned i
= 1, e
= N
->getNumOperands(); i
!= e
; ++i
)
2844 if (N
->getOperand(i
) != SplatValue
)
2849 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2850 /// to an zero vector.
2851 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2852 static bool isZeroShuffle(ShuffleVectorSDNode
*N
) {
2853 SDValue V1
= N
->getOperand(0);
2854 SDValue V2
= N
->getOperand(1);
2855 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2856 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2857 int Idx
= N
->getMaskElt(i
);
2858 if (Idx
>= (int)NumElems
) {
2859 unsigned Opc
= V2
.getOpcode();
2860 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V2
.getNode()))
2862 if (Opc
!= ISD::BUILD_VECTOR
||
2863 !X86::isZeroNode(V2
.getOperand(Idx
-NumElems
)))
2865 } else if (Idx
>= 0) {
2866 unsigned Opc
= V1
.getOpcode();
2867 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V1
.getNode()))
2869 if (Opc
!= ISD::BUILD_VECTOR
||
2870 !X86::isZeroNode(V1
.getOperand(Idx
)))
2877 /// getZeroVector - Returns a vector of specified type with all zero elements.
2879 static SDValue
getZeroVector(MVT VT
, bool HasSSE2
, SelectionDAG
&DAG
,
2881 assert(VT
.isVector() && "Expected a vector type");
2883 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2884 // type. This ensures they get CSE'd.
2886 if (VT
.getSizeInBits() == 64) { // MMX
2887 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2888 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2889 } else if (HasSSE2
) { // SSE2
2890 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2891 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2893 SDValue Cst
= DAG
.getTargetConstantFP(+0.0, MVT::f32
);
2894 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4f32
, Cst
, Cst
, Cst
, Cst
);
2896 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2899 /// getOnesVector - Returns a vector of specified type with all bits set.
2901 static SDValue
getOnesVector(MVT VT
, SelectionDAG
&DAG
, DebugLoc dl
) {
2902 assert(VT
.isVector() && "Expected a vector type");
2904 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2905 // type. This ensures they get CSE'd.
2906 SDValue Cst
= DAG
.getTargetConstant(~0U, MVT::i32
);
2908 if (VT
.getSizeInBits() == 64) // MMX
2909 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2911 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2912 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2916 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2917 /// that point to V2 points to its first element.
2918 static SDValue
NormalizeMask(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
2919 MVT VT
= SVOp
->getValueType(0);
2920 unsigned NumElems
= VT
.getVectorNumElements();
2922 bool Changed
= false;
2923 SmallVector
<int, 8> MaskVec
;
2924 SVOp
->getMask(MaskVec
);
2926 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2927 if (MaskVec
[i
] > (int)NumElems
) {
2928 MaskVec
[i
] = NumElems
;
2933 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(0),
2934 SVOp
->getOperand(1), &MaskVec
[0]);
2935 return SDValue(SVOp
, 0);
2938 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2939 /// operation of specified width.
2940 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2942 unsigned NumElems
= VT
.getVectorNumElements();
2943 SmallVector
<int, 8> Mask
;
2944 Mask
.push_back(NumElems
);
2945 for (unsigned i
= 1; i
!= NumElems
; ++i
)
2947 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2950 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2951 static SDValue
getUnpackl(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2953 unsigned NumElems
= VT
.getVectorNumElements();
2954 SmallVector
<int, 8> Mask
;
2955 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
) {
2957 Mask
.push_back(i
+ NumElems
);
2959 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2962 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2963 static SDValue
getUnpackh(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2965 unsigned NumElems
= VT
.getVectorNumElements();
2966 unsigned Half
= NumElems
/2;
2967 SmallVector
<int, 8> Mask
;
2968 for (unsigned i
= 0; i
!= Half
; ++i
) {
2969 Mask
.push_back(i
+ Half
);
2970 Mask
.push_back(i
+ NumElems
+ Half
);
2972 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2975 /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2976 static SDValue
PromoteSplat(ShuffleVectorSDNode
*SV
, SelectionDAG
&DAG
,
2978 if (SV
->getValueType(0).getVectorNumElements() <= 4)
2979 return SDValue(SV
, 0);
2981 MVT PVT
= MVT::v4f32
;
2982 MVT VT
= SV
->getValueType(0);
2983 DebugLoc dl
= SV
->getDebugLoc();
2984 SDValue V1
= SV
->getOperand(0);
2985 int NumElems
= VT
.getVectorNumElements();
2986 int EltNo
= SV
->getSplatIndex();
2988 // unpack elements to the correct location
2989 while (NumElems
> 4) {
2990 if (EltNo
< NumElems
/2) {
2991 V1
= getUnpackl(DAG
, dl
, VT
, V1
, V1
);
2993 V1
= getUnpackh(DAG
, dl
, VT
, V1
, V1
);
2994 EltNo
-= NumElems
/2;
2999 // Perform the splat.
3000 int SplatMask
[4] = { EltNo
, EltNo
, EltNo
, EltNo
};
3001 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PVT
, V1
);
3002 V1
= DAG
.getVectorShuffle(PVT
, dl
, V1
, DAG
.getUNDEF(PVT
), &SplatMask
[0]);
3003 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, V1
);
3006 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3007 /// vector of zero or undef vector. This produces a shuffle where the low
3008 /// element of V2 is swizzled into the zero/undef vector, landing at element
3009 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
3010 static SDValue
getShuffleVectorZeroOrUndef(SDValue V2
, unsigned Idx
,
3011 bool isZero
, bool HasSSE2
,
3012 SelectionDAG
&DAG
) {
3013 MVT VT
= V2
.getValueType();
3015 ? getZeroVector(VT
, HasSSE2
, DAG
, V2
.getDebugLoc()) : DAG
.getUNDEF(VT
);
3016 unsigned NumElems
= VT
.getVectorNumElements();
3017 SmallVector
<int, 16> MaskVec
;
3018 for (unsigned i
= 0; i
!= NumElems
; ++i
)
3019 // If this is the insertion idx, put the low elt of V2 here.
3020 MaskVec
.push_back(i
== Idx
? NumElems
: i
);
3021 return DAG
.getVectorShuffle(VT
, V2
.getDebugLoc(), V1
, V2
, &MaskVec
[0]);
3024 /// getNumOfConsecutiveZeros - Return the number of elements in a result of
3025 /// a shuffle that is zero.
3027 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode
*SVOp
, int NumElems
,
3028 bool Low
, SelectionDAG
&DAG
) {
3029 unsigned NumZeros
= 0;
3030 for (int i
= 0; i
< NumElems
; ++i
) {
3031 unsigned Index
= Low
? i
: NumElems
-i
-1;
3032 int Idx
= SVOp
->getMaskElt(Index
);
3037 SDValue Elt
= DAG
.getShuffleScalarElt(SVOp
, Index
);
3038 if (Elt
.getNode() && X86::isZeroNode(Elt
))
3046 /// isVectorShift - Returns true if the shuffle can be implemented as a
3047 /// logical left or right shift of a vector.
3048 /// FIXME: split into pslldqi, psrldqi, palignr variants.
3049 static bool isVectorShift(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
,
3050 bool &isLeft
, SDValue
&ShVal
, unsigned &ShAmt
) {
3051 int NumElems
= SVOp
->getValueType(0).getVectorNumElements();
3054 unsigned NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, true, DAG
);
3057 NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, false, DAG
);
3061 bool SeenV1
= false;
3062 bool SeenV2
= false;
3063 for (int i
= NumZeros
; i
< NumElems
; ++i
) {
3064 int Val
= isLeft
? (i
- NumZeros
) : i
;
3065 int Idx
= SVOp
->getMaskElt(isLeft
? i
: (i
- NumZeros
));
3077 if (SeenV1
&& SeenV2
)
3080 ShVal
= SeenV1
? SVOp
->getOperand(0) : SVOp
->getOperand(1);
3086 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3088 static SDValue
LowerBuildVectorv16i8(SDValue Op
, unsigned NonZeros
,
3089 unsigned NumNonZero
, unsigned NumZero
,
3090 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
3094 DebugLoc dl
= Op
.getDebugLoc();
3097 for (unsigned i
= 0; i
< 16; ++i
) {
3098 bool ThisIsNonZero
= (NonZeros
& (1 << i
)) != 0;
3099 if (ThisIsNonZero
&& First
) {
3101 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3103 V
= DAG
.getUNDEF(MVT::v8i16
);
3108 SDValue
ThisElt(0, 0), LastElt(0, 0);
3109 bool LastIsNonZero
= (NonZeros
& (1 << (i
-1))) != 0;
3110 if (LastIsNonZero
) {
3111 LastElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
3112 MVT::i16
, Op
.getOperand(i
-1));
3114 if (ThisIsNonZero
) {
3115 ThisElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i16
, Op
.getOperand(i
));
3116 ThisElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
,
3117 ThisElt
, DAG
.getConstant(8, MVT::i8
));
3119 ThisElt
= DAG
.getNode(ISD::OR
, dl
, MVT::i16
, ThisElt
, LastElt
);
3123 if (ThisElt
.getNode())
3124 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, V
, ThisElt
,
3125 DAG
.getIntPtrConstant(i
/2));
3129 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V
);
3132 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3134 static SDValue
LowerBuildVectorv8i16(SDValue Op
, unsigned NonZeros
,
3135 unsigned NumNonZero
, unsigned NumZero
,
3136 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
3140 DebugLoc dl
= Op
.getDebugLoc();
3143 for (unsigned i
= 0; i
< 8; ++i
) {
3144 bool isNonZero
= (NonZeros
& (1 << i
)) != 0;
3148 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3150 V
= DAG
.getUNDEF(MVT::v8i16
);
3153 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
,
3154 MVT::v8i16
, V
, Op
.getOperand(i
),
3155 DAG
.getIntPtrConstant(i
));
3162 /// getVShift - Return a vector logical shift node.
3164 static SDValue
getVShift(bool isLeft
, MVT VT
, SDValue SrcOp
,
3165 unsigned NumBits
, SelectionDAG
&DAG
,
3166 const TargetLowering
&TLI
, DebugLoc dl
) {
3167 bool isMMX
= VT
.getSizeInBits() == 64;
3168 MVT ShVT
= isMMX
? MVT::v1i64
: MVT::v2i64
;
3169 unsigned Opc
= isLeft
? X86ISD::VSHL
: X86ISD::VSRL
;
3170 SrcOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, ShVT
, SrcOp
);
3171 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3172 DAG
.getNode(Opc
, dl
, ShVT
, SrcOp
,
3173 DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy())));
3177 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
3178 DebugLoc dl
= Op
.getDebugLoc();
3179 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3180 if (ISD::isBuildVectorAllZeros(Op
.getNode())
3181 || ISD::isBuildVectorAllOnes(Op
.getNode())) {
3182 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3183 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3184 // eliminated on x86-32 hosts.
3185 if (Op
.getValueType() == MVT::v4i32
|| Op
.getValueType() == MVT::v2i32
)
3188 if (ISD::isBuildVectorAllOnes(Op
.getNode()))
3189 return getOnesVector(Op
.getValueType(), DAG
, dl
);
3190 return getZeroVector(Op
.getValueType(), Subtarget
->hasSSE2(), DAG
, dl
);
3193 MVT VT
= Op
.getValueType();
3194 MVT EVT
= VT
.getVectorElementType();
3195 unsigned EVTBits
= EVT
.getSizeInBits();
3197 unsigned NumElems
= Op
.getNumOperands();
3198 unsigned NumZero
= 0;
3199 unsigned NumNonZero
= 0;
3200 unsigned NonZeros
= 0;
3201 bool IsAllConstants
= true;
3202 SmallSet
<SDValue
, 8> Values
;
3203 for (unsigned i
= 0; i
< NumElems
; ++i
) {
3204 SDValue Elt
= Op
.getOperand(i
);
3205 if (Elt
.getOpcode() == ISD::UNDEF
)
3208 if (Elt
.getOpcode() != ISD::Constant
&&
3209 Elt
.getOpcode() != ISD::ConstantFP
)
3210 IsAllConstants
= false;
3211 if (X86::isZeroNode(Elt
))
3214 NonZeros
|= (1 << i
);
3219 if (NumNonZero
== 0) {
3220 // All undef vector. Return an UNDEF. All zero vectors were handled above.
3221 return DAG
.getUNDEF(VT
);
3224 // Special case for single non-zero, non-undef, element.
3225 if (NumNonZero
== 1) {
3226 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3227 SDValue Item
= Op
.getOperand(Idx
);
3229 // If this is an insertion of an i64 value on x86-32, and if the top bits of
3230 // the value are obviously zero, truncate the value to i32 and do the
3231 // insertion that way. Only do this if the value is non-constant or if the
3232 // value is a constant being inserted into element 0. It is cheaper to do
3233 // a constant pool load than it is to do a movd + shuffle.
3234 if (EVT
== MVT::i64
&& !Subtarget
->is64Bit() &&
3235 (!IsAllConstants
|| Idx
== 0)) {
3236 if (DAG
.MaskedValueIsZero(Item
, APInt::getBitsSet(64, 32, 64))) {
3237 // Handle MMX and SSE both.
3238 MVT VecVT
= VT
== MVT::v2i64
? MVT::v4i32
: MVT::v2i32
;
3239 unsigned VecElts
= VT
== MVT::v2i64
? 4 : 2;
3241 // Truncate the value (which may itself be a constant) to i32, and
3242 // convert it to a vector with movd (S2V+shuffle to zero extend).
3243 Item
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Item
);
3244 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VecVT
, Item
);
3245 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
3246 Subtarget
->hasSSE2(), DAG
);
3248 // Now we have our 32-bit value zero extended in the low element of
3249 // a vector. If Idx != 0, swizzle it into place.
3251 SmallVector
<int, 4> Mask
;
3252 Mask
.push_back(Idx
);
3253 for (unsigned i
= 1; i
!= VecElts
; ++i
)
3255 Item
= DAG
.getVectorShuffle(VecVT
, dl
, Item
,
3256 DAG
.getUNDEF(Item
.getValueType()),
3259 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Item
);
3263 // If we have a constant or non-constant insertion into the low element of
3264 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3265 // the rest of the elements. This will be matched as movd/movq/movss/movsd
3266 // depending on what the source datatype is.
3269 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3270 } else if (EVT
== MVT::i32
|| EVT
== MVT::f32
|| EVT
== MVT::f64
||
3271 (EVT
== MVT::i64
&& Subtarget
->is64Bit())) {
3272 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3273 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3274 return getShuffleVectorZeroOrUndef(Item
, 0, true, Subtarget
->hasSSE2(),
3276 } else if (EVT
== MVT::i16
|| EVT
== MVT::i8
) {
3277 Item
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Item
);
3278 MVT MiddleVT
= VT
.getSizeInBits() == 64 ? MVT::v2i32
: MVT::v4i32
;
3279 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MiddleVT
, Item
);
3280 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
3281 Subtarget
->hasSSE2(), DAG
);
3282 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Item
);
3286 // Is it a vector logical left shift?
3287 if (NumElems
== 2 && Idx
== 1 &&
3288 X86::isZeroNode(Op
.getOperand(0)) &&
3289 !X86::isZeroNode(Op
.getOperand(1))) {
3290 unsigned NumBits
= VT
.getSizeInBits();
3291 return getVShift(true, VT
,
3292 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3293 VT
, Op
.getOperand(1)),
3294 NumBits
/2, DAG
, *this, dl
);
3297 if (IsAllConstants
) // Otherwise, it's better to do a constpool load.
3300 // Otherwise, if this is a vector with i32 or f32 elements, and the element
3301 // is a non-constant being inserted into an element other than the low one,
3302 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
3303 // movd/movss) to move this into the low element, then shuffle it into
3305 if (EVTBits
== 32) {
3306 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3308 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3309 Item
= getShuffleVectorZeroOrUndef(Item
, 0, NumZero
> 0,
3310 Subtarget
->hasSSE2(), DAG
);
3311 SmallVector
<int, 8> MaskVec
;
3312 for (unsigned i
= 0; i
< NumElems
; i
++)
3313 MaskVec
.push_back(i
== Idx
? 0 : 1);
3314 return DAG
.getVectorShuffle(VT
, dl
, Item
, DAG
.getUNDEF(VT
), &MaskVec
[0]);
3318 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3319 if (Values
.size() == 1)
3322 // A vector full of immediates; various special cases are already
3323 // handled, so this is best done with a single constant-pool load.
3327 // Let legalizer expand 2-wide build_vectors.
3328 if (EVTBits
== 64) {
3329 if (NumNonZero
== 1) {
3330 // One half is zero or undef.
3331 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3332 SDValue V2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
,
3333 Op
.getOperand(Idx
));
3334 return getShuffleVectorZeroOrUndef(V2
, Idx
, true,
3335 Subtarget
->hasSSE2(), DAG
);
3340 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3341 if (EVTBits
== 8 && NumElems
== 16) {
3342 SDValue V
= LowerBuildVectorv16i8(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3344 if (V
.getNode()) return V
;
3347 if (EVTBits
== 16 && NumElems
== 8) {
3348 SDValue V
= LowerBuildVectorv8i16(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3350 if (V
.getNode()) return V
;
3353 // If element VT is == 32 bits, turn it into a number of shuffles.
3354 SmallVector
<SDValue
, 8> V
;
3356 if (NumElems
== 4 && NumZero
> 0) {
3357 for (unsigned i
= 0; i
< 4; ++i
) {
3358 bool isZero
= !(NonZeros
& (1 << i
));
3360 V
[i
] = getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
3362 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3365 for (unsigned i
= 0; i
< 2; ++i
) {
3366 switch ((NonZeros
& (0x3 << i
*2)) >> (i
*2)) {
3369 V
[i
] = V
[i
*2]; // Must be a zero vector.
3372 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2+1], V
[i
*2]);
3375 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3378 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3383 SmallVector
<int, 8> MaskVec
;
3384 bool Reverse
= (NonZeros
& 0x3) == 2;
3385 for (unsigned i
= 0; i
< 2; ++i
)
3386 MaskVec
.push_back(Reverse
? 1-i
: i
);
3387 Reverse
= ((NonZeros
& (0x3 << 2)) >> 2) == 2;
3388 for (unsigned i
= 0; i
< 2; ++i
)
3389 MaskVec
.push_back(Reverse
? 1-i
+NumElems
: i
+NumElems
);
3390 return DAG
.getVectorShuffle(VT
, dl
, V
[0], V
[1], &MaskVec
[0]);
3393 if (Values
.size() > 2) {
3394 // If we have SSE 4.1, Expand into a number of inserts unless the number of
3395 // values to be inserted is equal to the number of elements, in which case
3396 // use the unpack code below in the hopes of matching the consecutive elts
3397 // load merge pattern for shuffles.
3398 // FIXME: We could probably just check that here directly.
3399 if (Values
.size() < NumElems
&& VT
.getSizeInBits() == 128 &&
3400 getSubtarget()->hasSSE41()) {
3401 V
[0] = DAG
.getUNDEF(VT
);
3402 for (unsigned i
= 0; i
< NumElems
; ++i
)
3403 if (Op
.getOperand(i
).getOpcode() != ISD::UNDEF
)
3404 V
[0] = DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, V
[0],
3405 Op
.getOperand(i
), DAG
.getIntPtrConstant(i
));
3408 // Expand into a number of unpckl*.
3410 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3411 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3412 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3413 for (unsigned i
= 0; i
< NumElems
; ++i
)
3414 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3416 while (NumElems
!= 0) {
3417 for (unsigned i
= 0; i
< NumElems
; ++i
)
3418 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
], V
[i
+ NumElems
]);
3427 // v8i16 shuffles - Prefer shuffles in the following order:
3428 // 1. [all] pshuflw, pshufhw, optional move
3429 // 2. [ssse3] 1 x pshufb
3430 // 3. [ssse3] 2 x pshufb + 1 x por
3431 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3433 SDValue
LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode
*SVOp
,
3434 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3435 SDValue V1
= SVOp
->getOperand(0);
3436 SDValue V2
= SVOp
->getOperand(1);
3437 DebugLoc dl
= SVOp
->getDebugLoc();
3438 SmallVector
<int, 8> MaskVals
;
3440 // Determine if more than 1 of the words in each of the low and high quadwords
3441 // of the result come from the same quadword of one of the two inputs. Undef
3442 // mask values count as coming from any quadword, for better codegen.
3443 SmallVector
<unsigned, 4> LoQuad(4);
3444 SmallVector
<unsigned, 4> HiQuad(4);
3445 BitVector
InputQuads(4);
3446 for (unsigned i
= 0; i
< 8; ++i
) {
3447 SmallVectorImpl
<unsigned> &Quad
= i
< 4 ? LoQuad
: HiQuad
;
3448 int EltIdx
= SVOp
->getMaskElt(i
);
3449 MaskVals
.push_back(EltIdx
);
3458 InputQuads
.set(EltIdx
/ 4);
3461 int BestLoQuad
= -1;
3462 unsigned MaxQuad
= 1;
3463 for (unsigned i
= 0; i
< 4; ++i
) {
3464 if (LoQuad
[i
] > MaxQuad
) {
3466 MaxQuad
= LoQuad
[i
];
3470 int BestHiQuad
= -1;
3472 for (unsigned i
= 0; i
< 4; ++i
) {
3473 if (HiQuad
[i
] > MaxQuad
) {
3475 MaxQuad
= HiQuad
[i
];
3479 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3480 // of the two input vectors, shuffle them into one input vector so only a
3481 // single pshufb instruction is necessary. If There are more than 2 input
3482 // quads, disable the next transformation since it does not help SSSE3.
3483 bool V1Used
= InputQuads
[0] || InputQuads
[1];
3484 bool V2Used
= InputQuads
[2] || InputQuads
[3];
3485 if (TLI
.getSubtarget()->hasSSSE3()) {
3486 if (InputQuads
.count() == 2 && V1Used
&& V2Used
) {
3487 BestLoQuad
= InputQuads
.find_first();
3488 BestHiQuad
= InputQuads
.find_next(BestLoQuad
);
3490 if (InputQuads
.count() > 2) {
3496 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3497 // the shuffle mask. If a quad is scored as -1, that means that it contains
3498 // words from all 4 input quadwords.
3500 if (BestLoQuad
>= 0 || BestHiQuad
>= 0) {
3501 SmallVector
<int, 8> MaskV
;
3502 MaskV
.push_back(BestLoQuad
< 0 ? 0 : BestLoQuad
);
3503 MaskV
.push_back(BestHiQuad
< 0 ? 1 : BestHiQuad
);
3504 NewV
= DAG
.getVectorShuffle(MVT::v2i64
, dl
,
3505 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V1
),
3506 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V2
), &MaskV
[0]);
3507 NewV
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, NewV
);
3509 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3510 // source words for the shuffle, to aid later transformations.
3511 bool AllWordsInNewV
= true;
3512 bool InOrder
[2] = { true, true };
3513 for (unsigned i
= 0; i
!= 8; ++i
) {
3514 int idx
= MaskVals
[i
];
3516 InOrder
[i
/4] = false;
3517 if (idx
< 0 || (idx
/4) == BestLoQuad
|| (idx
/4) == BestHiQuad
)
3519 AllWordsInNewV
= false;
3523 bool pshuflw
= AllWordsInNewV
, pshufhw
= AllWordsInNewV
;
3524 if (AllWordsInNewV
) {
3525 for (int i
= 0; i
!= 8; ++i
) {
3526 int idx
= MaskVals
[i
];
3529 idx
= MaskVals
[i
] = (idx
/ 4) == BestLoQuad
? (idx
& 3) : (idx
& 3) + 4;
3530 if ((idx
!= i
) && idx
< 4)
3532 if ((idx
!= i
) && idx
> 3)
3541 // If we've eliminated the use of V2, and the new mask is a pshuflw or
3542 // pshufhw, that's as cheap as it gets. Return the new shuffle.
3543 if ((pshufhw
&& InOrder
[0]) || (pshuflw
&& InOrder
[1])) {
3544 return DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
,
3545 DAG
.getUNDEF(MVT::v8i16
), &MaskVals
[0]);
3549 // If we have SSSE3, and all words of the result are from 1 input vector,
3550 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
3551 // is present, fall back to case 4.
3552 if (TLI
.getSubtarget()->hasSSSE3()) {
3553 SmallVector
<SDValue
,16> pshufbMask
;
3555 // If we have elements from both input vectors, set the high bit of the
3556 // shuffle mask element to zero out elements that come from V2 in the V1
3557 // mask, and elements that come from V1 in the V2 mask, so that the two
3558 // results can be OR'd together.
3559 bool TwoInputs
= V1Used
&& V2Used
;
3560 for (unsigned i
= 0; i
!= 8; ++i
) {
3561 int EltIdx
= MaskVals
[i
] * 2;
3562 if (TwoInputs
&& (EltIdx
>= 16)) {
3563 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3564 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3567 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3568 pshufbMask
.push_back(DAG
.getConstant(EltIdx
+1, MVT::i8
));
3570 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V1
);
3571 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3572 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3573 MVT::v16i8
, &pshufbMask
[0], 16));
3575 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3577 // Calculate the shuffle mask for the second input, shuffle it, and
3578 // OR it with the first shuffled input.
3580 for (unsigned i
= 0; i
!= 8; ++i
) {
3581 int EltIdx
= MaskVals
[i
] * 2;
3583 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3584 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3587 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3588 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 15, MVT::i8
));
3590 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V2
);
3591 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3592 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3593 MVT::v16i8
, &pshufbMask
[0], 16));
3594 V1
= DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3595 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3598 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3599 // and update MaskVals with new element order.
3600 BitVector
InOrder(8);
3601 if (BestLoQuad
>= 0) {
3602 SmallVector
<int, 8> MaskV
;
3603 for (int i
= 0; i
!= 4; ++i
) {
3604 int idx
= MaskVals
[i
];
3606 MaskV
.push_back(-1);
3608 } else if ((idx
/ 4) == BestLoQuad
) {
3609 MaskV
.push_back(idx
& 3);
3612 MaskV
.push_back(-1);
3615 for (unsigned i
= 4; i
!= 8; ++i
)
3617 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3621 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3622 // and update MaskVals with the new element order.
3623 if (BestHiQuad
>= 0) {
3624 SmallVector
<int, 8> MaskV
;
3625 for (unsigned i
= 0; i
!= 4; ++i
)
3627 for (unsigned i
= 4; i
!= 8; ++i
) {
3628 int idx
= MaskVals
[i
];
3630 MaskV
.push_back(-1);
3632 } else if ((idx
/ 4) == BestHiQuad
) {
3633 MaskV
.push_back((idx
& 3) + 4);
3636 MaskV
.push_back(-1);
3639 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3643 // In case BestHi & BestLo were both -1, which means each quadword has a word
3644 // from each of the four input quadwords, calculate the InOrder bitvector now
3645 // before falling through to the insert/extract cleanup.
3646 if (BestLoQuad
== -1 && BestHiQuad
== -1) {
3648 for (int i
= 0; i
!= 8; ++i
)
3649 if (MaskVals
[i
] < 0 || MaskVals
[i
] == i
)
3653 // The other elements are put in the right place using pextrw and pinsrw.
3654 for (unsigned i
= 0; i
!= 8; ++i
) {
3657 int EltIdx
= MaskVals
[i
];
3660 SDValue ExtOp
= (EltIdx
< 8)
3661 ? DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V1
,
3662 DAG
.getIntPtrConstant(EltIdx
))
3663 : DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V2
,
3664 DAG
.getIntPtrConstant(EltIdx
- 8));
3665 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, ExtOp
,
3666 DAG
.getIntPtrConstant(i
));
3671 // v16i8 shuffles - Prefer shuffles in the following order:
3672 // 1. [ssse3] 1 x pshufb
3673 // 2. [ssse3] 2 x pshufb + 1 x por
3674 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
3676 SDValue
LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode
*SVOp
,
3677 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3678 SDValue V1
= SVOp
->getOperand(0);
3679 SDValue V2
= SVOp
->getOperand(1);
3680 DebugLoc dl
= SVOp
->getDebugLoc();
3681 SmallVector
<int, 16> MaskVals
;
3682 SVOp
->getMask(MaskVals
);
3684 // If we have SSSE3, case 1 is generated when all result bytes come from
3685 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
3686 // present, fall back to case 3.
3687 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3690 for (unsigned i
= 0; i
< 16; ++i
) {
3691 int EltIdx
= MaskVals
[i
];
3700 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3701 if (TLI
.getSubtarget()->hasSSSE3()) {
3702 SmallVector
<SDValue
,16> pshufbMask
;
3704 // If all result elements are from one input vector, then only translate
3705 // undef mask values to 0x80 (zero out result) in the pshufb mask.
3707 // Otherwise, we have elements from both input vectors, and must zero out
3708 // elements that come from V2 in the first mask, and V1 in the second mask
3709 // so that we can OR them together.
3710 bool TwoInputs
= !(V1Only
|| V2Only
);
3711 for (unsigned i
= 0; i
!= 16; ++i
) {
3712 int EltIdx
= MaskVals
[i
];
3713 if (EltIdx
< 0 || (TwoInputs
&& EltIdx
>= 16)) {
3714 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3717 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3719 // If all the elements are from V2, assign it to V1 and return after
3720 // building the first pshufb.
3723 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3724 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3725 MVT::v16i8
, &pshufbMask
[0], 16));
3729 // Calculate the shuffle mask for the second input, shuffle it, and
3730 // OR it with the first shuffled input.
3732 for (unsigned i
= 0; i
!= 16; ++i
) {
3733 int EltIdx
= MaskVals
[i
];
3735 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3738 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3740 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3741 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3742 MVT::v16i8
, &pshufbMask
[0], 16));
3743 return DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3746 // No SSSE3 - Calculate in place words and then fix all out of place words
3747 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
3748 // the 16 different words that comprise the two doublequadword input vectors.
3749 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3750 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V2
);
3751 SDValue NewV
= V2Only
? V2
: V1
;
3752 for (int i
= 0; i
!= 8; ++i
) {
3753 int Elt0
= MaskVals
[i
*2];
3754 int Elt1
= MaskVals
[i
*2+1];
3756 // This word of the result is all undef, skip it.
3757 if (Elt0
< 0 && Elt1
< 0)
3760 // This word of the result is already in the correct place, skip it.
3761 if (V1Only
&& (Elt0
== i
*2) && (Elt1
== i
*2+1))
3763 if (V2Only
&& (Elt0
== i
*2+16) && (Elt1
== i
*2+17))
3766 SDValue Elt0Src
= Elt0
< 16 ? V1
: V2
;
3767 SDValue Elt1Src
= Elt1
< 16 ? V1
: V2
;
3770 // If Elt0 and Elt1 are defined, are consecutive, and can be load
3771 // using a single extract together, load it and store it.
3772 if ((Elt0
>= 0) && ((Elt0
+ 1) == Elt1
) && ((Elt0
& 1) == 0)) {
3773 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3774 DAG
.getIntPtrConstant(Elt1
/ 2));
3775 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3776 DAG
.getIntPtrConstant(i
));
3780 // If Elt1 is defined, extract it from the appropriate source. If the
3781 // source byte is not also odd, shift the extracted word left 8 bits
3782 // otherwise clear the bottom 8 bits if we need to do an or.
3784 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3785 DAG
.getIntPtrConstant(Elt1
/ 2));
3786 if ((Elt1
& 1) == 0)
3787 InsElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
, InsElt
,
3788 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3790 InsElt
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt
,
3791 DAG
.getConstant(0xFF00, MVT::i16
));
3793 // If Elt0 is defined, extract it from the appropriate source. If the
3794 // source byte is not also even, shift the extracted word right 8 bits. If
3795 // Elt1 was also defined, OR the extracted values together before
3796 // inserting them in the result.
3798 SDValue InsElt0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
,
3799 Elt0Src
, DAG
.getIntPtrConstant(Elt0
/ 2));
3800 if ((Elt0
& 1) != 0)
3801 InsElt0
= DAG
.getNode(ISD::SRL
, dl
, MVT::i16
, InsElt0
,
3802 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3804 InsElt0
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt0
,
3805 DAG
.getConstant(0x00FF, MVT::i16
));
3806 InsElt
= Elt1
>= 0 ? DAG
.getNode(ISD::OR
, dl
, MVT::i16
, InsElt
, InsElt0
)
3809 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3810 DAG
.getIntPtrConstant(i
));
3812 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, NewV
);
3815 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3816 /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3817 /// done when every pair / quad of shuffle mask elements point to elements in
3818 /// the right sequence. e.g.
3819 /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3821 SDValue
RewriteAsNarrowerShuffle(ShuffleVectorSDNode
*SVOp
,
3823 TargetLowering
&TLI
, DebugLoc dl
) {
3824 MVT VT
= SVOp
->getValueType(0);
3825 SDValue V1
= SVOp
->getOperand(0);
3826 SDValue V2
= SVOp
->getOperand(1);
3827 unsigned NumElems
= VT
.getVectorNumElements();
3828 unsigned NewWidth
= (NumElems
== 4) ? 2 : 4;
3829 MVT MaskVT
= MVT::getIntVectorWithNumElements(NewWidth
);
3830 MVT MaskEltVT
= MaskVT
.getVectorElementType();
3832 switch (VT
.getSimpleVT()) {
3833 default: assert(false && "Unexpected!");
3834 case MVT::v4f32
: NewVT
= MVT::v2f64
; break;
3835 case MVT::v4i32
: NewVT
= MVT::v2i64
; break;
3836 case MVT::v8i16
: NewVT
= MVT::v4i32
; break;
3837 case MVT::v16i8
: NewVT
= MVT::v4i32
; break;
3840 if (NewWidth
== 2) {
3846 int Scale
= NumElems
/ NewWidth
;
3847 SmallVector
<int, 8> MaskVec
;
3848 for (unsigned i
= 0; i
< NumElems
; i
+= Scale
) {
3850 for (int j
= 0; j
< Scale
; ++j
) {
3851 int EltIdx
= SVOp
->getMaskElt(i
+j
);
3855 StartIdx
= EltIdx
- (EltIdx
% Scale
);
3856 if (EltIdx
!= StartIdx
+ j
)
3860 MaskVec
.push_back(-1);
3862 MaskVec
.push_back(StartIdx
/ Scale
);
3865 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V1
);
3866 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V2
);
3867 return DAG
.getVectorShuffle(NewVT
, dl
, V1
, V2
, &MaskVec
[0]);
3870 /// getVZextMovL - Return a zero-extending vector move low node.
3872 static SDValue
getVZextMovL(MVT VT
, MVT OpVT
,
3873 SDValue SrcOp
, SelectionDAG
&DAG
,
3874 const X86Subtarget
*Subtarget
, DebugLoc dl
) {
3875 if (VT
== MVT::v2f64
|| VT
== MVT::v4f32
) {
3876 LoadSDNode
*LD
= NULL
;
3877 if (!isScalarLoadToVector(SrcOp
.getNode(), &LD
))
3878 LD
= dyn_cast
<LoadSDNode
>(SrcOp
);
3880 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3882 MVT EVT
= (OpVT
== MVT::v2f64
) ? MVT::i64
: MVT::i32
;
3883 if ((EVT
!= MVT::i64
|| Subtarget
->is64Bit()) &&
3884 SrcOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
3885 SrcOp
.getOperand(0).getOpcode() == ISD::BIT_CONVERT
&&
3886 SrcOp
.getOperand(0).getOperand(0).getValueType() == EVT
) {
3888 OpVT
= (OpVT
== MVT::v2f64
) ? MVT::v2i64
: MVT::v4i32
;
3889 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3890 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3891 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3899 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3900 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3901 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3905 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3908 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
3909 SDValue V1
= SVOp
->getOperand(0);
3910 SDValue V2
= SVOp
->getOperand(1);
3911 DebugLoc dl
= SVOp
->getDebugLoc();
3912 MVT VT
= SVOp
->getValueType(0);
3914 SmallVector
<std::pair
<int, int>, 8> Locs
;
3916 SmallVector
<int, 8> Mask1(4U, -1);
3917 SmallVector
<int, 8> PermMask
;
3918 SVOp
->getMask(PermMask
);
3922 for (unsigned i
= 0; i
!= 4; ++i
) {
3923 int Idx
= PermMask
[i
];
3925 Locs
[i
] = std::make_pair(-1, -1);
3927 assert(Idx
< 8 && "Invalid VECTOR_SHUFFLE index!");
3929 Locs
[i
] = std::make_pair(0, NumLo
);
3933 Locs
[i
] = std::make_pair(1, NumHi
);
3935 Mask1
[2+NumHi
] = Idx
;
3941 if (NumLo
<= 2 && NumHi
<= 2) {
3942 // If no more than two elements come from either vector. This can be
3943 // implemented with two shuffles. First shuffle gather the elements.
3944 // The second shuffle, which takes the first shuffle as both of its
3945 // vector operands, put the elements into the right order.
3946 V1
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3948 SmallVector
<int, 8> Mask2(4U, -1);
3950 for (unsigned i
= 0; i
!= 4; ++i
) {
3951 if (Locs
[i
].first
== -1)
3954 unsigned Idx
= (i
< 2) ? 0 : 4;
3955 Idx
+= Locs
[i
].first
* 2 + Locs
[i
].second
;
3960 return DAG
.getVectorShuffle(VT
, dl
, V1
, V1
, &Mask2
[0]);
3961 } else if (NumLo
== 3 || NumHi
== 3) {
3962 // Otherwise, we must have three elements from one vector, call it X, and
3963 // one element from the other, call it Y. First, use a shufps to build an
3964 // intermediate vector with the one element from Y and the element from X
3965 // that will be in the same half in the final destination (the indexes don't
3966 // matter). Then, use a shufps to build the final vector, taking the half
3967 // containing the element from Y from the intermediate, and the other half
3970 // Normalize it so the 3 elements come from V1.
3971 CommuteVectorShuffleMask(PermMask
, VT
);
3975 // Find the element from V2.
3977 for (HiIndex
= 0; HiIndex
< 3; ++HiIndex
) {
3978 int Val
= PermMask
[HiIndex
];
3985 Mask1
[0] = PermMask
[HiIndex
];
3987 Mask1
[2] = PermMask
[HiIndex
^1];
3989 V2
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3992 Mask1
[0] = PermMask
[0];
3993 Mask1
[1] = PermMask
[1];
3994 Mask1
[2] = HiIndex
& 1 ? 6 : 4;
3995 Mask1
[3] = HiIndex
& 1 ? 4 : 6;
3996 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3998 Mask1
[0] = HiIndex
& 1 ? 2 : 0;
3999 Mask1
[1] = HiIndex
& 1 ? 0 : 2;
4000 Mask1
[2] = PermMask
[2];
4001 Mask1
[3] = PermMask
[3];
4006 return DAG
.getVectorShuffle(VT
, dl
, V2
, V1
, &Mask1
[0]);
4010 // Break it into (shuffle shuffle_hi, shuffle_lo).
4012 SmallVector
<int,8> LoMask(4U, -1);
4013 SmallVector
<int,8> HiMask(4U, -1);
4015 SmallVector
<int,8> *MaskPtr
= &LoMask
;
4016 unsigned MaskIdx
= 0;
4019 for (unsigned i
= 0; i
!= 4; ++i
) {
4026 int Idx
= PermMask
[i
];
4028 Locs
[i
] = std::make_pair(-1, -1);
4029 } else if (Idx
< 4) {
4030 Locs
[i
] = std::make_pair(MaskIdx
, LoIdx
);
4031 (*MaskPtr
)[LoIdx
] = Idx
;
4034 Locs
[i
] = std::make_pair(MaskIdx
, HiIdx
);
4035 (*MaskPtr
)[HiIdx
] = Idx
;
4040 SDValue LoShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &LoMask
[0]);
4041 SDValue HiShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &HiMask
[0]);
4042 SmallVector
<int, 8> MaskOps
;
4043 for (unsigned i
= 0; i
!= 4; ++i
) {
4044 if (Locs
[i
].first
== -1) {
4045 MaskOps
.push_back(-1);
4047 unsigned Idx
= Locs
[i
].first
* 4 + Locs
[i
].second
;
4048 MaskOps
.push_back(Idx
);
4051 return DAG
.getVectorShuffle(VT
, dl
, LoShuffle
, HiShuffle
, &MaskOps
[0]);
4055 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) {
4056 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4057 SDValue V1
= Op
.getOperand(0);
4058 SDValue V2
= Op
.getOperand(1);
4059 MVT VT
= Op
.getValueType();
4060 DebugLoc dl
= Op
.getDebugLoc();
4061 unsigned NumElems
= VT
.getVectorNumElements();
4062 bool isMMX
= VT
.getSizeInBits() == 64;
4063 bool V1IsUndef
= V1
.getOpcode() == ISD::UNDEF
;
4064 bool V2IsUndef
= V2
.getOpcode() == ISD::UNDEF
;
4065 bool V1IsSplat
= false;
4066 bool V2IsSplat
= false;
4068 if (isZeroShuffle(SVOp
))
4069 return getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
4071 // Promote splats to v4f32.
4072 if (SVOp
->isSplat()) {
4073 if (isMMX
|| NumElems
< 4)
4075 return PromoteSplat(SVOp
, DAG
, Subtarget
->hasSSE2());
4078 // If the shuffle can be profitably rewritten as a narrower shuffle, then
4080 if (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) {
4081 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4082 if (NewOp
.getNode())
4083 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
4084 LowerVECTOR_SHUFFLE(NewOp
, DAG
));
4085 } else if ((VT
== MVT::v4i32
|| (VT
== MVT::v4f32
&& Subtarget
->hasSSE2()))) {
4086 // FIXME: Figure out a cleaner way to do this.
4087 // Try to make use of movq to zero out the top part.
4088 if (ISD::isBuildVectorAllZeros(V2
.getNode())) {
4089 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4090 if (NewOp
.getNode()) {
4091 if (isCommutedMOVL(cast
<ShuffleVectorSDNode
>(NewOp
), true, false))
4092 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(0),
4093 DAG
, Subtarget
, dl
);
4095 } else if (ISD::isBuildVectorAllZeros(V1
.getNode())) {
4096 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4097 if (NewOp
.getNode() && X86::isMOVLMask(cast
<ShuffleVectorSDNode
>(NewOp
)))
4098 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(1),
4099 DAG
, Subtarget
, dl
);
4103 if (X86::isPSHUFDMask(SVOp
))
4106 // Check if this can be converted into a logical shift.
4107 bool isLeft
= false;
4110 bool isShift
= getSubtarget()->hasSSE2() &&
4111 isVectorShift(SVOp
, DAG
, isLeft
, ShVal
, ShAmt
);
4112 if (isShift
&& ShVal
.hasOneUse()) {
4113 // If the shifted value has multiple uses, it may be cheaper to use
4114 // v_set0 + movlhps or movhlps, etc.
4115 MVT EVT
= VT
.getVectorElementType();
4116 ShAmt
*= EVT
.getSizeInBits();
4117 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
4120 if (X86::isMOVLMask(SVOp
)) {
4123 if (ISD::isBuildVectorAllZeros(V1
.getNode()))
4124 return getVZextMovL(VT
, VT
, V2
, DAG
, Subtarget
, dl
);
4129 // FIXME: fold these into legal mask.
4130 if (!isMMX
&& (X86::isMOVSHDUPMask(SVOp
) ||
4131 X86::isMOVSLDUPMask(SVOp
) ||
4132 X86::isMOVHLPSMask(SVOp
) ||
4133 X86::isMOVHPMask(SVOp
) ||
4134 X86::isMOVLPMask(SVOp
)))
4137 if (ShouldXformToMOVHLPS(SVOp
) ||
4138 ShouldXformToMOVLP(V1
.getNode(), V2
.getNode(), SVOp
))
4139 return CommuteVectorShuffle(SVOp
, DAG
);
4142 // No better options. Use a vshl / vsrl.
4143 MVT EVT
= VT
.getVectorElementType();
4144 ShAmt
*= EVT
.getSizeInBits();
4145 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
4148 bool Commuted
= false;
4149 // FIXME: This should also accept a bitcast of a splat? Be careful, not
4150 // 1,1,1,1 -> v8i16 though.
4151 V1IsSplat
= isSplatVector(V1
.getNode());
4152 V2IsSplat
= isSplatVector(V2
.getNode());
4154 // Canonicalize the splat or undef, if present, to be on the RHS.
4155 if ((V1IsSplat
|| V1IsUndef
) && !(V2IsSplat
|| V2IsUndef
)) {
4156 Op
= CommuteVectorShuffle(SVOp
, DAG
);
4157 SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4158 V1
= SVOp
->getOperand(0);
4159 V2
= SVOp
->getOperand(1);
4160 std::swap(V1IsSplat
, V2IsSplat
);
4161 std::swap(V1IsUndef
, V2IsUndef
);
4165 if (isCommutedMOVL(SVOp
, V2IsSplat
, V2IsUndef
)) {
4166 // Shuffling low element of v1 into undef, just return v1.
4169 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4170 // the instruction selector will not match, so get a canonical MOVL with
4171 // swapped operands to undo the commute.
4172 return getMOVL(DAG
, dl
, VT
, V2
, V1
);
4175 if (X86::isUNPCKL_v_undef_Mask(SVOp
) ||
4176 X86::isUNPCKH_v_undef_Mask(SVOp
) ||
4177 X86::isUNPCKLMask(SVOp
) ||
4178 X86::isUNPCKHMask(SVOp
))
4182 // Normalize mask so all entries that point to V2 points to its first
4183 // element then try to match unpck{h|l} again. If match, return a
4184 // new vector_shuffle with the corrected mask.
4185 SDValue NewMask
= NormalizeMask(SVOp
, DAG
);
4186 ShuffleVectorSDNode
*NSVOp
= cast
<ShuffleVectorSDNode
>(NewMask
);
4187 if (NSVOp
!= SVOp
) {
4188 if (X86::isUNPCKLMask(NSVOp
, true)) {
4190 } else if (X86::isUNPCKHMask(NSVOp
, true)) {
4197 // Commute is back and try unpck* again.
4198 // FIXME: this seems wrong.
4199 SDValue NewOp
= CommuteVectorShuffle(SVOp
, DAG
);
4200 ShuffleVectorSDNode
*NewSVOp
= cast
<ShuffleVectorSDNode
>(NewOp
);
4201 if (X86::isUNPCKL_v_undef_Mask(NewSVOp
) ||
4202 X86::isUNPCKH_v_undef_Mask(NewSVOp
) ||
4203 X86::isUNPCKLMask(NewSVOp
) ||
4204 X86::isUNPCKHMask(NewSVOp
))
4208 // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4210 // Normalize the node to match x86 shuffle ops if needed
4211 if (!isMMX
&& V2
.getOpcode() != ISD::UNDEF
&& isCommutedSHUFP(SVOp
))
4212 return CommuteVectorShuffle(SVOp
, DAG
);
4214 // Check for legal shuffle and return?
4215 SmallVector
<int, 16> PermMask
;
4216 SVOp
->getMask(PermMask
);
4217 if (isShuffleMaskLegal(PermMask
, VT
))
4220 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4221 if (VT
== MVT::v8i16
) {
4222 SDValue NewOp
= LowerVECTOR_SHUFFLEv8i16(SVOp
, DAG
, *this);
4223 if (NewOp
.getNode())
4227 if (VT
== MVT::v16i8
) {
4228 SDValue NewOp
= LowerVECTOR_SHUFFLEv16i8(SVOp
, DAG
, *this);
4229 if (NewOp
.getNode())
4233 // Handle all 4 wide cases with a number of shuffles except for MMX.
4234 if (NumElems
== 4 && !isMMX
)
4235 return LowerVECTOR_SHUFFLE_4wide(SVOp
, DAG
);
4241 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op
,
4242 SelectionDAG
&DAG
) {
4243 MVT VT
= Op
.getValueType();
4244 DebugLoc dl
= Op
.getDebugLoc();
4245 if (VT
.getSizeInBits() == 8) {
4246 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRB
, dl
, MVT::i32
,
4247 Op
.getOperand(0), Op
.getOperand(1));
4248 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4249 DAG
.getValueType(VT
));
4250 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4251 } else if (VT
.getSizeInBits() == 16) {
4252 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4253 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4255 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4256 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4257 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4261 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, MVT::i32
,
4262 Op
.getOperand(0), Op
.getOperand(1));
4263 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4264 DAG
.getValueType(VT
));
4265 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4266 } else if (VT
== MVT::f32
) {
4267 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4268 // the result back to FR32 register. It's only worth matching if the
4269 // result has a single use which is a store or a bitcast to i32. And in
4270 // the case of a store, it's not worth it if the index is a constant 0,
4271 // because a MOVSSmr can be used instead, which is smaller and faster.
4272 if (!Op
.hasOneUse())
4274 SDNode
*User
= *Op
.getNode()->use_begin();
4275 if ((User
->getOpcode() != ISD::STORE
||
4276 (isa
<ConstantSDNode
>(Op
.getOperand(1)) &&
4277 cast
<ConstantSDNode
>(Op
.getOperand(1))->isNullValue())) &&
4278 (User
->getOpcode() != ISD::BIT_CONVERT
||
4279 User
->getValueType(0) != MVT::i32
))
4281 SDValue Extract
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4282 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4i32
,
4285 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, Extract
);
4286 } else if (VT
== MVT::i32
) {
4287 // ExtractPS works with constant index.
4288 if (isa
<ConstantSDNode
>(Op
.getOperand(1)))
4296 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4297 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
4300 if (Subtarget
->hasSSE41()) {
4301 SDValue Res
= LowerEXTRACT_VECTOR_ELT_SSE4(Op
, DAG
);
4306 MVT VT
= Op
.getValueType();
4307 DebugLoc dl
= Op
.getDebugLoc();
4308 // TODO: handle v16i8.
4309 if (VT
.getSizeInBits() == 16) {
4310 SDValue Vec
= Op
.getOperand(0);
4311 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4313 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4314 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4315 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4318 // Transform it so it match pextrw which produces a 32-bit result.
4319 MVT EVT
= (MVT::SimpleValueType
)(VT
.getSimpleVT()+1);
4320 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, EVT
,
4321 Op
.getOperand(0), Op
.getOperand(1));
4322 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, EVT
, Extract
,
4323 DAG
.getValueType(VT
));
4324 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4325 } else if (VT
.getSizeInBits() == 32) {
4326 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4330 // SHUFPS the element to the lowest double word, then movss.
4331 int Mask
[4] = { Idx
, -1, -1, -1 };
4332 MVT VVT
= Op
.getOperand(0).getValueType();
4333 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4334 DAG
.getUNDEF(VVT
), Mask
);
4335 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4336 DAG
.getIntPtrConstant(0));
4337 } else if (VT
.getSizeInBits() == 64) {
4338 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4339 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4340 // to match extract_elt for f64.
4341 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4345 // UNPCKHPD the element to the lowest double word, then movsd.
4346 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4347 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4348 int Mask
[2] = { 1, -1 };
4349 MVT VVT
= Op
.getOperand(0).getValueType();
4350 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4351 DAG
.getUNDEF(VVT
), Mask
);
4352 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4353 DAG
.getIntPtrConstant(0));
4360 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
){
4361 MVT VT
= Op
.getValueType();
4362 MVT EVT
= VT
.getVectorElementType();
4363 DebugLoc dl
= Op
.getDebugLoc();
4365 SDValue N0
= Op
.getOperand(0);
4366 SDValue N1
= Op
.getOperand(1);
4367 SDValue N2
= Op
.getOperand(2);
4369 if ((EVT
.getSizeInBits() == 8 || EVT
.getSizeInBits() == 16) &&
4370 isa
<ConstantSDNode
>(N2
)) {
4371 unsigned Opc
= (EVT
.getSizeInBits() == 8) ? X86ISD::PINSRB
4373 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4375 if (N1
.getValueType() != MVT::i32
)
4376 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4377 if (N2
.getValueType() != MVT::i32
)
4378 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4379 return DAG
.getNode(Opc
, dl
, VT
, N0
, N1
, N2
);
4380 } else if (EVT
== MVT::f32
&& isa
<ConstantSDNode
>(N2
)) {
4381 // Bits [7:6] of the constant are the source select. This will always be
4382 // zero here. The DAG Combiner may combine an extract_elt index into these
4383 // bits. For example (insert (extract, 3), 2) could be matched by putting
4384 // the '3' into bits [7:6] of X86ISD::INSERTPS.
4385 // Bits [5:4] of the constant are the destination select. This is the
4386 // value of the incoming immediate.
4387 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
4388 // combine either bitwise AND or insert of float 0.0 to set these bits.
4389 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue() << 4);
4390 // Create this as a scalar to vector..
4391 N1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4f32
, N1
);
4392 return DAG
.getNode(X86ISD::INSERTPS
, dl
, VT
, N0
, N1
, N2
);
4393 } else if (EVT
== MVT::i32
&& isa
<ConstantSDNode
>(N2
)) {
4394 // PINSR* works with constant index.
4401 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4402 MVT VT
= Op
.getValueType();
4403 MVT EVT
= VT
.getVectorElementType();
4405 if (Subtarget
->hasSSE41())
4406 return LowerINSERT_VECTOR_ELT_SSE4(Op
, DAG
);
4411 DebugLoc dl
= Op
.getDebugLoc();
4412 SDValue N0
= Op
.getOperand(0);
4413 SDValue N1
= Op
.getOperand(1);
4414 SDValue N2
= Op
.getOperand(2);
4416 if (EVT
.getSizeInBits() == 16 && isa
<ConstantSDNode
>(N2
)) {
4417 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4418 // as its second argument.
4419 if (N1
.getValueType() != MVT::i32
)
4420 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4421 if (N2
.getValueType() != MVT::i32
)
4422 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4423 return DAG
.getNode(X86ISD::PINSRW
, dl
, VT
, N0
, N1
, N2
);
4429 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
4430 DebugLoc dl
= Op
.getDebugLoc();
4431 if (Op
.getValueType() == MVT::v2f32
)
4432 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f32
,
4433 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i32
,
4434 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
,
4435 Op
.getOperand(0))));
4437 if (Op
.getValueType() == MVT::v1i64
&& Op
.getOperand(0).getValueType() == MVT::i64
)
4438 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v1i64
, Op
.getOperand(0));
4440 SDValue AnyExt
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, Op
.getOperand(0));
4441 MVT VT
= MVT::v2i32
;
4442 switch (Op
.getValueType().getSimpleVT()) {
4449 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(),
4450 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, AnyExt
));
4453 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4454 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4455 // one of the above mentioned nodes. It has to be wrapped because otherwise
4456 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4457 // be used to form addressing mode. These wrapped nodes will be selected
4460 X86TargetLowering::LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) {
4461 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
4463 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4465 unsigned char OpFlag
= 0;
4466 unsigned WrapperKind
= X86ISD::Wrapper
;
4468 if (Subtarget
->isPICStyleRIPRel() &&
4469 getTargetMachine().getCodeModel() == CodeModel::Small
)
4470 WrapperKind
= X86ISD::WrapperRIP
;
4471 else if (Subtarget
->isPICStyleGOT())
4472 OpFlag
= X86II::MO_GOTOFF
;
4473 else if (Subtarget
->isPICStyleStubPIC())
4474 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4476 SDValue Result
= DAG
.getTargetConstantPool(CP
->getConstVal(), getPointerTy(),
4478 CP
->getOffset(), OpFlag
);
4479 DebugLoc DL
= CP
->getDebugLoc();
4480 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4481 // With PIC, the address is actually $g + Offset.
4483 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4484 DAG
.getNode(X86ISD::GlobalBaseReg
,
4485 DebugLoc::getUnknownLoc(), getPointerTy()),
4492 SDValue
X86TargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) {
4493 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
4495 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4497 unsigned char OpFlag
= 0;
4498 unsigned WrapperKind
= X86ISD::Wrapper
;
4500 if (Subtarget
->isPICStyleRIPRel() &&
4501 getTargetMachine().getCodeModel() == CodeModel::Small
)
4502 WrapperKind
= X86ISD::WrapperRIP
;
4503 else if (Subtarget
->isPICStyleGOT())
4504 OpFlag
= X86II::MO_GOTOFF
;
4505 else if (Subtarget
->isPICStyleStubPIC())
4506 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4508 SDValue Result
= DAG
.getTargetJumpTable(JT
->getIndex(), getPointerTy(),
4510 DebugLoc DL
= JT
->getDebugLoc();
4511 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4513 // With PIC, the address is actually $g + Offset.
4515 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4516 DAG
.getNode(X86ISD::GlobalBaseReg
,
4517 DebugLoc::getUnknownLoc(), getPointerTy()),
4525 X86TargetLowering::LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) {
4526 const char *Sym
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
4528 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4530 unsigned char OpFlag
= 0;
4531 unsigned WrapperKind
= X86ISD::Wrapper
;
4532 if (Subtarget
->isPICStyleRIPRel() &&
4533 getTargetMachine().getCodeModel() == CodeModel::Small
)
4534 WrapperKind
= X86ISD::WrapperRIP
;
4535 else if (Subtarget
->isPICStyleGOT())
4536 OpFlag
= X86II::MO_GOTOFF
;
4537 else if (Subtarget
->isPICStyleStubPIC())
4538 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4540 SDValue Result
= DAG
.getTargetExternalSymbol(Sym
, getPointerTy(), OpFlag
);
4542 DebugLoc DL
= Op
.getDebugLoc();
4543 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4546 // With PIC, the address is actually $g + Offset.
4547 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
4548 !Subtarget
->is64Bit()) {
4549 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4550 DAG
.getNode(X86ISD::GlobalBaseReg
,
4551 DebugLoc::getUnknownLoc(),
4560 X86TargetLowering::LowerGlobalAddress(const GlobalValue
*GV
, DebugLoc dl
,
4562 SelectionDAG
&DAG
) const {
4563 // Create the TargetGlobalAddress node, folding in the constant
4564 // offset if it is legal.
4565 unsigned char OpFlags
=
4566 Subtarget
->ClassifyGlobalReference(GV
, getTargetMachine());
4568 if (OpFlags
== X86II::MO_NO_FLAG
&& isInt32(Offset
)) {
4569 // A direct static reference to a global.
4570 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), Offset
);
4573 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), 0, OpFlags
);
4576 if (Subtarget
->isPICStyleRIPRel() &&
4577 getTargetMachine().getCodeModel() == CodeModel::Small
)
4578 Result
= DAG
.getNode(X86ISD::WrapperRIP
, dl
, getPointerTy(), Result
);
4580 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4582 // With PIC, the address is actually $g + Offset.
4583 if (isGlobalRelativeToPICBase(OpFlags
)) {
4584 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4585 DAG
.getNode(X86ISD::GlobalBaseReg
, dl
, getPointerTy()),
4589 // For globals that require a load from a stub to get the address, emit the
4591 if (isGlobalStubReference(OpFlags
))
4592 Result
= DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(), Result
,
4593 PseudoSourceValue::getGOT(), 0);
4595 // If there was a non-zero offset that we didn't fold, create an explicit
4598 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), Result
,
4599 DAG
.getConstant(Offset
, getPointerTy()));
4605 X86TargetLowering::LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) {
4606 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4607 int64_t Offset
= cast
<GlobalAddressSDNode
>(Op
)->getOffset();
4608 return LowerGlobalAddress(GV
, Op
.getDebugLoc(), Offset
, DAG
);
4612 GetTLSADDR(SelectionDAG
&DAG
, SDValue Chain
, GlobalAddressSDNode
*GA
,
4613 SDValue
*InFlag
, const MVT PtrVT
, unsigned ReturnReg
,
4614 unsigned char OperandFlags
) {
4615 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
4616 DebugLoc dl
= GA
->getDebugLoc();
4617 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(),
4618 GA
->getValueType(0),
4622 SDValue Ops
[] = { Chain
, TGA
, *InFlag
};
4623 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 3);
4625 SDValue Ops
[] = { Chain
, TGA
};
4626 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 2);
4628 SDValue Flag
= Chain
.getValue(1);
4629 return DAG
.getCopyFromReg(Chain
, dl
, ReturnReg
, PtrVT
, Flag
);
4632 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4634 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4637 DebugLoc dl
= GA
->getDebugLoc(); // ? function entry point might be better
4638 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, X86::EBX
,
4639 DAG
.getNode(X86ISD::GlobalBaseReg
,
4640 DebugLoc::getUnknownLoc(),
4642 InFlag
= Chain
.getValue(1);
4644 return GetTLSADDR(DAG
, Chain
, GA
, &InFlag
, PtrVT
, X86::EAX
, X86II::MO_TLSGD
);
4647 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4649 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4651 return GetTLSADDR(DAG
, DAG
.getEntryNode(), GA
, NULL
, PtrVT
,
4652 X86::RAX
, X86II::MO_TLSGD
);
4655 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4656 // "local exec" model.
4657 static SDValue
LowerToTLSExecModel(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4658 const MVT PtrVT
, TLSModel::Model model
,
4660 DebugLoc dl
= GA
->getDebugLoc();
4661 // Get the Thread Pointer
4662 SDValue Base
= DAG
.getNode(X86ISD::SegmentBaseAddress
,
4663 DebugLoc::getUnknownLoc(), PtrVT
,
4664 DAG
.getRegister(is64Bit
? X86::FS
: X86::GS
,
4667 SDValue ThreadPointer
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Base
,
4670 unsigned char OperandFlags
= 0;
4671 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
4673 unsigned WrapperKind
= X86ISD::Wrapper
;
4674 if (model
== TLSModel::LocalExec
) {
4675 OperandFlags
= is64Bit
? X86II::MO_TPOFF
: X86II::MO_NTPOFF
;
4676 } else if (is64Bit
) {
4677 assert(model
== TLSModel::InitialExec
);
4678 OperandFlags
= X86II::MO_GOTTPOFF
;
4679 WrapperKind
= X86ISD::WrapperRIP
;
4681 assert(model
== TLSModel::InitialExec
);
4682 OperandFlags
= X86II::MO_INDNTPOFF
;
4685 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4687 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), GA
->getValueType(0),
4688 GA
->getOffset(), OperandFlags
);
4689 SDValue Offset
= DAG
.getNode(WrapperKind
, dl
, PtrVT
, TGA
);
4691 if (model
== TLSModel::InitialExec
)
4692 Offset
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Offset
,
4693 PseudoSourceValue::getGOT(), 0);
4695 // The address of the thread local variable is the add of the thread
4696 // pointer with the offset of the variable.
4697 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
4701 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) {
4702 // TODO: implement the "local dynamic" model
4703 // TODO: implement the "initial exec"model for pic executables
4704 assert(Subtarget
->isTargetELF() &&
4705 "TLS not implemented for non-ELF targets");
4706 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4707 const GlobalValue
*GV
= GA
->getGlobal();
4709 // If GV is an alias then use the aliasee for determining
4710 // thread-localness.
4711 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
4712 GV
= GA
->resolveAliasedGlobal(false);
4714 TLSModel::Model model
= getTLSModel(GV
,
4715 getTargetMachine().getRelocationModel());
4718 case TLSModel::GeneralDynamic
:
4719 case TLSModel::LocalDynamic
: // not implemented
4720 if (Subtarget
->is64Bit())
4721 return LowerToTLSGeneralDynamicModel64(GA
, DAG
, getPointerTy());
4722 return LowerToTLSGeneralDynamicModel32(GA
, DAG
, getPointerTy());
4724 case TLSModel::InitialExec
:
4725 case TLSModel::LocalExec
:
4726 return LowerToTLSExecModel(GA
, DAG
, getPointerTy(), model
,
4727 Subtarget
->is64Bit());
4730 llvm_unreachable("Unreachable");
4735 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4736 /// take a 2 x i32 value to shift plus a shift amount.
4737 SDValue
X86TargetLowering::LowerShift(SDValue Op
, SelectionDAG
&DAG
) {
4738 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
4739 MVT VT
= Op
.getValueType();
4740 unsigned VTBits
= VT
.getSizeInBits();
4741 DebugLoc dl
= Op
.getDebugLoc();
4742 bool isSRA
= Op
.getOpcode() == ISD::SRA_PARTS
;
4743 SDValue ShOpLo
= Op
.getOperand(0);
4744 SDValue ShOpHi
= Op
.getOperand(1);
4745 SDValue ShAmt
= Op
.getOperand(2);
4746 SDValue Tmp1
= isSRA
? DAG
.getNode(ISD::SRA
, dl
, VT
, ShOpHi
,
4747 DAG
.getConstant(VTBits
- 1, MVT::i8
))
4748 : DAG
.getConstant(0, VT
);
4751 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4752 Tmp2
= DAG
.getNode(X86ISD::SHLD
, dl
, VT
, ShOpHi
, ShOpLo
, ShAmt
);
4753 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
4755 Tmp2
= DAG
.getNode(X86ISD::SHRD
, dl
, VT
, ShOpLo
, ShOpHi
, ShAmt
);
4756 Tmp3
= DAG
.getNode(isSRA
? ISD::SRA
: ISD::SRL
, dl
, VT
, ShOpHi
, ShAmt
);
4759 SDValue AndNode
= DAG
.getNode(ISD::AND
, dl
, MVT::i8
, ShAmt
,
4760 DAG
.getConstant(VTBits
, MVT::i8
));
4761 SDValue Cond
= DAG
.getNode(X86ISD::CMP
, dl
, VT
,
4762 AndNode
, DAG
.getConstant(0, MVT::i8
));
4765 SDValue CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
4766 SDValue Ops0
[4] = { Tmp2
, Tmp3
, CC
, Cond
};
4767 SDValue Ops1
[4] = { Tmp3
, Tmp1
, CC
, Cond
};
4769 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4770 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4771 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4773 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4774 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4777 SDValue Ops
[2] = { Lo
, Hi
};
4778 return DAG
.getMergeValues(Ops
, 2, dl
);
4781 SDValue
X86TargetLowering::LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
4782 MVT SrcVT
= Op
.getOperand(0).getValueType();
4784 if (SrcVT
.isVector()) {
4785 if (SrcVT
== MVT::v2i32
&& Op
.getValueType() == MVT::v2f64
) {
4791 assert(SrcVT
.getSimpleVT() <= MVT::i64
&& SrcVT
.getSimpleVT() >= MVT::i16
&&
4792 "Unknown SINT_TO_FP to lower!");
4794 // These are really Legal; return the operand so the caller accepts it as
4796 if (SrcVT
== MVT::i32
&& isScalarFPTypeInSSEReg(Op
.getValueType()))
4798 if (SrcVT
== MVT::i64
&& isScalarFPTypeInSSEReg(Op
.getValueType()) &&
4799 Subtarget
->is64Bit()) {
4803 DebugLoc dl
= Op
.getDebugLoc();
4804 unsigned Size
= SrcVT
.getSizeInBits()/8;
4805 MachineFunction
&MF
= DAG
.getMachineFunction();
4806 int SSFI
= MF
.getFrameInfo()->CreateStackObject(Size
, Size
);
4807 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4808 SDValue Chain
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
4810 PseudoSourceValue::getFixedStack(SSFI
), 0);
4811 return BuildFILD(Op
, SrcVT
, Chain
, StackSlot
, DAG
);
4814 SDValue
X86TargetLowering::BuildFILD(SDValue Op
, MVT SrcVT
, SDValue Chain
,
4816 SelectionDAG
&DAG
) {
4818 DebugLoc dl
= Op
.getDebugLoc();
4820 bool useSSE
= isScalarFPTypeInSSEReg(Op
.getValueType());
4822 Tys
= DAG
.getVTList(MVT::f64
, MVT::Other
, MVT::Flag
);
4824 Tys
= DAG
.getVTList(Op
.getValueType(), MVT::Other
);
4825 SmallVector
<SDValue
, 8> Ops
;
4826 Ops
.push_back(Chain
);
4827 Ops
.push_back(StackSlot
);
4828 Ops
.push_back(DAG
.getValueType(SrcVT
));
4829 SDValue Result
= DAG
.getNode(useSSE
? X86ISD::FILD_FLAG
: X86ISD::FILD
, dl
,
4830 Tys
, &Ops
[0], Ops
.size());
4833 Chain
= Result
.getValue(1);
4834 SDValue InFlag
= Result
.getValue(2);
4836 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4837 // shouldn't be necessary except that RFP cannot be live across
4838 // multiple blocks. When stackifier is fixed, they can be uncoupled.
4839 MachineFunction
&MF
= DAG
.getMachineFunction();
4840 int SSFI
= MF
.getFrameInfo()->CreateStackObject(8, 8);
4841 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4842 Tys
= DAG
.getVTList(MVT::Other
);
4843 SmallVector
<SDValue
, 8> Ops
;
4844 Ops
.push_back(Chain
);
4845 Ops
.push_back(Result
);
4846 Ops
.push_back(StackSlot
);
4847 Ops
.push_back(DAG
.getValueType(Op
.getValueType()));
4848 Ops
.push_back(InFlag
);
4849 Chain
= DAG
.getNode(X86ISD::FST
, dl
, Tys
, &Ops
[0], Ops
.size());
4850 Result
= DAG
.getLoad(Op
.getValueType(), dl
, Chain
, StackSlot
,
4851 PseudoSourceValue::getFixedStack(SSFI
), 0);
4857 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4858 SDValue
X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op
, SelectionDAG
&DAG
) {
4859 // This algorithm is not obvious. Here it is in C code, more or less:
4861 double uint64_to_double( uint32_t hi, uint32_t lo ) {
4862 static const __m128i exp = { 0x4330000045300000ULL, 0 };
4863 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4865 // Copy ints to xmm registers.
4866 __m128i xh = _mm_cvtsi32_si128( hi );
4867 __m128i xl = _mm_cvtsi32_si128( lo );
4869 // Combine into low half of a single xmm register.
4870 __m128i x = _mm_unpacklo_epi32( xh, xl );
4874 // Merge in appropriate exponents to give the integer bits the right
4876 x = _mm_unpacklo_epi32( x, exp );
4878 // Subtract away the biases to deal with the IEEE-754 double precision
4880 d = _mm_sub_pd( (__m128d) x, bias );
4882 // All conversions up to here are exact. The correctly rounded result is
4883 // calculated using the current rounding mode using the following
4885 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4886 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
4887 // store doesn't really need to be here (except
4888 // maybe to zero the other double)
4893 DebugLoc dl
= Op
.getDebugLoc();
4894 LLVMContext
*Context
= DAG
.getContext();
4896 // Build some magic constants.
4897 std::vector
<Constant
*> CV0
;
4898 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0x45300000)));
4899 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0x43300000)));
4900 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0)));
4901 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0)));
4902 Constant
*C0
= ConstantVector::get(CV0
);
4903 SDValue CPIdx0
= DAG
.getConstantPool(C0
, getPointerTy(), 16);
4905 std::vector
<Constant
*> CV1
;
4907 ConstantFP::get(*Context
, APFloat(APInt(64, 0x4530000000000000ULL
))));
4909 ConstantFP::get(*Context
, APFloat(APInt(64, 0x4330000000000000ULL
))));
4910 Constant
*C1
= ConstantVector::get(CV1
);
4911 SDValue CPIdx1
= DAG
.getConstantPool(C1
, getPointerTy(), 16);
4913 SDValue XR1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4914 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4916 DAG
.getIntPtrConstant(1)));
4917 SDValue XR2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4918 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4920 DAG
.getIntPtrConstant(0)));
4921 SDValue Unpck1
= getUnpackl(DAG
, dl
, MVT::v4i32
, XR1
, XR2
);
4922 SDValue CLod0
= DAG
.getLoad(MVT::v4i32
, dl
, DAG
.getEntryNode(), CPIdx0
,
4923 PseudoSourceValue::getConstantPool(), 0,
4925 SDValue Unpck2
= getUnpackl(DAG
, dl
, MVT::v4i32
, Unpck1
, CLod0
);
4926 SDValue XR2F
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Unpck2
);
4927 SDValue CLod1
= DAG
.getLoad(MVT::v2f64
, dl
, CLod0
.getValue(1), CPIdx1
,
4928 PseudoSourceValue::getConstantPool(), 0,
4930 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::v2f64
, XR2F
, CLod1
);
4932 // Add the halves; easiest way is to swap them into another reg first.
4933 int ShufMask
[2] = { 1, -1 };
4934 SDValue Shuf
= DAG
.getVectorShuffle(MVT::v2f64
, dl
, Sub
,
4935 DAG
.getUNDEF(MVT::v2f64
), ShufMask
);
4936 SDValue Add
= DAG
.getNode(ISD::FADD
, dl
, MVT::v2f64
, Shuf
, Sub
);
4937 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Add
,
4938 DAG
.getIntPtrConstant(0));
4941 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4942 SDValue
X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op
, SelectionDAG
&DAG
) {
4943 DebugLoc dl
= Op
.getDebugLoc();
4944 // FP constant to bias correct the final result.
4945 SDValue Bias
= DAG
.getConstantFP(BitsToDouble(0x4330000000000000ULL
),
4948 // Load the 32-bit value into an XMM register.
4949 SDValue Load
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4950 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4952 DAG
.getIntPtrConstant(0)));
4954 Load
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
4955 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Load
),
4956 DAG
.getIntPtrConstant(0));
4958 // Or the load with the bias.
4959 SDValue Or
= DAG
.getNode(ISD::OR
, dl
, MVT::v2i64
,
4960 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4961 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4963 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4964 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4965 MVT::v2f64
, Bias
)));
4966 Or
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
4967 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Or
),
4968 DAG
.getIntPtrConstant(0));
4970 // Subtract the bias.
4971 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Or
, Bias
);
4973 // Handle final rounding.
4974 MVT DestVT
= Op
.getValueType();
4976 if (DestVT
.bitsLT(MVT::f64
)) {
4977 return DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, Sub
,
4978 DAG
.getIntPtrConstant(0));
4979 } else if (DestVT
.bitsGT(MVT::f64
)) {
4980 return DAG
.getNode(ISD::FP_EXTEND
, dl
, DestVT
, Sub
);
4983 // Handle final rounding.
4987 SDValue
X86TargetLowering::LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
4988 SDValue N0
= Op
.getOperand(0);
4989 DebugLoc dl
= Op
.getDebugLoc();
4991 // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4992 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4993 // the optimization here.
4994 if (DAG
.SignBitIsZero(N0
))
4995 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, Op
.getValueType(), N0
);
4997 MVT SrcVT
= N0
.getValueType();
4998 if (SrcVT
== MVT::i64
) {
4999 // We only handle SSE2 f64 target here; caller can expand the rest.
5000 if (Op
.getValueType() != MVT::f64
|| !X86ScalarSSEf64
)
5003 return LowerUINT_TO_FP_i64(Op
, DAG
);
5004 } else if (SrcVT
== MVT::i32
&& X86ScalarSSEf64
) {
5005 return LowerUINT_TO_FP_i32(Op
, DAG
);
5008 assert(SrcVT
== MVT::i32
&& "Unknown UINT_TO_FP to lower!");
5010 // Make a 64-bit buffer, and use it to build an FILD.
5011 SDValue StackSlot
= DAG
.CreateStackTemporary(MVT::i64
);
5012 SDValue WordOff
= DAG
.getConstant(4, getPointerTy());
5013 SDValue OffsetSlot
= DAG
.getNode(ISD::ADD
, dl
,
5014 getPointerTy(), StackSlot
, WordOff
);
5015 SDValue Store1
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
5016 StackSlot
, NULL
, 0);
5017 SDValue Store2
= DAG
.getStore(Store1
, dl
, DAG
.getConstant(0, MVT::i32
),
5018 OffsetSlot
, NULL
, 0);
5019 return BuildFILD(Op
, MVT::i64
, Store2
, StackSlot
, DAG
);
5022 std::pair
<SDValue
,SDValue
> X86TargetLowering::
5023 FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
, bool IsSigned
) {
5024 DebugLoc dl
= Op
.getDebugLoc();
5026 MVT DstTy
= Op
.getValueType();
5029 assert(DstTy
== MVT::i32
&& "Unexpected FP_TO_UINT");
5033 assert(DstTy
.getSimpleVT() <= MVT::i64
&&
5034 DstTy
.getSimpleVT() >= MVT::i16
&&
5035 "Unknown FP_TO_SINT to lower!");
5037 // These are really Legal.
5038 if (DstTy
== MVT::i32
&&
5039 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
5040 return std::make_pair(SDValue(), SDValue());
5041 if (Subtarget
->is64Bit() &&
5042 DstTy
== MVT::i64
&&
5043 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
5044 return std::make_pair(SDValue(), SDValue());
5046 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5048 MachineFunction
&MF
= DAG
.getMachineFunction();
5049 unsigned MemSize
= DstTy
.getSizeInBits()/8;
5050 int SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
5051 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
5054 switch (DstTy
.getSimpleVT()) {
5055 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5056 case MVT::i16
: Opc
= X86ISD::FP_TO_INT16_IN_MEM
; break;
5057 case MVT::i32
: Opc
= X86ISD::FP_TO_INT32_IN_MEM
; break;
5058 case MVT::i64
: Opc
= X86ISD::FP_TO_INT64_IN_MEM
; break;
5061 SDValue Chain
= DAG
.getEntryNode();
5062 SDValue Value
= Op
.getOperand(0);
5063 if (isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType())) {
5064 assert(DstTy
== MVT::i64
&& "Invalid FP_TO_SINT to lower!");
5065 Chain
= DAG
.getStore(Chain
, dl
, Value
, StackSlot
,
5066 PseudoSourceValue::getFixedStack(SSFI
), 0);
5067 SDVTList Tys
= DAG
.getVTList(Op
.getOperand(0).getValueType(), MVT::Other
);
5069 Chain
, StackSlot
, DAG
.getValueType(Op
.getOperand(0).getValueType())
5071 Value
= DAG
.getNode(X86ISD::FLD
, dl
, Tys
, Ops
, 3);
5072 Chain
= Value
.getValue(1);
5073 SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
5074 StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
5077 // Build the FP_TO_INT*_IN_MEM
5078 SDValue Ops
[] = { Chain
, Value
, StackSlot
};
5079 SDValue FIST
= DAG
.getNode(Opc
, dl
, MVT::Other
, Ops
, 3);
5081 return std::make_pair(FIST
, StackSlot
);
5084 SDValue
X86TargetLowering::LowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
) {
5085 if (Op
.getValueType().isVector()) {
5086 if (Op
.getValueType() == MVT::v2i32
&&
5087 Op
.getOperand(0).getValueType() == MVT::v2f64
) {
5093 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_INTHelper(Op
, DAG
, true);
5094 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
5095 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5096 if (FIST
.getNode() == 0) return Op
;
5099 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
5100 FIST
, StackSlot
, NULL
, 0);
5103 SDValue
X86TargetLowering::LowerFP_TO_UINT(SDValue Op
, SelectionDAG
&DAG
) {
5104 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_INTHelper(Op
, DAG
, false);
5105 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
5106 assert(FIST
.getNode() && "Unexpected failure");
5109 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
5110 FIST
, StackSlot
, NULL
, 0);
5113 SDValue
X86TargetLowering::LowerFABS(SDValue Op
, SelectionDAG
&DAG
) {
5114 LLVMContext
*Context
= DAG
.getContext();
5115 DebugLoc dl
= Op
.getDebugLoc();
5116 MVT VT
= Op
.getValueType();
5119 EltVT
= VT
.getVectorElementType();
5120 std::vector
<Constant
*> CV
;
5121 if (EltVT
== MVT::f64
) {
5122 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(64, ~(1ULL << 63))));
5126 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(32, ~(1U << 31))));
5132 Constant
*C
= ConstantVector::get(CV
);
5133 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5134 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5135 PseudoSourceValue::getConstantPool(), 0,
5137 return DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op
.getOperand(0), Mask
);
5140 SDValue
X86TargetLowering::LowerFNEG(SDValue Op
, SelectionDAG
&DAG
) {
5141 LLVMContext
*Context
= DAG
.getContext();
5142 DebugLoc dl
= Op
.getDebugLoc();
5143 MVT VT
= Op
.getValueType();
5145 unsigned EltNum
= 1;
5146 if (VT
.isVector()) {
5147 EltVT
= VT
.getVectorElementType();
5148 EltNum
= VT
.getVectorNumElements();
5150 std::vector
<Constant
*> CV
;
5151 if (EltVT
== MVT::f64
) {
5152 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(64, 1ULL << 63)));
5156 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(32, 1U << 31)));
5162 Constant
*C
= ConstantVector::get(CV
);
5163 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5164 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5165 PseudoSourceValue::getConstantPool(), 0,
5167 if (VT
.isVector()) {
5168 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
5169 DAG
.getNode(ISD::XOR
, dl
, MVT::v2i64
,
5170 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
5172 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, Mask
)));
5174 return DAG
.getNode(X86ISD::FXOR
, dl
, VT
, Op
.getOperand(0), Mask
);
5178 SDValue
X86TargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) {
5179 LLVMContext
*Context
= DAG
.getContext();
5180 SDValue Op0
= Op
.getOperand(0);
5181 SDValue Op1
= Op
.getOperand(1);
5182 DebugLoc dl
= Op
.getDebugLoc();
5183 MVT VT
= Op
.getValueType();
5184 MVT SrcVT
= Op1
.getValueType();
5186 // If second operand is smaller, extend it first.
5187 if (SrcVT
.bitsLT(VT
)) {
5188 Op1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Op1
);
5191 // And if it is bigger, shrink it first.
5192 if (SrcVT
.bitsGT(VT
)) {
5193 Op1
= DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Op1
, DAG
.getIntPtrConstant(1));
5197 // At this point the operands and the result should have the same
5198 // type, and that won't be f80 since that is not custom lowered.
5200 // First get the sign bit of second operand.
5201 std::vector
<Constant
*> CV
;
5202 if (SrcVT
== MVT::f64
) {
5203 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, 1ULL << 63))));
5204 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, 0))));
5206 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 1U << 31))));
5207 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5208 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5209 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5211 Constant
*C
= ConstantVector::get(CV
);
5212 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5213 SDValue Mask1
= DAG
.getLoad(SrcVT
, dl
, DAG
.getEntryNode(), CPIdx
,
5214 PseudoSourceValue::getConstantPool(), 0,
5216 SDValue SignBit
= DAG
.getNode(X86ISD::FAND
, dl
, SrcVT
, Op1
, Mask1
);
5218 // Shift sign bit right or left if the two operands have different types.
5219 if (SrcVT
.bitsGT(VT
)) {
5220 // Op0 is MVT::f32, Op1 is MVT::f64.
5221 SignBit
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f64
, SignBit
);
5222 SignBit
= DAG
.getNode(X86ISD::FSRL
, dl
, MVT::v2f64
, SignBit
,
5223 DAG
.getConstant(32, MVT::i32
));
5224 SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4f32
, SignBit
);
5225 SignBit
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, SignBit
,
5226 DAG
.getIntPtrConstant(0));
5229 // Clear first operand sign bit.
5231 if (VT
== MVT::f64
) {
5232 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, ~(1ULL << 63)))));
5233 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, 0))));
5235 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, ~(1U << 31)))));
5236 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5237 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5238 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5240 C
= ConstantVector::get(CV
);
5241 CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5242 SDValue Mask2
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5243 PseudoSourceValue::getConstantPool(), 0,
5245 SDValue Val
= DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op0
, Mask2
);
5247 // Or the value with the sign bit.
5248 return DAG
.getNode(X86ISD::FOR
, dl
, VT
, Val
, SignBit
);
5251 /// Emit nodes that will be selected as "test Op0,Op0", or something
5253 SDValue
X86TargetLowering::EmitTest(SDValue Op
, unsigned X86CC
,
5254 SelectionDAG
&DAG
) {
5255 DebugLoc dl
= Op
.getDebugLoc();
5257 // CF and OF aren't always set the way we want. Determine which
5258 // of these we need.
5259 bool NeedCF
= false;
5260 bool NeedOF
= false;
5262 case X86::COND_A
: case X86::COND_AE
:
5263 case X86::COND_B
: case X86::COND_BE
:
5266 case X86::COND_G
: case X86::COND_GE
:
5267 case X86::COND_L
: case X86::COND_LE
:
5268 case X86::COND_O
: case X86::COND_NO
:
5274 // See if we can use the EFLAGS value from the operand instead of
5275 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5276 // we prove that the arithmetic won't overflow, we can't use OF or CF.
5277 if (Op
.getResNo() == 0 && !NeedOF
&& !NeedCF
) {
5278 unsigned Opcode
= 0;
5279 unsigned NumOperands
= 0;
5280 switch (Op
.getNode()->getOpcode()) {
5282 // Due to an isel shortcoming, be conservative if this add is likely to
5283 // be selected as part of a load-modify-store instruction. When the root
5284 // node in a match is a store, isel doesn't know how to remap non-chain
5285 // non-flag uses of other nodes in the match, such as the ADD in this
5286 // case. This leads to the ADD being left around and reselected, with
5287 // the result being two adds in the output.
5288 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5289 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5290 if (UI
->getOpcode() == ISD::STORE
)
5292 if (ConstantSDNode
*C
=
5293 dyn_cast
<ConstantSDNode
>(Op
.getNode()->getOperand(1))) {
5294 // An add of one will be selected as an INC.
5295 if (C
->getAPIntValue() == 1) {
5296 Opcode
= X86ISD::INC
;
5300 // An add of negative one (subtract of one) will be selected as a DEC.
5301 if (C
->getAPIntValue().isAllOnesValue()) {
5302 Opcode
= X86ISD::DEC
;
5307 // Otherwise use a regular EFLAGS-setting add.
5308 Opcode
= X86ISD::ADD
;
5312 // Due to the ISEL shortcoming noted above, be conservative if this sub is
5313 // likely to be selected as part of a load-modify-store instruction.
5314 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5315 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5316 if (UI
->getOpcode() == ISD::STORE
)
5318 // Otherwise use a regular EFLAGS-setting sub.
5319 Opcode
= X86ISD::SUB
;
5326 return SDValue(Op
.getNode(), 1);
5332 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
5333 SmallVector
<SDValue
, 4> Ops
;
5334 for (unsigned i
= 0; i
!= NumOperands
; ++i
)
5335 Ops
.push_back(Op
.getOperand(i
));
5336 SDValue New
= DAG
.getNode(Opcode
, dl
, VTs
, &Ops
[0], NumOperands
);
5337 DAG
.ReplaceAllUsesWith(Op
, New
);
5338 return SDValue(New
.getNode(), 1);
5342 // Otherwise just emit a CMP with 0, which is the TEST pattern.
5343 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op
,
5344 DAG
.getConstant(0, Op
.getValueType()));
5347 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
5349 SDValue
X86TargetLowering::EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
,
5350 SelectionDAG
&DAG
) {
5351 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op1
))
5352 if (C
->getAPIntValue() == 0)
5353 return EmitTest(Op0
, X86CC
, DAG
);
5355 DebugLoc dl
= Op0
.getDebugLoc();
5356 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op0
, Op1
);
5359 SDValue
X86TargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5360 assert(Op
.getValueType() == MVT::i8
&& "SetCC type must be 8-bit integer");
5361 SDValue Op0
= Op
.getOperand(0);
5362 SDValue Op1
= Op
.getOperand(1);
5363 DebugLoc dl
= Op
.getDebugLoc();
5364 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
5366 // Lower (X & (1 << N)) == 0 to BT(X, N).
5367 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5368 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5369 if (Op0
.getOpcode() == ISD::AND
&&
5371 Op1
.getOpcode() == ISD::Constant
&&
5372 cast
<ConstantSDNode
>(Op1
)->getZExtValue() == 0 &&
5373 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5375 if (Op0
.getOperand(1).getOpcode() == ISD::SHL
) {
5376 if (ConstantSDNode
*Op010C
=
5377 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(1).getOperand(0)))
5378 if (Op010C
->getZExtValue() == 1) {
5379 LHS
= Op0
.getOperand(0);
5380 RHS
= Op0
.getOperand(1).getOperand(1);
5382 } else if (Op0
.getOperand(0).getOpcode() == ISD::SHL
) {
5383 if (ConstantSDNode
*Op000C
=
5384 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(0).getOperand(0)))
5385 if (Op000C
->getZExtValue() == 1) {
5386 LHS
= Op0
.getOperand(1);
5387 RHS
= Op0
.getOperand(0).getOperand(1);
5389 } else if (Op0
.getOperand(1).getOpcode() == ISD::Constant
) {
5390 ConstantSDNode
*AndRHS
= cast
<ConstantSDNode
>(Op0
.getOperand(1));
5391 SDValue AndLHS
= Op0
.getOperand(0);
5392 if (AndRHS
->getZExtValue() == 1 && AndLHS
.getOpcode() == ISD::SRL
) {
5393 LHS
= AndLHS
.getOperand(0);
5394 RHS
= AndLHS
.getOperand(1);
5398 if (LHS
.getNode()) {
5399 // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
5400 // instruction. Since the shift amount is in-range-or-undefined, we know
5401 // that doing a bittest on the i16 value is ok. We extend to i32 because
5402 // the encoding for the i16 version is larger than the i32 version.
5403 if (LHS
.getValueType() == MVT::i8
)
5404 LHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, LHS
);
5406 // If the operand types disagree, extend the shift amount to match. Since
5407 // BT ignores high bits (like shifts) we can use anyextend.
5408 if (LHS
.getValueType() != RHS
.getValueType())
5409 RHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, LHS
.getValueType(), RHS
);
5411 SDValue BT
= DAG
.getNode(X86ISD::BT
, dl
, MVT::i32
, LHS
, RHS
);
5412 unsigned Cond
= CC
== ISD::SETEQ
? X86::COND_AE
: X86::COND_B
;
5413 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5414 DAG
.getConstant(Cond
, MVT::i8
), BT
);
5418 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5419 unsigned X86CC
= TranslateX86CC(CC
, isFP
, Op0
, Op1
, DAG
);
5421 SDValue Cond
= EmitCmp(Op0
, Op1
, X86CC
, DAG
);
5422 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5423 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
5426 SDValue
X86TargetLowering::LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5428 SDValue Op0
= Op
.getOperand(0);
5429 SDValue Op1
= Op
.getOperand(1);
5430 SDValue CC
= Op
.getOperand(2);
5431 MVT VT
= Op
.getValueType();
5432 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
5433 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5434 DebugLoc dl
= Op
.getDebugLoc();
5438 MVT VT0
= Op0
.getValueType();
5439 assert(VT0
== MVT::v4f32
|| VT0
== MVT::v2f64
);
5440 unsigned Opc
= VT0
== MVT::v4f32
? X86ISD::CMPPS
: X86ISD::CMPPD
;
5443 switch (SetCCOpcode
) {
5446 case ISD::SETEQ
: SSECC
= 0; break;
5448 case ISD::SETGT
: Swap
= true; // Fallthrough
5450 case ISD::SETOLT
: SSECC
= 1; break;
5452 case ISD::SETGE
: Swap
= true; // Fallthrough
5454 case ISD::SETOLE
: SSECC
= 2; break;
5455 case ISD::SETUO
: SSECC
= 3; break;
5457 case ISD::SETNE
: SSECC
= 4; break;
5458 case ISD::SETULE
: Swap
= true;
5459 case ISD::SETUGE
: SSECC
= 5; break;
5460 case ISD::SETULT
: Swap
= true;
5461 case ISD::SETUGT
: SSECC
= 6; break;
5462 case ISD::SETO
: SSECC
= 7; break;
5465 std::swap(Op0
, Op1
);
5467 // In the two special cases we can't handle, emit two comparisons.
5469 if (SetCCOpcode
== ISD::SETUEQ
) {
5471 UNORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(3, MVT::i8
));
5472 EQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(0, MVT::i8
));
5473 return DAG
.getNode(ISD::OR
, dl
, VT
, UNORD
, EQ
);
5475 else if (SetCCOpcode
== ISD::SETONE
) {
5477 ORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(7, MVT::i8
));
5478 NEQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(4, MVT::i8
));
5479 return DAG
.getNode(ISD::AND
, dl
, VT
, ORD
, NEQ
);
5481 llvm_unreachable("Illegal FP comparison");
5483 // Handle all other FP comparisons here.
5484 return DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(SSECC
, MVT::i8
));
5487 // We are handling one of the integer comparisons here. Since SSE only has
5488 // GT and EQ comparisons for integer, swapping operands and multiple
5489 // operations may be required for some comparisons.
5490 unsigned Opc
= 0, EQOpc
= 0, GTOpc
= 0;
5491 bool Swap
= false, Invert
= false, FlipSigns
= false;
5493 switch (VT
.getSimpleVT()) {
5496 case MVT::v16i8
: EQOpc
= X86ISD::PCMPEQB
; GTOpc
= X86ISD::PCMPGTB
; break;
5498 case MVT::v8i16
: EQOpc
= X86ISD::PCMPEQW
; GTOpc
= X86ISD::PCMPGTW
; break;
5500 case MVT::v4i32
: EQOpc
= X86ISD::PCMPEQD
; GTOpc
= X86ISD::PCMPGTD
; break;
5501 case MVT::v2i64
: EQOpc
= X86ISD::PCMPEQQ
; GTOpc
= X86ISD::PCMPGTQ
; break;
5504 switch (SetCCOpcode
) {
5506 case ISD::SETNE
: Invert
= true;
5507 case ISD::SETEQ
: Opc
= EQOpc
; break;
5508 case ISD::SETLT
: Swap
= true;
5509 case ISD::SETGT
: Opc
= GTOpc
; break;
5510 case ISD::SETGE
: Swap
= true;
5511 case ISD::SETLE
: Opc
= GTOpc
; Invert
= true; break;
5512 case ISD::SETULT
: Swap
= true;
5513 case ISD::SETUGT
: Opc
= GTOpc
; FlipSigns
= true; break;
5514 case ISD::SETUGE
: Swap
= true;
5515 case ISD::SETULE
: Opc
= GTOpc
; FlipSigns
= true; Invert
= true; break;
5518 std::swap(Op0
, Op1
);
5520 // Since SSE has no unsigned integer comparisons, we need to flip the sign
5521 // bits of the inputs before performing those operations.
5523 MVT EltVT
= VT
.getVectorElementType();
5524 SDValue SignBit
= DAG
.getConstant(APInt::getSignBit(EltVT
.getSizeInBits()),
5526 std::vector
<SDValue
> SignBits(VT
.getVectorNumElements(), SignBit
);
5527 SDValue SignVec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &SignBits
[0],
5529 Op0
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op0
, SignVec
);
5530 Op1
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op1
, SignVec
);
5533 SDValue Result
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
);
5535 // If the logical-not of the result is required, perform that now.
5537 Result
= DAG
.getNOT(dl
, Result
, VT
);
5542 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5543 static bool isX86LogicalCmp(SDValue Op
) {
5544 unsigned Opc
= Op
.getNode()->getOpcode();
5545 if (Opc
== X86ISD::CMP
|| Opc
== X86ISD::COMI
|| Opc
== X86ISD::UCOMI
)
5547 if (Op
.getResNo() == 1 &&
5548 (Opc
== X86ISD::ADD
||
5549 Opc
== X86ISD::SUB
||
5550 Opc
== X86ISD::SMUL
||
5551 Opc
== X86ISD::UMUL
||
5552 Opc
== X86ISD::INC
||
5553 Opc
== X86ISD::DEC
))
5559 SDValue
X86TargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) {
5560 bool addTest
= true;
5561 SDValue Cond
= Op
.getOperand(0);
5562 DebugLoc dl
= Op
.getDebugLoc();
5565 if (Cond
.getOpcode() == ISD::SETCC
)
5566 Cond
= LowerSETCC(Cond
, DAG
);
5568 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5569 // setting operand in place of the X86ISD::SETCC.
5570 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5571 CC
= Cond
.getOperand(0);
5573 SDValue Cmp
= Cond
.getOperand(1);
5574 unsigned Opc
= Cmp
.getOpcode();
5575 MVT VT
= Op
.getValueType();
5577 bool IllegalFPCMov
= false;
5578 if (VT
.isFloatingPoint() && !VT
.isVector() &&
5579 !isScalarFPTypeInSSEReg(VT
)) // FPStack?
5580 IllegalFPCMov
= !hasFPCMov(cast
<ConstantSDNode
>(CC
)->getSExtValue());
5582 if ((isX86LogicalCmp(Cmp
) && !IllegalFPCMov
) ||
5583 Opc
== X86ISD::BT
) { // FIXME
5590 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5591 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5594 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::Flag
);
5595 SmallVector
<SDValue
, 4> Ops
;
5596 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5597 // condition is true.
5598 Ops
.push_back(Op
.getOperand(2));
5599 Ops
.push_back(Op
.getOperand(1));
5601 Ops
.push_back(Cond
);
5602 return DAG
.getNode(X86ISD::CMOV
, dl
, VTs
, &Ops
[0], Ops
.size());
5605 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5606 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5607 // from the AND / OR.
5608 static bool isAndOrOfSetCCs(SDValue Op
, unsigned &Opc
) {
5609 Opc
= Op
.getOpcode();
5610 if (Opc
!= ISD::OR
&& Opc
!= ISD::AND
)
5612 return (Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5613 Op
.getOperand(0).hasOneUse() &&
5614 Op
.getOperand(1).getOpcode() == X86ISD::SETCC
&&
5615 Op
.getOperand(1).hasOneUse());
5618 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5619 // 1 and that the SETCC node has a single use.
5620 static bool isXor1OfSetCC(SDValue Op
) {
5621 if (Op
.getOpcode() != ISD::XOR
)
5623 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5624 if (N1C
&& N1C
->getAPIntValue() == 1) {
5625 return Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5626 Op
.getOperand(0).hasOneUse();
5631 SDValue
X86TargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) {
5632 bool addTest
= true;
5633 SDValue Chain
= Op
.getOperand(0);
5634 SDValue Cond
= Op
.getOperand(1);
5635 SDValue Dest
= Op
.getOperand(2);
5636 DebugLoc dl
= Op
.getDebugLoc();
5639 if (Cond
.getOpcode() == ISD::SETCC
)
5640 Cond
= LowerSETCC(Cond
, DAG
);
5642 // FIXME: LowerXALUO doesn't handle these!!
5643 else if (Cond
.getOpcode() == X86ISD::ADD
||
5644 Cond
.getOpcode() == X86ISD::SUB
||
5645 Cond
.getOpcode() == X86ISD::SMUL
||
5646 Cond
.getOpcode() == X86ISD::UMUL
)
5647 Cond
= LowerXALUO(Cond
, DAG
);
5650 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5651 // setting operand in place of the X86ISD::SETCC.
5652 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5653 CC
= Cond
.getOperand(0);
5655 SDValue Cmp
= Cond
.getOperand(1);
5656 unsigned Opc
= Cmp
.getOpcode();
5657 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5658 if (isX86LogicalCmp(Cmp
) || Opc
== X86ISD::BT
) {
5662 switch (cast
<ConstantSDNode
>(CC
)->getZExtValue()) {
5666 // These can only come from an arithmetic instruction with overflow,
5667 // e.g. SADDO, UADDO.
5668 Cond
= Cond
.getNode()->getOperand(1);
5675 if (Cond
.hasOneUse() && isAndOrOfSetCCs(Cond
, CondOpc
)) {
5676 SDValue Cmp
= Cond
.getOperand(0).getOperand(1);
5677 if (CondOpc
== ISD::OR
) {
5678 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5679 // two branches instead of an explicit OR instruction with a
5681 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5682 isX86LogicalCmp(Cmp
)) {
5683 CC
= Cond
.getOperand(0).getOperand(0);
5684 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5685 Chain
, Dest
, CC
, Cmp
);
5686 CC
= Cond
.getOperand(1).getOperand(0);
5690 } else { // ISD::AND
5691 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5692 // two branches instead of an explicit AND instruction with a
5693 // separate test. However, we only do this if this block doesn't
5694 // have a fall-through edge, because this requires an explicit
5695 // jmp when the condition is false.
5696 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5697 isX86LogicalCmp(Cmp
) &&
5698 Op
.getNode()->hasOneUse()) {
5699 X86::CondCode CCode
=
5700 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5701 CCode
= X86::GetOppositeBranchCondition(CCode
);
5702 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5703 SDValue User
= SDValue(*Op
.getNode()->use_begin(), 0);
5704 // Look for an unconditional branch following this conditional branch.
5705 // We need this because we need to reverse the successors in order
5706 // to implement FCMP_OEQ.
5707 if (User
.getOpcode() == ISD::BR
) {
5708 SDValue FalseBB
= User
.getOperand(1);
5710 DAG
.UpdateNodeOperands(User
, User
.getOperand(0), Dest
);
5711 assert(NewBR
== User
);
5714 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5715 Chain
, Dest
, CC
, Cmp
);
5716 X86::CondCode CCode
=
5717 (X86::CondCode
)Cond
.getOperand(1).getConstantOperandVal(0);
5718 CCode
= X86::GetOppositeBranchCondition(CCode
);
5719 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5725 } else if (Cond
.hasOneUse() && isXor1OfSetCC(Cond
)) {
5726 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5727 // It should be transformed during dag combiner except when the condition
5728 // is set by a arithmetics with overflow node.
5729 X86::CondCode CCode
=
5730 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5731 CCode
= X86::GetOppositeBranchCondition(CCode
);
5732 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5733 Cond
= Cond
.getOperand(0).getOperand(1);
5739 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5740 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5742 return DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5743 Chain
, Dest
, CC
, Cond
);
5747 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5748 // Calls to _alloca is needed to probe the stack when allocating more than 4k
5749 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
5750 // that the guard pages used by the OS virtual memory manager are allocated in
5751 // correct sequence.
5753 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
5754 SelectionDAG
&DAG
) {
5755 assert(Subtarget
->isTargetCygMing() &&
5756 "This should be used only on Cygwin/Mingw targets");
5757 DebugLoc dl
= Op
.getDebugLoc();
5760 SDValue Chain
= Op
.getOperand(0);
5761 SDValue Size
= Op
.getOperand(1);
5762 // FIXME: Ensure alignment here
5766 MVT IntPtr
= getPointerTy();
5767 MVT SPTy
= Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
;
5769 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(0, true));
5771 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EAX
, Size
, Flag
);
5772 Flag
= Chain
.getValue(1);
5774 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5775 SDValue Ops
[] = { Chain
,
5776 DAG
.getTargetExternalSymbol("_alloca", IntPtr
),
5777 DAG
.getRegister(X86::EAX
, IntPtr
),
5778 DAG
.getRegister(X86StackPtr
, SPTy
),
5780 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, Ops
, 5);
5781 Flag
= Chain
.getValue(1);
5783 Chain
= DAG
.getCALLSEQ_END(Chain
,
5784 DAG
.getIntPtrConstant(0, true),
5785 DAG
.getIntPtrConstant(0, true),
5788 Chain
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, SPTy
).getValue(1);
5790 SDValue Ops1
[2] = { Chain
.getValue(0), Chain
};
5791 return DAG
.getMergeValues(Ops1
, 2, dl
);
5795 X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG
&DAG
, DebugLoc dl
,
5797 SDValue Dst
, SDValue Src
,
5798 SDValue Size
, unsigned Align
,
5800 uint64_t DstSVOff
) {
5801 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
5803 // If not DWORD aligned or size is more than the threshold, call the library.
5804 // The libc version is likely to be faster for these cases. It can use the
5805 // address value and run time information about the CPU.
5806 if ((Align
& 3) != 0 ||
5808 ConstantSize
->getZExtValue() >
5809 getSubtarget()->getMaxInlineSizeThreshold()) {
5810 SDValue
InFlag(0, 0);
5812 // Check to see if there is a specialized entry-point for memory zeroing.
5813 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(Src
);
5815 if (const char *bzeroEntry
= V
&&
5816 V
->isNullValue() ? Subtarget
->getBZeroEntry() : 0) {
5817 MVT IntPtr
= getPointerTy();
5818 const Type
*IntPtrTy
= TD
->getIntPtrType();
5819 TargetLowering::ArgListTy Args
;
5820 TargetLowering::ArgListEntry Entry
;
5822 Entry
.Ty
= IntPtrTy
;
5823 Args
.push_back(Entry
);
5825 Args
.push_back(Entry
);
5826 std::pair
<SDValue
,SDValue
> CallResult
=
5827 LowerCallTo(Chain
, Type::VoidTy
, false, false, false, false,
5828 0, CallingConv::C
, false,
5829 DAG
.getExternalSymbol(bzeroEntry
, IntPtr
), Args
, DAG
, dl
);
5830 return CallResult
.second
;
5833 // Otherwise have the target-independent code call memset.
5837 uint64_t SizeVal
= ConstantSize
->getZExtValue();
5838 SDValue
InFlag(0, 0);
5841 ConstantSDNode
*ValC
= dyn_cast
<ConstantSDNode
>(Src
);
5842 unsigned BytesLeft
= 0;
5843 bool TwoRepStos
= false;
5846 uint64_t Val
= ValC
->getZExtValue() & 255;
5848 // If the value is a constant, then we can potentially use larger sets.
5849 switch (Align
& 3) {
5850 case 2: // WORD aligned
5853 Val
= (Val
<< 8) | Val
;
5855 case 0: // DWORD aligned
5858 Val
= (Val
<< 8) | Val
;
5859 Val
= (Val
<< 16) | Val
;
5860 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) { // QWORD aligned
5863 Val
= (Val
<< 32) | Val
;
5866 default: // Byte aligned
5869 Count
= DAG
.getIntPtrConstant(SizeVal
);
5873 if (AVT
.bitsGT(MVT::i8
)) {
5874 unsigned UBytes
= AVT
.getSizeInBits() / 8;
5875 Count
= DAG
.getIntPtrConstant(SizeVal
/ UBytes
);
5876 BytesLeft
= SizeVal
% UBytes
;
5879 Chain
= DAG
.getCopyToReg(Chain
, dl
, ValReg
, DAG
.getConstant(Val
, AVT
),
5881 InFlag
= Chain
.getValue(1);
5884 Count
= DAG
.getIntPtrConstant(SizeVal
);
5885 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
, Src
, InFlag
);
5886 InFlag
= Chain
.getValue(1);
5889 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
5892 InFlag
= Chain
.getValue(1);
5893 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
5896 InFlag
= Chain
.getValue(1);
5898 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5899 SmallVector
<SDValue
, 8> Ops
;
5900 Ops
.push_back(Chain
);
5901 Ops
.push_back(DAG
.getValueType(AVT
));
5902 Ops
.push_back(InFlag
);
5903 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5906 InFlag
= Chain
.getValue(1);
5908 MVT CVT
= Count
.getValueType();
5909 SDValue Left
= DAG
.getNode(ISD::AND
, dl
, CVT
, Count
,
5910 DAG
.getConstant((AVT
== MVT::i64
) ? 7 : 3, CVT
));
5911 Chain
= DAG
.getCopyToReg(Chain
, dl
, (CVT
== MVT::i64
) ? X86::RCX
:
5914 InFlag
= Chain
.getValue(1);
5915 Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5917 Ops
.push_back(Chain
);
5918 Ops
.push_back(DAG
.getValueType(MVT::i8
));
5919 Ops
.push_back(InFlag
);
5920 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5921 } else if (BytesLeft
) {
5922 // Handle the last 1 - 7 bytes.
5923 unsigned Offset
= SizeVal
- BytesLeft
;
5924 MVT AddrVT
= Dst
.getValueType();
5925 MVT SizeVT
= Size
.getValueType();
5927 Chain
= DAG
.getMemset(Chain
, dl
,
5928 DAG
.getNode(ISD::ADD
, dl
, AddrVT
, Dst
,
5929 DAG
.getConstant(Offset
, AddrVT
)),
5931 DAG
.getConstant(BytesLeft
, SizeVT
),
5932 Align
, DstSV
, DstSVOff
+ Offset
);
5935 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5940 X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG
&DAG
, DebugLoc dl
,
5941 SDValue Chain
, SDValue Dst
, SDValue Src
,
5942 SDValue Size
, unsigned Align
,
5944 const Value
*DstSV
, uint64_t DstSVOff
,
5945 const Value
*SrcSV
, uint64_t SrcSVOff
) {
5946 // This requires the copy size to be a constant, preferrably
5947 // within a subtarget-specific limit.
5948 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
5951 uint64_t SizeVal
= ConstantSize
->getZExtValue();
5952 if (!AlwaysInline
&& SizeVal
> getSubtarget()->getMaxInlineSizeThreshold())
5955 /// If not DWORD aligned, call the library.
5956 if ((Align
& 3) != 0)
5961 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) // QWORD aligned
5964 unsigned UBytes
= AVT
.getSizeInBits() / 8;
5965 unsigned CountVal
= SizeVal
/ UBytes
;
5966 SDValue Count
= DAG
.getIntPtrConstant(CountVal
);
5967 unsigned BytesLeft
= SizeVal
% UBytes
;
5969 SDValue
InFlag(0, 0);
5970 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
5973 InFlag
= Chain
.getValue(1);
5974 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
5977 InFlag
= Chain
.getValue(1);
5978 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RSI
:
5981 InFlag
= Chain
.getValue(1);
5983 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5984 SmallVector
<SDValue
, 8> Ops
;
5985 Ops
.push_back(Chain
);
5986 Ops
.push_back(DAG
.getValueType(AVT
));
5987 Ops
.push_back(InFlag
);
5988 SDValue RepMovs
= DAG
.getNode(X86ISD::REP_MOVS
, dl
, Tys
, &Ops
[0], Ops
.size());
5990 SmallVector
<SDValue
, 4> Results
;
5991 Results
.push_back(RepMovs
);
5993 // Handle the last 1 - 7 bytes.
5994 unsigned Offset
= SizeVal
- BytesLeft
;
5995 MVT DstVT
= Dst
.getValueType();
5996 MVT SrcVT
= Src
.getValueType();
5997 MVT SizeVT
= Size
.getValueType();
5998 Results
.push_back(DAG
.getMemcpy(Chain
, dl
,
5999 DAG
.getNode(ISD::ADD
, dl
, DstVT
, Dst
,
6000 DAG
.getConstant(Offset
, DstVT
)),
6001 DAG
.getNode(ISD::ADD
, dl
, SrcVT
, Src
,
6002 DAG
.getConstant(Offset
, SrcVT
)),
6003 DAG
.getConstant(BytesLeft
, SizeVT
),
6004 Align
, AlwaysInline
,
6005 DstSV
, DstSVOff
+ Offset
,
6006 SrcSV
, SrcSVOff
+ Offset
));
6009 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
6010 &Results
[0], Results
.size());
6013 SDValue
X86TargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
6014 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
6015 DebugLoc dl
= Op
.getDebugLoc();
6017 if (!Subtarget
->is64Bit()) {
6018 // vastart just stores the address of the VarArgsFrameIndex slot into the
6019 // memory location argument.
6020 SDValue FR
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
6021 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1), SV
, 0);
6025 // gp_offset (0 - 6 * 8)
6026 // fp_offset (48 - 48 + 8 * 16)
6027 // overflow_arg_area (point to parameters coming in memory).
6029 SmallVector
<SDValue
, 8> MemOps
;
6030 SDValue FIN
= Op
.getOperand(1);
6032 SDValue Store
= DAG
.getStore(Op
.getOperand(0), dl
,
6033 DAG
.getConstant(VarArgsGPOffset
, MVT::i32
),
6035 MemOps
.push_back(Store
);
6038 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6039 FIN
, DAG
.getIntPtrConstant(4));
6040 Store
= DAG
.getStore(Op
.getOperand(0), dl
,
6041 DAG
.getConstant(VarArgsFPOffset
, MVT::i32
),
6043 MemOps
.push_back(Store
);
6045 // Store ptr to overflow_arg_area
6046 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6047 FIN
, DAG
.getIntPtrConstant(4));
6048 SDValue OVFIN
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
6049 Store
= DAG
.getStore(Op
.getOperand(0), dl
, OVFIN
, FIN
, SV
, 0);
6050 MemOps
.push_back(Store
);
6052 // Store ptr to reg_save_area.
6053 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6054 FIN
, DAG
.getIntPtrConstant(8));
6055 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
6056 Store
= DAG
.getStore(Op
.getOperand(0), dl
, RSFIN
, FIN
, SV
, 0);
6057 MemOps
.push_back(Store
);
6058 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
6059 &MemOps
[0], MemOps
.size());
6062 SDValue
X86TargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) {
6063 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6064 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_arg!");
6065 SDValue Chain
= Op
.getOperand(0);
6066 SDValue SrcPtr
= Op
.getOperand(1);
6067 SDValue SrcSV
= Op
.getOperand(2);
6069 llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6073 SDValue
X86TargetLowering::LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) {
6074 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6075 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_copy!");
6076 SDValue Chain
= Op
.getOperand(0);
6077 SDValue DstPtr
= Op
.getOperand(1);
6078 SDValue SrcPtr
= Op
.getOperand(2);
6079 const Value
*DstSV
= cast
<SrcValueSDNode
>(Op
.getOperand(3))->getValue();
6080 const Value
*SrcSV
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
6081 DebugLoc dl
= Op
.getDebugLoc();
6083 return DAG
.getMemcpy(Chain
, dl
, DstPtr
, SrcPtr
,
6084 DAG
.getIntPtrConstant(24), 8, false,
6085 DstSV
, 0, SrcSV
, 0);
6089 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) {
6090 DebugLoc dl
= Op
.getDebugLoc();
6091 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6093 default: return SDValue(); // Don't custom lower most intrinsics.
6094 // Comparison intrinsics.
6095 case Intrinsic::x86_sse_comieq_ss
:
6096 case Intrinsic::x86_sse_comilt_ss
:
6097 case Intrinsic::x86_sse_comile_ss
:
6098 case Intrinsic::x86_sse_comigt_ss
:
6099 case Intrinsic::x86_sse_comige_ss
:
6100 case Intrinsic::x86_sse_comineq_ss
:
6101 case Intrinsic::x86_sse_ucomieq_ss
:
6102 case Intrinsic::x86_sse_ucomilt_ss
:
6103 case Intrinsic::x86_sse_ucomile_ss
:
6104 case Intrinsic::x86_sse_ucomigt_ss
:
6105 case Intrinsic::x86_sse_ucomige_ss
:
6106 case Intrinsic::x86_sse_ucomineq_ss
:
6107 case Intrinsic::x86_sse2_comieq_sd
:
6108 case Intrinsic::x86_sse2_comilt_sd
:
6109 case Intrinsic::x86_sse2_comile_sd
:
6110 case Intrinsic::x86_sse2_comigt_sd
:
6111 case Intrinsic::x86_sse2_comige_sd
:
6112 case Intrinsic::x86_sse2_comineq_sd
:
6113 case Intrinsic::x86_sse2_ucomieq_sd
:
6114 case Intrinsic::x86_sse2_ucomilt_sd
:
6115 case Intrinsic::x86_sse2_ucomile_sd
:
6116 case Intrinsic::x86_sse2_ucomigt_sd
:
6117 case Intrinsic::x86_sse2_ucomige_sd
:
6118 case Intrinsic::x86_sse2_ucomineq_sd
: {
6120 ISD::CondCode CC
= ISD::SETCC_INVALID
;
6123 case Intrinsic::x86_sse_comieq_ss
:
6124 case Intrinsic::x86_sse2_comieq_sd
:
6128 case Intrinsic::x86_sse_comilt_ss
:
6129 case Intrinsic::x86_sse2_comilt_sd
:
6133 case Intrinsic::x86_sse_comile_ss
:
6134 case Intrinsic::x86_sse2_comile_sd
:
6138 case Intrinsic::x86_sse_comigt_ss
:
6139 case Intrinsic::x86_sse2_comigt_sd
:
6143 case Intrinsic::x86_sse_comige_ss
:
6144 case Intrinsic::x86_sse2_comige_sd
:
6148 case Intrinsic::x86_sse_comineq_ss
:
6149 case Intrinsic::x86_sse2_comineq_sd
:
6153 case Intrinsic::x86_sse_ucomieq_ss
:
6154 case Intrinsic::x86_sse2_ucomieq_sd
:
6155 Opc
= X86ISD::UCOMI
;
6158 case Intrinsic::x86_sse_ucomilt_ss
:
6159 case Intrinsic::x86_sse2_ucomilt_sd
:
6160 Opc
= X86ISD::UCOMI
;
6163 case Intrinsic::x86_sse_ucomile_ss
:
6164 case Intrinsic::x86_sse2_ucomile_sd
:
6165 Opc
= X86ISD::UCOMI
;
6168 case Intrinsic::x86_sse_ucomigt_ss
:
6169 case Intrinsic::x86_sse2_ucomigt_sd
:
6170 Opc
= X86ISD::UCOMI
;
6173 case Intrinsic::x86_sse_ucomige_ss
:
6174 case Intrinsic::x86_sse2_ucomige_sd
:
6175 Opc
= X86ISD::UCOMI
;
6178 case Intrinsic::x86_sse_ucomineq_ss
:
6179 case Intrinsic::x86_sse2_ucomineq_sd
:
6180 Opc
= X86ISD::UCOMI
;
6185 SDValue LHS
= Op
.getOperand(1);
6186 SDValue RHS
= Op
.getOperand(2);
6187 unsigned X86CC
= TranslateX86CC(CC
, true, LHS
, RHS
, DAG
);
6188 SDValue Cond
= DAG
.getNode(Opc
, dl
, MVT::i32
, LHS
, RHS
);
6189 SDValue SetCC
= DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
6190 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
6191 return DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, SetCC
);
6193 // ptest intrinsics. The intrinsic these come from are designed to return
6194 // an integer value, not just an instruction so lower it to the ptest
6195 // pattern and a setcc for the result.
6196 case Intrinsic::x86_sse41_ptestz
:
6197 case Intrinsic::x86_sse41_ptestc
:
6198 case Intrinsic::x86_sse41_ptestnzc
:{
6201 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6202 case Intrinsic::x86_sse41_ptestz
:
6204 X86CC
= X86::COND_E
;
6206 case Intrinsic::x86_sse41_ptestc
:
6208 X86CC
= X86::COND_B
;
6210 case Intrinsic::x86_sse41_ptestnzc
:
6212 X86CC
= X86::COND_A
;
6216 SDValue LHS
= Op
.getOperand(1);
6217 SDValue RHS
= Op
.getOperand(2);
6218 SDValue Test
= DAG
.getNode(X86ISD::PTEST
, dl
, MVT::i32
, LHS
, RHS
);
6219 SDValue CC
= DAG
.getConstant(X86CC
, MVT::i8
);
6220 SDValue SetCC
= DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
, CC
, Test
);
6221 return DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, SetCC
);
6224 // Fix vector shift instructions where the last operand is a non-immediate
6226 case Intrinsic::x86_sse2_pslli_w
:
6227 case Intrinsic::x86_sse2_pslli_d
:
6228 case Intrinsic::x86_sse2_pslli_q
:
6229 case Intrinsic::x86_sse2_psrli_w
:
6230 case Intrinsic::x86_sse2_psrli_d
:
6231 case Intrinsic::x86_sse2_psrli_q
:
6232 case Intrinsic::x86_sse2_psrai_w
:
6233 case Intrinsic::x86_sse2_psrai_d
:
6234 case Intrinsic::x86_mmx_pslli_w
:
6235 case Intrinsic::x86_mmx_pslli_d
:
6236 case Intrinsic::x86_mmx_pslli_q
:
6237 case Intrinsic::x86_mmx_psrli_w
:
6238 case Intrinsic::x86_mmx_psrli_d
:
6239 case Intrinsic::x86_mmx_psrli_q
:
6240 case Intrinsic::x86_mmx_psrai_w
:
6241 case Intrinsic::x86_mmx_psrai_d
: {
6242 SDValue ShAmt
= Op
.getOperand(2);
6243 if (isa
<ConstantSDNode
>(ShAmt
))
6246 unsigned NewIntNo
= 0;
6247 MVT ShAmtVT
= MVT::v4i32
;
6249 case Intrinsic::x86_sse2_pslli_w
:
6250 NewIntNo
= Intrinsic::x86_sse2_psll_w
;
6252 case Intrinsic::x86_sse2_pslli_d
:
6253 NewIntNo
= Intrinsic::x86_sse2_psll_d
;
6255 case Intrinsic::x86_sse2_pslli_q
:
6256 NewIntNo
= Intrinsic::x86_sse2_psll_q
;
6258 case Intrinsic::x86_sse2_psrli_w
:
6259 NewIntNo
= Intrinsic::x86_sse2_psrl_w
;
6261 case Intrinsic::x86_sse2_psrli_d
:
6262 NewIntNo
= Intrinsic::x86_sse2_psrl_d
;
6264 case Intrinsic::x86_sse2_psrli_q
:
6265 NewIntNo
= Intrinsic::x86_sse2_psrl_q
;
6267 case Intrinsic::x86_sse2_psrai_w
:
6268 NewIntNo
= Intrinsic::x86_sse2_psra_w
;
6270 case Intrinsic::x86_sse2_psrai_d
:
6271 NewIntNo
= Intrinsic::x86_sse2_psra_d
;
6274 ShAmtVT
= MVT::v2i32
;
6276 case Intrinsic::x86_mmx_pslli_w
:
6277 NewIntNo
= Intrinsic::x86_mmx_psll_w
;
6279 case Intrinsic::x86_mmx_pslli_d
:
6280 NewIntNo
= Intrinsic::x86_mmx_psll_d
;
6282 case Intrinsic::x86_mmx_pslli_q
:
6283 NewIntNo
= Intrinsic::x86_mmx_psll_q
;
6285 case Intrinsic::x86_mmx_psrli_w
:
6286 NewIntNo
= Intrinsic::x86_mmx_psrl_w
;
6288 case Intrinsic::x86_mmx_psrli_d
:
6289 NewIntNo
= Intrinsic::x86_mmx_psrl_d
;
6291 case Intrinsic::x86_mmx_psrli_q
:
6292 NewIntNo
= Intrinsic::x86_mmx_psrl_q
;
6294 case Intrinsic::x86_mmx_psrai_w
:
6295 NewIntNo
= Intrinsic::x86_mmx_psra_w
;
6297 case Intrinsic::x86_mmx_psrai_d
:
6298 NewIntNo
= Intrinsic::x86_mmx_psra_d
;
6300 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6305 MVT VT
= Op
.getValueType();
6306 ShAmt
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
6307 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, ShAmtVT
, ShAmt
));
6308 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6309 DAG
.getConstant(NewIntNo
, MVT::i32
),
6310 Op
.getOperand(1), ShAmt
);
6315 SDValue
X86TargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) {
6316 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6317 DebugLoc dl
= Op
.getDebugLoc();
6320 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
6322 DAG
.getConstant(TD
->getPointerSize(),
6323 Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
);
6324 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6325 DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6330 // Just load the return address.
6331 SDValue RetAddrFI
= getReturnAddressFrameIndex(DAG
);
6332 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6333 RetAddrFI
, NULL
, 0);
6336 SDValue
X86TargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) {
6337 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
6338 MFI
->setFrameAddressIsTaken(true);
6339 MVT VT
= Op
.getValueType();
6340 DebugLoc dl
= Op
.getDebugLoc(); // FIXME probably not meaningful
6341 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6342 unsigned FrameReg
= Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
;
6343 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
6345 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
, NULL
, 0);
6349 SDValue
X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op
,
6350 SelectionDAG
&DAG
) {
6351 return DAG
.getIntPtrConstant(2*TD
->getPointerSize());
6354 SDValue
X86TargetLowering::LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
6356 MachineFunction
&MF
= DAG
.getMachineFunction();
6357 SDValue Chain
= Op
.getOperand(0);
6358 SDValue Offset
= Op
.getOperand(1);
6359 SDValue Handler
= Op
.getOperand(2);
6360 DebugLoc dl
= Op
.getDebugLoc();
6362 SDValue Frame
= DAG
.getRegister(Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
,
6364 unsigned StoreAddrReg
= (Subtarget
->is64Bit() ? X86::RCX
: X86::ECX
);
6366 SDValue StoreAddr
= DAG
.getNode(ISD::SUB
, dl
, getPointerTy(), Frame
,
6367 DAG
.getIntPtrConstant(-TD
->getPointerSize()));
6368 StoreAddr
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StoreAddr
, Offset
);
6369 Chain
= DAG
.getStore(Chain
, dl
, Handler
, StoreAddr
, NULL
, 0);
6370 Chain
= DAG
.getCopyToReg(Chain
, dl
, StoreAddrReg
, StoreAddr
);
6371 MF
.getRegInfo().addLiveOut(StoreAddrReg
);
6373 return DAG
.getNode(X86ISD::EH_RETURN
, dl
,
6375 Chain
, DAG
.getRegister(StoreAddrReg
, getPointerTy()));
6378 SDValue
X86TargetLowering::LowerTRAMPOLINE(SDValue Op
,
6379 SelectionDAG
&DAG
) {
6380 SDValue Root
= Op
.getOperand(0);
6381 SDValue Trmp
= Op
.getOperand(1); // trampoline
6382 SDValue FPtr
= Op
.getOperand(2); // nested function
6383 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
6384 DebugLoc dl
= Op
.getDebugLoc();
6386 const Value
*TrmpAddr
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
6388 const X86InstrInfo
*TII
=
6389 ((X86TargetMachine
&)getTargetMachine()).getInstrInfo();
6391 if (Subtarget
->is64Bit()) {
6392 SDValue OutChains
[6];
6394 // Large code-model.
6396 const unsigned char JMP64r
= TII
->getBaseOpcodeFor(X86::JMP64r
);
6397 const unsigned char MOV64ri
= TII
->getBaseOpcodeFor(X86::MOV64ri
);
6399 const unsigned char N86R10
= RegInfo
->getX86RegNum(X86::R10
);
6400 const unsigned char N86R11
= RegInfo
->getX86RegNum(X86::R11
);
6402 const unsigned char REX_WB
= 0x40 | 0x08 | 0x01; // REX prefix
6404 // Load the pointer to the nested function into R11.
6405 unsigned OpCode
= ((MOV64ri
| N86R11
) << 8) | REX_WB
; // movabsq r11
6406 SDValue Addr
= Trmp
;
6407 OutChains
[0] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6410 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6411 DAG
.getConstant(2, MVT::i64
));
6412 OutChains
[1] = DAG
.getStore(Root
, dl
, FPtr
, Addr
, TrmpAddr
, 2, false, 2);
6414 // Load the 'nest' parameter value into R10.
6415 // R10 is specified in X86CallingConv.td
6416 OpCode
= ((MOV64ri
| N86R10
) << 8) | REX_WB
; // movabsq r10
6417 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6418 DAG
.getConstant(10, MVT::i64
));
6419 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6420 Addr
, TrmpAddr
, 10);
6422 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6423 DAG
.getConstant(12, MVT::i64
));
6424 OutChains
[3] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 12, false, 2);
6426 // Jump to the nested function.
6427 OpCode
= (JMP64r
<< 8) | REX_WB
; // jmpq *...
6428 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6429 DAG
.getConstant(20, MVT::i64
));
6430 OutChains
[4] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6431 Addr
, TrmpAddr
, 20);
6433 unsigned char ModRM
= N86R11
| (4 << 3) | (3 << 6); // ...r11
6434 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6435 DAG
.getConstant(22, MVT::i64
));
6436 OutChains
[5] = DAG
.getStore(Root
, dl
, DAG
.getConstant(ModRM
, MVT::i8
), Addr
,
6440 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 6) };
6441 return DAG
.getMergeValues(Ops
, 2, dl
);
6443 const Function
*Func
=
6444 cast
<Function
>(cast
<SrcValueSDNode
>(Op
.getOperand(5))->getValue());
6445 unsigned CC
= Func
->getCallingConv();
6450 llvm_unreachable("Unsupported calling convention");
6451 case CallingConv::C
:
6452 case CallingConv::X86_StdCall
: {
6453 // Pass 'nest' parameter in ECX.
6454 // Must be kept in sync with X86CallingConv.td
6457 // Check that ECX wasn't needed by an 'inreg' parameter.
6458 const FunctionType
*FTy
= Func
->getFunctionType();
6459 const AttrListPtr
&Attrs
= Func
->getAttributes();
6461 if (!Attrs
.isEmpty() && !Func
->isVarArg()) {
6462 unsigned InRegCount
= 0;
6465 for (FunctionType::param_iterator I
= FTy
->param_begin(),
6466 E
= FTy
->param_end(); I
!= E
; ++I
, ++Idx
)
6467 if (Attrs
.paramHasAttr(Idx
, Attribute::InReg
))
6468 // FIXME: should only count parameters that are lowered to integers.
6469 InRegCount
+= (TD
->getTypeSizeInBits(*I
) + 31) / 32;
6471 if (InRegCount
> 2) {
6472 llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6477 case CallingConv::X86_FastCall
:
6478 case CallingConv::Fast
:
6479 // Pass 'nest' parameter in EAX.
6480 // Must be kept in sync with X86CallingConv.td
6485 SDValue OutChains
[4];
6488 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6489 DAG
.getConstant(10, MVT::i32
));
6490 Disp
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, FPtr
, Addr
);
6492 const unsigned char MOV32ri
= TII
->getBaseOpcodeFor(X86::MOV32ri
);
6493 const unsigned char N86Reg
= RegInfo
->getX86RegNum(NestReg
);
6494 OutChains
[0] = DAG
.getStore(Root
, dl
,
6495 DAG
.getConstant(MOV32ri
|N86Reg
, MVT::i8
),
6498 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6499 DAG
.getConstant(1, MVT::i32
));
6500 OutChains
[1] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 1, false, 1);
6502 const unsigned char JMP
= TII
->getBaseOpcodeFor(X86::JMP
);
6503 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6504 DAG
.getConstant(5, MVT::i32
));
6505 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(JMP
, MVT::i8
), Addr
,
6506 TrmpAddr
, 5, false, 1);
6508 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6509 DAG
.getConstant(6, MVT::i32
));
6510 OutChains
[3] = DAG
.getStore(Root
, dl
, Disp
, Addr
, TrmpAddr
, 6, false, 1);
6513 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 4) };
6514 return DAG
.getMergeValues(Ops
, 2, dl
);
6518 SDValue
X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) {
6520 The rounding mode is in bits 11:10 of FPSR, and has the following
6527 FLT_ROUNDS, on the other hand, expects the following:
6534 To perform the conversion, we do:
6535 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6538 MachineFunction
&MF
= DAG
.getMachineFunction();
6539 const TargetMachine
&TM
= MF
.getTarget();
6540 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
6541 unsigned StackAlignment
= TFI
.getStackAlignment();
6542 MVT VT
= Op
.getValueType();
6543 DebugLoc dl
= Op
.getDebugLoc();
6545 // Save FP Control Word to stack slot
6546 int SSFI
= MF
.getFrameInfo()->CreateStackObject(2, StackAlignment
);
6547 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
6549 SDValue Chain
= DAG
.getNode(X86ISD::FNSTCW16m
, dl
, MVT::Other
,
6550 DAG
.getEntryNode(), StackSlot
);
6552 // Load FP Control Word from stack slot
6553 SDValue CWD
= DAG
.getLoad(MVT::i16
, dl
, Chain
, StackSlot
, NULL
, 0);
6555 // Transform as necessary
6557 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6558 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6559 CWD
, DAG
.getConstant(0x800, MVT::i16
)),
6560 DAG
.getConstant(11, MVT::i8
));
6562 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6563 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6564 CWD
, DAG
.getConstant(0x400, MVT::i16
)),
6565 DAG
.getConstant(9, MVT::i8
));
6568 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6569 DAG
.getNode(ISD::ADD
, dl
, MVT::i16
,
6570 DAG
.getNode(ISD::OR
, dl
, MVT::i16
, CWD1
, CWD2
),
6571 DAG
.getConstant(1, MVT::i16
)),
6572 DAG
.getConstant(3, MVT::i16
));
6575 return DAG
.getNode((VT
.getSizeInBits() < 16 ?
6576 ISD::TRUNCATE
: ISD::ZERO_EXTEND
), dl
, VT
, RetVal
);
6579 SDValue
X86TargetLowering::LowerCTLZ(SDValue Op
, SelectionDAG
&DAG
) {
6580 MVT VT
= Op
.getValueType();
6582 unsigned NumBits
= VT
.getSizeInBits();
6583 DebugLoc dl
= Op
.getDebugLoc();
6585 Op
= Op
.getOperand(0);
6586 if (VT
== MVT::i8
) {
6587 // Zero extend to i32 since there is not an i8 bsr.
6589 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6592 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6593 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6594 Op
= DAG
.getNode(X86ISD::BSR
, dl
, VTs
, Op
);
6596 // If src is zero (i.e. bsr sets ZF), returns NumBits.
6597 SmallVector
<SDValue
, 4> Ops
;
6599 Ops
.push_back(DAG
.getConstant(NumBits
+NumBits
-1, OpVT
));
6600 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6601 Ops
.push_back(Op
.getValue(1));
6602 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6604 // Finally xor with NumBits-1.
6605 Op
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Op
, DAG
.getConstant(NumBits
-1, OpVT
));
6608 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6612 SDValue
X86TargetLowering::LowerCTTZ(SDValue Op
, SelectionDAG
&DAG
) {
6613 MVT VT
= Op
.getValueType();
6615 unsigned NumBits
= VT
.getSizeInBits();
6616 DebugLoc dl
= Op
.getDebugLoc();
6618 Op
= Op
.getOperand(0);
6619 if (VT
== MVT::i8
) {
6621 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6624 // Issue a bsf (scan bits forward) which also sets EFLAGS.
6625 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6626 Op
= DAG
.getNode(X86ISD::BSF
, dl
, VTs
, Op
);
6628 // If src is zero (i.e. bsf sets ZF), returns NumBits.
6629 SmallVector
<SDValue
, 4> Ops
;
6631 Ops
.push_back(DAG
.getConstant(NumBits
, OpVT
));
6632 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6633 Ops
.push_back(Op
.getValue(1));
6634 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6637 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6641 SDValue
X86TargetLowering::LowerMUL_V2I64(SDValue Op
, SelectionDAG
&DAG
) {
6642 MVT VT
= Op
.getValueType();
6643 assert(VT
== MVT::v2i64
&& "Only know how to lower V2I64 multiply");
6644 DebugLoc dl
= Op
.getDebugLoc();
6646 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6647 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6648 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6649 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6650 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6652 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6653 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6654 // return AloBlo + AloBhi + AhiBlo;
6656 SDValue A
= Op
.getOperand(0);
6657 SDValue B
= Op
.getOperand(1);
6659 SDValue Ahi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6660 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6661 A
, DAG
.getConstant(32, MVT::i32
));
6662 SDValue Bhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6663 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6664 B
, DAG
.getConstant(32, MVT::i32
));
6665 SDValue AloBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6666 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6668 SDValue AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6669 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6671 SDValue AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6672 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6674 AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6675 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6676 AloBhi
, DAG
.getConstant(32, MVT::i32
));
6677 AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6678 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6679 AhiBlo
, DAG
.getConstant(32, MVT::i32
));
6680 SDValue Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, AloBlo
, AloBhi
);
6681 Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, Res
, AhiBlo
);
6686 SDValue
X86TargetLowering::LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) {
6687 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6688 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6689 // looks for this combo and may remove the "setcc" instruction if the "setcc"
6690 // has only one use.
6691 SDNode
*N
= Op
.getNode();
6692 SDValue LHS
= N
->getOperand(0);
6693 SDValue RHS
= N
->getOperand(1);
6694 unsigned BaseOp
= 0;
6696 DebugLoc dl
= Op
.getDebugLoc();
6698 switch (Op
.getOpcode()) {
6699 default: llvm_unreachable("Unknown ovf instruction!");
6701 // A subtract of one will be selected as a INC. Note that INC doesn't
6702 // set CF, so we can't do this for UADDO.
6703 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6704 if (C
->getAPIntValue() == 1) {
6705 BaseOp
= X86ISD::INC
;
6709 BaseOp
= X86ISD::ADD
;
6713 BaseOp
= X86ISD::ADD
;
6717 // A subtract of one will be selected as a DEC. Note that DEC doesn't
6718 // set CF, so we can't do this for USUBO.
6719 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6720 if (C
->getAPIntValue() == 1) {
6721 BaseOp
= X86ISD::DEC
;
6725 BaseOp
= X86ISD::SUB
;
6729 BaseOp
= X86ISD::SUB
;
6733 BaseOp
= X86ISD::SMUL
;
6737 BaseOp
= X86ISD::UMUL
;
6742 // Also sets EFLAGS.
6743 SDVTList VTs
= DAG
.getVTList(N
->getValueType(0), MVT::i32
);
6744 SDValue Sum
= DAG
.getNode(BaseOp
, dl
, VTs
, LHS
, RHS
);
6747 DAG
.getNode(X86ISD::SETCC
, dl
, N
->getValueType(1),
6748 DAG
.getConstant(Cond
, MVT::i32
), SDValue(Sum
.getNode(), 1));
6750 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), SetCC
);
6754 SDValue
X86TargetLowering::LowerCMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) {
6755 MVT T
= Op
.getValueType();
6756 DebugLoc dl
= Op
.getDebugLoc();
6759 switch(T
.getSimpleVT()) {
6761 assert(false && "Invalid value type!");
6762 case MVT::i8
: Reg
= X86::AL
; size
= 1; break;
6763 case MVT::i16
: Reg
= X86::AX
; size
= 2; break;
6764 case MVT::i32
: Reg
= X86::EAX
; size
= 4; break;
6766 assert(Subtarget
->is64Bit() && "Node not type legal!");
6767 Reg
= X86::RAX
; size
= 8;
6770 SDValue cpIn
= DAG
.getCopyToReg(Op
.getOperand(0), dl
, Reg
,
6771 Op
.getOperand(2), SDValue());
6772 SDValue Ops
[] = { cpIn
.getValue(0),
6775 DAG
.getTargetConstant(size
, MVT::i8
),
6777 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6778 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG_DAG
, dl
, Tys
, Ops
, 5);
6780 DAG
.getCopyFromReg(Result
.getValue(0), dl
, Reg
, T
, Result
.getValue(1));
6784 SDValue
X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op
,
6785 SelectionDAG
&DAG
) {
6786 assert(Subtarget
->is64Bit() && "Result not type legalized?");
6787 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6788 SDValue TheChain
= Op
.getOperand(0);
6789 DebugLoc dl
= Op
.getDebugLoc();
6790 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6791 SDValue rax
= DAG
.getCopyFromReg(rd
, dl
, X86::RAX
, MVT::i64
, rd
.getValue(1));
6792 SDValue rdx
= DAG
.getCopyFromReg(rax
.getValue(1), dl
, X86::RDX
, MVT::i64
,
6794 SDValue Tmp
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, rdx
,
6795 DAG
.getConstant(32, MVT::i8
));
6797 DAG
.getNode(ISD::OR
, dl
, MVT::i64
, rax
, Tmp
),
6800 return DAG
.getMergeValues(Ops
, 2, dl
);
6803 SDValue
X86TargetLowering::LowerLOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) {
6804 SDNode
*Node
= Op
.getNode();
6805 DebugLoc dl
= Node
->getDebugLoc();
6806 MVT T
= Node
->getValueType(0);
6807 SDValue negOp
= DAG
.getNode(ISD::SUB
, dl
, T
,
6808 DAG
.getConstant(0, T
), Node
->getOperand(2));
6809 return DAG
.getAtomic(ISD::ATOMIC_LOAD_ADD
, dl
,
6810 cast
<AtomicSDNode
>(Node
)->getMemoryVT(),
6811 Node
->getOperand(0),
6812 Node
->getOperand(1), negOp
,
6813 cast
<AtomicSDNode
>(Node
)->getSrcValue(),
6814 cast
<AtomicSDNode
>(Node
)->getAlignment());
6817 /// LowerOperation - Provide custom lowering hooks for some operations.
6819 SDValue
X86TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) {
6820 switch (Op
.getOpcode()) {
6821 default: llvm_unreachable("Should not custom lower this!");
6822 case ISD::ATOMIC_CMP_SWAP
: return LowerCMP_SWAP(Op
,DAG
);
6823 case ISD::ATOMIC_LOAD_SUB
: return LowerLOAD_SUB(Op
,DAG
);
6824 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
6825 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
6826 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
6827 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
6828 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
6829 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
6830 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
6831 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
6832 case ISD::ExternalSymbol
: return LowerExternalSymbol(Op
, DAG
);
6833 case ISD::SHL_PARTS
:
6834 case ISD::SRA_PARTS
:
6835 case ISD::SRL_PARTS
: return LowerShift(Op
, DAG
);
6836 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
6837 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
6838 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
6839 case ISD::FP_TO_UINT
: return LowerFP_TO_UINT(Op
, DAG
);
6840 case ISD::FABS
: return LowerFABS(Op
, DAG
);
6841 case ISD::FNEG
: return LowerFNEG(Op
, DAG
);
6842 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
6843 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
6844 case ISD::VSETCC
: return LowerVSETCC(Op
, DAG
);
6845 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
6846 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
6847 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
6848 case ISD::CALL
: return LowerCALL(Op
, DAG
);
6849 case ISD::RET
: return LowerRET(Op
, DAG
);
6850 case ISD::FORMAL_ARGUMENTS
: return LowerFORMAL_ARGUMENTS(Op
, DAG
);
6851 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
6852 case ISD::VAARG
: return LowerVAARG(Op
, DAG
);
6853 case ISD::VACOPY
: return LowerVACOPY(Op
, DAG
);
6854 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
6855 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
6856 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
6857 case ISD::FRAME_TO_ARGS_OFFSET
:
6858 return LowerFRAME_TO_ARGS_OFFSET(Op
, DAG
);
6859 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
6860 case ISD::EH_RETURN
: return LowerEH_RETURN(Op
, DAG
);
6861 case ISD::TRAMPOLINE
: return LowerTRAMPOLINE(Op
, DAG
);
6862 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
6863 case ISD::CTLZ
: return LowerCTLZ(Op
, DAG
);
6864 case ISD::CTTZ
: return LowerCTTZ(Op
, DAG
);
6865 case ISD::MUL
: return LowerMUL_V2I64(Op
, DAG
);
6871 case ISD::UMULO
: return LowerXALUO(Op
, DAG
);
6872 case ISD::READCYCLECOUNTER
: return LowerREADCYCLECOUNTER(Op
, DAG
);
6876 void X86TargetLowering::
6877 ReplaceATOMIC_BINARY_64(SDNode
*Node
, SmallVectorImpl
<SDValue
>&Results
,
6878 SelectionDAG
&DAG
, unsigned NewOp
) {
6879 MVT T
= Node
->getValueType(0);
6880 DebugLoc dl
= Node
->getDebugLoc();
6881 assert (T
== MVT::i64
&& "Only know how to expand i64 atomics");
6883 SDValue Chain
= Node
->getOperand(0);
6884 SDValue In1
= Node
->getOperand(1);
6885 SDValue In2L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6886 Node
->getOperand(2), DAG
.getIntPtrConstant(0));
6887 SDValue In2H
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6888 Node
->getOperand(2), DAG
.getIntPtrConstant(1));
6889 // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6890 // have a MemOperand. Pass the info through as a normal operand.
6891 SDValue LSI
= DAG
.getMemOperand(cast
<MemSDNode
>(Node
)->getMemOperand());
6892 SDValue Ops
[] = { Chain
, In1
, In2L
, In2H
, LSI
};
6893 SDVTList Tys
= DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
);
6894 SDValue Result
= DAG
.getNode(NewOp
, dl
, Tys
, Ops
, 5);
6895 SDValue OpsF
[] = { Result
.getValue(0), Result
.getValue(1)};
6896 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
6897 Results
.push_back(Result
.getValue(2));
6900 /// ReplaceNodeResults - Replace a node with an illegal result type
6901 /// with a new node built out of custom code.
6902 void X86TargetLowering::ReplaceNodeResults(SDNode
*N
,
6903 SmallVectorImpl
<SDValue
>&Results
,
6904 SelectionDAG
&DAG
) {
6905 DebugLoc dl
= N
->getDebugLoc();
6906 switch (N
->getOpcode()) {
6908 assert(false && "Do not know how to custom type legalize this operation!");
6910 case ISD::FP_TO_SINT
: {
6911 std::pair
<SDValue
,SDValue
> Vals
=
6912 FP_TO_INTHelper(SDValue(N
, 0), DAG
, true);
6913 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
6914 if (FIST
.getNode() != 0) {
6915 MVT VT
= N
->getValueType(0);
6916 // Return a load from the stack slot.
6917 Results
.push_back(DAG
.getLoad(VT
, dl
, FIST
, StackSlot
, NULL
, 0));
6921 case ISD::READCYCLECOUNTER
: {
6922 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6923 SDValue TheChain
= N
->getOperand(0);
6924 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6925 SDValue eax
= DAG
.getCopyFromReg(rd
, dl
, X86::EAX
, MVT::i32
,
6927 SDValue edx
= DAG
.getCopyFromReg(eax
.getValue(1), dl
, X86::EDX
, MVT::i32
,
6929 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6930 SDValue Ops
[] = { eax
, edx
};
6931 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Ops
, 2));
6932 Results
.push_back(edx
.getValue(1));
6935 case ISD::ATOMIC_CMP_SWAP
: {
6936 MVT T
= N
->getValueType(0);
6937 assert (T
== MVT::i64
&& "Only know how to expand i64 Cmp and Swap");
6938 SDValue cpInL
, cpInH
;
6939 cpInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
6940 DAG
.getConstant(0, MVT::i32
));
6941 cpInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
6942 DAG
.getConstant(1, MVT::i32
));
6943 cpInL
= DAG
.getCopyToReg(N
->getOperand(0), dl
, X86::EAX
, cpInL
, SDValue());
6944 cpInH
= DAG
.getCopyToReg(cpInL
.getValue(0), dl
, X86::EDX
, cpInH
,
6946 SDValue swapInL
, swapInH
;
6947 swapInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
6948 DAG
.getConstant(0, MVT::i32
));
6949 swapInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
6950 DAG
.getConstant(1, MVT::i32
));
6951 swapInL
= DAG
.getCopyToReg(cpInH
.getValue(0), dl
, X86::EBX
, swapInL
,
6953 swapInH
= DAG
.getCopyToReg(swapInL
.getValue(0), dl
, X86::ECX
, swapInH
,
6954 swapInL
.getValue(1));
6955 SDValue Ops
[] = { swapInH
.getValue(0),
6957 swapInH
.getValue(1) };
6958 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6959 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG8_DAG
, dl
, Tys
, Ops
, 3);
6960 SDValue cpOutL
= DAG
.getCopyFromReg(Result
.getValue(0), dl
, X86::EAX
,
6961 MVT::i32
, Result
.getValue(1));
6962 SDValue cpOutH
= DAG
.getCopyFromReg(cpOutL
.getValue(1), dl
, X86::EDX
,
6963 MVT::i32
, cpOutL
.getValue(2));
6964 SDValue OpsF
[] = { cpOutL
.getValue(0), cpOutH
.getValue(0)};
6965 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
6966 Results
.push_back(cpOutH
.getValue(1));
6969 case ISD::ATOMIC_LOAD_ADD
:
6970 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMADD64_DAG
);
6972 case ISD::ATOMIC_LOAD_AND
:
6973 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMAND64_DAG
);
6975 case ISD::ATOMIC_LOAD_NAND
:
6976 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMNAND64_DAG
);
6978 case ISD::ATOMIC_LOAD_OR
:
6979 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMOR64_DAG
);
6981 case ISD::ATOMIC_LOAD_SUB
:
6982 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSUB64_DAG
);
6984 case ISD::ATOMIC_LOAD_XOR
:
6985 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMXOR64_DAG
);
6987 case ISD::ATOMIC_SWAP
:
6988 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSWAP64_DAG
);
6993 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode
) const {
6995 default: return NULL
;
6996 case X86ISD::BSF
: return "X86ISD::BSF";
6997 case X86ISD::BSR
: return "X86ISD::BSR";
6998 case X86ISD::SHLD
: return "X86ISD::SHLD";
6999 case X86ISD::SHRD
: return "X86ISD::SHRD";
7000 case X86ISD::FAND
: return "X86ISD::FAND";
7001 case X86ISD::FOR
: return "X86ISD::FOR";
7002 case X86ISD::FXOR
: return "X86ISD::FXOR";
7003 case X86ISD::FSRL
: return "X86ISD::FSRL";
7004 case X86ISD::FILD
: return "X86ISD::FILD";
7005 case X86ISD::FILD_FLAG
: return "X86ISD::FILD_FLAG";
7006 case X86ISD::FP_TO_INT16_IN_MEM
: return "X86ISD::FP_TO_INT16_IN_MEM";
7007 case X86ISD::FP_TO_INT32_IN_MEM
: return "X86ISD::FP_TO_INT32_IN_MEM";
7008 case X86ISD::FP_TO_INT64_IN_MEM
: return "X86ISD::FP_TO_INT64_IN_MEM";
7009 case X86ISD::FLD
: return "X86ISD::FLD";
7010 case X86ISD::FST
: return "X86ISD::FST";
7011 case X86ISD::CALL
: return "X86ISD::CALL";
7012 case X86ISD::TAILCALL
: return "X86ISD::TAILCALL";
7013 case X86ISD::RDTSC_DAG
: return "X86ISD::RDTSC_DAG";
7014 case X86ISD::BT
: return "X86ISD::BT";
7015 case X86ISD::CMP
: return "X86ISD::CMP";
7016 case X86ISD::COMI
: return "X86ISD::COMI";
7017 case X86ISD::UCOMI
: return "X86ISD::UCOMI";
7018 case X86ISD::SETCC
: return "X86ISD::SETCC";
7019 case X86ISD::CMOV
: return "X86ISD::CMOV";
7020 case X86ISD::BRCOND
: return "X86ISD::BRCOND";
7021 case X86ISD::RET_FLAG
: return "X86ISD::RET_FLAG";
7022 case X86ISD::REP_STOS
: return "X86ISD::REP_STOS";
7023 case X86ISD::REP_MOVS
: return "X86ISD::REP_MOVS";
7024 case X86ISD::GlobalBaseReg
: return "X86ISD::GlobalBaseReg";
7025 case X86ISD::Wrapper
: return "X86ISD::Wrapper";
7026 case X86ISD::WrapperRIP
: return "X86ISD::WrapperRIP";
7027 case X86ISD::PEXTRB
: return "X86ISD::PEXTRB";
7028 case X86ISD::PEXTRW
: return "X86ISD::PEXTRW";
7029 case X86ISD::INSERTPS
: return "X86ISD::INSERTPS";
7030 case X86ISD::PINSRB
: return "X86ISD::PINSRB";
7031 case X86ISD::PINSRW
: return "X86ISD::PINSRW";
7032 case X86ISD::PSHUFB
: return "X86ISD::PSHUFB";
7033 case X86ISD::FMAX
: return "X86ISD::FMAX";
7034 case X86ISD::FMIN
: return "X86ISD::FMIN";
7035 case X86ISD::FRSQRT
: return "X86ISD::FRSQRT";
7036 case X86ISD::FRCP
: return "X86ISD::FRCP";
7037 case X86ISD::TLSADDR
: return "X86ISD::TLSADDR";
7038 case X86ISD::SegmentBaseAddress
: return "X86ISD::SegmentBaseAddress";
7039 case X86ISD::EH_RETURN
: return "X86ISD::EH_RETURN";
7040 case X86ISD::TC_RETURN
: return "X86ISD::TC_RETURN";
7041 case X86ISD::FNSTCW16m
: return "X86ISD::FNSTCW16m";
7042 case X86ISD::LCMPXCHG_DAG
: return "X86ISD::LCMPXCHG_DAG";
7043 case X86ISD::LCMPXCHG8_DAG
: return "X86ISD::LCMPXCHG8_DAG";
7044 case X86ISD::ATOMADD64_DAG
: return "X86ISD::ATOMADD64_DAG";
7045 case X86ISD::ATOMSUB64_DAG
: return "X86ISD::ATOMSUB64_DAG";
7046 case X86ISD::ATOMOR64_DAG
: return "X86ISD::ATOMOR64_DAG";
7047 case X86ISD::ATOMXOR64_DAG
: return "X86ISD::ATOMXOR64_DAG";
7048 case X86ISD::ATOMAND64_DAG
: return "X86ISD::ATOMAND64_DAG";
7049 case X86ISD::ATOMNAND64_DAG
: return "X86ISD::ATOMNAND64_DAG";
7050 case X86ISD::VZEXT_MOVL
: return "X86ISD::VZEXT_MOVL";
7051 case X86ISD::VZEXT_LOAD
: return "X86ISD::VZEXT_LOAD";
7052 case X86ISD::VSHL
: return "X86ISD::VSHL";
7053 case X86ISD::VSRL
: return "X86ISD::VSRL";
7054 case X86ISD::CMPPD
: return "X86ISD::CMPPD";
7055 case X86ISD::CMPPS
: return "X86ISD::CMPPS";
7056 case X86ISD::PCMPEQB
: return "X86ISD::PCMPEQB";
7057 case X86ISD::PCMPEQW
: return "X86ISD::PCMPEQW";
7058 case X86ISD::PCMPEQD
: return "X86ISD::PCMPEQD";
7059 case X86ISD::PCMPEQQ
: return "X86ISD::PCMPEQQ";
7060 case X86ISD::PCMPGTB
: return "X86ISD::PCMPGTB";
7061 case X86ISD::PCMPGTW
: return "X86ISD::PCMPGTW";
7062 case X86ISD::PCMPGTD
: return "X86ISD::PCMPGTD";
7063 case X86ISD::PCMPGTQ
: return "X86ISD::PCMPGTQ";
7064 case X86ISD::ADD
: return "X86ISD::ADD";
7065 case X86ISD::SUB
: return "X86ISD::SUB";
7066 case X86ISD::SMUL
: return "X86ISD::SMUL";
7067 case X86ISD::UMUL
: return "X86ISD::UMUL";
7068 case X86ISD::INC
: return "X86ISD::INC";
7069 case X86ISD::DEC
: return "X86ISD::DEC";
7070 case X86ISD::MUL_IMM
: return "X86ISD::MUL_IMM";
7071 case X86ISD::PTEST
: return "X86ISD::PTEST";
7075 // isLegalAddressingMode - Return true if the addressing mode represented
7076 // by AM is legal for this target, for a load/store of the specified type.
7077 bool X86TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
7078 const Type
*Ty
) const {
7079 // X86 supports extremely general addressing modes.
7081 // X86 allows a sign-extended 32-bit immediate field as a displacement.
7082 if (AM
.BaseOffs
<= -(1LL << 32) || AM
.BaseOffs
>= (1LL << 32)-1)
7087 Subtarget
->ClassifyGlobalReference(AM
.BaseGV
, getTargetMachine());
7089 // If a reference to this global requires an extra load, we can't fold it.
7090 if (isGlobalStubReference(GVFlags
))
7093 // If BaseGV requires a register for the PIC base, we cannot also have a
7094 // BaseReg specified.
7095 if (AM
.HasBaseReg
&& isGlobalRelativeToPICBase(GVFlags
))
7098 // X86-64 only supports addr of globals in small code model.
7099 if (Subtarget
->is64Bit()) {
7100 if (getTargetMachine().getCodeModel() != CodeModel::Small
)
7102 // If lower 4G is not available, then we must use rip-relative addressing.
7103 if (AM
.BaseOffs
|| AM
.Scale
> 1)
7114 // These scales always work.
7119 // These scales are formed with basereg+scalereg. Only accept if there is
7124 default: // Other stuff never works.
7132 bool X86TargetLowering::isTruncateFree(const Type
*Ty1
, const Type
*Ty2
) const {
7133 if (!Ty1
->isInteger() || !Ty2
->isInteger())
7135 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
7136 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
7137 if (NumBits1
<= NumBits2
)
7139 return Subtarget
->is64Bit() || NumBits1
< 64;
7142 bool X86TargetLowering::isTruncateFree(MVT VT1
, MVT VT2
) const {
7143 if (!VT1
.isInteger() || !VT2
.isInteger())
7145 unsigned NumBits1
= VT1
.getSizeInBits();
7146 unsigned NumBits2
= VT2
.getSizeInBits();
7147 if (NumBits1
<= NumBits2
)
7149 return Subtarget
->is64Bit() || NumBits1
< 64;
7152 bool X86TargetLowering::isZExtFree(const Type
*Ty1
, const Type
*Ty2
) const {
7153 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7154 return Ty1
== Type::Int32Ty
&& Ty2
== Type::Int64Ty
&& Subtarget
->is64Bit();
7157 bool X86TargetLowering::isZExtFree(MVT VT1
, MVT VT2
) const {
7158 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7159 return VT1
== MVT::i32
&& VT2
== MVT::i64
&& Subtarget
->is64Bit();
7162 bool X86TargetLowering::isNarrowingProfitable(MVT VT1
, MVT VT2
) const {
7163 // i16 instructions are longer (0x66 prefix) and potentially slower.
7164 return !(VT1
== MVT::i32
&& VT2
== MVT::i16
);
7167 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7168 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7169 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7170 /// are assumed to be legal.
7172 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl
<int> &M
,
7174 // Only do shuffles on 128-bit vector types for now.
7175 if (VT
.getSizeInBits() == 64)
7178 // FIXME: pshufb, blends, palignr, shifts.
7179 return (VT
.getVectorNumElements() == 2 ||
7180 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7181 isMOVLMask(M
, VT
) ||
7182 isSHUFPMask(M
, VT
) ||
7183 isPSHUFDMask(M
, VT
) ||
7184 isPSHUFHWMask(M
, VT
) ||
7185 isPSHUFLWMask(M
, VT
) ||
7186 isUNPCKLMask(M
, VT
) ||
7187 isUNPCKHMask(M
, VT
) ||
7188 isUNPCKL_v_undef_Mask(M
, VT
) ||
7189 isUNPCKH_v_undef_Mask(M
, VT
));
7193 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl
<int> &Mask
,
7195 unsigned NumElts
= VT
.getVectorNumElements();
7196 // FIXME: This collection of masks seems suspect.
7199 if (NumElts
== 4 && VT
.getSizeInBits() == 128) {
7200 return (isMOVLMask(Mask
, VT
) ||
7201 isCommutedMOVLMask(Mask
, VT
, true) ||
7202 isSHUFPMask(Mask
, VT
) ||
7203 isCommutedSHUFPMask(Mask
, VT
));
7208 //===----------------------------------------------------------------------===//
7209 // X86 Scheduler Hooks
7210 //===----------------------------------------------------------------------===//
7212 // private utility function
7214 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr
*bInstr
,
7215 MachineBasicBlock
*MBB
,
7223 TargetRegisterClass
*RC
,
7224 bool invSrc
) const {
7225 // For the atomic bitwise operator, we generate
7228 // ld t1 = [bitinstr.addr]
7229 // op t2 = t1, [bitinstr.val]
7231 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7233 // fallthrough -->nextMBB
7234 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7235 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7236 MachineFunction::iterator MBBIter
= MBB
;
7239 /// First build the CFG
7240 MachineFunction
*F
= MBB
->getParent();
7241 MachineBasicBlock
*thisMBB
= MBB
;
7242 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7243 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7244 F
->insert(MBBIter
, newMBB
);
7245 F
->insert(MBBIter
, nextMBB
);
7247 // Move all successors to thisMBB to nextMBB
7248 nextMBB
->transferSuccessors(thisMBB
);
7250 // Update thisMBB to fall through to newMBB
7251 thisMBB
->addSuccessor(newMBB
);
7253 // newMBB jumps to itself and fall through to nextMBB
7254 newMBB
->addSuccessor(nextMBB
);
7255 newMBB
->addSuccessor(newMBB
);
7257 // Insert instructions into newMBB based on incoming instruction
7258 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
7259 "unexpected number of operands");
7260 DebugLoc dl
= bInstr
->getDebugLoc();
7261 MachineOperand
& destOper
= bInstr
->getOperand(0);
7262 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7263 int numArgs
= bInstr
->getNumOperands() - 1;
7264 for (int i
=0; i
< numArgs
; ++i
)
7265 argOpers
[i
] = &bInstr
->getOperand(i
+1);
7267 // x86 address has 4 operands: base, index, scale, and displacement
7268 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7269 int valArgIndx
= lastAddrIndx
+ 1;
7271 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
7272 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(LoadOpc
), t1
);
7273 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7274 (*MIB
).addOperand(*argOpers
[i
]);
7276 unsigned tt
= F
->getRegInfo().createVirtualRegister(RC
);
7278 MIB
= BuildMI(newMBB
, dl
, TII
->get(notOpc
), tt
).addReg(t1
);
7283 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
7284 assert((argOpers
[valArgIndx
]->isReg() ||
7285 argOpers
[valArgIndx
]->isImm()) &&
7287 if (argOpers
[valArgIndx
]->isReg())
7288 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpc
), t2
);
7290 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpc
), t2
);
7292 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7294 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), EAXreg
);
7297 MIB
= BuildMI(newMBB
, dl
, TII
->get(CXchgOpc
));
7298 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7299 (*MIB
).addOperand(*argOpers
[i
]);
7301 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7302 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7304 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), destOper
.getReg());
7308 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7310 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7314 // private utility function: 64 bit atomics on 32 bit host.
7316 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr
*bInstr
,
7317 MachineBasicBlock
*MBB
,
7322 bool invSrc
) const {
7323 // For the atomic bitwise operator, we generate
7324 // thisMBB (instructions are in pairs, except cmpxchg8b)
7325 // ld t1,t2 = [bitinstr.addr]
7327 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7328 // op t5, t6 <- out1, out2, [bitinstr.val]
7329 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
7330 // mov ECX, EBX <- t5, t6
7331 // mov EAX, EDX <- t1, t2
7332 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
7333 // mov t3, t4 <- EAX, EDX
7335 // result in out1, out2
7336 // fallthrough -->nextMBB
7338 const TargetRegisterClass
*RC
= X86::GR32RegisterClass
;
7339 const unsigned LoadOpc
= X86::MOV32rm
;
7340 const unsigned copyOpc
= X86::MOV32rr
;
7341 const unsigned NotOpc
= X86::NOT32r
;
7342 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7343 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7344 MachineFunction::iterator MBBIter
= MBB
;
7347 /// First build the CFG
7348 MachineFunction
*F
= MBB
->getParent();
7349 MachineBasicBlock
*thisMBB
= MBB
;
7350 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7351 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7352 F
->insert(MBBIter
, newMBB
);
7353 F
->insert(MBBIter
, nextMBB
);
7355 // Move all successors to thisMBB to nextMBB
7356 nextMBB
->transferSuccessors(thisMBB
);
7358 // Update thisMBB to fall through to newMBB
7359 thisMBB
->addSuccessor(newMBB
);
7361 // newMBB jumps to itself and fall through to nextMBB
7362 newMBB
->addSuccessor(nextMBB
);
7363 newMBB
->addSuccessor(newMBB
);
7365 DebugLoc dl
= bInstr
->getDebugLoc();
7366 // Insert instructions into newMBB based on incoming instruction
7367 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7368 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 14 &&
7369 "unexpected number of operands");
7370 MachineOperand
& dest1Oper
= bInstr
->getOperand(0);
7371 MachineOperand
& dest2Oper
= bInstr
->getOperand(1);
7372 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7373 for (int i
=0; i
< 2 + X86AddrNumOperands
; ++i
)
7374 argOpers
[i
] = &bInstr
->getOperand(i
+2);
7376 // x86 address has 4 operands: base, index, scale, and displacement
7377 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7379 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
7380 MachineInstrBuilder MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t1
);
7381 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7382 (*MIB
).addOperand(*argOpers
[i
]);
7383 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
7384 MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t2
);
7385 // add 4 to displacement.
7386 for (int i
=0; i
<= lastAddrIndx
-2; ++i
)
7387 (*MIB
).addOperand(*argOpers
[i
]);
7388 MachineOperand newOp3
= *(argOpers
[3]);
7390 newOp3
.setImm(newOp3
.getImm()+4);
7392 newOp3
.setOffset(newOp3
.getOffset()+4);
7393 (*MIB
).addOperand(newOp3
);
7394 (*MIB
).addOperand(*argOpers
[lastAddrIndx
]);
7396 // t3/4 are defined later, at the bottom of the loop
7397 unsigned t3
= F
->getRegInfo().createVirtualRegister(RC
);
7398 unsigned t4
= F
->getRegInfo().createVirtualRegister(RC
);
7399 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest1Oper
.getReg())
7400 .addReg(t1
).addMBB(thisMBB
).addReg(t3
).addMBB(newMBB
);
7401 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest2Oper
.getReg())
7402 .addReg(t2
).addMBB(thisMBB
).addReg(t4
).addMBB(newMBB
);
7404 unsigned tt1
= F
->getRegInfo().createVirtualRegister(RC
);
7405 unsigned tt2
= F
->getRegInfo().createVirtualRegister(RC
);
7407 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt1
).addReg(t1
);
7408 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt2
).addReg(t2
);
7414 int valArgIndx
= lastAddrIndx
+ 1;
7415 assert((argOpers
[valArgIndx
]->isReg() ||
7416 argOpers
[valArgIndx
]->isImm()) &&
7418 unsigned t5
= F
->getRegInfo().createVirtualRegister(RC
);
7419 unsigned t6
= F
->getRegInfo().createVirtualRegister(RC
);
7420 if (argOpers
[valArgIndx
]->isReg())
7421 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcL
), t5
);
7423 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcL
), t5
);
7424 if (regOpcL
!= X86::MOV32rr
)
7426 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7427 assert(argOpers
[valArgIndx
+ 1]->isReg() ==
7428 argOpers
[valArgIndx
]->isReg());
7429 assert(argOpers
[valArgIndx
+ 1]->isImm() ==
7430 argOpers
[valArgIndx
]->isImm());
7431 if (argOpers
[valArgIndx
+ 1]->isReg())
7432 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcH
), t6
);
7434 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcH
), t6
);
7435 if (regOpcH
!= X86::MOV32rr
)
7437 (*MIB
).addOperand(*argOpers
[valArgIndx
+ 1]);
7439 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EAX
);
7441 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EDX
);
7444 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EBX
);
7446 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::ECX
);
7449 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG8B
));
7450 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7451 (*MIB
).addOperand(*argOpers
[i
]);
7453 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7454 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7456 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t3
);
7457 MIB
.addReg(X86::EAX
);
7458 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t4
);
7459 MIB
.addReg(X86::EDX
);
7462 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7464 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7468 // private utility function
7470 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr
*mInstr
,
7471 MachineBasicBlock
*MBB
,
7472 unsigned cmovOpc
) const {
7473 // For the atomic min/max operator, we generate
7476 // ld t1 = [min/max.addr]
7477 // mov t2 = [min/max.val]
7479 // cmov[cond] t2 = t1
7481 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7483 // fallthrough -->nextMBB
7485 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7486 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7487 MachineFunction::iterator MBBIter
= MBB
;
7490 /// First build the CFG
7491 MachineFunction
*F
= MBB
->getParent();
7492 MachineBasicBlock
*thisMBB
= MBB
;
7493 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7494 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7495 F
->insert(MBBIter
, newMBB
);
7496 F
->insert(MBBIter
, nextMBB
);
7498 // Move all successors to thisMBB to nextMBB
7499 nextMBB
->transferSuccessors(thisMBB
);
7501 // Update thisMBB to fall through to newMBB
7502 thisMBB
->addSuccessor(newMBB
);
7504 // newMBB jumps to newMBB and fall through to nextMBB
7505 newMBB
->addSuccessor(nextMBB
);
7506 newMBB
->addSuccessor(newMBB
);
7508 DebugLoc dl
= mInstr
->getDebugLoc();
7509 // Insert instructions into newMBB based on incoming instruction
7510 assert(mInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
7511 "unexpected number of operands");
7512 MachineOperand
& destOper
= mInstr
->getOperand(0);
7513 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7514 int numArgs
= mInstr
->getNumOperands() - 1;
7515 for (int i
=0; i
< numArgs
; ++i
)
7516 argOpers
[i
] = &mInstr
->getOperand(i
+1);
7518 // x86 address has 4 operands: base, index, scale, and displacement
7519 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7520 int valArgIndx
= lastAddrIndx
+ 1;
7522 unsigned t1
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7523 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rm
), t1
);
7524 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7525 (*MIB
).addOperand(*argOpers
[i
]);
7527 // We only support register and immediate values
7528 assert((argOpers
[valArgIndx
]->isReg() ||
7529 argOpers
[valArgIndx
]->isImm()) &&
7532 unsigned t2
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7533 if (argOpers
[valArgIndx
]->isReg())
7534 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7536 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7537 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7539 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), X86::EAX
);
7542 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::CMP32rr
));
7547 unsigned t3
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7548 MIB
= BuildMI(newMBB
, dl
, TII
->get(cmovOpc
),t3
);
7552 // Cmp and exchange if none has modified the memory location
7553 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG32
));
7554 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7555 (*MIB
).addOperand(*argOpers
[i
]);
7557 assert(mInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7558 (*MIB
).addMemOperand(*F
, *mInstr
->memoperands_begin());
7560 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), destOper
.getReg());
7561 MIB
.addReg(X86::EAX
);
7564 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7566 F
->DeleteMachineInstr(mInstr
); // The pseudo instruction is gone now.
7572 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
7573 MachineBasicBlock
*BB
) const {
7574 DebugLoc dl
= MI
->getDebugLoc();
7575 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7576 switch (MI
->getOpcode()) {
7577 default: assert(false && "Unexpected instr type to insert");
7578 case X86::CMOV_V1I64
:
7579 case X86::CMOV_FR32
:
7580 case X86::CMOV_FR64
:
7581 case X86::CMOV_V4F32
:
7582 case X86::CMOV_V2F64
:
7583 case X86::CMOV_V2I64
: {
7584 // To "insert" a SELECT_CC instruction, we actually have to insert the
7585 // diamond control-flow pattern. The incoming instruction knows the
7586 // destination vreg to set, the condition code register to branch on, the
7587 // true/false values to select between, and a branch opcode to use.
7588 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
7589 MachineFunction::iterator It
= BB
;
7595 // cmpTY ccX, r1, r2
7597 // fallthrough --> copy0MBB
7598 MachineBasicBlock
*thisMBB
= BB
;
7599 MachineFunction
*F
= BB
->getParent();
7600 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7601 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7603 X86::GetCondBranchFromCond((X86::CondCode
)MI
->getOperand(3).getImm());
7604 BuildMI(BB
, dl
, TII
->get(Opc
)).addMBB(sinkMBB
);
7605 F
->insert(It
, copy0MBB
);
7606 F
->insert(It
, sinkMBB
);
7607 // Update machine-CFG edges by transferring all successors of the current
7608 // block to the new block which will contain the Phi node for the select.
7609 sinkMBB
->transferSuccessors(BB
);
7611 // Add the true and fallthrough blocks as its successors.
7612 BB
->addSuccessor(copy0MBB
);
7613 BB
->addSuccessor(sinkMBB
);
7616 // %FalseValue = ...
7617 // # fallthrough to sinkMBB
7620 // Update machine-CFG edges
7621 BB
->addSuccessor(sinkMBB
);
7624 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7627 BuildMI(BB
, dl
, TII
->get(X86::PHI
), MI
->getOperand(0).getReg())
7628 .addReg(MI
->getOperand(1).getReg()).addMBB(copy0MBB
)
7629 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
7631 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7635 case X86::FP32_TO_INT16_IN_MEM
:
7636 case X86::FP32_TO_INT32_IN_MEM
:
7637 case X86::FP32_TO_INT64_IN_MEM
:
7638 case X86::FP64_TO_INT16_IN_MEM
:
7639 case X86::FP64_TO_INT32_IN_MEM
:
7640 case X86::FP64_TO_INT64_IN_MEM
:
7641 case X86::FP80_TO_INT16_IN_MEM
:
7642 case X86::FP80_TO_INT32_IN_MEM
:
7643 case X86::FP80_TO_INT64_IN_MEM
: {
7644 // Change the floating point control register to use "round towards zero"
7645 // mode when truncating to an integer value.
7646 MachineFunction
*F
= BB
->getParent();
7647 int CWFrameIdx
= F
->getFrameInfo()->CreateStackObject(2, 2);
7648 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FNSTCW16m
)), CWFrameIdx
);
7650 // Load the old value of the high byte of the control word...
7652 F
->getRegInfo().createVirtualRegister(X86::GR16RegisterClass
);
7653 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16rm
), OldCW
),
7656 // Set the high part to be round to zero...
7657 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16mi
)), CWFrameIdx
)
7660 // Reload the modified control word now...
7661 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7663 // Restore the memory image of control word to original value
7664 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16mr
)), CWFrameIdx
)
7667 // Get the X86 opcode to use.
7669 switch (MI
->getOpcode()) {
7670 default: llvm_unreachable("illegal opcode!");
7671 case X86::FP32_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m32
; break;
7672 case X86::FP32_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m32
; break;
7673 case X86::FP32_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m32
; break;
7674 case X86::FP64_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m64
; break;
7675 case X86::FP64_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m64
; break;
7676 case X86::FP64_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m64
; break;
7677 case X86::FP80_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m80
; break;
7678 case X86::FP80_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m80
; break;
7679 case X86::FP80_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m80
; break;
7683 MachineOperand
&Op
= MI
->getOperand(0);
7685 AM
.BaseType
= X86AddressMode::RegBase
;
7686 AM
.Base
.Reg
= Op
.getReg();
7688 AM
.BaseType
= X86AddressMode::FrameIndexBase
;
7689 AM
.Base
.FrameIndex
= Op
.getIndex();
7691 Op
= MI
->getOperand(1);
7693 AM
.Scale
= Op
.getImm();
7694 Op
= MI
->getOperand(2);
7696 AM
.IndexReg
= Op
.getImm();
7697 Op
= MI
->getOperand(3);
7698 if (Op
.isGlobal()) {
7699 AM
.GV
= Op
.getGlobal();
7701 AM
.Disp
= Op
.getImm();
7703 addFullAddress(BuildMI(BB
, dl
, TII
->get(Opc
)), AM
)
7704 .addReg(MI
->getOperand(X86AddrNumOperands
).getReg());
7706 // Reload the original control word now.
7707 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7709 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7712 case X86::ATOMAND32
:
7713 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7714 X86::AND32ri
, X86::MOV32rm
,
7715 X86::LCMPXCHG32
, X86::MOV32rr
,
7716 X86::NOT32r
, X86::EAX
,
7717 X86::GR32RegisterClass
);
7719 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR32rr
,
7720 X86::OR32ri
, X86::MOV32rm
,
7721 X86::LCMPXCHG32
, X86::MOV32rr
,
7722 X86::NOT32r
, X86::EAX
,
7723 X86::GR32RegisterClass
);
7724 case X86::ATOMXOR32
:
7725 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR32rr
,
7726 X86::XOR32ri
, X86::MOV32rm
,
7727 X86::LCMPXCHG32
, X86::MOV32rr
,
7728 X86::NOT32r
, X86::EAX
,
7729 X86::GR32RegisterClass
);
7730 case X86::ATOMNAND32
:
7731 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7732 X86::AND32ri
, X86::MOV32rm
,
7733 X86::LCMPXCHG32
, X86::MOV32rr
,
7734 X86::NOT32r
, X86::EAX
,
7735 X86::GR32RegisterClass
, true);
7736 case X86::ATOMMIN32
:
7737 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL32rr
);
7738 case X86::ATOMMAX32
:
7739 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG32rr
);
7740 case X86::ATOMUMIN32
:
7741 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB32rr
);
7742 case X86::ATOMUMAX32
:
7743 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA32rr
);
7745 case X86::ATOMAND16
:
7746 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7747 X86::AND16ri
, X86::MOV16rm
,
7748 X86::LCMPXCHG16
, X86::MOV16rr
,
7749 X86::NOT16r
, X86::AX
,
7750 X86::GR16RegisterClass
);
7752 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR16rr
,
7753 X86::OR16ri
, X86::MOV16rm
,
7754 X86::LCMPXCHG16
, X86::MOV16rr
,
7755 X86::NOT16r
, X86::AX
,
7756 X86::GR16RegisterClass
);
7757 case X86::ATOMXOR16
:
7758 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR16rr
,
7759 X86::XOR16ri
, X86::MOV16rm
,
7760 X86::LCMPXCHG16
, X86::MOV16rr
,
7761 X86::NOT16r
, X86::AX
,
7762 X86::GR16RegisterClass
);
7763 case X86::ATOMNAND16
:
7764 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7765 X86::AND16ri
, X86::MOV16rm
,
7766 X86::LCMPXCHG16
, X86::MOV16rr
,
7767 X86::NOT16r
, X86::AX
,
7768 X86::GR16RegisterClass
, true);
7769 case X86::ATOMMIN16
:
7770 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL16rr
);
7771 case X86::ATOMMAX16
:
7772 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG16rr
);
7773 case X86::ATOMUMIN16
:
7774 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB16rr
);
7775 case X86::ATOMUMAX16
:
7776 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA16rr
);
7779 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7780 X86::AND8ri
, X86::MOV8rm
,
7781 X86::LCMPXCHG8
, X86::MOV8rr
,
7782 X86::NOT8r
, X86::AL
,
7783 X86::GR8RegisterClass
);
7785 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR8rr
,
7786 X86::OR8ri
, X86::MOV8rm
,
7787 X86::LCMPXCHG8
, X86::MOV8rr
,
7788 X86::NOT8r
, X86::AL
,
7789 X86::GR8RegisterClass
);
7791 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR8rr
,
7792 X86::XOR8ri
, X86::MOV8rm
,
7793 X86::LCMPXCHG8
, X86::MOV8rr
,
7794 X86::NOT8r
, X86::AL
,
7795 X86::GR8RegisterClass
);
7796 case X86::ATOMNAND8
:
7797 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7798 X86::AND8ri
, X86::MOV8rm
,
7799 X86::LCMPXCHG8
, X86::MOV8rr
,
7800 X86::NOT8r
, X86::AL
,
7801 X86::GR8RegisterClass
, true);
7802 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7803 // This group is for 64-bit host.
7804 case X86::ATOMAND64
:
7805 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
7806 X86::AND64ri32
, X86::MOV64rm
,
7807 X86::LCMPXCHG64
, X86::MOV64rr
,
7808 X86::NOT64r
, X86::RAX
,
7809 X86::GR64RegisterClass
);
7811 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR64rr
,
7812 X86::OR64ri32
, X86::MOV64rm
,
7813 X86::LCMPXCHG64
, X86::MOV64rr
,
7814 X86::NOT64r
, X86::RAX
,
7815 X86::GR64RegisterClass
);
7816 case X86::ATOMXOR64
:
7817 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR64rr
,
7818 X86::XOR64ri32
, X86::MOV64rm
,
7819 X86::LCMPXCHG64
, X86::MOV64rr
,
7820 X86::NOT64r
, X86::RAX
,
7821 X86::GR64RegisterClass
);
7822 case X86::ATOMNAND64
:
7823 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
7824 X86::AND64ri32
, X86::MOV64rm
,
7825 X86::LCMPXCHG64
, X86::MOV64rr
,
7826 X86::NOT64r
, X86::RAX
,
7827 X86::GR64RegisterClass
, true);
7828 case X86::ATOMMIN64
:
7829 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL64rr
);
7830 case X86::ATOMMAX64
:
7831 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG64rr
);
7832 case X86::ATOMUMIN64
:
7833 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB64rr
);
7834 case X86::ATOMUMAX64
:
7835 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA64rr
);
7837 // This group does 64-bit operations on a 32-bit host.
7838 case X86::ATOMAND6432
:
7839 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7840 X86::AND32rr
, X86::AND32rr
,
7841 X86::AND32ri
, X86::AND32ri
,
7843 case X86::ATOMOR6432
:
7844 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7845 X86::OR32rr
, X86::OR32rr
,
7846 X86::OR32ri
, X86::OR32ri
,
7848 case X86::ATOMXOR6432
:
7849 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7850 X86::XOR32rr
, X86::XOR32rr
,
7851 X86::XOR32ri
, X86::XOR32ri
,
7853 case X86::ATOMNAND6432
:
7854 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7855 X86::AND32rr
, X86::AND32rr
,
7856 X86::AND32ri
, X86::AND32ri
,
7858 case X86::ATOMADD6432
:
7859 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7860 X86::ADD32rr
, X86::ADC32rr
,
7861 X86::ADD32ri
, X86::ADC32ri
,
7863 case X86::ATOMSUB6432
:
7864 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7865 X86::SUB32rr
, X86::SBB32rr
,
7866 X86::SUB32ri
, X86::SBB32ri
,
7868 case X86::ATOMSWAP6432
:
7869 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7870 X86::MOV32rr
, X86::MOV32rr
,
7871 X86::MOV32ri
, X86::MOV32ri
,
7876 //===----------------------------------------------------------------------===//
7877 // X86 Optimization Hooks
7878 //===----------------------------------------------------------------------===//
7880 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
7884 const SelectionDAG
&DAG
,
7885 unsigned Depth
) const {
7886 unsigned Opc
= Op
.getOpcode();
7887 assert((Opc
>= ISD::BUILTIN_OP_END
||
7888 Opc
== ISD::INTRINSIC_WO_CHAIN
||
7889 Opc
== ISD::INTRINSIC_W_CHAIN
||
7890 Opc
== ISD::INTRINSIC_VOID
) &&
7891 "Should use MaskedValueIsZero if you don't know whether Op"
7892 " is a target node!");
7894 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0); // Don't know anything.
7903 // These nodes' second result is a boolean.
7904 if (Op
.getResNo() == 0)
7908 KnownZero
|= APInt::getHighBitsSet(Mask
.getBitWidth(),
7909 Mask
.getBitWidth() - 1);
7914 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7915 /// node is a GlobalAddress + offset.
7916 bool X86TargetLowering::isGAPlusOffset(SDNode
*N
,
7917 GlobalValue
* &GA
, int64_t &Offset
) const{
7918 if (N
->getOpcode() == X86ISD::Wrapper
) {
7919 if (isa
<GlobalAddressSDNode
>(N
->getOperand(0))) {
7920 GA
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getGlobal();
7921 Offset
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getOffset();
7925 return TargetLowering::isGAPlusOffset(N
, GA
, Offset
);
7928 static bool isBaseAlignmentOfN(unsigned N
, SDNode
*Base
,
7929 const TargetLowering
&TLI
) {
7932 if (TLI
.isGAPlusOffset(Base
, GV
, Offset
))
7933 return (GV
->getAlignment() >= N
&& (Offset
% N
) == 0);
7934 // DAG combine handles the stack object case.
7938 static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode
*N
, unsigned NumElems
,
7939 MVT EVT
, LoadSDNode
*&LDBase
,
7940 unsigned &LastLoadedElt
,
7941 SelectionDAG
&DAG
, MachineFrameInfo
*MFI
,
7942 const TargetLowering
&TLI
) {
7944 LastLoadedElt
= -1U;
7945 for (unsigned i
= 0; i
< NumElems
; ++i
) {
7946 if (N
->getMaskElt(i
) < 0) {
7952 SDValue Elt
= DAG
.getShuffleScalarElt(N
, i
);
7953 if (!Elt
.getNode() ||
7954 (Elt
.getOpcode() != ISD::UNDEF
&& !ISD::isNON_EXTLoad(Elt
.getNode())))
7957 if (Elt
.getNode()->getOpcode() == ISD::UNDEF
)
7959 LDBase
= cast
<LoadSDNode
>(Elt
.getNode());
7963 if (Elt
.getOpcode() == ISD::UNDEF
)
7966 LoadSDNode
*LD
= cast
<LoadSDNode
>(Elt
);
7967 if (!TLI
.isConsecutiveLoad(LD
, LDBase
, EVT
.getSizeInBits()/8, i
, MFI
))
7974 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7975 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7976 /// if the load addresses are consecutive, non-overlapping, and in the right
7977 /// order. In the case of v2i64, it will see if it can rewrite the
7978 /// shuffle to be an appropriate build vector so it can take advantage of
7979 // performBuildVectorCombine.
7980 static SDValue
PerformShuffleCombine(SDNode
*N
, SelectionDAG
&DAG
,
7981 const TargetLowering
&TLI
) {
7982 DebugLoc dl
= N
->getDebugLoc();
7983 MVT VT
= N
->getValueType(0);
7984 MVT EVT
= VT
.getVectorElementType();
7985 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
7986 unsigned NumElems
= VT
.getVectorNumElements();
7988 if (VT
.getSizeInBits() != 128)
7991 // Try to combine a vector_shuffle into a 128-bit load.
7992 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
7993 LoadSDNode
*LD
= NULL
;
7994 unsigned LastLoadedElt
;
7995 if (!EltsFromConsecutiveLoads(SVN
, NumElems
, EVT
, LD
, LastLoadedElt
, DAG
,
7999 if (LastLoadedElt
== NumElems
- 1) {
8000 if (isBaseAlignmentOfN(16, LD
->getBasePtr().getNode(), TLI
))
8001 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
8002 LD
->getSrcValue(), LD
->getSrcValueOffset(),
8004 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
8005 LD
->getSrcValue(), LD
->getSrcValueOffset(),
8006 LD
->isVolatile(), LD
->getAlignment());
8007 } else if (NumElems
== 4 && LastLoadedElt
== 1) {
8008 SDVTList Tys
= DAG
.getVTList(MVT::v2i64
, MVT::Other
);
8009 SDValue Ops
[] = { LD
->getChain(), LD
->getBasePtr() };
8010 SDValue ResNode
= DAG
.getNode(X86ISD::VZEXT_LOAD
, dl
, Tys
, Ops
, 2);
8011 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, ResNode
);
8016 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8017 static SDValue
PerformSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
8018 const X86Subtarget
*Subtarget
) {
8019 DebugLoc DL
= N
->getDebugLoc();
8020 SDValue Cond
= N
->getOperand(0);
8021 // Get the LHS/RHS of the select.
8022 SDValue LHS
= N
->getOperand(1);
8023 SDValue RHS
= N
->getOperand(2);
8025 // If we have SSE[12] support, try to form min/max nodes.
8026 if (Subtarget
->hasSSE2() &&
8027 (LHS
.getValueType() == MVT::f32
|| LHS
.getValueType() == MVT::f64
) &&
8028 Cond
.getOpcode() == ISD::SETCC
) {
8029 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
8031 unsigned Opcode
= 0;
8032 if (LHS
== Cond
.getOperand(0) && RHS
== Cond
.getOperand(1)) {
8035 case ISD::SETOLE
: // (X <= Y) ? X : Y -> min
8038 if (!UnsafeFPMath
) break;
8040 case ISD::SETOLT
: // (X olt/lt Y) ? X : Y -> min
8042 Opcode
= X86ISD::FMIN
;
8045 case ISD::SETOGT
: // (X > Y) ? X : Y -> max
8048 if (!UnsafeFPMath
) break;
8050 case ISD::SETUGE
: // (X uge/ge Y) ? X : Y -> max
8052 Opcode
= X86ISD::FMAX
;
8055 } else if (LHS
== Cond
.getOperand(1) && RHS
== Cond
.getOperand(0)) {
8058 case ISD::SETOGT
: // (X > Y) ? Y : X -> min
8061 if (!UnsafeFPMath
) break;
8063 case ISD::SETUGE
: // (X uge/ge Y) ? Y : X -> min
8065 Opcode
= X86ISD::FMIN
;
8068 case ISD::SETOLE
: // (X <= Y) ? Y : X -> max
8071 if (!UnsafeFPMath
) break;
8073 case ISD::SETOLT
: // (X olt/lt Y) ? Y : X -> max
8075 Opcode
= X86ISD::FMAX
;
8081 return DAG
.getNode(Opcode
, DL
, N
->getValueType(0), LHS
, RHS
);
8084 // If this is a select between two integer constants, try to do some
8086 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(LHS
)) {
8087 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(RHS
))
8088 // Don't do this for crazy integer types.
8089 if (DAG
.getTargetLoweringInfo().isTypeLegal(LHS
.getValueType())) {
8090 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8091 // so that TrueC (the true value) is larger than FalseC.
8092 bool NeedsCondInvert
= false;
8094 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue()) &&
8095 // Efficiently invertible.
8096 (Cond
.getOpcode() == ISD::SETCC
|| // setcc -> invertible.
8097 (Cond
.getOpcode() == ISD::XOR
&& // xor(X, C) -> invertible.
8098 isa
<ConstantSDNode
>(Cond
.getOperand(1))))) {
8099 NeedsCondInvert
= true;
8100 std::swap(TrueC
, FalseC
);
8103 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
8104 if (FalseC
->getAPIntValue() == 0 &&
8105 TrueC
->getAPIntValue().isPowerOf2()) {
8106 if (NeedsCondInvert
) // Invert the condition if needed.
8107 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8108 DAG
.getConstant(1, Cond
.getValueType()));
8110 // Zero extend the condition if needed.
8111 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LHS
.getValueType(), Cond
);
8113 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
8114 return DAG
.getNode(ISD::SHL
, DL
, LHS
.getValueType(), Cond
,
8115 DAG
.getConstant(ShAmt
, MVT::i8
));
8118 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8119 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
8120 if (NeedsCondInvert
) // Invert the condition if needed.
8121 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8122 DAG
.getConstant(1, Cond
.getValueType()));
8124 // Zero extend the condition if needed.
8125 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
8126 FalseC
->getValueType(0), Cond
);
8127 return DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8128 SDValue(FalseC
, 0));
8131 // Optimize cases that will turn into an LEA instruction. This requires
8132 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8133 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
8134 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
8135 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
8137 bool isFastMultiplier
= false;
8139 switch ((unsigned char)Diff
) {
8141 case 1: // result = add base, cond
8142 case 2: // result = lea base( , cond*2)
8143 case 3: // result = lea base(cond, cond*2)
8144 case 4: // result = lea base( , cond*4)
8145 case 5: // result = lea base(cond, cond*4)
8146 case 8: // result = lea base( , cond*8)
8147 case 9: // result = lea base(cond, cond*8)
8148 isFastMultiplier
= true;
8153 if (isFastMultiplier
) {
8154 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
8155 if (NeedsCondInvert
) // Invert the condition if needed.
8156 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8157 DAG
.getConstant(1, Cond
.getValueType()));
8159 // Zero extend the condition if needed.
8160 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
8162 // Scale the condition by the difference.
8164 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
8165 DAG
.getConstant(Diff
, Cond
.getValueType()));
8167 // Add the base if non-zero.
8168 if (FalseC
->getAPIntValue() != 0)
8169 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8170 SDValue(FalseC
, 0));
8180 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8181 static SDValue
PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
,
8182 TargetLowering::DAGCombinerInfo
&DCI
) {
8183 DebugLoc DL
= N
->getDebugLoc();
8185 // If the flag operand isn't dead, don't touch this CMOV.
8186 if (N
->getNumValues() == 2 && !SDValue(N
, 1).use_empty())
8189 // If this is a select between two integer constants, try to do some
8190 // optimizations. Note that the operands are ordered the opposite of SELECT
8192 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
8193 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
8194 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8195 // larger than FalseC (the false value).
8196 X86::CondCode CC
= (X86::CondCode
)N
->getConstantOperandVal(2);
8198 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue())) {
8199 CC
= X86::GetOppositeBranchCondition(CC
);
8200 std::swap(TrueC
, FalseC
);
8203 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
8204 // This is efficient for any integer data type (including i8/i16) and
8206 if (FalseC
->getAPIntValue() == 0 && TrueC
->getAPIntValue().isPowerOf2()) {
8207 SDValue Cond
= N
->getOperand(3);
8208 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8209 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8211 // Zero extend the condition if needed.
8212 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TrueC
->getValueType(0), Cond
);
8214 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
8215 Cond
= DAG
.getNode(ISD::SHL
, DL
, Cond
.getValueType(), Cond
,
8216 DAG
.getConstant(ShAmt
, MVT::i8
));
8217 if (N
->getNumValues() == 2) // Dead flag value?
8218 return DCI
.CombineTo(N
, Cond
, SDValue());
8222 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
8223 // for any integer data type, including i8/i16.
8224 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
8225 SDValue Cond
= N
->getOperand(3);
8226 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8227 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8229 // Zero extend the condition if needed.
8230 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
8231 FalseC
->getValueType(0), Cond
);
8232 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8233 SDValue(FalseC
, 0));
8235 if (N
->getNumValues() == 2) // Dead flag value?
8236 return DCI
.CombineTo(N
, Cond
, SDValue());
8240 // Optimize cases that will turn into an LEA instruction. This requires
8241 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8242 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
8243 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
8244 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
8246 bool isFastMultiplier
= false;
8248 switch ((unsigned char)Diff
) {
8250 case 1: // result = add base, cond
8251 case 2: // result = lea base( , cond*2)
8252 case 3: // result = lea base(cond, cond*2)
8253 case 4: // result = lea base( , cond*4)
8254 case 5: // result = lea base(cond, cond*4)
8255 case 8: // result = lea base( , cond*8)
8256 case 9: // result = lea base(cond, cond*8)
8257 isFastMultiplier
= true;
8262 if (isFastMultiplier
) {
8263 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
8264 SDValue Cond
= N
->getOperand(3);
8265 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8266 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8267 // Zero extend the condition if needed.
8268 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
8270 // Scale the condition by the difference.
8272 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
8273 DAG
.getConstant(Diff
, Cond
.getValueType()));
8275 // Add the base if non-zero.
8276 if (FalseC
->getAPIntValue() != 0)
8277 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8278 SDValue(FalseC
, 0));
8279 if (N
->getNumValues() == 2) // Dead flag value?
8280 return DCI
.CombineTo(N
, Cond
, SDValue());
8290 /// PerformMulCombine - Optimize a single multiply with constant into two
8291 /// in order to implement it with two cheaper instructions, e.g.
8292 /// LEA + SHL, LEA + LEA.
8293 static SDValue
PerformMulCombine(SDNode
*N
, SelectionDAG
&DAG
,
8294 TargetLowering::DAGCombinerInfo
&DCI
) {
8295 if (DAG
.getMachineFunction().
8296 getFunction()->hasFnAttr(Attribute::OptimizeForSize
))
8299 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
8302 MVT VT
= N
->getValueType(0);
8306 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
8309 uint64_t MulAmt
= C
->getZExtValue();
8310 if (isPowerOf2_64(MulAmt
) || MulAmt
== 3 || MulAmt
== 5 || MulAmt
== 9)
8313 uint64_t MulAmt1
= 0;
8314 uint64_t MulAmt2
= 0;
8315 if ((MulAmt
% 9) == 0) {
8317 MulAmt2
= MulAmt
/ 9;
8318 } else if ((MulAmt
% 5) == 0) {
8320 MulAmt2
= MulAmt
/ 5;
8321 } else if ((MulAmt
% 3) == 0) {
8323 MulAmt2
= MulAmt
/ 3;
8326 (isPowerOf2_64(MulAmt2
) || MulAmt2
== 3 || MulAmt2
== 5 || MulAmt2
== 9)){
8327 DebugLoc DL
= N
->getDebugLoc();
8329 if (isPowerOf2_64(MulAmt2
) &&
8330 !(N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::ADD
))
8331 // If second multiplifer is pow2, issue it first. We want the multiply by
8332 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8334 std::swap(MulAmt1
, MulAmt2
);
8337 if (isPowerOf2_64(MulAmt1
))
8338 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, N
->getOperand(0),
8339 DAG
.getConstant(Log2_64(MulAmt1
), MVT::i8
));
8341 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, N
->getOperand(0),
8342 DAG
.getConstant(MulAmt1
, VT
));
8344 if (isPowerOf2_64(MulAmt2
))
8345 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, NewMul
,
8346 DAG
.getConstant(Log2_64(MulAmt2
), MVT::i8
));
8348 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, NewMul
,
8349 DAG
.getConstant(MulAmt2
, VT
));
8351 // Do not add new nodes to DAG combiner worklist.
8352 DCI
.CombineTo(N
, NewMul
, false);
8358 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8360 static SDValue
PerformShiftCombine(SDNode
* N
, SelectionDAG
&DAG
,
8361 const X86Subtarget
*Subtarget
) {
8362 // On X86 with SSE2 support, we can transform this to a vector shift if
8363 // all elements are shifted by the same amount. We can't do this in legalize
8364 // because the a constant vector is typically transformed to a constant pool
8365 // so we have no knowledge of the shift amount.
8366 if (!Subtarget
->hasSSE2())
8369 MVT VT
= N
->getValueType(0);
8370 if (VT
!= MVT::v2i64
&& VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
)
8373 SDValue ShAmtOp
= N
->getOperand(1);
8374 MVT EltVT
= VT
.getVectorElementType();
8375 DebugLoc DL
= N
->getDebugLoc();
8377 if (ShAmtOp
.getOpcode() == ISD::BUILD_VECTOR
) {
8378 unsigned NumElts
= VT
.getVectorNumElements();
8380 for (; i
!= NumElts
; ++i
) {
8381 SDValue Arg
= ShAmtOp
.getOperand(i
);
8382 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8386 for (; i
!= NumElts
; ++i
) {
8387 SDValue Arg
= ShAmtOp
.getOperand(i
);
8388 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8389 if (Arg
!= BaseShAmt
) {
8393 } else if (ShAmtOp
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
8394 cast
<ShuffleVectorSDNode
>(ShAmtOp
)->isSplat()) {
8395 BaseShAmt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, ShAmtOp
,
8396 DAG
.getIntPtrConstant(0));
8400 if (EltVT
.bitsGT(MVT::i32
))
8401 BaseShAmt
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, BaseShAmt
);
8402 else if (EltVT
.bitsLT(MVT::i32
))
8403 BaseShAmt
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, BaseShAmt
);
8405 // The shift amount is identical so we can do a vector shift.
8406 SDValue ValOp
= N
->getOperand(0);
8407 switch (N
->getOpcode()) {
8409 llvm_unreachable("Unknown shift opcode!");
8412 if (VT
== MVT::v2i64
)
8413 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8414 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
8416 if (VT
== MVT::v4i32
)
8417 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8418 DAG
.getConstant(Intrinsic::x86_sse2_pslli_d
, MVT::i32
),
8420 if (VT
== MVT::v8i16
)
8421 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8422 DAG
.getConstant(Intrinsic::x86_sse2_pslli_w
, MVT::i32
),
8426 if (VT
== MVT::v4i32
)
8427 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8428 DAG
.getConstant(Intrinsic::x86_sse2_psrai_d
, MVT::i32
),
8430 if (VT
== MVT::v8i16
)
8431 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8432 DAG
.getConstant(Intrinsic::x86_sse2_psrai_w
, MVT::i32
),
8436 if (VT
== MVT::v2i64
)
8437 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8438 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
8440 if (VT
== MVT::v4i32
)
8441 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8442 DAG
.getConstant(Intrinsic::x86_sse2_psrli_d
, MVT::i32
),
8444 if (VT
== MVT::v8i16
)
8445 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8446 DAG
.getConstant(Intrinsic::x86_sse2_psrli_w
, MVT::i32
),
8453 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8454 static SDValue
PerformSTORECombine(SDNode
*N
, SelectionDAG
&DAG
,
8455 const X86Subtarget
*Subtarget
) {
8456 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
8457 // the FP state in cases where an emms may be missing.
8458 // A preferable solution to the general problem is to figure out the right
8459 // places to insert EMMS. This qualifies as a quick hack.
8461 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8462 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
8463 MVT VT
= St
->getValue().getValueType();
8464 if (VT
.getSizeInBits() != 64)
8467 const Function
*F
= DAG
.getMachineFunction().getFunction();
8468 bool NoImplicitFloatOps
= F
->hasFnAttr(Attribute::NoImplicitFloat
);
8469 bool F64IsLegal
= !UseSoftFloat
&& !NoImplicitFloatOps
8470 && Subtarget
->hasSSE2();
8471 if ((VT
.isVector() ||
8472 (VT
== MVT::i64
&& F64IsLegal
&& !Subtarget
->is64Bit())) &&
8473 isa
<LoadSDNode
>(St
->getValue()) &&
8474 !cast
<LoadSDNode
>(St
->getValue())->isVolatile() &&
8475 St
->getChain().hasOneUse() && !St
->isVolatile()) {
8476 SDNode
* LdVal
= St
->getValue().getNode();
8478 int TokenFactorIndex
= -1;
8479 SmallVector
<SDValue
, 8> Ops
;
8480 SDNode
* ChainVal
= St
->getChain().getNode();
8481 // Must be a store of a load. We currently handle two cases: the load
8482 // is a direct child, and it's under an intervening TokenFactor. It is
8483 // possible to dig deeper under nested TokenFactors.
8484 if (ChainVal
== LdVal
)
8485 Ld
= cast
<LoadSDNode
>(St
->getChain());
8486 else if (St
->getValue().hasOneUse() &&
8487 ChainVal
->getOpcode() == ISD::TokenFactor
) {
8488 for (unsigned i
=0, e
= ChainVal
->getNumOperands(); i
!= e
; ++i
) {
8489 if (ChainVal
->getOperand(i
).getNode() == LdVal
) {
8490 TokenFactorIndex
= i
;
8491 Ld
= cast
<LoadSDNode
>(St
->getValue());
8493 Ops
.push_back(ChainVal
->getOperand(i
));
8497 if (!Ld
|| !ISD::isNormalLoad(Ld
))
8500 // If this is not the MMX case, i.e. we are just turning i64 load/store
8501 // into f64 load/store, avoid the transformation if there are multiple
8502 // uses of the loaded value.
8503 if (!VT
.isVector() && !Ld
->hasNUsesOfValue(1, 0))
8506 DebugLoc LdDL
= Ld
->getDebugLoc();
8507 DebugLoc StDL
= N
->getDebugLoc();
8508 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8509 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8511 if (Subtarget
->is64Bit() || F64IsLegal
) {
8512 MVT LdVT
= Subtarget
->is64Bit() ? MVT::i64
: MVT::f64
;
8513 SDValue NewLd
= DAG
.getLoad(LdVT
, LdDL
, Ld
->getChain(),
8514 Ld
->getBasePtr(), Ld
->getSrcValue(),
8515 Ld
->getSrcValueOffset(), Ld
->isVolatile(),
8516 Ld
->getAlignment());
8517 SDValue NewChain
= NewLd
.getValue(1);
8518 if (TokenFactorIndex
!= -1) {
8519 Ops
.push_back(NewChain
);
8520 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8523 return DAG
.getStore(NewChain
, StDL
, NewLd
, St
->getBasePtr(),
8524 St
->getSrcValue(), St
->getSrcValueOffset(),
8525 St
->isVolatile(), St
->getAlignment());
8528 // Otherwise, lower to two pairs of 32-bit loads / stores.
8529 SDValue LoAddr
= Ld
->getBasePtr();
8530 SDValue HiAddr
= DAG
.getNode(ISD::ADD
, LdDL
, MVT::i32
, LoAddr
,
8531 DAG
.getConstant(4, MVT::i32
));
8533 SDValue LoLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), LoAddr
,
8534 Ld
->getSrcValue(), Ld
->getSrcValueOffset(),
8535 Ld
->isVolatile(), Ld
->getAlignment());
8536 SDValue HiLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), HiAddr
,
8537 Ld
->getSrcValue(), Ld
->getSrcValueOffset()+4,
8539 MinAlign(Ld
->getAlignment(), 4));
8541 SDValue NewChain
= LoLd
.getValue(1);
8542 if (TokenFactorIndex
!= -1) {
8543 Ops
.push_back(LoLd
);
8544 Ops
.push_back(HiLd
);
8545 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8549 LoAddr
= St
->getBasePtr();
8550 HiAddr
= DAG
.getNode(ISD::ADD
, StDL
, MVT::i32
, LoAddr
,
8551 DAG
.getConstant(4, MVT::i32
));
8553 SDValue LoSt
= DAG
.getStore(NewChain
, StDL
, LoLd
, LoAddr
,
8554 St
->getSrcValue(), St
->getSrcValueOffset(),
8555 St
->isVolatile(), St
->getAlignment());
8556 SDValue HiSt
= DAG
.getStore(NewChain
, StDL
, HiLd
, HiAddr
,
8558 St
->getSrcValueOffset() + 4,
8560 MinAlign(St
->getAlignment(), 4));
8561 return DAG
.getNode(ISD::TokenFactor
, StDL
, MVT::Other
, LoSt
, HiSt
);
8566 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8567 /// X86ISD::FXOR nodes.
8568 static SDValue
PerformFORCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8569 assert(N
->getOpcode() == X86ISD::FOR
|| N
->getOpcode() == X86ISD::FXOR
);
8570 // F[X]OR(0.0, x) -> x
8571 // F[X]OR(x, 0.0) -> x
8572 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8573 if (C
->getValueAPF().isPosZero())
8574 return N
->getOperand(1);
8575 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8576 if (C
->getValueAPF().isPosZero())
8577 return N
->getOperand(0);
8581 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8582 static SDValue
PerformFANDCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8583 // FAND(0.0, x) -> 0.0
8584 // FAND(x, 0.0) -> 0.0
8585 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8586 if (C
->getValueAPF().isPosZero())
8587 return N
->getOperand(0);
8588 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8589 if (C
->getValueAPF().isPosZero())
8590 return N
->getOperand(1);
8594 static SDValue
PerformBTCombine(SDNode
*N
,
8596 TargetLowering::DAGCombinerInfo
&DCI
) {
8597 // BT ignores high bits in the bit index operand.
8598 SDValue Op1
= N
->getOperand(1);
8599 if (Op1
.hasOneUse()) {
8600 unsigned BitWidth
= Op1
.getValueSizeInBits();
8601 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, Log2_32(BitWidth
));
8602 APInt KnownZero
, KnownOne
;
8603 TargetLowering::TargetLoweringOpt
TLO(DAG
);
8604 TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8605 if (TLO
.ShrinkDemandedConstant(Op1
, DemandedMask
) ||
8606 TLI
.SimplifyDemandedBits(Op1
, DemandedMask
, KnownZero
, KnownOne
, TLO
))
8607 DCI
.CommitTargetLoweringOpt(TLO
);
8612 static SDValue
PerformVZEXT_MOVLCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8613 SDValue Op
= N
->getOperand(0);
8614 if (Op
.getOpcode() == ISD::BIT_CONVERT
)
8615 Op
= Op
.getOperand(0);
8616 MVT VT
= N
->getValueType(0), OpVT
= Op
.getValueType();
8617 if (Op
.getOpcode() == X86ISD::VZEXT_LOAD
&&
8618 VT
.getVectorElementType().getSizeInBits() ==
8619 OpVT
.getVectorElementType().getSizeInBits()) {
8620 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
, Op
);
8625 // On X86 and X86-64, atomic operations are lowered to locked instructions.
8626 // Locked instructions, in turn, have implicit fence semantics (all memory
8627 // operations are flushed before issuing the locked instruction, and the
8628 // are not buffered), so we can fold away the common pattern of
8629 // fence-atomic-fence.
8630 static SDValue
PerformMEMBARRIERCombine(SDNode
* N
, SelectionDAG
&DAG
) {
8631 SDValue atomic
= N
->getOperand(0);
8632 switch (atomic
.getOpcode()) {
8633 case ISD::ATOMIC_CMP_SWAP
:
8634 case ISD::ATOMIC_SWAP
:
8635 case ISD::ATOMIC_LOAD_ADD
:
8636 case ISD::ATOMIC_LOAD_SUB
:
8637 case ISD::ATOMIC_LOAD_AND
:
8638 case ISD::ATOMIC_LOAD_OR
:
8639 case ISD::ATOMIC_LOAD_XOR
:
8640 case ISD::ATOMIC_LOAD_NAND
:
8641 case ISD::ATOMIC_LOAD_MIN
:
8642 case ISD::ATOMIC_LOAD_MAX
:
8643 case ISD::ATOMIC_LOAD_UMIN
:
8644 case ISD::ATOMIC_LOAD_UMAX
:
8650 SDValue fence
= atomic
.getOperand(0);
8651 if (fence
.getOpcode() != ISD::MEMBARRIER
)
8654 switch (atomic
.getOpcode()) {
8655 case ISD::ATOMIC_CMP_SWAP
:
8656 return DAG
.UpdateNodeOperands(atomic
, fence
.getOperand(0),
8657 atomic
.getOperand(1), atomic
.getOperand(2),
8658 atomic
.getOperand(3));
8659 case ISD::ATOMIC_SWAP
:
8660 case ISD::ATOMIC_LOAD_ADD
:
8661 case ISD::ATOMIC_LOAD_SUB
:
8662 case ISD::ATOMIC_LOAD_AND
:
8663 case ISD::ATOMIC_LOAD_OR
:
8664 case ISD::ATOMIC_LOAD_XOR
:
8665 case ISD::ATOMIC_LOAD_NAND
:
8666 case ISD::ATOMIC_LOAD_MIN
:
8667 case ISD::ATOMIC_LOAD_MAX
:
8668 case ISD::ATOMIC_LOAD_UMIN
:
8669 case ISD::ATOMIC_LOAD_UMAX
:
8670 return DAG
.UpdateNodeOperands(atomic
, fence
.getOperand(0),
8671 atomic
.getOperand(1), atomic
.getOperand(2));
8677 SDValue
X86TargetLowering::PerformDAGCombine(SDNode
*N
,
8678 DAGCombinerInfo
&DCI
) const {
8679 SelectionDAG
&DAG
= DCI
.DAG
;
8680 switch (N
->getOpcode()) {
8682 case ISD::VECTOR_SHUFFLE
: return PerformShuffleCombine(N
, DAG
, *this);
8683 case ISD::SELECT
: return PerformSELECTCombine(N
, DAG
, Subtarget
);
8684 case X86ISD::CMOV
: return PerformCMOVCombine(N
, DAG
, DCI
);
8685 case ISD::MUL
: return PerformMulCombine(N
, DAG
, DCI
);
8688 case ISD::SRL
: return PerformShiftCombine(N
, DAG
, Subtarget
);
8689 case ISD::STORE
: return PerformSTORECombine(N
, DAG
, Subtarget
);
8691 case X86ISD::FOR
: return PerformFORCombine(N
, DAG
);
8692 case X86ISD::FAND
: return PerformFANDCombine(N
, DAG
);
8693 case X86ISD::BT
: return PerformBTCombine(N
, DAG
, DCI
);
8694 case X86ISD::VZEXT_MOVL
: return PerformVZEXT_MOVLCombine(N
, DAG
);
8695 case ISD::MEMBARRIER
: return PerformMEMBARRIERCombine(N
, DAG
);
8701 //===----------------------------------------------------------------------===//
8702 // X86 Inline Assembly Support
8703 //===----------------------------------------------------------------------===//
8705 static bool LowerToBSwap(CallInst
*CI
) {
8706 // FIXME: this should verify that we are targetting a 486 or better. If not,
8707 // we will turn this bswap into something that will be lowered to logical ops
8708 // instead of emitting the bswap asm. For now, we don't support 486 or lower
8709 // so don't worry about this.
8711 // Verify this is a simple bswap.
8712 if (CI
->getNumOperands() != 2 ||
8713 CI
->getType() != CI
->getOperand(1)->getType() ||
8714 !CI
->getType()->isInteger())
8717 const IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
8718 if (!Ty
|| Ty
->getBitWidth() % 16 != 0)
8721 // Okay, we can do this xform, do so now.
8722 const Type
*Tys
[] = { Ty
};
8723 Module
*M
= CI
->getParent()->getParent()->getParent();
8724 Constant
*Int
= Intrinsic::getDeclaration(M
, Intrinsic::bswap
, Tys
, 1);
8726 Value
*Op
= CI
->getOperand(1);
8727 Op
= CallInst::Create(Int
, Op
, CI
->getName(), CI
);
8729 CI
->replaceAllUsesWith(Op
);
8730 CI
->eraseFromParent();
8734 bool X86TargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
8735 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
8736 std::vector
<InlineAsm::ConstraintInfo
> Constraints
= IA
->ParseConstraints();
8738 std::string AsmStr
= IA
->getAsmString();
8740 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
8741 std::vector
<std::string
> AsmPieces
;
8742 SplitString(AsmStr
, AsmPieces
, "\n"); // ; as separator?
8744 switch (AsmPieces
.size()) {
8745 default: return false;
8747 AsmStr
= AsmPieces
[0];
8749 SplitString(AsmStr
, AsmPieces
, " \t"); // Split with whitespace.
8752 if (AsmPieces
.size() == 2 &&
8753 (AsmPieces
[0] == "bswap" ||
8754 AsmPieces
[0] == "bswapq" ||
8755 AsmPieces
[0] == "bswapl") &&
8756 (AsmPieces
[1] == "$0" ||
8757 AsmPieces
[1] == "${0:q}")) {
8758 // No need to check constraints, nothing other than the equivalent of
8759 // "=r,0" would be valid here.
8760 return LowerToBSwap(CI
);
8762 // rorw $$8, ${0:w} --> llvm.bswap.i16
8763 if (CI
->getType() == Type::Int16Ty
&&
8764 AsmPieces
.size() == 3 &&
8765 AsmPieces
[0] == "rorw" &&
8766 AsmPieces
[1] == "$$8," &&
8767 AsmPieces
[2] == "${0:w}" &&
8768 IA
->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
8769 return LowerToBSwap(CI
);
8773 if (CI
->getType() == Type::Int64Ty
&& Constraints
.size() >= 2 &&
8774 Constraints
[0].Codes
.size() == 1 && Constraints
[0].Codes
[0] == "A" &&
8775 Constraints
[1].Codes
.size() == 1 && Constraints
[1].Codes
[0] == "0") {
8776 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
8777 std::vector
<std::string
> Words
;
8778 SplitString(AsmPieces
[0], Words
, " \t");
8779 if (Words
.size() == 2 && Words
[0] == "bswap" && Words
[1] == "%eax") {
8781 SplitString(AsmPieces
[1], Words
, " \t");
8782 if (Words
.size() == 2 && Words
[0] == "bswap" && Words
[1] == "%edx") {
8784 SplitString(AsmPieces
[2], Words
, " \t,");
8785 if (Words
.size() == 3 && Words
[0] == "xchgl" && Words
[1] == "%eax" &&
8786 Words
[2] == "%edx") {
8787 return LowerToBSwap(CI
);
8799 /// getConstraintType - Given a constraint letter, return the type of
8800 /// constraint it is for this target.
8801 X86TargetLowering::ConstraintType
8802 X86TargetLowering::getConstraintType(const std::string
&Constraint
) const {
8803 if (Constraint
.size() == 1) {
8804 switch (Constraint
[0]) {
8816 return C_RegisterClass
;
8824 return TargetLowering::getConstraintType(Constraint
);
8827 /// LowerXConstraint - try to replace an X constraint, which matches anything,
8828 /// with another that has more specific requirements based on the type of the
8829 /// corresponding operand.
8830 const char *X86TargetLowering::
8831 LowerXConstraint(MVT ConstraintVT
) const {
8832 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8833 // 'f' like normal targets.
8834 if (ConstraintVT
.isFloatingPoint()) {
8835 if (Subtarget
->hasSSE2())
8837 if (Subtarget
->hasSSE1())
8841 return TargetLowering::LowerXConstraint(ConstraintVT
);
8844 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8845 /// vector. If it is invalid, don't add anything to Ops.
8846 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
8849 std::vector
<SDValue
>&Ops
,
8850 SelectionDAG
&DAG
) const {
8851 SDValue
Result(0, 0);
8853 switch (Constraint
) {
8856 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8857 if (C
->getZExtValue() <= 31) {
8858 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8864 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8865 if (C
->getZExtValue() <= 63) {
8866 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8872 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8873 if ((int8_t)C
->getSExtValue() == C
->getSExtValue()) {
8874 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8880 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8881 if (C
->getZExtValue() <= 255) {
8882 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8888 // 32-bit signed value
8889 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8890 const ConstantInt
*CI
= C
->getConstantIntValue();
8891 if (CI
->isValueValidForType(Type::Int32Ty
, C
->getSExtValue())) {
8892 // Widen to 64 bits here to get it sign extended.
8893 Result
= DAG
.getTargetConstant(C
->getSExtValue(), MVT::i64
);
8896 // FIXME gcc accepts some relocatable values here too, but only in certain
8897 // memory models; it's complicated.
8902 // 32-bit unsigned value
8903 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8904 const ConstantInt
*CI
= C
->getConstantIntValue();
8905 if (CI
->isValueValidForType(Type::Int32Ty
, C
->getZExtValue())) {
8906 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8910 // FIXME gcc accepts some relocatable values here too, but only in certain
8911 // memory models; it's complicated.
8915 // Literal immediates are always ok.
8916 if (ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
)) {
8917 // Widen to 64 bits here to get it sign extended.
8918 Result
= DAG
.getTargetConstant(CST
->getSExtValue(), MVT::i64
);
8922 // If we are in non-pic codegen mode, we allow the address of a global (with
8923 // an optional displacement) to be used with 'i'.
8924 GlobalAddressSDNode
*GA
= 0;
8927 // Match either (GA), (GA+C), (GA+C1+C2), etc.
8929 if ((GA
= dyn_cast
<GlobalAddressSDNode
>(Op
))) {
8930 Offset
+= GA
->getOffset();
8932 } else if (Op
.getOpcode() == ISD::ADD
) {
8933 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
8934 Offset
+= C
->getZExtValue();
8935 Op
= Op
.getOperand(0);
8938 } else if (Op
.getOpcode() == ISD::SUB
) {
8939 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
8940 Offset
+= -C
->getZExtValue();
8941 Op
= Op
.getOperand(0);
8946 // Otherwise, this isn't something we can handle, reject it.
8950 GlobalValue
*GV
= GA
->getGlobal();
8951 // If we require an extra load to get this address, as in PIC mode, we
8953 if (isGlobalStubReference(Subtarget
->ClassifyGlobalReference(GV
,
8954 getTargetMachine())))
8958 Op
= LowerGlobalAddress(GV
, Op
.getDebugLoc(), Offset
, DAG
);
8960 Op
= DAG
.getTargetGlobalAddress(GV
, GA
->getValueType(0), Offset
);
8966 if (Result
.getNode()) {
8967 Ops
.push_back(Result
);
8970 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, hasMemory
,
8974 std::vector
<unsigned> X86TargetLowering::
8975 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
8977 if (Constraint
.size() == 1) {
8978 // FIXME: not handling fp-stack yet!
8979 switch (Constraint
[0]) { // GCC X86 Constraint Letters
8980 default: break; // Unknown constraint letter
8981 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
8982 if (Subtarget
->is64Bit()) {
8984 return make_vector
<unsigned>(X86::EAX
, X86::EDX
, X86::ECX
, X86::EBX
,
8985 X86::ESI
, X86::EDI
, X86::R8D
, X86::R9D
,
8986 X86::R10D
,X86::R11D
,X86::R12D
,
8987 X86::R13D
,X86::R14D
,X86::R15D
,
8988 X86::EBP
, X86::ESP
, 0);
8989 else if (VT
== MVT::i16
)
8990 return make_vector
<unsigned>(X86::AX
, X86::DX
, X86::CX
, X86::BX
,
8991 X86::SI
, X86::DI
, X86::R8W
,X86::R9W
,
8992 X86::R10W
,X86::R11W
,X86::R12W
,
8993 X86::R13W
,X86::R14W
,X86::R15W
,
8994 X86::BP
, X86::SP
, 0);
8995 else if (VT
== MVT::i8
)
8996 return make_vector
<unsigned>(X86::AL
, X86::DL
, X86::CL
, X86::BL
,
8997 X86::SIL
, X86::DIL
, X86::R8B
,X86::R9B
,
8998 X86::R10B
,X86::R11B
,X86::R12B
,
8999 X86::R13B
,X86::R14B
,X86::R15B
,
9000 X86::BPL
, X86::SPL
, 0);
9002 else if (VT
== MVT::i64
)
9003 return make_vector
<unsigned>(X86::RAX
, X86::RDX
, X86::RCX
, X86::RBX
,
9004 X86::RSI
, X86::RDI
, X86::R8
, X86::R9
,
9005 X86::R10
, X86::R11
, X86::R12
,
9006 X86::R13
, X86::R14
, X86::R15
,
9007 X86::RBP
, X86::RSP
, 0);
9011 // 32-bit fallthrough
9014 return make_vector
<unsigned>(X86::EAX
, X86::EDX
, X86::ECX
, X86::EBX
, 0);
9015 else if (VT
== MVT::i16
)
9016 return make_vector
<unsigned>(X86::AX
, X86::DX
, X86::CX
, X86::BX
, 0);
9017 else if (VT
== MVT::i8
)
9018 return make_vector
<unsigned>(X86::AL
, X86::DL
, X86::CL
, X86::BL
, 0);
9019 else if (VT
== MVT::i64
)
9020 return make_vector
<unsigned>(X86::RAX
, X86::RDX
, X86::RCX
, X86::RBX
, 0);
9025 return std::vector
<unsigned>();
9028 std::pair
<unsigned, const TargetRegisterClass
*>
9029 X86TargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
9031 // First, see if this is a constraint that directly corresponds to an LLVM
9033 if (Constraint
.size() == 1) {
9034 // GCC Constraint Letters
9035 switch (Constraint
[0]) {
9037 case 'r': // GENERAL_REGS
9038 case 'R': // LEGACY_REGS
9039 case 'l': // INDEX_REGS
9041 return std::make_pair(0U, X86::GR8RegisterClass
);
9043 return std::make_pair(0U, X86::GR16RegisterClass
);
9044 if (VT
== MVT::i32
|| !Subtarget
->is64Bit())
9045 return std::make_pair(0U, X86::GR32RegisterClass
);
9046 return std::make_pair(0U, X86::GR64RegisterClass
);
9047 case 'f': // FP Stack registers.
9048 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9049 // value to the correct fpstack register class.
9050 if (VT
== MVT::f32
&& !isScalarFPTypeInSSEReg(VT
))
9051 return std::make_pair(0U, X86::RFP32RegisterClass
);
9052 if (VT
== MVT::f64
&& !isScalarFPTypeInSSEReg(VT
))
9053 return std::make_pair(0U, X86::RFP64RegisterClass
);
9054 return std::make_pair(0U, X86::RFP80RegisterClass
);
9055 case 'y': // MMX_REGS if MMX allowed.
9056 if (!Subtarget
->hasMMX()) break;
9057 return std::make_pair(0U, X86::VR64RegisterClass
);
9058 case 'Y': // SSE_REGS if SSE2 allowed
9059 if (!Subtarget
->hasSSE2()) break;
9061 case 'x': // SSE_REGS if SSE1 allowed
9062 if (!Subtarget
->hasSSE1()) break;
9064 switch (VT
.getSimpleVT()) {
9066 // Scalar SSE types.
9069 return std::make_pair(0U, X86::FR32RegisterClass
);
9072 return std::make_pair(0U, X86::FR64RegisterClass
);
9080 return std::make_pair(0U, X86::VR128RegisterClass
);
9086 // Use the default implementation in TargetLowering to convert the register
9087 // constraint into a member of a register class.
9088 std::pair
<unsigned, const TargetRegisterClass
*> Res
;
9089 Res
= TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
9091 // Not found as a standard register?
9092 if (Res
.second
== 0) {
9093 // GCC calls "st(0)" just plain "st".
9094 if (StringsEqualNoCase("{st}", Constraint
)) {
9095 Res
.first
= X86::ST0
;
9096 Res
.second
= X86::RFP80RegisterClass
;
9098 // 'A' means EAX + EDX.
9099 if (Constraint
== "A") {
9100 Res
.first
= X86::EAX
;
9101 Res
.second
= X86::GR32_ADRegisterClass
;
9106 // Otherwise, check to see if this is a register class of the wrong value
9107 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9108 // turn into {ax},{dx}.
9109 if (Res
.second
->hasType(VT
))
9110 return Res
; // Correct type already, nothing to do.
9112 // All of the single-register GCC register classes map their values onto
9113 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
9114 // really want an 8-bit or 32-bit register, map to the appropriate register
9115 // class and return the appropriate register.
9116 if (Res
.second
== X86::GR16RegisterClass
) {
9117 if (VT
== MVT::i8
) {
9118 unsigned DestReg
= 0;
9119 switch (Res
.first
) {
9121 case X86::AX
: DestReg
= X86::AL
; break;
9122 case X86::DX
: DestReg
= X86::DL
; break;
9123 case X86::CX
: DestReg
= X86::CL
; break;
9124 case X86::BX
: DestReg
= X86::BL
; break;
9127 Res
.first
= DestReg
;
9128 Res
.second
= X86::GR8RegisterClass
;
9130 } else if (VT
== MVT::i32
) {
9131 unsigned DestReg
= 0;
9132 switch (Res
.first
) {
9134 case X86::AX
: DestReg
= X86::EAX
; break;
9135 case X86::DX
: DestReg
= X86::EDX
; break;
9136 case X86::CX
: DestReg
= X86::ECX
; break;
9137 case X86::BX
: DestReg
= X86::EBX
; break;
9138 case X86::SI
: DestReg
= X86::ESI
; break;
9139 case X86::DI
: DestReg
= X86::EDI
; break;
9140 case X86::BP
: DestReg
= X86::EBP
; break;
9141 case X86::SP
: DestReg
= X86::ESP
; break;
9144 Res
.first
= DestReg
;
9145 Res
.second
= X86::GR32RegisterClass
;
9147 } else if (VT
== MVT::i64
) {
9148 unsigned DestReg
= 0;
9149 switch (Res
.first
) {
9151 case X86::AX
: DestReg
= X86::RAX
; break;
9152 case X86::DX
: DestReg
= X86::RDX
; break;
9153 case X86::CX
: DestReg
= X86::RCX
; break;
9154 case X86::BX
: DestReg
= X86::RBX
; break;
9155 case X86::SI
: DestReg
= X86::RSI
; break;
9156 case X86::DI
: DestReg
= X86::RDI
; break;
9157 case X86::BP
: DestReg
= X86::RBP
; break;
9158 case X86::SP
: DestReg
= X86::RSP
; break;
9161 Res
.first
= DestReg
;
9162 Res
.second
= X86::GR64RegisterClass
;
9165 } else if (Res
.second
== X86::FR32RegisterClass
||
9166 Res
.second
== X86::FR64RegisterClass
||
9167 Res
.second
== X86::VR128RegisterClass
) {
9168 // Handle references to XMM physical registers that got mapped into the
9169 // wrong class. This can happen with constraints like {xmm0} where the
9170 // target independent register mapper will just pick the first match it can
9171 // find, ignoring the required type.
9173 Res
.second
= X86::FR32RegisterClass
;
9174 else if (VT
== MVT::f64
)
9175 Res
.second
= X86::FR64RegisterClass
;
9176 else if (X86::VR128RegisterClass
->hasType(VT
))
9177 Res
.second
= X86::VR128RegisterClass
;
9183 //===----------------------------------------------------------------------===//
9184 // X86 Widen vector type
9185 //===----------------------------------------------------------------------===//
9187 /// getWidenVectorType: given a vector type, returns the type to widen
9188 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9189 /// If there is no vector type that we want to widen to, returns MVT::Other
9190 /// When and where to widen is target dependent based on the cost of
9191 /// scalarizing vs using the wider vector type.
9193 MVT
X86TargetLowering::getWidenVectorType(MVT VT
) const {
9194 assert(VT
.isVector());
9195 if (isTypeLegal(VT
))
9198 // TODO: In computeRegisterProperty, we can compute the list of legal vector
9199 // type based on element type. This would speed up our search (though
9200 // it may not be worth it since the size of the list is relatively
9202 MVT EltVT
= VT
.getVectorElementType();
9203 unsigned NElts
= VT
.getVectorNumElements();
9205 // On X86, it make sense to widen any vector wider than 1
9209 for (unsigned nVT
= MVT::FIRST_VECTOR_VALUETYPE
;
9210 nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
9211 MVT SVT
= (MVT::SimpleValueType
)nVT
;
9213 if (isTypeLegal(SVT
) &&
9214 SVT
.getVectorElementType() == EltVT
&&
9215 SVT
.getVectorNumElements() > NElts
)