Fix part 1 of pr4682. PICADD is a 16-bit instruction even in thumb2 mode.
[llvm/avr.git] / lib / Target / X86 / X86InstrInfo.cpp
blob22f8b53e32883d9d4f0becd45cb8c5ea9c4497d4
1 //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "X86InstrInfo.h"
15 #include "X86.h"
16 #include "X86GenInstrInfo.inc"
17 #include "X86InstrBuilder.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/LLVMContext.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Target/TargetAsmInfo.h"
35 using namespace llvm;
37 namespace {
38 cl::opt<bool>
39 NoFusing("disable-spill-fusing",
40 cl::desc("Disable fusing of spill code into instructions"));
41 cl::opt<bool>
42 PrintFailedFusing("print-failed-fuse-candidates",
43 cl::desc("Print instructions that the allocator wants to"
44 " fuse, but the X86 backend currently can't"),
45 cl::Hidden);
46 cl::opt<bool>
47 ReMatPICStubLoad("remat-pic-stub-load",
48 cl::desc("Re-materialize load from stub in PIC mode"),
49 cl::init(false), cl::Hidden);
52 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
53 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
54 TM(tm), RI(tm, *this) {
55 SmallVector<unsigned,16> AmbEntries;
56 static const unsigned OpTbl2Addr[][2] = {
57 { X86::ADC32ri, X86::ADC32mi },
58 { X86::ADC32ri8, X86::ADC32mi8 },
59 { X86::ADC32rr, X86::ADC32mr },
60 { X86::ADC64ri32, X86::ADC64mi32 },
61 { X86::ADC64ri8, X86::ADC64mi8 },
62 { X86::ADC64rr, X86::ADC64mr },
63 { X86::ADD16ri, X86::ADD16mi },
64 { X86::ADD16ri8, X86::ADD16mi8 },
65 { X86::ADD16rr, X86::ADD16mr },
66 { X86::ADD32ri, X86::ADD32mi },
67 { X86::ADD32ri8, X86::ADD32mi8 },
68 { X86::ADD32rr, X86::ADD32mr },
69 { X86::ADD64ri32, X86::ADD64mi32 },
70 { X86::ADD64ri8, X86::ADD64mi8 },
71 { X86::ADD64rr, X86::ADD64mr },
72 { X86::ADD8ri, X86::ADD8mi },
73 { X86::ADD8rr, X86::ADD8mr },
74 { X86::AND16ri, X86::AND16mi },
75 { X86::AND16ri8, X86::AND16mi8 },
76 { X86::AND16rr, X86::AND16mr },
77 { X86::AND32ri, X86::AND32mi },
78 { X86::AND32ri8, X86::AND32mi8 },
79 { X86::AND32rr, X86::AND32mr },
80 { X86::AND64ri32, X86::AND64mi32 },
81 { X86::AND64ri8, X86::AND64mi8 },
82 { X86::AND64rr, X86::AND64mr },
83 { X86::AND8ri, X86::AND8mi },
84 { X86::AND8rr, X86::AND8mr },
85 { X86::DEC16r, X86::DEC16m },
86 { X86::DEC32r, X86::DEC32m },
87 { X86::DEC64_16r, X86::DEC64_16m },
88 { X86::DEC64_32r, X86::DEC64_32m },
89 { X86::DEC64r, X86::DEC64m },
90 { X86::DEC8r, X86::DEC8m },
91 { X86::INC16r, X86::INC16m },
92 { X86::INC32r, X86::INC32m },
93 { X86::INC64_16r, X86::INC64_16m },
94 { X86::INC64_32r, X86::INC64_32m },
95 { X86::INC64r, X86::INC64m },
96 { X86::INC8r, X86::INC8m },
97 { X86::NEG16r, X86::NEG16m },
98 { X86::NEG32r, X86::NEG32m },
99 { X86::NEG64r, X86::NEG64m },
100 { X86::NEG8r, X86::NEG8m },
101 { X86::NOT16r, X86::NOT16m },
102 { X86::NOT32r, X86::NOT32m },
103 { X86::NOT64r, X86::NOT64m },
104 { X86::NOT8r, X86::NOT8m },
105 { X86::OR16ri, X86::OR16mi },
106 { X86::OR16ri8, X86::OR16mi8 },
107 { X86::OR16rr, X86::OR16mr },
108 { X86::OR32ri, X86::OR32mi },
109 { X86::OR32ri8, X86::OR32mi8 },
110 { X86::OR32rr, X86::OR32mr },
111 { X86::OR64ri32, X86::OR64mi32 },
112 { X86::OR64ri8, X86::OR64mi8 },
113 { X86::OR64rr, X86::OR64mr },
114 { X86::OR8ri, X86::OR8mi },
115 { X86::OR8rr, X86::OR8mr },
116 { X86::ROL16r1, X86::ROL16m1 },
117 { X86::ROL16rCL, X86::ROL16mCL },
118 { X86::ROL16ri, X86::ROL16mi },
119 { X86::ROL32r1, X86::ROL32m1 },
120 { X86::ROL32rCL, X86::ROL32mCL },
121 { X86::ROL32ri, X86::ROL32mi },
122 { X86::ROL64r1, X86::ROL64m1 },
123 { X86::ROL64rCL, X86::ROL64mCL },
124 { X86::ROL64ri, X86::ROL64mi },
125 { X86::ROL8r1, X86::ROL8m1 },
126 { X86::ROL8rCL, X86::ROL8mCL },
127 { X86::ROL8ri, X86::ROL8mi },
128 { X86::ROR16r1, X86::ROR16m1 },
129 { X86::ROR16rCL, X86::ROR16mCL },
130 { X86::ROR16ri, X86::ROR16mi },
131 { X86::ROR32r1, X86::ROR32m1 },
132 { X86::ROR32rCL, X86::ROR32mCL },
133 { X86::ROR32ri, X86::ROR32mi },
134 { X86::ROR64r1, X86::ROR64m1 },
135 { X86::ROR64rCL, X86::ROR64mCL },
136 { X86::ROR64ri, X86::ROR64mi },
137 { X86::ROR8r1, X86::ROR8m1 },
138 { X86::ROR8rCL, X86::ROR8mCL },
139 { X86::ROR8ri, X86::ROR8mi },
140 { X86::SAR16r1, X86::SAR16m1 },
141 { X86::SAR16rCL, X86::SAR16mCL },
142 { X86::SAR16ri, X86::SAR16mi },
143 { X86::SAR32r1, X86::SAR32m1 },
144 { X86::SAR32rCL, X86::SAR32mCL },
145 { X86::SAR32ri, X86::SAR32mi },
146 { X86::SAR64r1, X86::SAR64m1 },
147 { X86::SAR64rCL, X86::SAR64mCL },
148 { X86::SAR64ri, X86::SAR64mi },
149 { X86::SAR8r1, X86::SAR8m1 },
150 { X86::SAR8rCL, X86::SAR8mCL },
151 { X86::SAR8ri, X86::SAR8mi },
152 { X86::SBB32ri, X86::SBB32mi },
153 { X86::SBB32ri8, X86::SBB32mi8 },
154 { X86::SBB32rr, X86::SBB32mr },
155 { X86::SBB64ri32, X86::SBB64mi32 },
156 { X86::SBB64ri8, X86::SBB64mi8 },
157 { X86::SBB64rr, X86::SBB64mr },
158 { X86::SHL16rCL, X86::SHL16mCL },
159 { X86::SHL16ri, X86::SHL16mi },
160 { X86::SHL32rCL, X86::SHL32mCL },
161 { X86::SHL32ri, X86::SHL32mi },
162 { X86::SHL64rCL, X86::SHL64mCL },
163 { X86::SHL64ri, X86::SHL64mi },
164 { X86::SHL8rCL, X86::SHL8mCL },
165 { X86::SHL8ri, X86::SHL8mi },
166 { X86::SHLD16rrCL, X86::SHLD16mrCL },
167 { X86::SHLD16rri8, X86::SHLD16mri8 },
168 { X86::SHLD32rrCL, X86::SHLD32mrCL },
169 { X86::SHLD32rri8, X86::SHLD32mri8 },
170 { X86::SHLD64rrCL, X86::SHLD64mrCL },
171 { X86::SHLD64rri8, X86::SHLD64mri8 },
172 { X86::SHR16r1, X86::SHR16m1 },
173 { X86::SHR16rCL, X86::SHR16mCL },
174 { X86::SHR16ri, X86::SHR16mi },
175 { X86::SHR32r1, X86::SHR32m1 },
176 { X86::SHR32rCL, X86::SHR32mCL },
177 { X86::SHR32ri, X86::SHR32mi },
178 { X86::SHR64r1, X86::SHR64m1 },
179 { X86::SHR64rCL, X86::SHR64mCL },
180 { X86::SHR64ri, X86::SHR64mi },
181 { X86::SHR8r1, X86::SHR8m1 },
182 { X86::SHR8rCL, X86::SHR8mCL },
183 { X86::SHR8ri, X86::SHR8mi },
184 { X86::SHRD16rrCL, X86::SHRD16mrCL },
185 { X86::SHRD16rri8, X86::SHRD16mri8 },
186 { X86::SHRD32rrCL, X86::SHRD32mrCL },
187 { X86::SHRD32rri8, X86::SHRD32mri8 },
188 { X86::SHRD64rrCL, X86::SHRD64mrCL },
189 { X86::SHRD64rri8, X86::SHRD64mri8 },
190 { X86::SUB16ri, X86::SUB16mi },
191 { X86::SUB16ri8, X86::SUB16mi8 },
192 { X86::SUB16rr, X86::SUB16mr },
193 { X86::SUB32ri, X86::SUB32mi },
194 { X86::SUB32ri8, X86::SUB32mi8 },
195 { X86::SUB32rr, X86::SUB32mr },
196 { X86::SUB64ri32, X86::SUB64mi32 },
197 { X86::SUB64ri8, X86::SUB64mi8 },
198 { X86::SUB64rr, X86::SUB64mr },
199 { X86::SUB8ri, X86::SUB8mi },
200 { X86::SUB8rr, X86::SUB8mr },
201 { X86::XOR16ri, X86::XOR16mi },
202 { X86::XOR16ri8, X86::XOR16mi8 },
203 { X86::XOR16rr, X86::XOR16mr },
204 { X86::XOR32ri, X86::XOR32mi },
205 { X86::XOR32ri8, X86::XOR32mi8 },
206 { X86::XOR32rr, X86::XOR32mr },
207 { X86::XOR64ri32, X86::XOR64mi32 },
208 { X86::XOR64ri8, X86::XOR64mi8 },
209 { X86::XOR64rr, X86::XOR64mr },
210 { X86::XOR8ri, X86::XOR8mi },
211 { X86::XOR8rr, X86::XOR8mr }
214 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
215 unsigned RegOp = OpTbl2Addr[i][0];
216 unsigned MemOp = OpTbl2Addr[i][1];
217 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
218 std::make_pair(MemOp,0))).second)
219 assert(false && "Duplicated entries?");
220 // Index 0, folded load and store, no alignment requirement.
221 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
222 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
223 std::make_pair(RegOp,
224 AuxInfo))).second)
225 AmbEntries.push_back(MemOp);
228 // If the third value is 1, then it's folding either a load or a store.
229 static const unsigned OpTbl0[][4] = {
230 { X86::BT16ri8, X86::BT16mi8, 1, 0 },
231 { X86::BT32ri8, X86::BT32mi8, 1, 0 },
232 { X86::BT64ri8, X86::BT64mi8, 1, 0 },
233 { X86::CALL32r, X86::CALL32m, 1, 0 },
234 { X86::CALL64r, X86::CALL64m, 1, 0 },
235 { X86::CMP16ri, X86::CMP16mi, 1, 0 },
236 { X86::CMP16ri8, X86::CMP16mi8, 1, 0 },
237 { X86::CMP16rr, X86::CMP16mr, 1, 0 },
238 { X86::CMP32ri, X86::CMP32mi, 1, 0 },
239 { X86::CMP32ri8, X86::CMP32mi8, 1, 0 },
240 { X86::CMP32rr, X86::CMP32mr, 1, 0 },
241 { X86::CMP64ri32, X86::CMP64mi32, 1, 0 },
242 { X86::CMP64ri8, X86::CMP64mi8, 1, 0 },
243 { X86::CMP64rr, X86::CMP64mr, 1, 0 },
244 { X86::CMP8ri, X86::CMP8mi, 1, 0 },
245 { X86::CMP8rr, X86::CMP8mr, 1, 0 },
246 { X86::DIV16r, X86::DIV16m, 1, 0 },
247 { X86::DIV32r, X86::DIV32m, 1, 0 },
248 { X86::DIV64r, X86::DIV64m, 1, 0 },
249 { X86::DIV8r, X86::DIV8m, 1, 0 },
250 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
251 { X86::FsMOVAPDrr, X86::MOVSDmr, 0, 0 },
252 { X86::FsMOVAPSrr, X86::MOVSSmr, 0, 0 },
253 { X86::IDIV16r, X86::IDIV16m, 1, 0 },
254 { X86::IDIV32r, X86::IDIV32m, 1, 0 },
255 { X86::IDIV64r, X86::IDIV64m, 1, 0 },
256 { X86::IDIV8r, X86::IDIV8m, 1, 0 },
257 { X86::IMUL16r, X86::IMUL16m, 1, 0 },
258 { X86::IMUL32r, X86::IMUL32m, 1, 0 },
259 { X86::IMUL64r, X86::IMUL64m, 1, 0 },
260 { X86::IMUL8r, X86::IMUL8m, 1, 0 },
261 { X86::JMP32r, X86::JMP32m, 1, 0 },
262 { X86::JMP64r, X86::JMP64m, 1, 0 },
263 { X86::MOV16ri, X86::MOV16mi, 0, 0 },
264 { X86::MOV16rr, X86::MOV16mr, 0, 0 },
265 { X86::MOV32ri, X86::MOV32mi, 0, 0 },
266 { X86::MOV32rr, X86::MOV32mr, 0, 0 },
267 { X86::MOV64ri32, X86::MOV64mi32, 0, 0 },
268 { X86::MOV64rr, X86::MOV64mr, 0, 0 },
269 { X86::MOV8ri, X86::MOV8mi, 0, 0 },
270 { X86::MOV8rr, X86::MOV8mr, 0, 0 },
271 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
272 { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 },
273 { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 },
274 { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 },
275 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
276 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
277 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0, 0 },
278 { X86::MOVSDrr, X86::MOVSDmr, 0, 0 },
279 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
280 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 },
281 { X86::MOVSSrr, X86::MOVSSmr, 0, 0 },
282 { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 },
283 { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 },
284 { X86::MUL16r, X86::MUL16m, 1, 0 },
285 { X86::MUL32r, X86::MUL32m, 1, 0 },
286 { X86::MUL64r, X86::MUL64m, 1, 0 },
287 { X86::MUL8r, X86::MUL8m, 1, 0 },
288 { X86::SETAEr, X86::SETAEm, 0, 0 },
289 { X86::SETAr, X86::SETAm, 0, 0 },
290 { X86::SETBEr, X86::SETBEm, 0, 0 },
291 { X86::SETBr, X86::SETBm, 0, 0 },
292 { X86::SETEr, X86::SETEm, 0, 0 },
293 { X86::SETGEr, X86::SETGEm, 0, 0 },
294 { X86::SETGr, X86::SETGm, 0, 0 },
295 { X86::SETLEr, X86::SETLEm, 0, 0 },
296 { X86::SETLr, X86::SETLm, 0, 0 },
297 { X86::SETNEr, X86::SETNEm, 0, 0 },
298 { X86::SETNOr, X86::SETNOm, 0, 0 },
299 { X86::SETNPr, X86::SETNPm, 0, 0 },
300 { X86::SETNSr, X86::SETNSm, 0, 0 },
301 { X86::SETOr, X86::SETOm, 0, 0 },
302 { X86::SETPr, X86::SETPm, 0, 0 },
303 { X86::SETSr, X86::SETSm, 0, 0 },
304 { X86::TAILJMPr, X86::TAILJMPm, 1, 0 },
305 { X86::TEST16ri, X86::TEST16mi, 1, 0 },
306 { X86::TEST32ri, X86::TEST32mi, 1, 0 },
307 { X86::TEST64ri32, X86::TEST64mi32, 1, 0 },
308 { X86::TEST8ri, X86::TEST8mi, 1, 0 }
311 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
312 unsigned RegOp = OpTbl0[i][0];
313 unsigned MemOp = OpTbl0[i][1];
314 unsigned Align = OpTbl0[i][3];
315 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
316 std::make_pair(MemOp,Align))).second)
317 assert(false && "Duplicated entries?");
318 unsigned FoldedLoad = OpTbl0[i][2];
319 // Index 0, folded load or store.
320 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
321 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
322 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
323 std::make_pair(RegOp, AuxInfo))).second)
324 AmbEntries.push_back(MemOp);
327 static const unsigned OpTbl1[][3] = {
328 { X86::CMP16rr, X86::CMP16rm, 0 },
329 { X86::CMP32rr, X86::CMP32rm, 0 },
330 { X86::CMP64rr, X86::CMP64rm, 0 },
331 { X86::CMP8rr, X86::CMP8rm, 0 },
332 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
333 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
334 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
335 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
336 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
337 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
338 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
339 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
340 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
341 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
342 { X86::FsMOVAPDrr, X86::MOVSDrm, 0 },
343 { X86::FsMOVAPSrr, X86::MOVSSrm, 0 },
344 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
345 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
346 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
347 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
348 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
349 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
350 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
351 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
352 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
353 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
354 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 },
355 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 },
356 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 },
357 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 },
358 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 },
359 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
360 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
361 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm, 0 },
362 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
363 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
364 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
365 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
366 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
367 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
368 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
369 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 },
370 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
371 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
372 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
373 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
374 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
375 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
376 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
377 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
378 { X86::MOV16rr, X86::MOV16rm, 0 },
379 { X86::MOV32rr, X86::MOV32rm, 0 },
380 { X86::MOV64rr, X86::MOV64rm, 0 },
381 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
382 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
383 { X86::MOV8rr, X86::MOV8rm, 0 },
384 { X86::MOVAPDrr, X86::MOVAPDrm, 16 },
385 { X86::MOVAPSrr, X86::MOVAPSrm, 16 },
386 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
387 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
388 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
389 { X86::MOVDQArr, X86::MOVDQArm, 16 },
390 { X86::MOVSD2PDrr, X86::MOVSD2PDrm, 0 },
391 { X86::MOVSDrr, X86::MOVSDrm, 0 },
392 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 },
393 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 },
394 { X86::MOVSS2PSrr, X86::MOVSS2PSrm, 0 },
395 { X86::MOVSSrr, X86::MOVSSrm, 0 },
396 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
397 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
398 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
399 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
400 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
401 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
402 { X86::MOVUPDrr, X86::MOVUPDrm, 16 },
403 { X86::MOVUPSrr, X86::MOVUPSrm, 16 },
404 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
405 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
406 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
407 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
408 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
409 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
410 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
411 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
412 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
413 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
414 { X86::PSHUFDri, X86::PSHUFDmi, 16 },
415 { X86::PSHUFHWri, X86::PSHUFHWmi, 16 },
416 { X86::PSHUFLWri, X86::PSHUFLWmi, 16 },
417 { X86::RCPPSr, X86::RCPPSm, 16 },
418 { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 },
419 { X86::RSQRTPSr, X86::RSQRTPSm, 16 },
420 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 },
421 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
422 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
423 { X86::SQRTPDr, X86::SQRTPDm, 16 },
424 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 },
425 { X86::SQRTPSr, X86::SQRTPSm, 16 },
426 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 },
427 { X86::SQRTSDr, X86::SQRTSDm, 0 },
428 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
429 { X86::SQRTSSr, X86::SQRTSSm, 0 },
430 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
431 { X86::TEST16rr, X86::TEST16rm, 0 },
432 { X86::TEST32rr, X86::TEST32rm, 0 },
433 { X86::TEST64rr, X86::TEST64rm, 0 },
434 { X86::TEST8rr, X86::TEST8rm, 0 },
435 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
436 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
437 { X86::UCOMISSrr, X86::UCOMISSrm, 0 }
440 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
441 unsigned RegOp = OpTbl1[i][0];
442 unsigned MemOp = OpTbl1[i][1];
443 unsigned Align = OpTbl1[i][2];
444 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
445 std::make_pair(MemOp,Align))).second)
446 assert(false && "Duplicated entries?");
447 // Index 1, folded load
448 unsigned AuxInfo = 1 | (1 << 4);
449 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
450 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
451 std::make_pair(RegOp, AuxInfo))).second)
452 AmbEntries.push_back(MemOp);
455 static const unsigned OpTbl2[][3] = {
456 { X86::ADC32rr, X86::ADC32rm, 0 },
457 { X86::ADC64rr, X86::ADC64rm, 0 },
458 { X86::ADD16rr, X86::ADD16rm, 0 },
459 { X86::ADD32rr, X86::ADD32rm, 0 },
460 { X86::ADD64rr, X86::ADD64rm, 0 },
461 { X86::ADD8rr, X86::ADD8rm, 0 },
462 { X86::ADDPDrr, X86::ADDPDrm, 16 },
463 { X86::ADDPSrr, X86::ADDPSrm, 16 },
464 { X86::ADDSDrr, X86::ADDSDrm, 0 },
465 { X86::ADDSSrr, X86::ADDSSrm, 0 },
466 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 },
467 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 },
468 { X86::AND16rr, X86::AND16rm, 0 },
469 { X86::AND32rr, X86::AND32rm, 0 },
470 { X86::AND64rr, X86::AND64rm, 0 },
471 { X86::AND8rr, X86::AND8rm, 0 },
472 { X86::ANDNPDrr, X86::ANDNPDrm, 16 },
473 { X86::ANDNPSrr, X86::ANDNPSrm, 16 },
474 { X86::ANDPDrr, X86::ANDPDrm, 16 },
475 { X86::ANDPSrr, X86::ANDPSrm, 16 },
476 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
477 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
478 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
479 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
480 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
481 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
482 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
483 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
484 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
485 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
486 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
487 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
488 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
489 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
490 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
491 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
492 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
493 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
494 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
495 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
496 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
497 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
498 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
499 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
500 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
501 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
502 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
503 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
504 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
505 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
506 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
507 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
508 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
509 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
510 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
511 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
512 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
513 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
514 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
515 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
516 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
517 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
518 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
519 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
520 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
521 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
522 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
523 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
524 { X86::CMPPDrri, X86::CMPPDrmi, 16 },
525 { X86::CMPPSrri, X86::CMPPSrmi, 16 },
526 { X86::CMPSDrr, X86::CMPSDrm, 0 },
527 { X86::CMPSSrr, X86::CMPSSrm, 0 },
528 { X86::DIVPDrr, X86::DIVPDrm, 16 },
529 { X86::DIVPSrr, X86::DIVPSrm, 16 },
530 { X86::DIVSDrr, X86::DIVSDrm, 0 },
531 { X86::DIVSSrr, X86::DIVSSrm, 0 },
532 { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 },
533 { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 },
534 { X86::FsANDPDrr, X86::FsANDPDrm, 16 },
535 { X86::FsANDPSrr, X86::FsANDPSrm, 16 },
536 { X86::FsORPDrr, X86::FsORPDrm, 16 },
537 { X86::FsORPSrr, X86::FsORPSrm, 16 },
538 { X86::FsXORPDrr, X86::FsXORPDrm, 16 },
539 { X86::FsXORPSrr, X86::FsXORPSrm, 16 },
540 { X86::HADDPDrr, X86::HADDPDrm, 16 },
541 { X86::HADDPSrr, X86::HADDPSrm, 16 },
542 { X86::HSUBPDrr, X86::HSUBPDrm, 16 },
543 { X86::HSUBPSrr, X86::HSUBPSrm, 16 },
544 { X86::IMUL16rr, X86::IMUL16rm, 0 },
545 { X86::IMUL32rr, X86::IMUL32rm, 0 },
546 { X86::IMUL64rr, X86::IMUL64rm, 0 },
547 { X86::MAXPDrr, X86::MAXPDrm, 16 },
548 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 },
549 { X86::MAXPSrr, X86::MAXPSrm, 16 },
550 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 },
551 { X86::MAXSDrr, X86::MAXSDrm, 0 },
552 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
553 { X86::MAXSSrr, X86::MAXSSrm, 0 },
554 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
555 { X86::MINPDrr, X86::MINPDrm, 16 },
556 { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 },
557 { X86::MINPSrr, X86::MINPSrm, 16 },
558 { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 },
559 { X86::MINSDrr, X86::MINSDrm, 0 },
560 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
561 { X86::MINSSrr, X86::MINSSrm, 0 },
562 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
563 { X86::MULPDrr, X86::MULPDrm, 16 },
564 { X86::MULPSrr, X86::MULPSrm, 16 },
565 { X86::MULSDrr, X86::MULSDrm, 0 },
566 { X86::MULSSrr, X86::MULSSrm, 0 },
567 { X86::OR16rr, X86::OR16rm, 0 },
568 { X86::OR32rr, X86::OR32rm, 0 },
569 { X86::OR64rr, X86::OR64rm, 0 },
570 { X86::OR8rr, X86::OR8rm, 0 },
571 { X86::ORPDrr, X86::ORPDrm, 16 },
572 { X86::ORPSrr, X86::ORPSrm, 16 },
573 { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 },
574 { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 },
575 { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 },
576 { X86::PADDBrr, X86::PADDBrm, 16 },
577 { X86::PADDDrr, X86::PADDDrm, 16 },
578 { X86::PADDQrr, X86::PADDQrm, 16 },
579 { X86::PADDSBrr, X86::PADDSBrm, 16 },
580 { X86::PADDSWrr, X86::PADDSWrm, 16 },
581 { X86::PADDWrr, X86::PADDWrm, 16 },
582 { X86::PANDNrr, X86::PANDNrm, 16 },
583 { X86::PANDrr, X86::PANDrm, 16 },
584 { X86::PAVGBrr, X86::PAVGBrm, 16 },
585 { X86::PAVGWrr, X86::PAVGWrm, 16 },
586 { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 },
587 { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 },
588 { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 },
589 { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 },
590 { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 },
591 { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 },
592 { X86::PINSRWrri, X86::PINSRWrmi, 16 },
593 { X86::PMADDWDrr, X86::PMADDWDrm, 16 },
594 { X86::PMAXSWrr, X86::PMAXSWrm, 16 },
595 { X86::PMAXUBrr, X86::PMAXUBrm, 16 },
596 { X86::PMINSWrr, X86::PMINSWrm, 16 },
597 { X86::PMINUBrr, X86::PMINUBrm, 16 },
598 { X86::PMULDQrr, X86::PMULDQrm, 16 },
599 { X86::PMULHUWrr, X86::PMULHUWrm, 16 },
600 { X86::PMULHWrr, X86::PMULHWrm, 16 },
601 { X86::PMULLDrr, X86::PMULLDrm, 16 },
602 { X86::PMULLDrr_int, X86::PMULLDrm_int, 16 },
603 { X86::PMULLWrr, X86::PMULLWrm, 16 },
604 { X86::PMULUDQrr, X86::PMULUDQrm, 16 },
605 { X86::PORrr, X86::PORrm, 16 },
606 { X86::PSADBWrr, X86::PSADBWrm, 16 },
607 { X86::PSLLDrr, X86::PSLLDrm, 16 },
608 { X86::PSLLQrr, X86::PSLLQrm, 16 },
609 { X86::PSLLWrr, X86::PSLLWrm, 16 },
610 { X86::PSRADrr, X86::PSRADrm, 16 },
611 { X86::PSRAWrr, X86::PSRAWrm, 16 },
612 { X86::PSRLDrr, X86::PSRLDrm, 16 },
613 { X86::PSRLQrr, X86::PSRLQrm, 16 },
614 { X86::PSRLWrr, X86::PSRLWrm, 16 },
615 { X86::PSUBBrr, X86::PSUBBrm, 16 },
616 { X86::PSUBDrr, X86::PSUBDrm, 16 },
617 { X86::PSUBSBrr, X86::PSUBSBrm, 16 },
618 { X86::PSUBSWrr, X86::PSUBSWrm, 16 },
619 { X86::PSUBWrr, X86::PSUBWrm, 16 },
620 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 },
621 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 },
622 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 },
623 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 },
624 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 },
625 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 },
626 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 },
627 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 },
628 { X86::PXORrr, X86::PXORrm, 16 },
629 { X86::SBB32rr, X86::SBB32rm, 0 },
630 { X86::SBB64rr, X86::SBB64rm, 0 },
631 { X86::SHUFPDrri, X86::SHUFPDrmi, 16 },
632 { X86::SHUFPSrri, X86::SHUFPSrmi, 16 },
633 { X86::SUB16rr, X86::SUB16rm, 0 },
634 { X86::SUB32rr, X86::SUB32rm, 0 },
635 { X86::SUB64rr, X86::SUB64rm, 0 },
636 { X86::SUB8rr, X86::SUB8rm, 0 },
637 { X86::SUBPDrr, X86::SUBPDrm, 16 },
638 { X86::SUBPSrr, X86::SUBPSrm, 16 },
639 { X86::SUBSDrr, X86::SUBSDrm, 0 },
640 { X86::SUBSSrr, X86::SUBSSrm, 0 },
641 // FIXME: TEST*rr -> swapped operand of TEST*mr.
642 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 },
643 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 },
644 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 },
645 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 },
646 { X86::XOR16rr, X86::XOR16rm, 0 },
647 { X86::XOR32rr, X86::XOR32rm, 0 },
648 { X86::XOR64rr, X86::XOR64rm, 0 },
649 { X86::XOR8rr, X86::XOR8rm, 0 },
650 { X86::XORPDrr, X86::XORPDrm, 16 },
651 { X86::XORPSrr, X86::XORPSrm, 16 }
654 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
655 unsigned RegOp = OpTbl2[i][0];
656 unsigned MemOp = OpTbl2[i][1];
657 unsigned Align = OpTbl2[i][2];
658 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
659 std::make_pair(MemOp,Align))).second)
660 assert(false && "Duplicated entries?");
661 // Index 2, folded load
662 unsigned AuxInfo = 2 | (1 << 4);
663 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
664 std::make_pair(RegOp, AuxInfo))).second)
665 AmbEntries.push_back(MemOp);
668 // Remove ambiguous entries.
669 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
672 bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
673 unsigned &SrcReg, unsigned &DstReg,
674 unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
675 switch (MI.getOpcode()) {
676 default:
677 return false;
678 case X86::MOV8rr:
679 case X86::MOV8rr_NOREX:
680 case X86::MOV16rr:
681 case X86::MOV32rr:
682 case X86::MOV64rr:
683 case X86::MOVSSrr:
684 case X86::MOVSDrr:
686 // FP Stack register class copies
687 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
688 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
689 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
691 case X86::FsMOVAPSrr:
692 case X86::FsMOVAPDrr:
693 case X86::MOVAPSrr:
694 case X86::MOVAPDrr:
695 case X86::MOVDQArr:
696 case X86::MOVSS2PSrr:
697 case X86::MOVSD2PDrr:
698 case X86::MOVPS2SSrr:
699 case X86::MOVPD2SDrr:
700 case X86::MMX_MOVQ64rr:
701 assert(MI.getNumOperands() >= 2 &&
702 MI.getOperand(0).isReg() &&
703 MI.getOperand(1).isReg() &&
704 "invalid register-register move instruction");
705 SrcReg = MI.getOperand(1).getReg();
706 DstReg = MI.getOperand(0).getReg();
707 SrcSubIdx = MI.getOperand(1).getSubReg();
708 DstSubIdx = MI.getOperand(0).getSubReg();
709 return true;
713 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
714 int &FrameIndex) const {
715 switch (MI->getOpcode()) {
716 default: break;
717 case X86::MOV8rm:
718 case X86::MOV16rm:
719 case X86::MOV32rm:
720 case X86::MOV64rm:
721 case X86::LD_Fp64m:
722 case X86::MOVSSrm:
723 case X86::MOVSDrm:
724 case X86::MOVAPSrm:
725 case X86::MOVAPDrm:
726 case X86::MOVDQArm:
727 case X86::MMX_MOVD64rm:
728 case X86::MMX_MOVQ64rm:
729 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
730 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
731 MI->getOperand(2).getImm() == 1 &&
732 MI->getOperand(3).getReg() == 0 &&
733 MI->getOperand(4).getImm() == 0) {
734 FrameIndex = MI->getOperand(1).getIndex();
735 return MI->getOperand(0).getReg();
737 break;
739 return 0;
742 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
743 int &FrameIndex) const {
744 switch (MI->getOpcode()) {
745 default: break;
746 case X86::MOV8mr:
747 case X86::MOV16mr:
748 case X86::MOV32mr:
749 case X86::MOV64mr:
750 case X86::ST_FpP64m:
751 case X86::MOVSSmr:
752 case X86::MOVSDmr:
753 case X86::MOVAPSmr:
754 case X86::MOVAPDmr:
755 case X86::MOVDQAmr:
756 case X86::MMX_MOVD64mr:
757 case X86::MMX_MOVQ64mr:
758 case X86::MMX_MOVNTQmr:
759 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
760 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
761 MI->getOperand(1).getImm() == 1 &&
762 MI->getOperand(2).getReg() == 0 &&
763 MI->getOperand(3).getImm() == 0) {
764 FrameIndex = MI->getOperand(0).getIndex();
765 return MI->getOperand(X86AddrNumOperands).getReg();
767 break;
769 return 0;
772 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
773 /// X86::MOVPC32r.
774 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
775 bool isPICBase = false;
776 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
777 E = MRI.def_end(); I != E; ++I) {
778 MachineInstr *DefMI = I.getOperand().getParent();
779 if (DefMI->getOpcode() != X86::MOVPC32r)
780 return false;
781 assert(!isPICBase && "More than one PIC base?");
782 isPICBase = true;
784 return isPICBase;
787 /// CanRematLoadWithDispOperand - Return true if a load with the specified
788 /// operand is a candidate for remat: for this to be true we need to know that
789 /// the load will always return the same value, even if moved.
790 static bool CanRematLoadWithDispOperand(const MachineOperand &MO,
791 X86TargetMachine &TM) {
792 // Loads from constant pool entries can be remat'd.
793 if (MO.isCPI()) return true;
795 // We can remat globals in some cases.
796 if (MO.isGlobal()) {
797 // If this is a load of a stub, not of the global, we can remat it. This
798 // access will always return the address of the global.
799 if (isGlobalStubReference(MO.getTargetFlags()))
800 return true;
802 // If the global itself is constant, we can remat the load.
803 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal()))
804 if (GV->isConstant())
805 return true;
807 return false;
810 bool
811 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
812 switch (MI->getOpcode()) {
813 default: break;
814 case X86::MOV8rm:
815 case X86::MOV16rm:
816 case X86::MOV32rm:
817 case X86::MOV64rm:
818 case X86::LD_Fp64m:
819 case X86::MOVSSrm:
820 case X86::MOVSDrm:
821 case X86::MOVAPSrm:
822 case X86::MOVAPDrm:
823 case X86::MOVDQArm:
824 case X86::MMX_MOVD64rm:
825 case X86::MMX_MOVQ64rm: {
826 // Loads from constant pools are trivially rematerializable.
827 if (MI->getOperand(1).isReg() &&
828 MI->getOperand(2).isImm() &&
829 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
830 CanRematLoadWithDispOperand(MI->getOperand(4), TM)) {
831 unsigned BaseReg = MI->getOperand(1).getReg();
832 if (BaseReg == 0 || BaseReg == X86::RIP)
833 return true;
834 // Allow re-materialization of PIC load.
835 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
836 return false;
837 const MachineFunction &MF = *MI->getParent()->getParent();
838 const MachineRegisterInfo &MRI = MF.getRegInfo();
839 bool isPICBase = false;
840 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
841 E = MRI.def_end(); I != E; ++I) {
842 MachineInstr *DefMI = I.getOperand().getParent();
843 if (DefMI->getOpcode() != X86::MOVPC32r)
844 return false;
845 assert(!isPICBase && "More than one PIC base?");
846 isPICBase = true;
848 return isPICBase;
850 return false;
853 case X86::LEA32r:
854 case X86::LEA64r: {
855 if (MI->getOperand(2).isImm() &&
856 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
857 !MI->getOperand(4).isReg()) {
858 // lea fi#, lea GV, etc. are all rematerializable.
859 if (!MI->getOperand(1).isReg())
860 return true;
861 unsigned BaseReg = MI->getOperand(1).getReg();
862 if (BaseReg == 0)
863 return true;
864 // Allow re-materialization of lea PICBase + x.
865 const MachineFunction &MF = *MI->getParent()->getParent();
866 const MachineRegisterInfo &MRI = MF.getRegInfo();
867 return regIsPICBase(BaseReg, MRI);
869 return false;
873 // All other instructions marked M_REMATERIALIZABLE are always trivially
874 // rematerializable.
875 return true;
878 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
879 /// would clobber the EFLAGS condition register. Note the result may be
880 /// conservative. If it cannot definitely determine the safety after visiting
881 /// two instructions it assumes it's not safe.
882 static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
883 MachineBasicBlock::iterator I) {
884 // It's always safe to clobber EFLAGS at the end of a block.
885 if (I == MBB.end())
886 return true;
888 // For compile time consideration, if we are not able to determine the
889 // safety after visiting 2 instructions, we will assume it's not safe.
890 for (unsigned i = 0; i < 2; ++i) {
891 bool SeenDef = false;
892 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
893 MachineOperand &MO = I->getOperand(j);
894 if (!MO.isReg())
895 continue;
896 if (MO.getReg() == X86::EFLAGS) {
897 if (MO.isUse())
898 return false;
899 SeenDef = true;
903 if (SeenDef)
904 // This instruction defines EFLAGS, no need to look any further.
905 return true;
906 ++I;
908 // If we make it to the end of the block, it's safe to clobber EFLAGS.
909 if (I == MBB.end())
910 return true;
913 // Conservative answer.
914 return false;
917 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
918 MachineBasicBlock::iterator I,
919 unsigned DestReg, unsigned SubIdx,
920 const MachineInstr *Orig) const {
921 DebugLoc DL = DebugLoc::getUnknownLoc();
922 if (I != MBB.end()) DL = I->getDebugLoc();
924 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
925 DestReg = RI.getSubReg(DestReg, SubIdx);
926 SubIdx = 0;
929 // MOV32r0 etc. are implemented with xor which clobbers condition code.
930 // Re-materialize them as movri instructions to avoid side effects.
931 bool Clone = true;
932 unsigned Opc = Orig->getOpcode();
933 switch (Opc) {
934 default: break;
935 case X86::MOV8r0:
936 case X86::MOV16r0:
937 case X86::MOV32r0: {
938 if (!isSafeToClobberEFLAGS(MBB, I)) {
939 switch (Opc) {
940 default: break;
941 case X86::MOV8r0: Opc = X86::MOV8ri; break;
942 case X86::MOV16r0: Opc = X86::MOV16ri; break;
943 case X86::MOV32r0: Opc = X86::MOV32ri; break;
945 Clone = false;
947 break;
951 if (Clone) {
952 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
953 MI->getOperand(0).setReg(DestReg);
954 MBB.insert(I, MI);
955 } else {
956 BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
959 MachineInstr *NewMI = prior(I);
960 NewMI->getOperand(0).setSubReg(SubIdx);
963 /// isInvariantLoad - Return true if the specified instruction (which is marked
964 /// mayLoad) is loading from a location whose value is invariant across the
965 /// function. For example, loading a value from the constant pool or from
966 /// from the argument area of a function if it does not change. This should
967 /// only return true of *all* loads the instruction does are invariant (if it
968 /// does multiple loads).
969 bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
970 // This code cares about loads from three cases: constant pool entries,
971 // invariant argument slots, and global stubs. In order to handle these cases
972 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
973 // operand and base our analysis on it. This is safe because the address of
974 // none of these three cases is ever used as anything other than a load base
975 // and X86 doesn't have any instructions that load from multiple places.
977 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
978 const MachineOperand &MO = MI->getOperand(i);
979 // Loads from constant pools are trivially invariant.
980 if (MO.isCPI())
981 return true;
983 if (MO.isGlobal())
984 return isGlobalStubReference(MO.getTargetFlags());
986 // If this is a load from an invariant stack slot, the load is a constant.
987 if (MO.isFI()) {
988 const MachineFrameInfo &MFI =
989 *MI->getParent()->getParent()->getFrameInfo();
990 int Idx = MO.getIndex();
991 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
995 // All other instances of these instructions are presumed to have other
996 // issues.
997 return false;
1000 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1001 /// is not marked dead.
1002 static bool hasLiveCondCodeDef(MachineInstr *MI) {
1003 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1004 MachineOperand &MO = MI->getOperand(i);
1005 if (MO.isReg() && MO.isDef() &&
1006 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1007 return true;
1010 return false;
1013 /// convertToThreeAddress - This method must be implemented by targets that
1014 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1015 /// may be able to convert a two-address instruction into a true
1016 /// three-address instruction on demand. This allows the X86 target (for
1017 /// example) to convert ADD and SHL instructions into LEA instructions if they
1018 /// would require register copies due to two-addressness.
1020 /// This method returns a null pointer if the transformation cannot be
1021 /// performed, otherwise it returns the new instruction.
1023 MachineInstr *
1024 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1025 MachineBasicBlock::iterator &MBBI,
1026 LiveVariables *LV) const {
1027 MachineInstr *MI = MBBI;
1028 MachineFunction &MF = *MI->getParent()->getParent();
1029 // All instructions input are two-addr instructions. Get the known operands.
1030 unsigned Dest = MI->getOperand(0).getReg();
1031 unsigned Src = MI->getOperand(1).getReg();
1032 bool isDead = MI->getOperand(0).isDead();
1033 bool isKill = MI->getOperand(1).isKill();
1035 MachineInstr *NewMI = NULL;
1036 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1037 // we have better subtarget support, enable the 16-bit LEA generation here.
1038 bool DisableLEA16 = true;
1040 unsigned MIOpc = MI->getOpcode();
1041 switch (MIOpc) {
1042 case X86::SHUFPSrri: {
1043 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1044 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1046 unsigned B = MI->getOperand(1).getReg();
1047 unsigned C = MI->getOperand(2).getReg();
1048 if (B != C) return 0;
1049 unsigned A = MI->getOperand(0).getReg();
1050 unsigned M = MI->getOperand(3).getImm();
1051 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1052 .addReg(A, RegState::Define | getDeadRegState(isDead))
1053 .addReg(B, getKillRegState(isKill)).addImm(M);
1054 break;
1056 case X86::SHL64ri: {
1057 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1058 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1059 // the flags produced by a shift yet, so this is safe.
1060 unsigned ShAmt = MI->getOperand(2).getImm();
1061 if (ShAmt == 0 || ShAmt >= 4) return 0;
1063 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1064 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1065 .addReg(0).addImm(1 << ShAmt)
1066 .addReg(Src, getKillRegState(isKill))
1067 .addImm(0);
1068 break;
1070 case X86::SHL32ri: {
1071 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1072 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1073 // the flags produced by a shift yet, so this is safe.
1074 unsigned ShAmt = MI->getOperand(2).getImm();
1075 if (ShAmt == 0 || ShAmt >= 4) return 0;
1077 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1078 X86::LEA64_32r : X86::LEA32r;
1079 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1080 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1081 .addReg(0).addImm(1 << ShAmt)
1082 .addReg(Src, getKillRegState(isKill)).addImm(0);
1083 break;
1085 case X86::SHL16ri: {
1086 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1087 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1088 // the flags produced by a shift yet, so this is safe.
1089 unsigned ShAmt = MI->getOperand(2).getImm();
1090 if (ShAmt == 0 || ShAmt >= 4) return 0;
1092 if (DisableLEA16) {
1093 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
1094 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1095 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1096 ? X86::LEA64_32r : X86::LEA32r;
1097 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1098 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1100 // Build and insert into an implicit UNDEF value. This is OK because
1101 // well be shifting and then extracting the lower 16-bits.
1102 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1103 MachineInstr *InsMI =
1104 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
1105 .addReg(leaInReg)
1106 .addReg(Src, getKillRegState(isKill))
1107 .addImm(X86::SUBREG_16BIT);
1109 NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1110 .addReg(0).addImm(1 << ShAmt)
1111 .addReg(leaInReg, RegState::Kill)
1112 .addImm(0);
1114 MachineInstr *ExtMI =
1115 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
1116 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1117 .addReg(leaOutReg, RegState::Kill)
1118 .addImm(X86::SUBREG_16BIT);
1120 if (LV) {
1121 // Update live variables
1122 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1123 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1124 if (isKill)
1125 LV->replaceKillInstruction(Src, MI, InsMI);
1126 if (isDead)
1127 LV->replaceKillInstruction(Dest, MI, ExtMI);
1129 return ExtMI;
1130 } else {
1131 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1132 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1133 .addReg(0).addImm(1 << ShAmt)
1134 .addReg(Src, getKillRegState(isKill))
1135 .addImm(0);
1137 break;
1139 default: {
1140 // The following opcodes also sets the condition code register(s). Only
1141 // convert them to equivalent lea if the condition code register def's
1142 // are dead!
1143 if (hasLiveCondCodeDef(MI))
1144 return 0;
1146 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1147 switch (MIOpc) {
1148 default: return 0;
1149 case X86::INC64r:
1150 case X86::INC32r:
1151 case X86::INC64_32r: {
1152 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1153 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1154 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1155 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1156 .addReg(Dest, RegState::Define |
1157 getDeadRegState(isDead)),
1158 Src, isKill, 1);
1159 break;
1161 case X86::INC16r:
1162 case X86::INC64_16r:
1163 if (DisableLEA16) return 0;
1164 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1165 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1166 .addReg(Dest, RegState::Define |
1167 getDeadRegState(isDead)),
1168 Src, isKill, 1);
1169 break;
1170 case X86::DEC64r:
1171 case X86::DEC32r:
1172 case X86::DEC64_32r: {
1173 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1174 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1175 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1176 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1177 .addReg(Dest, RegState::Define |
1178 getDeadRegState(isDead)),
1179 Src, isKill, -1);
1180 break;
1182 case X86::DEC16r:
1183 case X86::DEC64_16r:
1184 if (DisableLEA16) return 0;
1185 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1186 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1187 .addReg(Dest, RegState::Define |
1188 getDeadRegState(isDead)),
1189 Src, isKill, -1);
1190 break;
1191 case X86::ADD64rr:
1192 case X86::ADD32rr: {
1193 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1194 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1195 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1196 unsigned Src2 = MI->getOperand(2).getReg();
1197 bool isKill2 = MI->getOperand(2).isKill();
1198 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1199 .addReg(Dest, RegState::Define |
1200 getDeadRegState(isDead)),
1201 Src, isKill, Src2, isKill2);
1202 if (LV && isKill2)
1203 LV->replaceKillInstruction(Src2, MI, NewMI);
1204 break;
1206 case X86::ADD16rr: {
1207 if (DisableLEA16) return 0;
1208 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1209 unsigned Src2 = MI->getOperand(2).getReg();
1210 bool isKill2 = MI->getOperand(2).isKill();
1211 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1212 .addReg(Dest, RegState::Define |
1213 getDeadRegState(isDead)),
1214 Src, isKill, Src2, isKill2);
1215 if (LV && isKill2)
1216 LV->replaceKillInstruction(Src2, MI, NewMI);
1217 break;
1219 case X86::ADD64ri32:
1220 case X86::ADD64ri8:
1221 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1222 if (MI->getOperand(2).isImm())
1223 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1224 .addReg(Dest, RegState::Define |
1225 getDeadRegState(isDead)),
1226 Src, isKill, MI->getOperand(2).getImm());
1227 break;
1228 case X86::ADD32ri:
1229 case X86::ADD32ri8:
1230 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1231 if (MI->getOperand(2).isImm()) {
1232 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1233 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1234 .addReg(Dest, RegState::Define |
1235 getDeadRegState(isDead)),
1236 Src, isKill, MI->getOperand(2).getImm());
1238 break;
1239 case X86::ADD16ri:
1240 case X86::ADD16ri8:
1241 if (DisableLEA16) return 0;
1242 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1243 if (MI->getOperand(2).isImm())
1244 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1245 .addReg(Dest, RegState::Define |
1246 getDeadRegState(isDead)),
1247 Src, isKill, MI->getOperand(2).getImm());
1248 break;
1249 case X86::SHL16ri:
1250 if (DisableLEA16) return 0;
1251 case X86::SHL32ri:
1252 case X86::SHL64ri: {
1253 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
1254 "Unknown shl instruction!");
1255 unsigned ShAmt = MI->getOperand(2).getImm();
1256 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1257 X86AddressMode AM;
1258 AM.Scale = 1 << ShAmt;
1259 AM.IndexReg = Src;
1260 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
1261 : (MIOpc == X86::SHL32ri
1262 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
1263 NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1264 .addReg(Dest, RegState::Define |
1265 getDeadRegState(isDead)), AM);
1266 if (isKill)
1267 NewMI->getOperand(3).setIsKill(true);
1269 break;
1275 if (!NewMI) return 0;
1277 if (LV) { // Update live variables
1278 if (isKill)
1279 LV->replaceKillInstruction(Src, MI, NewMI);
1280 if (isDead)
1281 LV->replaceKillInstruction(Dest, MI, NewMI);
1284 MFI->insert(MBBI, NewMI); // Insert the new inst
1285 return NewMI;
1288 /// commuteInstruction - We have a few instructions that must be hacked on to
1289 /// commute them.
1291 MachineInstr *
1292 X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1293 switch (MI->getOpcode()) {
1294 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1295 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1296 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1297 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1298 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1299 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1300 unsigned Opc;
1301 unsigned Size;
1302 switch (MI->getOpcode()) {
1303 default: llvm_unreachable("Unreachable!");
1304 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1305 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1306 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1307 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1308 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1309 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1311 unsigned Amt = MI->getOperand(3).getImm();
1312 if (NewMI) {
1313 MachineFunction &MF = *MI->getParent()->getParent();
1314 MI = MF.CloneMachineInstr(MI);
1315 NewMI = false;
1317 MI->setDesc(get(Opc));
1318 MI->getOperand(3).setImm(Size-Amt);
1319 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1321 case X86::CMOVB16rr:
1322 case X86::CMOVB32rr:
1323 case X86::CMOVB64rr:
1324 case X86::CMOVAE16rr:
1325 case X86::CMOVAE32rr:
1326 case X86::CMOVAE64rr:
1327 case X86::CMOVE16rr:
1328 case X86::CMOVE32rr:
1329 case X86::CMOVE64rr:
1330 case X86::CMOVNE16rr:
1331 case X86::CMOVNE32rr:
1332 case X86::CMOVNE64rr:
1333 case X86::CMOVBE16rr:
1334 case X86::CMOVBE32rr:
1335 case X86::CMOVBE64rr:
1336 case X86::CMOVA16rr:
1337 case X86::CMOVA32rr:
1338 case X86::CMOVA64rr:
1339 case X86::CMOVL16rr:
1340 case X86::CMOVL32rr:
1341 case X86::CMOVL64rr:
1342 case X86::CMOVGE16rr:
1343 case X86::CMOVGE32rr:
1344 case X86::CMOVGE64rr:
1345 case X86::CMOVLE16rr:
1346 case X86::CMOVLE32rr:
1347 case X86::CMOVLE64rr:
1348 case X86::CMOVG16rr:
1349 case X86::CMOVG32rr:
1350 case X86::CMOVG64rr:
1351 case X86::CMOVS16rr:
1352 case X86::CMOVS32rr:
1353 case X86::CMOVS64rr:
1354 case X86::CMOVNS16rr:
1355 case X86::CMOVNS32rr:
1356 case X86::CMOVNS64rr:
1357 case X86::CMOVP16rr:
1358 case X86::CMOVP32rr:
1359 case X86::CMOVP64rr:
1360 case X86::CMOVNP16rr:
1361 case X86::CMOVNP32rr:
1362 case X86::CMOVNP64rr:
1363 case X86::CMOVO16rr:
1364 case X86::CMOVO32rr:
1365 case X86::CMOVO64rr:
1366 case X86::CMOVNO16rr:
1367 case X86::CMOVNO32rr:
1368 case X86::CMOVNO64rr: {
1369 unsigned Opc = 0;
1370 switch (MI->getOpcode()) {
1371 default: break;
1372 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1373 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1374 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1375 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1376 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1377 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1378 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1379 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1380 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1381 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1382 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1383 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1384 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1385 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1386 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1387 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1388 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1389 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1390 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1391 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1392 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1393 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1394 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1395 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1396 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1397 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1398 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1399 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1400 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1401 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1402 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1403 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1404 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
1405 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1406 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1407 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1408 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1409 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1410 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
1411 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1412 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1413 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1414 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1415 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
1416 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
1417 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1418 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1419 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1421 if (NewMI) {
1422 MachineFunction &MF = *MI->getParent()->getParent();
1423 MI = MF.CloneMachineInstr(MI);
1424 NewMI = false;
1426 MI->setDesc(get(Opc));
1427 // Fallthrough intended.
1429 default:
1430 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1434 static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1435 switch (BrOpc) {
1436 default: return X86::COND_INVALID;
1437 case X86::JE: return X86::COND_E;
1438 case X86::JNE: return X86::COND_NE;
1439 case X86::JL: return X86::COND_L;
1440 case X86::JLE: return X86::COND_LE;
1441 case X86::JG: return X86::COND_G;
1442 case X86::JGE: return X86::COND_GE;
1443 case X86::JB: return X86::COND_B;
1444 case X86::JBE: return X86::COND_BE;
1445 case X86::JA: return X86::COND_A;
1446 case X86::JAE: return X86::COND_AE;
1447 case X86::JS: return X86::COND_S;
1448 case X86::JNS: return X86::COND_NS;
1449 case X86::JP: return X86::COND_P;
1450 case X86::JNP: return X86::COND_NP;
1451 case X86::JO: return X86::COND_O;
1452 case X86::JNO: return X86::COND_NO;
1456 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1457 switch (CC) {
1458 default: llvm_unreachable("Illegal condition code!");
1459 case X86::COND_E: return X86::JE;
1460 case X86::COND_NE: return X86::JNE;
1461 case X86::COND_L: return X86::JL;
1462 case X86::COND_LE: return X86::JLE;
1463 case X86::COND_G: return X86::JG;
1464 case X86::COND_GE: return X86::JGE;
1465 case X86::COND_B: return X86::JB;
1466 case X86::COND_BE: return X86::JBE;
1467 case X86::COND_A: return X86::JA;
1468 case X86::COND_AE: return X86::JAE;
1469 case X86::COND_S: return X86::JS;
1470 case X86::COND_NS: return X86::JNS;
1471 case X86::COND_P: return X86::JP;
1472 case X86::COND_NP: return X86::JNP;
1473 case X86::COND_O: return X86::JO;
1474 case X86::COND_NO: return X86::JNO;
1478 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
1479 /// e.g. turning COND_E to COND_NE.
1480 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1481 switch (CC) {
1482 default: llvm_unreachable("Illegal condition code!");
1483 case X86::COND_E: return X86::COND_NE;
1484 case X86::COND_NE: return X86::COND_E;
1485 case X86::COND_L: return X86::COND_GE;
1486 case X86::COND_LE: return X86::COND_G;
1487 case X86::COND_G: return X86::COND_LE;
1488 case X86::COND_GE: return X86::COND_L;
1489 case X86::COND_B: return X86::COND_AE;
1490 case X86::COND_BE: return X86::COND_A;
1491 case X86::COND_A: return X86::COND_BE;
1492 case X86::COND_AE: return X86::COND_B;
1493 case X86::COND_S: return X86::COND_NS;
1494 case X86::COND_NS: return X86::COND_S;
1495 case X86::COND_P: return X86::COND_NP;
1496 case X86::COND_NP: return X86::COND_P;
1497 case X86::COND_O: return X86::COND_NO;
1498 case X86::COND_NO: return X86::COND_O;
1502 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1503 const TargetInstrDesc &TID = MI->getDesc();
1504 if (!TID.isTerminator()) return false;
1506 // Conditional branch is a special case.
1507 if (TID.isBranch() && !TID.isBarrier())
1508 return true;
1509 if (!TID.isPredicable())
1510 return true;
1511 return !isPredicated(MI);
1514 // For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1515 static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1516 const X86InstrInfo &TII) {
1517 if (MI->getOpcode() == X86::FP_REG_KILL)
1518 return false;
1519 return TII.isUnpredicatedTerminator(MI);
1522 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1523 MachineBasicBlock *&TBB,
1524 MachineBasicBlock *&FBB,
1525 SmallVectorImpl<MachineOperand> &Cond,
1526 bool AllowModify) const {
1527 // Start from the bottom of the block and work up, examining the
1528 // terminator instructions.
1529 MachineBasicBlock::iterator I = MBB.end();
1530 while (I != MBB.begin()) {
1531 --I;
1532 // Working from the bottom, when we see a non-terminator
1533 // instruction, we're done.
1534 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1535 break;
1536 // A terminator that isn't a branch can't easily be handled
1537 // by this analysis.
1538 if (!I->getDesc().isBranch())
1539 return true;
1540 // Handle unconditional branches.
1541 if (I->getOpcode() == X86::JMP) {
1542 if (!AllowModify) {
1543 TBB = I->getOperand(0).getMBB();
1544 continue;
1547 // If the block has any instructions after a JMP, delete them.
1548 while (next(I) != MBB.end())
1549 next(I)->eraseFromParent();
1550 Cond.clear();
1551 FBB = 0;
1552 // Delete the JMP if it's equivalent to a fall-through.
1553 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1554 TBB = 0;
1555 I->eraseFromParent();
1556 I = MBB.end();
1557 continue;
1559 // TBB is used to indicate the unconditinal destination.
1560 TBB = I->getOperand(0).getMBB();
1561 continue;
1563 // Handle conditional branches.
1564 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1565 if (BranchCode == X86::COND_INVALID)
1566 return true; // Can't handle indirect branch.
1567 // Working from the bottom, handle the first conditional branch.
1568 if (Cond.empty()) {
1569 FBB = TBB;
1570 TBB = I->getOperand(0).getMBB();
1571 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1572 continue;
1574 // Handle subsequent conditional branches. Only handle the case
1575 // where all conditional branches branch to the same destination
1576 // and their condition opcodes fit one of the special
1577 // multi-branch idioms.
1578 assert(Cond.size() == 1);
1579 assert(TBB);
1580 // Only handle the case where all conditional branches branch to
1581 // the same destination.
1582 if (TBB != I->getOperand(0).getMBB())
1583 return true;
1584 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1585 // If the conditions are the same, we can leave them alone.
1586 if (OldBranchCode == BranchCode)
1587 continue;
1588 // If they differ, see if they fit one of the known patterns.
1589 // Theoretically we could handle more patterns here, but
1590 // we shouldn't expect to see them if instruction selection
1591 // has done a reasonable job.
1592 if ((OldBranchCode == X86::COND_NP &&
1593 BranchCode == X86::COND_E) ||
1594 (OldBranchCode == X86::COND_E &&
1595 BranchCode == X86::COND_NP))
1596 BranchCode = X86::COND_NP_OR_E;
1597 else if ((OldBranchCode == X86::COND_P &&
1598 BranchCode == X86::COND_NE) ||
1599 (OldBranchCode == X86::COND_NE &&
1600 BranchCode == X86::COND_P))
1601 BranchCode = X86::COND_NE_OR_P;
1602 else
1603 return true;
1604 // Update the MachineOperand.
1605 Cond[0].setImm(BranchCode);
1608 return false;
1611 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1612 MachineBasicBlock::iterator I = MBB.end();
1613 unsigned Count = 0;
1615 while (I != MBB.begin()) {
1616 --I;
1617 if (I->getOpcode() != X86::JMP &&
1618 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1619 break;
1620 // Remove the branch.
1621 I->eraseFromParent();
1622 I = MBB.end();
1623 ++Count;
1626 return Count;
1629 unsigned
1630 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1631 MachineBasicBlock *FBB,
1632 const SmallVectorImpl<MachineOperand> &Cond) const {
1633 // FIXME this should probably have a DebugLoc operand
1634 DebugLoc dl = DebugLoc::getUnknownLoc();
1635 // Shouldn't be a fall through.
1636 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1637 assert((Cond.size() == 1 || Cond.size() == 0) &&
1638 "X86 branch conditions have one component!");
1640 if (Cond.empty()) {
1641 // Unconditional branch?
1642 assert(!FBB && "Unconditional branch with multiple successors!");
1643 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
1644 return 1;
1647 // Conditional branch.
1648 unsigned Count = 0;
1649 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1650 switch (CC) {
1651 case X86::COND_NP_OR_E:
1652 // Synthesize NP_OR_E with two branches.
1653 BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
1654 ++Count;
1655 BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
1656 ++Count;
1657 break;
1658 case X86::COND_NE_OR_P:
1659 // Synthesize NE_OR_P with two branches.
1660 BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
1661 ++Count;
1662 BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
1663 ++Count;
1664 break;
1665 default: {
1666 unsigned Opc = GetCondBranchFromCond(CC);
1667 BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
1668 ++Count;
1671 if (FBB) {
1672 // Two-way Conditional branch. Insert the second branch.
1673 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
1674 ++Count;
1676 return Count;
1679 /// isHReg - Test if the given register is a physical h register.
1680 static bool isHReg(unsigned Reg) {
1681 return X86::GR8_ABCD_HRegClass.contains(Reg);
1684 bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1685 MachineBasicBlock::iterator MI,
1686 unsigned DestReg, unsigned SrcReg,
1687 const TargetRegisterClass *DestRC,
1688 const TargetRegisterClass *SrcRC) const {
1689 DebugLoc DL = DebugLoc::getUnknownLoc();
1690 if (MI != MBB.end()) DL = MI->getDebugLoc();
1692 // Determine if DstRC and SrcRC have a common superclass in common.
1693 const TargetRegisterClass *CommonRC = DestRC;
1694 if (DestRC == SrcRC)
1695 /* Source and destination have the same register class. */;
1696 else if (CommonRC->hasSuperClass(SrcRC))
1697 CommonRC = SrcRC;
1698 else if (!DestRC->hasSubClass(SrcRC)) {
1699 // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
1700 // but we want to copy then as GR64.
1701 if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
1702 DestRC->hasSuperClass(&X86::GR64RegClass))
1703 CommonRC = &X86::GR64RegClass;
1704 else
1705 CommonRC = 0;
1708 if (CommonRC) {
1709 unsigned Opc;
1710 if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
1711 Opc = X86::MOV64rr;
1712 } else if (CommonRC == &X86::GR32RegClass ||
1713 CommonRC == &X86::GR32_NOSPRegClass) {
1714 Opc = X86::MOV32rr;
1715 } else if (CommonRC == &X86::GR16RegClass) {
1716 Opc = X86::MOV16rr;
1717 } else if (CommonRC == &X86::GR8RegClass) {
1718 // Copying to or from a physical H register on x86-64 requires a NOREX
1719 // move. Otherwise use a normal move.
1720 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1721 TM.getSubtarget<X86Subtarget>().is64Bit())
1722 Opc = X86::MOV8rr_NOREX;
1723 else
1724 Opc = X86::MOV8rr;
1725 } else if (CommonRC == &X86::GR64_ABCDRegClass) {
1726 Opc = X86::MOV64rr;
1727 } else if (CommonRC == &X86::GR32_ABCDRegClass) {
1728 Opc = X86::MOV32rr;
1729 } else if (CommonRC == &X86::GR16_ABCDRegClass) {
1730 Opc = X86::MOV16rr;
1731 } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
1732 Opc = X86::MOV8rr;
1733 } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1734 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1735 Opc = X86::MOV8rr_NOREX;
1736 else
1737 Opc = X86::MOV8rr;
1738 } else if (CommonRC == &X86::GR64_NOREXRegClass ||
1739 CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
1740 Opc = X86::MOV64rr;
1741 } else if (CommonRC == &X86::GR32_NOREXRegClass) {
1742 Opc = X86::MOV32rr;
1743 } else if (CommonRC == &X86::GR16_NOREXRegClass) {
1744 Opc = X86::MOV16rr;
1745 } else if (CommonRC == &X86::GR8_NOREXRegClass) {
1746 Opc = X86::MOV8rr;
1747 } else if (CommonRC == &X86::RFP32RegClass) {
1748 Opc = X86::MOV_Fp3232;
1749 } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
1750 Opc = X86::MOV_Fp6464;
1751 } else if (CommonRC == &X86::RFP80RegClass) {
1752 Opc = X86::MOV_Fp8080;
1753 } else if (CommonRC == &X86::FR32RegClass) {
1754 Opc = X86::FsMOVAPSrr;
1755 } else if (CommonRC == &X86::FR64RegClass) {
1756 Opc = X86::FsMOVAPDrr;
1757 } else if (CommonRC == &X86::VR128RegClass) {
1758 Opc = X86::MOVAPSrr;
1759 } else if (CommonRC == &X86::VR64RegClass) {
1760 Opc = X86::MMX_MOVQ64rr;
1761 } else {
1762 return false;
1764 BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
1765 return true;
1768 // Moving EFLAGS to / from another register requires a push and a pop.
1769 if (SrcRC == &X86::CCRRegClass) {
1770 if (SrcReg != X86::EFLAGS)
1771 return false;
1772 if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
1773 BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1774 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1775 return true;
1776 } else if (DestRC == &X86::GR32RegClass ||
1777 DestRC == &X86::GR32_NOSPRegClass) {
1778 BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1779 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1780 return true;
1782 } else if (DestRC == &X86::CCRRegClass) {
1783 if (DestReg != X86::EFLAGS)
1784 return false;
1785 if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
1786 BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1787 BuildMI(MBB, MI, DL, get(X86::POPFQ));
1788 return true;
1789 } else if (SrcRC == &X86::GR32RegClass ||
1790 DestRC == &X86::GR32_NOSPRegClass) {
1791 BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1792 BuildMI(MBB, MI, DL, get(X86::POPFD));
1793 return true;
1797 // Moving from ST(0) turns into FpGET_ST0_32 etc.
1798 if (SrcRC == &X86::RSTRegClass) {
1799 // Copying from ST(0)/ST(1).
1800 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1801 // Can only copy from ST(0)/ST(1) right now
1802 return false;
1803 bool isST0 = SrcReg == X86::ST0;
1804 unsigned Opc;
1805 if (DestRC == &X86::RFP32RegClass)
1806 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1807 else if (DestRC == &X86::RFP64RegClass)
1808 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1809 else {
1810 if (DestRC != &X86::RFP80RegClass)
1811 return false;
1812 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1814 BuildMI(MBB, MI, DL, get(Opc), DestReg);
1815 return true;
1818 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1819 if (DestRC == &X86::RSTRegClass) {
1820 // Copying to ST(0) / ST(1).
1821 if (DestReg != X86::ST0 && DestReg != X86::ST1)
1822 // Can only copy to TOS right now
1823 return false;
1824 bool isST0 = DestReg == X86::ST0;
1825 unsigned Opc;
1826 if (SrcRC == &X86::RFP32RegClass)
1827 Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
1828 else if (SrcRC == &X86::RFP64RegClass)
1829 Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
1830 else {
1831 if (SrcRC != &X86::RFP80RegClass)
1832 return false;
1833 Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
1835 BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
1836 return true;
1839 // Not yet supported!
1840 return false;
1843 static unsigned getStoreRegOpcode(unsigned SrcReg,
1844 const TargetRegisterClass *RC,
1845 bool isStackAligned,
1846 TargetMachine &TM) {
1847 unsigned Opc = 0;
1848 if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
1849 Opc = X86::MOV64mr;
1850 } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
1851 Opc = X86::MOV32mr;
1852 } else if (RC == &X86::GR16RegClass) {
1853 Opc = X86::MOV16mr;
1854 } else if (RC == &X86::GR8RegClass) {
1855 // Copying to or from a physical H register on x86-64 requires a NOREX
1856 // move. Otherwise use a normal move.
1857 if (isHReg(SrcReg) &&
1858 TM.getSubtarget<X86Subtarget>().is64Bit())
1859 Opc = X86::MOV8mr_NOREX;
1860 else
1861 Opc = X86::MOV8mr;
1862 } else if (RC == &X86::GR64_ABCDRegClass) {
1863 Opc = X86::MOV64mr;
1864 } else if (RC == &X86::GR32_ABCDRegClass) {
1865 Opc = X86::MOV32mr;
1866 } else if (RC == &X86::GR16_ABCDRegClass) {
1867 Opc = X86::MOV16mr;
1868 } else if (RC == &X86::GR8_ABCD_LRegClass) {
1869 Opc = X86::MOV8mr;
1870 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1871 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1872 Opc = X86::MOV8mr_NOREX;
1873 else
1874 Opc = X86::MOV8mr;
1875 } else if (RC == &X86::GR64_NOREXRegClass ||
1876 RC == &X86::GR64_NOREX_NOSPRegClass) {
1877 Opc = X86::MOV64mr;
1878 } else if (RC == &X86::GR32_NOREXRegClass) {
1879 Opc = X86::MOV32mr;
1880 } else if (RC == &X86::GR16_NOREXRegClass) {
1881 Opc = X86::MOV16mr;
1882 } else if (RC == &X86::GR8_NOREXRegClass) {
1883 Opc = X86::MOV8mr;
1884 } else if (RC == &X86::RFP80RegClass) {
1885 Opc = X86::ST_FpP80m; // pops
1886 } else if (RC == &X86::RFP64RegClass) {
1887 Opc = X86::ST_Fp64m;
1888 } else if (RC == &X86::RFP32RegClass) {
1889 Opc = X86::ST_Fp32m;
1890 } else if (RC == &X86::FR32RegClass) {
1891 Opc = X86::MOVSSmr;
1892 } else if (RC == &X86::FR64RegClass) {
1893 Opc = X86::MOVSDmr;
1894 } else if (RC == &X86::VR128RegClass) {
1895 // If stack is realigned we can use aligned stores.
1896 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
1897 } else if (RC == &X86::VR64RegClass) {
1898 Opc = X86::MMX_MOVQ64mr;
1899 } else {
1900 llvm_unreachable("Unknown regclass");
1903 return Opc;
1906 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1907 MachineBasicBlock::iterator MI,
1908 unsigned SrcReg, bool isKill, int FrameIdx,
1909 const TargetRegisterClass *RC) const {
1910 const MachineFunction &MF = *MBB.getParent();
1911 bool isAligned = (RI.getStackAlignment() >= 16) ||
1912 RI.needsStackRealignment(MF);
1913 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
1914 DebugLoc DL = DebugLoc::getUnknownLoc();
1915 if (MI != MBB.end()) DL = MI->getDebugLoc();
1916 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
1917 .addReg(SrcReg, getKillRegState(isKill));
1920 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1921 bool isKill,
1922 SmallVectorImpl<MachineOperand> &Addr,
1923 const TargetRegisterClass *RC,
1924 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1925 bool isAligned = (RI.getStackAlignment() >= 16) ||
1926 RI.needsStackRealignment(MF);
1927 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
1928 DebugLoc DL = DebugLoc::getUnknownLoc();
1929 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
1930 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1931 MIB.addOperand(Addr[i]);
1932 MIB.addReg(SrcReg, getKillRegState(isKill));
1933 NewMIs.push_back(MIB);
1936 static unsigned getLoadRegOpcode(unsigned DestReg,
1937 const TargetRegisterClass *RC,
1938 bool isStackAligned,
1939 const TargetMachine &TM) {
1940 unsigned Opc = 0;
1941 if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
1942 Opc = X86::MOV64rm;
1943 } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
1944 Opc = X86::MOV32rm;
1945 } else if (RC == &X86::GR16RegClass) {
1946 Opc = X86::MOV16rm;
1947 } else if (RC == &X86::GR8RegClass) {
1948 // Copying to or from a physical H register on x86-64 requires a NOREX
1949 // move. Otherwise use a normal move.
1950 if (isHReg(DestReg) &&
1951 TM.getSubtarget<X86Subtarget>().is64Bit())
1952 Opc = X86::MOV8rm_NOREX;
1953 else
1954 Opc = X86::MOV8rm;
1955 } else if (RC == &X86::GR64_ABCDRegClass) {
1956 Opc = X86::MOV64rm;
1957 } else if (RC == &X86::GR32_ABCDRegClass) {
1958 Opc = X86::MOV32rm;
1959 } else if (RC == &X86::GR16_ABCDRegClass) {
1960 Opc = X86::MOV16rm;
1961 } else if (RC == &X86::GR8_ABCD_LRegClass) {
1962 Opc = X86::MOV8rm;
1963 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1964 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1965 Opc = X86::MOV8rm_NOREX;
1966 else
1967 Opc = X86::MOV8rm;
1968 } else if (RC == &X86::GR64_NOREXRegClass ||
1969 RC == &X86::GR64_NOREX_NOSPRegClass) {
1970 Opc = X86::MOV64rm;
1971 } else if (RC == &X86::GR32_NOREXRegClass) {
1972 Opc = X86::MOV32rm;
1973 } else if (RC == &X86::GR16_NOREXRegClass) {
1974 Opc = X86::MOV16rm;
1975 } else if (RC == &X86::GR8_NOREXRegClass) {
1976 Opc = X86::MOV8rm;
1977 } else if (RC == &X86::RFP80RegClass) {
1978 Opc = X86::LD_Fp80m;
1979 } else if (RC == &X86::RFP64RegClass) {
1980 Opc = X86::LD_Fp64m;
1981 } else if (RC == &X86::RFP32RegClass) {
1982 Opc = X86::LD_Fp32m;
1983 } else if (RC == &X86::FR32RegClass) {
1984 Opc = X86::MOVSSrm;
1985 } else if (RC == &X86::FR64RegClass) {
1986 Opc = X86::MOVSDrm;
1987 } else if (RC == &X86::VR128RegClass) {
1988 // If stack is realigned we can use aligned loads.
1989 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
1990 } else if (RC == &X86::VR64RegClass) {
1991 Opc = X86::MMX_MOVQ64rm;
1992 } else {
1993 llvm_unreachable("Unknown regclass");
1996 return Opc;
1999 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2000 MachineBasicBlock::iterator MI,
2001 unsigned DestReg, int FrameIdx,
2002 const TargetRegisterClass *RC) const{
2003 const MachineFunction &MF = *MBB.getParent();
2004 bool isAligned = (RI.getStackAlignment() >= 16) ||
2005 RI.needsStackRealignment(MF);
2006 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2007 DebugLoc DL = DebugLoc::getUnknownLoc();
2008 if (MI != MBB.end()) DL = MI->getDebugLoc();
2009 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2012 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2013 SmallVectorImpl<MachineOperand> &Addr,
2014 const TargetRegisterClass *RC,
2015 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2016 bool isAligned = (RI.getStackAlignment() >= 16) ||
2017 RI.needsStackRealignment(MF);
2018 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2019 DebugLoc DL = DebugLoc::getUnknownLoc();
2020 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2021 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2022 MIB.addOperand(Addr[i]);
2023 NewMIs.push_back(MIB);
2026 bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2027 MachineBasicBlock::iterator MI,
2028 const std::vector<CalleeSavedInfo> &CSI) const {
2029 if (CSI.empty())
2030 return false;
2032 DebugLoc DL = DebugLoc::getUnknownLoc();
2033 if (MI != MBB.end()) DL = MI->getDebugLoc();
2035 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2036 unsigned SlotSize = is64Bit ? 8 : 4;
2038 MachineFunction &MF = *MBB.getParent();
2039 unsigned FPReg = RI.getFrameRegister(MF);
2040 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2041 unsigned CalleeFrameSize = 0;
2043 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2044 for (unsigned i = CSI.size(); i != 0; --i) {
2045 unsigned Reg = CSI[i-1].getReg();
2046 const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
2047 // Add the callee-saved register as live-in. It's killed at the spill.
2048 MBB.addLiveIn(Reg);
2049 if (Reg == FPReg)
2050 // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2051 continue;
2052 if (RegClass != &X86::VR128RegClass) {
2053 CalleeFrameSize += SlotSize;
2054 BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2055 } else {
2056 storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
2060 X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2061 return true;
2064 bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2065 MachineBasicBlock::iterator MI,
2066 const std::vector<CalleeSavedInfo> &CSI) const {
2067 if (CSI.empty())
2068 return false;
2070 DebugLoc DL = DebugLoc::getUnknownLoc();
2071 if (MI != MBB.end()) DL = MI->getDebugLoc();
2073 MachineFunction &MF = *MBB.getParent();
2074 unsigned FPReg = RI.getFrameRegister(MF);
2075 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2076 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2077 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2078 unsigned Reg = CSI[i].getReg();
2079 if (Reg == FPReg)
2080 // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2081 continue;
2082 const TargetRegisterClass *RegClass = CSI[i].getRegClass();
2083 if (RegClass != &X86::VR128RegClass) {
2084 BuildMI(MBB, MI, DL, get(Opc), Reg);
2085 } else {
2086 loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
2089 return true;
2092 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2093 const SmallVectorImpl<MachineOperand> &MOs,
2094 MachineInstr *MI,
2095 const TargetInstrInfo &TII) {
2096 // Create the base instruction with the memory operand as the first part.
2097 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2098 MI->getDebugLoc(), true);
2099 MachineInstrBuilder MIB(NewMI);
2100 unsigned NumAddrOps = MOs.size();
2101 for (unsigned i = 0; i != NumAddrOps; ++i)
2102 MIB.addOperand(MOs[i]);
2103 if (NumAddrOps < 4) // FrameIndex only
2104 addOffset(MIB, 0);
2106 // Loop over the rest of the ri operands, converting them over.
2107 unsigned NumOps = MI->getDesc().getNumOperands()-2;
2108 for (unsigned i = 0; i != NumOps; ++i) {
2109 MachineOperand &MO = MI->getOperand(i+2);
2110 MIB.addOperand(MO);
2112 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2113 MachineOperand &MO = MI->getOperand(i);
2114 MIB.addOperand(MO);
2116 return MIB;
2119 static MachineInstr *FuseInst(MachineFunction &MF,
2120 unsigned Opcode, unsigned OpNo,
2121 const SmallVectorImpl<MachineOperand> &MOs,
2122 MachineInstr *MI, const TargetInstrInfo &TII) {
2123 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2124 MI->getDebugLoc(), true);
2125 MachineInstrBuilder MIB(NewMI);
2127 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2128 MachineOperand &MO = MI->getOperand(i);
2129 if (i == OpNo) {
2130 assert(MO.isReg() && "Expected to fold into reg operand!");
2131 unsigned NumAddrOps = MOs.size();
2132 for (unsigned i = 0; i != NumAddrOps; ++i)
2133 MIB.addOperand(MOs[i]);
2134 if (NumAddrOps < 4) // FrameIndex only
2135 addOffset(MIB, 0);
2136 } else {
2137 MIB.addOperand(MO);
2140 return MIB;
2143 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2144 const SmallVectorImpl<MachineOperand> &MOs,
2145 MachineInstr *MI) {
2146 MachineFunction &MF = *MI->getParent()->getParent();
2147 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2149 unsigned NumAddrOps = MOs.size();
2150 for (unsigned i = 0; i != NumAddrOps; ++i)
2151 MIB.addOperand(MOs[i]);
2152 if (NumAddrOps < 4) // FrameIndex only
2153 addOffset(MIB, 0);
2154 return MIB.addImm(0);
2157 MachineInstr*
2158 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2159 MachineInstr *MI, unsigned i,
2160 const SmallVectorImpl<MachineOperand> &MOs,
2161 unsigned Align) const {
2162 const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2163 bool isTwoAddrFold = false;
2164 unsigned NumOps = MI->getDesc().getNumOperands();
2165 bool isTwoAddr = NumOps > 1 &&
2166 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2168 MachineInstr *NewMI = NULL;
2169 // Folding a memory location into the two-address part of a two-address
2170 // instruction is different than folding it other places. It requires
2171 // replacing the *two* registers with the memory location.
2172 if (isTwoAddr && NumOps >= 2 && i < 2 &&
2173 MI->getOperand(0).isReg() &&
2174 MI->getOperand(1).isReg() &&
2175 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2176 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2177 isTwoAddrFold = true;
2178 } else if (i == 0) { // If operand 0
2179 if (MI->getOpcode() == X86::MOV16r0)
2180 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2181 else if (MI->getOpcode() == X86::MOV32r0)
2182 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2183 else if (MI->getOpcode() == X86::MOV8r0)
2184 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2185 if (NewMI)
2186 return NewMI;
2188 OpcodeTablePtr = &RegOp2MemOpTable0;
2189 } else if (i == 1) {
2190 OpcodeTablePtr = &RegOp2MemOpTable1;
2191 } else if (i == 2) {
2192 OpcodeTablePtr = &RegOp2MemOpTable2;
2195 // If table selected...
2196 if (OpcodeTablePtr) {
2197 // Find the Opcode to fuse
2198 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2199 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2200 if (I != OpcodeTablePtr->end()) {
2201 unsigned MinAlign = I->second.second;
2202 if (Align < MinAlign)
2203 return NULL;
2204 if (isTwoAddrFold)
2205 NewMI = FuseTwoAddrInst(MF, I->second.first, MOs, MI, *this);
2206 else
2207 NewMI = FuseInst(MF, I->second.first, i, MOs, MI, *this);
2208 return NewMI;
2212 // No fusion
2213 if (PrintFailedFusing)
2214 cerr << "We failed to fuse operand " << i << " in " << *MI;
2215 return NULL;
2219 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2220 MachineInstr *MI,
2221 const SmallVectorImpl<unsigned> &Ops,
2222 int FrameIndex) const {
2223 // Check switch flag
2224 if (NoFusing) return NULL;
2226 const MachineFrameInfo *MFI = MF.getFrameInfo();
2227 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2228 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2229 unsigned NewOpc = 0;
2230 switch (MI->getOpcode()) {
2231 default: return NULL;
2232 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2233 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2234 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2235 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2237 // Change to CMPXXri r, 0 first.
2238 MI->setDesc(get(NewOpc));
2239 MI->getOperand(1).ChangeToImmediate(0);
2240 } else if (Ops.size() != 1)
2241 return NULL;
2243 SmallVector<MachineOperand,4> MOs;
2244 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2245 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Alignment);
2248 MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2249 MachineInstr *MI,
2250 const SmallVectorImpl<unsigned> &Ops,
2251 MachineInstr *LoadMI) const {
2252 // Check switch flag
2253 if (NoFusing) return NULL;
2255 // Determine the alignment of the load.
2256 unsigned Alignment = 0;
2257 if (LoadMI->hasOneMemOperand())
2258 Alignment = LoadMI->memoperands_begin()->getAlignment();
2259 else if (LoadMI->getOpcode() == X86::V_SET0 ||
2260 LoadMI->getOpcode() == X86::V_SETALLONES)
2261 Alignment = 16;
2262 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2263 unsigned NewOpc = 0;
2264 switch (MI->getOpcode()) {
2265 default: return NULL;
2266 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2267 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2268 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2269 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2271 // Change to CMPXXri r, 0 first.
2272 MI->setDesc(get(NewOpc));
2273 MI->getOperand(1).ChangeToImmediate(0);
2274 } else if (Ops.size() != 1)
2275 return NULL;
2277 SmallVector<MachineOperand,X86AddrNumOperands> MOs;
2278 if (LoadMI->getOpcode() == X86::V_SET0 ||
2279 LoadMI->getOpcode() == X86::V_SETALLONES) {
2280 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2281 // Create a constant-pool entry and operands to load from it.
2283 // x86-32 PIC requires a PIC base register for constant pools.
2284 unsigned PICBase = 0;
2285 if (TM.getRelocationModel() == Reloc::PIC_) {
2286 if (TM.getSubtarget<X86Subtarget>().is64Bit())
2287 PICBase = X86::RIP;
2288 else
2289 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2290 // This doesn't work for several reasons.
2291 // 1. GlobalBaseReg may have been spilled.
2292 // 2. It may not be live at MI.
2293 return false;
2296 // Create a v4i32 constant-pool entry.
2297 MachineConstantPool &MCP = *MF.getConstantPool();
2298 const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2299 Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2300 Constant::getNullValue(Ty) :
2301 Constant::getAllOnesValue(Ty);
2302 unsigned CPI = MCP.getConstantPoolIndex(C, 16);
2304 // Create operands to load from the constant pool entry.
2305 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2306 MOs.push_back(MachineOperand::CreateImm(1));
2307 MOs.push_back(MachineOperand::CreateReg(0, false));
2308 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2309 MOs.push_back(MachineOperand::CreateReg(0, false));
2310 } else {
2311 // Folding a normal load. Just copy the load's address operands.
2312 unsigned NumOps = LoadMI->getDesc().getNumOperands();
2313 for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
2314 MOs.push_back(LoadMI->getOperand(i));
2316 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Alignment);
2320 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2321 const SmallVectorImpl<unsigned> &Ops) const {
2322 // Check switch flag
2323 if (NoFusing) return 0;
2325 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2326 switch (MI->getOpcode()) {
2327 default: return false;
2328 case X86::TEST8rr:
2329 case X86::TEST16rr:
2330 case X86::TEST32rr:
2331 case X86::TEST64rr:
2332 return true;
2336 if (Ops.size() != 1)
2337 return false;
2339 unsigned OpNum = Ops[0];
2340 unsigned Opc = MI->getOpcode();
2341 unsigned NumOps = MI->getDesc().getNumOperands();
2342 bool isTwoAddr = NumOps > 1 &&
2343 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2345 // Folding a memory location into the two-address part of a two-address
2346 // instruction is different than folding it other places. It requires
2347 // replacing the *two* registers with the memory location.
2348 const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2349 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2350 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2351 } else if (OpNum == 0) { // If operand 0
2352 switch (Opc) {
2353 case X86::MOV8r0:
2354 case X86::MOV16r0:
2355 case X86::MOV32r0:
2356 return true;
2357 default: break;
2359 OpcodeTablePtr = &RegOp2MemOpTable0;
2360 } else if (OpNum == 1) {
2361 OpcodeTablePtr = &RegOp2MemOpTable1;
2362 } else if (OpNum == 2) {
2363 OpcodeTablePtr = &RegOp2MemOpTable2;
2366 if (OpcodeTablePtr) {
2367 // Find the Opcode to fuse
2368 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2369 OpcodeTablePtr->find((unsigned*)Opc);
2370 if (I != OpcodeTablePtr->end())
2371 return true;
2373 return false;
2376 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2377 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2378 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2379 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2380 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2381 if (I == MemOp2RegOpTable.end())
2382 return false;
2383 DebugLoc dl = MI->getDebugLoc();
2384 unsigned Opc = I->second.first;
2385 unsigned Index = I->second.second & 0xf;
2386 bool FoldedLoad = I->second.second & (1 << 4);
2387 bool FoldedStore = I->second.second & (1 << 5);
2388 if (UnfoldLoad && !FoldedLoad)
2389 return false;
2390 UnfoldLoad &= FoldedLoad;
2391 if (UnfoldStore && !FoldedStore)
2392 return false;
2393 UnfoldStore &= FoldedStore;
2395 const TargetInstrDesc &TID = get(Opc);
2396 const TargetOperandInfo &TOI = TID.OpInfo[Index];
2397 const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2398 SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
2399 SmallVector<MachineOperand,2> BeforeOps;
2400 SmallVector<MachineOperand,2> AfterOps;
2401 SmallVector<MachineOperand,4> ImpOps;
2402 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2403 MachineOperand &Op = MI->getOperand(i);
2404 if (i >= Index && i < Index + X86AddrNumOperands)
2405 AddrOps.push_back(Op);
2406 else if (Op.isReg() && Op.isImplicit())
2407 ImpOps.push_back(Op);
2408 else if (i < Index)
2409 BeforeOps.push_back(Op);
2410 else if (i > Index)
2411 AfterOps.push_back(Op);
2414 // Emit the load instruction.
2415 if (UnfoldLoad) {
2416 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2417 if (UnfoldStore) {
2418 // Address operands cannot be marked isKill.
2419 for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
2420 MachineOperand &MO = NewMIs[0]->getOperand(i);
2421 if (MO.isReg())
2422 MO.setIsKill(false);
2427 // Emit the data processing instruction.
2428 MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2429 MachineInstrBuilder MIB(DataMI);
2431 if (FoldedStore)
2432 MIB.addReg(Reg, RegState::Define);
2433 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2434 MIB.addOperand(BeforeOps[i]);
2435 if (FoldedLoad)
2436 MIB.addReg(Reg);
2437 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2438 MIB.addOperand(AfterOps[i]);
2439 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2440 MachineOperand &MO = ImpOps[i];
2441 MIB.addReg(MO.getReg(),
2442 getDefRegState(MO.isDef()) |
2443 RegState::Implicit |
2444 getKillRegState(MO.isKill()) |
2445 getDeadRegState(MO.isDead()) |
2446 getUndefRegState(MO.isUndef()));
2448 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2449 unsigned NewOpc = 0;
2450 switch (DataMI->getOpcode()) {
2451 default: break;
2452 case X86::CMP64ri32:
2453 case X86::CMP32ri:
2454 case X86::CMP16ri:
2455 case X86::CMP8ri: {
2456 MachineOperand &MO0 = DataMI->getOperand(0);
2457 MachineOperand &MO1 = DataMI->getOperand(1);
2458 if (MO1.getImm() == 0) {
2459 switch (DataMI->getOpcode()) {
2460 default: break;
2461 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2462 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2463 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2464 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2466 DataMI->setDesc(get(NewOpc));
2467 MO1.ChangeToRegister(MO0.getReg(), false);
2471 NewMIs.push_back(DataMI);
2473 // Emit the store instruction.
2474 if (UnfoldStore) {
2475 const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2476 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2479 return true;
2482 bool
2483 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2484 SmallVectorImpl<SDNode*> &NewNodes) const {
2485 if (!N->isMachineOpcode())
2486 return false;
2488 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2489 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2490 if (I == MemOp2RegOpTable.end())
2491 return false;
2492 unsigned Opc = I->second.first;
2493 unsigned Index = I->second.second & 0xf;
2494 bool FoldedLoad = I->second.second & (1 << 4);
2495 bool FoldedStore = I->second.second & (1 << 5);
2496 const TargetInstrDesc &TID = get(Opc);
2497 const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2498 unsigned NumDefs = TID.NumDefs;
2499 std::vector<SDValue> AddrOps;
2500 std::vector<SDValue> BeforeOps;
2501 std::vector<SDValue> AfterOps;
2502 DebugLoc dl = N->getDebugLoc();
2503 unsigned NumOps = N->getNumOperands();
2504 for (unsigned i = 0; i != NumOps-1; ++i) {
2505 SDValue Op = N->getOperand(i);
2506 if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
2507 AddrOps.push_back(Op);
2508 else if (i < Index-NumDefs)
2509 BeforeOps.push_back(Op);
2510 else if (i > Index-NumDefs)
2511 AfterOps.push_back(Op);
2513 SDValue Chain = N->getOperand(NumOps-1);
2514 AddrOps.push_back(Chain);
2516 // Emit the load instruction.
2517 SDNode *Load = 0;
2518 const MachineFunction &MF = DAG.getMachineFunction();
2519 if (FoldedLoad) {
2520 MVT VT = *RC->vt_begin();
2521 bool isAligned = (RI.getStackAlignment() >= 16) ||
2522 RI.needsStackRealignment(MF);
2523 Load = DAG.getTargetNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2524 VT, MVT::Other, &AddrOps[0], AddrOps.size());
2525 NewNodes.push_back(Load);
2528 // Emit the data processing instruction.
2529 std::vector<MVT> VTs;
2530 const TargetRegisterClass *DstRC = 0;
2531 if (TID.getNumDefs() > 0) {
2532 DstRC = TID.OpInfo[0].getRegClass(&RI);
2533 VTs.push_back(*DstRC->vt_begin());
2535 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2536 MVT VT = N->getValueType(i);
2537 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2538 VTs.push_back(VT);
2540 if (Load)
2541 BeforeOps.push_back(SDValue(Load, 0));
2542 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2543 SDNode *NewNode= DAG.getTargetNode(Opc, dl, VTs, &BeforeOps[0],
2544 BeforeOps.size());
2545 NewNodes.push_back(NewNode);
2547 // Emit the store instruction.
2548 if (FoldedStore) {
2549 AddrOps.pop_back();
2550 AddrOps.push_back(SDValue(NewNode, 0));
2551 AddrOps.push_back(Chain);
2552 bool isAligned = (RI.getStackAlignment() >= 16) ||
2553 RI.needsStackRealignment(MF);
2554 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(0, DstRC,
2555 isAligned, TM),
2556 dl, MVT::Other,
2557 &AddrOps[0], AddrOps.size());
2558 NewNodes.push_back(Store);
2561 return true;
2564 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2565 bool UnfoldLoad, bool UnfoldStore) const {
2566 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2567 MemOp2RegOpTable.find((unsigned*)Opc);
2568 if (I == MemOp2RegOpTable.end())
2569 return 0;
2570 bool FoldedLoad = I->second.second & (1 << 4);
2571 bool FoldedStore = I->second.second & (1 << 5);
2572 if (UnfoldLoad && !FoldedLoad)
2573 return 0;
2574 if (UnfoldStore && !FoldedStore)
2575 return 0;
2576 return I->second.first;
2579 bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
2580 if (MBB.empty()) return false;
2582 switch (MBB.back().getOpcode()) {
2583 case X86::TCRETURNri:
2584 case X86::TCRETURNdi:
2585 case X86::RET: // Return.
2586 case X86::RETI:
2587 case X86::TAILJMPd:
2588 case X86::TAILJMPr:
2589 case X86::TAILJMPm:
2590 case X86::JMP: // Uncond branch.
2591 case X86::JMP32r: // Indirect branch.
2592 case X86::JMP64r: // Indirect branch (64-bit).
2593 case X86::JMP32m: // Indirect branch through mem.
2594 case X86::JMP64m: // Indirect branch through mem (64-bit).
2595 return true;
2596 default: return false;
2600 bool X86InstrInfo::
2601 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2602 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2603 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2604 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2605 return true;
2606 Cond[0].setImm(GetOppositeBranchCondition(CC));
2607 return false;
2610 bool X86InstrInfo::
2611 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2612 // FIXME: Return false for x87 stack register classes for now. We can't
2613 // allow any loads of these registers before FpGet_ST0_80.
2614 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2615 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
2618 unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2619 switch (Desc->TSFlags & X86II::ImmMask) {
2620 case X86II::Imm8: return 1;
2621 case X86II::Imm16: return 2;
2622 case X86II::Imm32: return 4;
2623 case X86II::Imm64: return 8;
2624 default: llvm_unreachable("Immediate size not set!");
2625 return 0;
2629 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2630 /// e.g. r8, xmm8, etc.
2631 bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2632 if (!MO.isReg()) return false;
2633 switch (MO.getReg()) {
2634 default: break;
2635 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2636 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2637 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2638 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2639 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2640 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2641 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2642 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2643 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2644 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2645 return true;
2647 return false;
2651 /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2652 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2653 /// size, and 3) use of X86-64 extended registers.
2654 unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2655 unsigned REX = 0;
2656 const TargetInstrDesc &Desc = MI.getDesc();
2658 // Pseudo instructions do not need REX prefix byte.
2659 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2660 return 0;
2661 if (Desc.TSFlags & X86II::REX_W)
2662 REX |= 1 << 3;
2664 unsigned NumOps = Desc.getNumOperands();
2665 if (NumOps) {
2666 bool isTwoAddr = NumOps > 1 &&
2667 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2669 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2670 unsigned i = isTwoAddr ? 1 : 0;
2671 for (unsigned e = NumOps; i != e; ++i) {
2672 const MachineOperand& MO = MI.getOperand(i);
2673 if (MO.isReg()) {
2674 unsigned Reg = MO.getReg();
2675 if (isX86_64NonExtLowByteReg(Reg))
2676 REX |= 0x40;
2680 switch (Desc.TSFlags & X86II::FormMask) {
2681 case X86II::MRMInitReg:
2682 if (isX86_64ExtendedReg(MI.getOperand(0)))
2683 REX |= (1 << 0) | (1 << 2);
2684 break;
2685 case X86II::MRMSrcReg: {
2686 if (isX86_64ExtendedReg(MI.getOperand(0)))
2687 REX |= 1 << 2;
2688 i = isTwoAddr ? 2 : 1;
2689 for (unsigned e = NumOps; i != e; ++i) {
2690 const MachineOperand& MO = MI.getOperand(i);
2691 if (isX86_64ExtendedReg(MO))
2692 REX |= 1 << 0;
2694 break;
2696 case X86II::MRMSrcMem: {
2697 if (isX86_64ExtendedReg(MI.getOperand(0)))
2698 REX |= 1 << 2;
2699 unsigned Bit = 0;
2700 i = isTwoAddr ? 2 : 1;
2701 for (; i != NumOps; ++i) {
2702 const MachineOperand& MO = MI.getOperand(i);
2703 if (MO.isReg()) {
2704 if (isX86_64ExtendedReg(MO))
2705 REX |= 1 << Bit;
2706 Bit++;
2709 break;
2711 case X86II::MRM0m: case X86II::MRM1m:
2712 case X86II::MRM2m: case X86II::MRM3m:
2713 case X86II::MRM4m: case X86II::MRM5m:
2714 case X86II::MRM6m: case X86II::MRM7m:
2715 case X86II::MRMDestMem: {
2716 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
2717 i = isTwoAddr ? 1 : 0;
2718 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2719 REX |= 1 << 2;
2720 unsigned Bit = 0;
2721 for (; i != e; ++i) {
2722 const MachineOperand& MO = MI.getOperand(i);
2723 if (MO.isReg()) {
2724 if (isX86_64ExtendedReg(MO))
2725 REX |= 1 << Bit;
2726 Bit++;
2729 break;
2731 default: {
2732 if (isX86_64ExtendedReg(MI.getOperand(0)))
2733 REX |= 1 << 0;
2734 i = isTwoAddr ? 2 : 1;
2735 for (unsigned e = NumOps; i != e; ++i) {
2736 const MachineOperand& MO = MI.getOperand(i);
2737 if (isX86_64ExtendedReg(MO))
2738 REX |= 1 << 2;
2740 break;
2744 return REX;
2747 /// sizePCRelativeBlockAddress - This method returns the size of a PC
2748 /// relative block address instruction
2750 static unsigned sizePCRelativeBlockAddress() {
2751 return 4;
2754 /// sizeGlobalAddress - Give the size of the emission of this global address
2756 static unsigned sizeGlobalAddress(bool dword) {
2757 return dword ? 8 : 4;
2760 /// sizeConstPoolAddress - Give the size of the emission of this constant
2761 /// pool address
2763 static unsigned sizeConstPoolAddress(bool dword) {
2764 return dword ? 8 : 4;
2767 /// sizeExternalSymbolAddress - Give the size of the emission of this external
2768 /// symbol
2770 static unsigned sizeExternalSymbolAddress(bool dword) {
2771 return dword ? 8 : 4;
2774 /// sizeJumpTableAddress - Give the size of the emission of this jump
2775 /// table address
2777 static unsigned sizeJumpTableAddress(bool dword) {
2778 return dword ? 8 : 4;
2781 static unsigned sizeConstant(unsigned Size) {
2782 return Size;
2785 static unsigned sizeRegModRMByte(){
2786 return 1;
2789 static unsigned sizeSIBByte(){
2790 return 1;
2793 static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2794 unsigned FinalSize = 0;
2795 // If this is a simple integer displacement that doesn't require a relocation.
2796 if (!RelocOp) {
2797 FinalSize += sizeConstant(4);
2798 return FinalSize;
2801 // Otherwise, this is something that requires a relocation.
2802 if (RelocOp->isGlobal()) {
2803 FinalSize += sizeGlobalAddress(false);
2804 } else if (RelocOp->isCPI()) {
2805 FinalSize += sizeConstPoolAddress(false);
2806 } else if (RelocOp->isJTI()) {
2807 FinalSize += sizeJumpTableAddress(false);
2808 } else {
2809 llvm_unreachable("Unknown value to relocate!");
2811 return FinalSize;
2814 static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2815 bool IsPIC, bool Is64BitMode) {
2816 const MachineOperand &Op3 = MI.getOperand(Op+3);
2817 int DispVal = 0;
2818 const MachineOperand *DispForReloc = 0;
2819 unsigned FinalSize = 0;
2821 // Figure out what sort of displacement we have to handle here.
2822 if (Op3.isGlobal()) {
2823 DispForReloc = &Op3;
2824 } else if (Op3.isCPI()) {
2825 if (Is64BitMode || IsPIC) {
2826 DispForReloc = &Op3;
2827 } else {
2828 DispVal = 1;
2830 } else if (Op3.isJTI()) {
2831 if (Is64BitMode || IsPIC) {
2832 DispForReloc = &Op3;
2833 } else {
2834 DispVal = 1;
2836 } else {
2837 DispVal = 1;
2840 const MachineOperand &Base = MI.getOperand(Op);
2841 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2843 unsigned BaseReg = Base.getReg();
2845 // Is a SIB byte needed?
2846 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
2847 IndexReg.getReg() == 0 &&
2848 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2849 if (BaseReg == 0) { // Just a displacement?
2850 // Emit special case [disp32] encoding
2851 ++FinalSize;
2852 FinalSize += getDisplacementFieldSize(DispForReloc);
2853 } else {
2854 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2855 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2856 // Emit simple indirect register encoding... [EAX] f.e.
2857 ++FinalSize;
2858 // Be pessimistic and assume it's a disp32, not a disp8
2859 } else {
2860 // Emit the most general non-SIB encoding: [REG+disp32]
2861 ++FinalSize;
2862 FinalSize += getDisplacementFieldSize(DispForReloc);
2866 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2867 assert(IndexReg.getReg() != X86::ESP &&
2868 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2870 bool ForceDisp32 = false;
2871 if (BaseReg == 0 || DispForReloc) {
2872 // Emit the normal disp32 encoding.
2873 ++FinalSize;
2874 ForceDisp32 = true;
2875 } else {
2876 ++FinalSize;
2879 FinalSize += sizeSIBByte();
2881 // Do we need to output a displacement?
2882 if (DispVal != 0 || ForceDisp32) {
2883 FinalSize += getDisplacementFieldSize(DispForReloc);
2886 return FinalSize;
2890 static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2891 const TargetInstrDesc *Desc,
2892 bool IsPIC, bool Is64BitMode) {
2894 unsigned Opcode = Desc->Opcode;
2895 unsigned FinalSize = 0;
2897 // Emit the lock opcode prefix as needed.
2898 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2900 // Emit segment override opcode prefix as needed.
2901 switch (Desc->TSFlags & X86II::SegOvrMask) {
2902 case X86II::FS:
2903 case X86II::GS:
2904 ++FinalSize;
2905 break;
2906 default: llvm_unreachable("Invalid segment!");
2907 case 0: break; // No segment override!
2910 // Emit the repeat opcode prefix as needed.
2911 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2913 // Emit the operand size opcode prefix as needed.
2914 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2916 // Emit the address size opcode prefix as needed.
2917 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2919 bool Need0FPrefix = false;
2920 switch (Desc->TSFlags & X86II::Op0Mask) {
2921 case X86II::TB: // Two-byte opcode prefix
2922 case X86II::T8: // 0F 38
2923 case X86II::TA: // 0F 3A
2924 Need0FPrefix = true;
2925 break;
2926 case X86II::REP: break; // already handled.
2927 case X86II::XS: // F3 0F
2928 ++FinalSize;
2929 Need0FPrefix = true;
2930 break;
2931 case X86II::XD: // F2 0F
2932 ++FinalSize;
2933 Need0FPrefix = true;
2934 break;
2935 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2936 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2937 ++FinalSize;
2938 break; // Two-byte opcode prefix
2939 default: llvm_unreachable("Invalid prefix!");
2940 case 0: break; // No prefix!
2943 if (Is64BitMode) {
2944 // REX prefix
2945 unsigned REX = X86InstrInfo::determineREX(MI);
2946 if (REX)
2947 ++FinalSize;
2950 // 0x0F escape code must be emitted just before the opcode.
2951 if (Need0FPrefix)
2952 ++FinalSize;
2954 switch (Desc->TSFlags & X86II::Op0Mask) {
2955 case X86II::T8: // 0F 38
2956 ++FinalSize;
2957 break;
2958 case X86II::TA: // 0F 3A
2959 ++FinalSize;
2960 break;
2963 // If this is a two-address instruction, skip one of the register operands.
2964 unsigned NumOps = Desc->getNumOperands();
2965 unsigned CurOp = 0;
2966 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2967 CurOp++;
2968 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
2969 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
2970 --NumOps;
2972 switch (Desc->TSFlags & X86II::FormMask) {
2973 default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
2974 case X86II::Pseudo:
2975 // Remember the current PC offset, this is the PIC relocation
2976 // base address.
2977 switch (Opcode) {
2978 default:
2979 break;
2980 case TargetInstrInfo::INLINEASM: {
2981 const MachineFunction *MF = MI.getParent()->getParent();
2982 const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
2983 FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
2984 *MF->getTarget().getTargetAsmInfo());
2985 break;
2987 case TargetInstrInfo::DBG_LABEL:
2988 case TargetInstrInfo::EH_LABEL:
2989 break;
2990 case TargetInstrInfo::IMPLICIT_DEF:
2991 case TargetInstrInfo::DECLARE:
2992 case X86::DWARF_LOC:
2993 case X86::FP_REG_KILL:
2994 break;
2995 case X86::MOVPC32r: {
2996 // This emits the "call" portion of this pseudo instruction.
2997 ++FinalSize;
2998 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2999 break;
3002 CurOp = NumOps;
3003 break;
3004 case X86II::RawFrm:
3005 ++FinalSize;
3007 if (CurOp != NumOps) {
3008 const MachineOperand &MO = MI.getOperand(CurOp++);
3009 if (MO.isMBB()) {
3010 FinalSize += sizePCRelativeBlockAddress();
3011 } else if (MO.isGlobal()) {
3012 FinalSize += sizeGlobalAddress(false);
3013 } else if (MO.isSymbol()) {
3014 FinalSize += sizeExternalSymbolAddress(false);
3015 } else if (MO.isImm()) {
3016 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3017 } else {
3018 llvm_unreachable("Unknown RawFrm operand!");
3021 break;
3023 case X86II::AddRegFrm:
3024 ++FinalSize;
3025 ++CurOp;
3027 if (CurOp != NumOps) {
3028 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3029 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3030 if (MO1.isImm())
3031 FinalSize += sizeConstant(Size);
3032 else {
3033 bool dword = false;
3034 if (Opcode == X86::MOV64ri)
3035 dword = true;
3036 if (MO1.isGlobal()) {
3037 FinalSize += sizeGlobalAddress(dword);
3038 } else if (MO1.isSymbol())
3039 FinalSize += sizeExternalSymbolAddress(dword);
3040 else if (MO1.isCPI())
3041 FinalSize += sizeConstPoolAddress(dword);
3042 else if (MO1.isJTI())
3043 FinalSize += sizeJumpTableAddress(dword);
3046 break;
3048 case X86II::MRMDestReg: {
3049 ++FinalSize;
3050 FinalSize += sizeRegModRMByte();
3051 CurOp += 2;
3052 if (CurOp != NumOps) {
3053 ++CurOp;
3054 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3056 break;
3058 case X86II::MRMDestMem: {
3059 ++FinalSize;
3060 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3061 CurOp += X86AddrNumOperands + 1;
3062 if (CurOp != NumOps) {
3063 ++CurOp;
3064 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3066 break;
3069 case X86II::MRMSrcReg:
3070 ++FinalSize;
3071 FinalSize += sizeRegModRMByte();
3072 CurOp += 2;
3073 if (CurOp != NumOps) {
3074 ++CurOp;
3075 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3077 break;
3079 case X86II::MRMSrcMem: {
3080 int AddrOperands;
3081 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3082 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3083 AddrOperands = X86AddrNumOperands - 1; // No segment register
3084 else
3085 AddrOperands = X86AddrNumOperands;
3087 ++FinalSize;
3088 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
3089 CurOp += AddrOperands + 1;
3090 if (CurOp != NumOps) {
3091 ++CurOp;
3092 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3094 break;
3097 case X86II::MRM0r: case X86II::MRM1r:
3098 case X86II::MRM2r: case X86II::MRM3r:
3099 case X86II::MRM4r: case X86II::MRM5r:
3100 case X86II::MRM6r: case X86II::MRM7r:
3101 ++FinalSize;
3102 if (Desc->getOpcode() == X86::LFENCE ||
3103 Desc->getOpcode() == X86::MFENCE) {
3104 // Special handling of lfence and mfence;
3105 FinalSize += sizeRegModRMByte();
3106 } else if (Desc->getOpcode() == X86::MONITOR ||
3107 Desc->getOpcode() == X86::MWAIT) {
3108 // Special handling of monitor and mwait.
3109 FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3110 } else {
3111 ++CurOp;
3112 FinalSize += sizeRegModRMByte();
3115 if (CurOp != NumOps) {
3116 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3117 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3118 if (MO1.isImm())
3119 FinalSize += sizeConstant(Size);
3120 else {
3121 bool dword = false;
3122 if (Opcode == X86::MOV64ri32)
3123 dword = true;
3124 if (MO1.isGlobal()) {
3125 FinalSize += sizeGlobalAddress(dword);
3126 } else if (MO1.isSymbol())
3127 FinalSize += sizeExternalSymbolAddress(dword);
3128 else if (MO1.isCPI())
3129 FinalSize += sizeConstPoolAddress(dword);
3130 else if (MO1.isJTI())
3131 FinalSize += sizeJumpTableAddress(dword);
3134 break;
3136 case X86II::MRM0m: case X86II::MRM1m:
3137 case X86II::MRM2m: case X86II::MRM3m:
3138 case X86II::MRM4m: case X86II::MRM5m:
3139 case X86II::MRM6m: case X86II::MRM7m: {
3141 ++FinalSize;
3142 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3143 CurOp += X86AddrNumOperands;
3145 if (CurOp != NumOps) {
3146 const MachineOperand &MO = MI.getOperand(CurOp++);
3147 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3148 if (MO.isImm())
3149 FinalSize += sizeConstant(Size);
3150 else {
3151 bool dword = false;
3152 if (Opcode == X86::MOV64mi32)
3153 dword = true;
3154 if (MO.isGlobal()) {
3155 FinalSize += sizeGlobalAddress(dword);
3156 } else if (MO.isSymbol())
3157 FinalSize += sizeExternalSymbolAddress(dword);
3158 else if (MO.isCPI())
3159 FinalSize += sizeConstPoolAddress(dword);
3160 else if (MO.isJTI())
3161 FinalSize += sizeJumpTableAddress(dword);
3164 break;
3167 case X86II::MRMInitReg:
3168 ++FinalSize;
3169 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3170 FinalSize += sizeRegModRMByte();
3171 ++CurOp;
3172 break;
3175 if (!Desc->isVariadic() && CurOp != NumOps) {
3176 std::string msg;
3177 raw_string_ostream Msg(msg);
3178 Msg << "Cannot determine size: " << MI;
3179 llvm_report_error(Msg.str());
3183 return FinalSize;
3187 unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3188 const TargetInstrDesc &Desc = MI->getDesc();
3189 bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
3190 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3191 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3192 if (Desc.getOpcode() == X86::MOVPC32r)
3193 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3194 return Size;
3197 /// getGlobalBaseReg - Return a virtual register initialized with the
3198 /// the global base register value. Output instructions required to
3199 /// initialize the register in the function entry block, if necessary.
3201 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3202 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3203 "X86-64 PIC uses RIP relative addressing");
3205 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3206 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3207 if (GlobalBaseReg != 0)
3208 return GlobalBaseReg;
3210 // Insert the set of GlobalBaseReg into the first MBB of the function
3211 MachineBasicBlock &FirstMBB = MF->front();
3212 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3213 DebugLoc DL = DebugLoc::getUnknownLoc();
3214 if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
3215 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3216 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3218 const TargetInstrInfo *TII = TM.getInstrInfo();
3219 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3220 // only used in JIT code emission as displacement to pc.
3221 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3223 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3224 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3225 if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3226 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3227 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3228 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3229 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 0,
3230 X86II::MO_GOT_ABSOLUTE_ADDRESS);
3231 } else {
3232 GlobalBaseReg = PC;
3235 X86FI->setGlobalBaseReg(GlobalBaseReg);
3236 return GlobalBaseReg;