1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains routines that help analyze properties that chains of
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/GlobalAlias.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Operator.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Support/GetElementPtrTypeIterator.h"
25 #include "llvm/Support/MathExtras.h"
29 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
30 /// known to be either zero or one and return them in the KnownZero/KnownOne
31 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
33 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
34 /// we cannot optimize based on the assumption that it is zero without changing
35 /// it to be an explicit zero. If we don't change it to zero, other code could
36 /// optimized based on the contradictory assumption that it is non-zero.
37 /// Because instcombine aggressively folds operations with undef args anyway,
38 /// this won't lose us code quality.
40 /// This function is defined on values with integer type, values with pointer
41 /// type (but only if TD is non-null), and vectors of integers. In the case
42 /// where V is a vector, the mask, known zero, and known one values are the
43 /// same width as the vector element, and the bit is set only if it is true
44 /// for all of the elements in the vector.
45 void llvm::ComputeMaskedBits(Value
*V
, const APInt
&Mask
,
46 APInt
&KnownZero
, APInt
&KnownOne
,
47 const TargetData
*TD
, unsigned Depth
) {
48 const unsigned MaxDepth
= 6;
49 assert(V
&& "No Value?");
50 assert(Depth
<= MaxDepth
&& "Limit Search Depth");
51 unsigned BitWidth
= Mask
.getBitWidth();
52 assert((V
->getType()->isIntOrIntVector() || isa
<PointerType
>(V
->getType())) &&
53 "Not integer or pointer type!");
55 TD
->getTypeSizeInBits(V
->getType()->getScalarType()) == BitWidth
) &&
56 (!V
->getType()->isIntOrIntVector() ||
57 V
->getType()->getScalarSizeInBits() == BitWidth
) &&
58 KnownZero
.getBitWidth() == BitWidth
&&
59 KnownOne
.getBitWidth() == BitWidth
&&
60 "V, Mask, KnownOne and KnownZero should have same BitWidth");
62 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
63 // We know all of the bits for a constant!
64 KnownOne
= CI
->getValue() & Mask
;
65 KnownZero
= ~KnownOne
& Mask
;
68 // Null and aggregate-zero are all-zeros.
69 if (isa
<ConstantPointerNull
>(V
) ||
70 isa
<ConstantAggregateZero
>(V
)) {
75 // Handle a constant vector by taking the intersection of the known bits of
77 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
)) {
78 KnownZero
.set(); KnownOne
.set();
79 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
80 APInt
KnownZero2(BitWidth
, 0), KnownOne2(BitWidth
, 0);
81 ComputeMaskedBits(CV
->getOperand(i
), Mask
, KnownZero2
, KnownOne2
,
83 KnownZero
&= KnownZero2
;
84 KnownOne
&= KnownOne2
;
88 // The address of an aligned GlobalValue has trailing zeros.
89 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
90 unsigned Align
= GV
->getAlignment();
91 if (Align
== 0 && TD
&& GV
->getType()->getElementType()->isSized()) {
92 const Type
*ObjectType
= GV
->getType()->getElementType();
93 // If the object is defined in the current Module, we'll be giving
94 // it the preferred alignment. Otherwise, we have to assume that it
95 // may only have the minimum ABI alignment.
96 if (!GV
->isDeclaration() && !GV
->mayBeOverridden())
97 Align
= TD
->getPrefTypeAlignment(ObjectType
);
99 Align
= TD
->getABITypeAlignment(ObjectType
);
102 KnownZero
= Mask
& APInt::getLowBitsSet(BitWidth
,
103 CountTrailingZeros_32(Align
));
109 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
110 // the bits of its aliasee.
111 if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
112 if (GA
->mayBeOverridden()) {
113 KnownZero
.clear(); KnownOne
.clear();
115 ComputeMaskedBits(GA
->getAliasee(), Mask
, KnownZero
, KnownOne
,
121 KnownZero
.clear(); KnownOne
.clear(); // Start out not knowing anything.
123 if (Depth
== MaxDepth
|| Mask
== 0)
124 return; // Limit search depth.
126 Operator
*I
= dyn_cast
<Operator
>(V
);
129 APInt
KnownZero2(KnownZero
), KnownOne2(KnownOne
);
130 switch (I
->getOpcode()) {
132 case Instruction::And
: {
133 // If either the LHS or the RHS are Zero, the result is zero.
134 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
135 APInt
Mask2(Mask
& ~KnownZero
);
136 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
138 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
139 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
141 // Output known-1 bits are only known if set in both the LHS & RHS.
142 KnownOne
&= KnownOne2
;
143 // Output known-0 are known to be clear if zero in either the LHS | RHS.
144 KnownZero
|= KnownZero2
;
147 case Instruction::Or
: {
148 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
149 APInt
Mask2(Mask
& ~KnownOne
);
150 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
152 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
153 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
155 // Output known-0 bits are only known if clear in both the LHS & RHS.
156 KnownZero
&= KnownZero2
;
157 // Output known-1 are known to be set if set in either the LHS | RHS.
158 KnownOne
|= KnownOne2
;
161 case Instruction::Xor
: {
162 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
163 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero2
, KnownOne2
, TD
,
165 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
166 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
168 // Output known-0 bits are known if clear or set in both the LHS & RHS.
169 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
170 // Output known-1 are known to be set if set in only one of the LHS, RHS.
171 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
172 KnownZero
= KnownZeroOut
;
175 case Instruction::Mul
: {
176 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
177 ComputeMaskedBits(I
->getOperand(1), Mask2
, KnownZero
, KnownOne
, TD
,Depth
+1);
178 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
180 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
181 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
183 // If low bits are zero in either operand, output low known-0 bits.
184 // Also compute a conserative estimate for high known-0 bits.
185 // More trickiness is possible, but this is sufficient for the
186 // interesting case of alignment computation.
188 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
189 KnownZero2
.countTrailingOnes();
190 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
191 KnownZero2
.countLeadingOnes(),
192 BitWidth
) - BitWidth
;
194 TrailZ
= std::min(TrailZ
, BitWidth
);
195 LeadZ
= std::min(LeadZ
, BitWidth
);
196 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
197 APInt::getHighBitsSet(BitWidth
, LeadZ
);
201 case Instruction::UDiv
: {
202 // For the purposes of computing leading zeros we can conservatively
203 // treat a udiv as a logical right shift by the power of 2 known to
204 // be less than the denominator.
205 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
206 ComputeMaskedBits(I
->getOperand(0),
207 AllOnes
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
208 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
212 ComputeMaskedBits(I
->getOperand(1),
213 AllOnes
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
214 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
215 if (RHSUnknownLeadingOnes
!= BitWidth
)
216 LeadZ
= std::min(BitWidth
,
217 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
219 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
222 case Instruction::Select
:
223 ComputeMaskedBits(I
->getOperand(2), Mask
, KnownZero
, KnownOne
, TD
, Depth
+1);
224 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero2
, KnownOne2
, TD
,
226 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
227 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
229 // Only known if known in both the LHS and RHS.
230 KnownOne
&= KnownOne2
;
231 KnownZero
&= KnownZero2
;
233 case Instruction::FPTrunc
:
234 case Instruction::FPExt
:
235 case Instruction::FPToUI
:
236 case Instruction::FPToSI
:
237 case Instruction::SIToFP
:
238 case Instruction::UIToFP
:
239 return; // Can't work with floating point.
240 case Instruction::PtrToInt
:
241 case Instruction::IntToPtr
:
242 // We can't handle these if we don't know the pointer size.
244 // FALL THROUGH and handle them the same as zext/trunc.
245 case Instruction::ZExt
:
246 case Instruction::Trunc
: {
247 const Type
*SrcTy
= I
->getOperand(0)->getType();
249 unsigned SrcBitWidth
;
250 // Note that we handle pointer operands here because of inttoptr/ptrtoint
251 // which fall through here.
252 if (isa
<PointerType
>(SrcTy
))
253 SrcBitWidth
= TD
->getTypeSizeInBits(SrcTy
);
255 SrcBitWidth
= SrcTy
->getScalarSizeInBits();
258 MaskIn
.zextOrTrunc(SrcBitWidth
);
259 KnownZero
.zextOrTrunc(SrcBitWidth
);
260 KnownOne
.zextOrTrunc(SrcBitWidth
);
261 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, TD
,
263 KnownZero
.zextOrTrunc(BitWidth
);
264 KnownOne
.zextOrTrunc(BitWidth
);
265 // Any top bits are known to be zero.
266 if (BitWidth
> SrcBitWidth
)
267 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
270 case Instruction::BitCast
: {
271 const Type
*SrcTy
= I
->getOperand(0)->getType();
272 if ((SrcTy
->isInteger() || isa
<PointerType
>(SrcTy
)) &&
273 // TODO: For now, not handling conversions like:
274 // (bitcast i64 %x to <2 x i32>)
275 !isa
<VectorType
>(I
->getType())) {
276 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero
, KnownOne
, TD
,
282 case Instruction::SExt
: {
283 // Compute the bits in the result that are not present in the input.
284 unsigned SrcBitWidth
= I
->getOperand(0)->getType()->getScalarSizeInBits();
287 MaskIn
.trunc(SrcBitWidth
);
288 KnownZero
.trunc(SrcBitWidth
);
289 KnownOne
.trunc(SrcBitWidth
);
290 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, TD
,
292 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
293 KnownZero
.zext(BitWidth
);
294 KnownOne
.zext(BitWidth
);
296 // If the sign bit of the input is known set or clear, then we know the
297 // top bits of the result.
298 if (KnownZero
[SrcBitWidth
-1]) // Input sign bit known zero
299 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
300 else if (KnownOne
[SrcBitWidth
-1]) // Input sign bit known set
301 KnownOne
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
304 case Instruction::Shl
:
305 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
306 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
307 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
308 APInt
Mask2(Mask
.lshr(ShiftAmt
));
309 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
311 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
312 KnownZero
<<= ShiftAmt
;
313 KnownOne
<<= ShiftAmt
;
314 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShiftAmt
); // low bits known 0
318 case Instruction::LShr
:
319 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
320 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
321 // Compute the new bits that are at the top now.
322 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
324 // Unsigned shift right.
325 APInt
Mask2(Mask
.shl(ShiftAmt
));
326 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
,KnownOne
, TD
,
328 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
329 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
330 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
331 // high bits known zero.
332 KnownZero
|= APInt::getHighBitsSet(BitWidth
, ShiftAmt
);
336 case Instruction::AShr
:
337 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
338 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
339 // Compute the new bits that are at the top now.
340 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
342 // Signed shift right.
343 APInt
Mask2(Mask
.shl(ShiftAmt
));
344 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
346 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
347 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
348 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
350 APInt
HighBits(APInt::getHighBitsSet(BitWidth
, ShiftAmt
));
351 if (KnownZero
[BitWidth
-ShiftAmt
-1]) // New bits are known zero.
352 KnownZero
|= HighBits
;
353 else if (KnownOne
[BitWidth
-ShiftAmt
-1]) // New bits are known one.
354 KnownOne
|= HighBits
;
358 case Instruction::Sub
: {
359 if (ConstantInt
*CLHS
= dyn_cast
<ConstantInt
>(I
->getOperand(0))) {
360 // We know that the top bits of C-X are clear if X contains less bits
361 // than C (i.e. no wrap-around can happen). For example, 20-X is
362 // positive if we can prove that X is >= 0 and < 16.
363 if (!CLHS
->getValue().isNegative()) {
364 unsigned NLZ
= (CLHS
->getValue()+1).countLeadingZeros();
365 // NLZ can't be BitWidth with no sign bit
366 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
367 ComputeMaskedBits(I
->getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
370 // If all of the MaskV bits are known to be zero, then we know the
371 // output top bits are zero, because we now know that the output is
373 if ((KnownZero2
& MaskV
) == MaskV
) {
374 unsigned NLZ2
= CLHS
->getValue().countLeadingZeros();
375 // Top bits known zero.
376 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
382 case Instruction::Add
: {
383 // If one of the operands has trailing zeros, than the bits that the
384 // other operand has in those bit positions will be preserved in the
385 // result. For an add, this works with either operand. For a subtract,
386 // this only works if the known zeros are in the right operand.
387 APInt
LHSKnownZero(BitWidth
, 0), LHSKnownOne(BitWidth
, 0);
388 APInt Mask2
= APInt::getLowBitsSet(BitWidth
,
389 BitWidth
- Mask
.countLeadingZeros());
390 ComputeMaskedBits(I
->getOperand(0), Mask2
, LHSKnownZero
, LHSKnownOne
, TD
,
392 assert((LHSKnownZero
& LHSKnownOne
) == 0 &&
393 "Bits known to be one AND zero?");
394 unsigned LHSKnownZeroOut
= LHSKnownZero
.countTrailingOnes();
396 ComputeMaskedBits(I
->getOperand(1), Mask2
, KnownZero2
, KnownOne2
, TD
,
398 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
399 unsigned RHSKnownZeroOut
= KnownZero2
.countTrailingOnes();
401 // Determine which operand has more trailing zeros, and use that
402 // many bits from the other operand.
403 if (LHSKnownZeroOut
> RHSKnownZeroOut
) {
404 if (I
->getOpcode() == Instruction::Add
) {
405 APInt Mask
= APInt::getLowBitsSet(BitWidth
, LHSKnownZeroOut
);
406 KnownZero
|= KnownZero2
& Mask
;
407 KnownOne
|= KnownOne2
& Mask
;
409 // If the known zeros are in the left operand for a subtract,
410 // fall back to the minimum known zeros in both operands.
411 KnownZero
|= APInt::getLowBitsSet(BitWidth
,
412 std::min(LHSKnownZeroOut
,
415 } else if (RHSKnownZeroOut
>= LHSKnownZeroOut
) {
416 APInt Mask
= APInt::getLowBitsSet(BitWidth
, RHSKnownZeroOut
);
417 KnownZero
|= LHSKnownZero
& Mask
;
418 KnownOne
|= LHSKnownOne
& Mask
;
422 case Instruction::SRem
:
423 if (ConstantInt
*Rem
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
424 APInt RA
= Rem
->getValue();
425 if (RA
.isPowerOf2() || (-RA
).isPowerOf2()) {
426 APInt LowBits
= RA
.isStrictlyPositive() ? (RA
- 1) : ~RA
;
427 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
428 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, TD
,
431 // If the sign bit of the first operand is zero, the sign bit of
432 // the result is zero. If the first operand has no one bits below
433 // the second operand's single 1 bit, its sign will be zero.
434 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
435 KnownZero2
|= ~LowBits
;
437 KnownZero
|= KnownZero2
& Mask
;
439 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
443 case Instruction::URem
: {
444 if (ConstantInt
*Rem
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
445 APInt RA
= Rem
->getValue();
446 if (RA
.isPowerOf2()) {
447 APInt LowBits
= (RA
- 1);
448 APInt Mask2
= LowBits
& Mask
;
449 KnownZero
|= ~LowBits
& Mask
;
450 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, TD
,
452 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
457 // Since the result is less than or equal to either operand, any leading
458 // zero bits in either operand must also exist in the result.
459 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
460 ComputeMaskedBits(I
->getOperand(0), AllOnes
, KnownZero
, KnownOne
,
462 ComputeMaskedBits(I
->getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
465 unsigned Leaders
= std::max(KnownZero
.countLeadingOnes(),
466 KnownZero2
.countLeadingOnes());
468 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
472 case Instruction::Alloca
:
473 case Instruction::Malloc
: {
474 AllocationInst
*AI
= cast
<AllocationInst
>(V
);
475 unsigned Align
= AI
->getAlignment();
476 if (Align
== 0 && TD
) {
477 if (isa
<AllocaInst
>(AI
))
478 Align
= TD
->getABITypeAlignment(AI
->getType()->getElementType());
479 else if (isa
<MallocInst
>(AI
)) {
480 // Malloc returns maximally aligned memory.
481 Align
= TD
->getABITypeAlignment(AI
->getType()->getElementType());
484 (unsigned)TD
->getABITypeAlignment(
485 Type::getDoubleTy(V
->getContext())));
488 (unsigned)TD
->getABITypeAlignment(
489 Type::getInt64Ty(V
->getContext())));
494 KnownZero
= Mask
& APInt::getLowBitsSet(BitWidth
,
495 CountTrailingZeros_32(Align
));
498 case Instruction::GetElementPtr
: {
499 // Analyze all of the subscripts of this getelementptr instruction
500 // to determine if we can prove known low zero bits.
501 APInt LocalMask
= APInt::getAllOnesValue(BitWidth
);
502 APInt
LocalKnownZero(BitWidth
, 0), LocalKnownOne(BitWidth
, 0);
503 ComputeMaskedBits(I
->getOperand(0), LocalMask
,
504 LocalKnownZero
, LocalKnownOne
, TD
, Depth
+1);
505 unsigned TrailZ
= LocalKnownZero
.countTrailingOnes();
507 gep_type_iterator GTI
= gep_type_begin(I
);
508 for (unsigned i
= 1, e
= I
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
509 Value
*Index
= I
->getOperand(i
);
510 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
511 // Handle struct member offset arithmetic.
513 const StructLayout
*SL
= TD
->getStructLayout(STy
);
514 unsigned Idx
= cast
<ConstantInt
>(Index
)->getZExtValue();
515 uint64_t Offset
= SL
->getElementOffset(Idx
);
516 TrailZ
= std::min(TrailZ
,
517 CountTrailingZeros_64(Offset
));
519 // Handle array index arithmetic.
520 const Type
*IndexedTy
= GTI
.getIndexedType();
521 if (!IndexedTy
->isSized()) return;
522 unsigned GEPOpiBits
= Index
->getType()->getScalarSizeInBits();
523 uint64_t TypeSize
= TD
? TD
->getTypeAllocSize(IndexedTy
) : 1;
524 LocalMask
= APInt::getAllOnesValue(GEPOpiBits
);
525 LocalKnownZero
= LocalKnownOne
= APInt(GEPOpiBits
, 0);
526 ComputeMaskedBits(Index
, LocalMask
,
527 LocalKnownZero
, LocalKnownOne
, TD
, Depth
+1);
528 TrailZ
= std::min(TrailZ
,
529 unsigned(CountTrailingZeros_64(TypeSize
) +
530 LocalKnownZero
.countTrailingOnes()));
534 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) & Mask
;
537 case Instruction::PHI
: {
538 PHINode
*P
= cast
<PHINode
>(I
);
539 // Handle the case of a simple two-predecessor recurrence PHI.
540 // There's a lot more that could theoretically be done here, but
541 // this is sufficient to catch some interesting cases.
542 if (P
->getNumIncomingValues() == 2) {
543 for (unsigned i
= 0; i
!= 2; ++i
) {
544 Value
*L
= P
->getIncomingValue(i
);
545 Value
*R
= P
->getIncomingValue(!i
);
546 Operator
*LU
= dyn_cast
<Operator
>(L
);
549 unsigned Opcode
= LU
->getOpcode();
550 // Check for operations that have the property that if
551 // both their operands have low zero bits, the result
552 // will have low zero bits.
553 if (Opcode
== Instruction::Add
||
554 Opcode
== Instruction::Sub
||
555 Opcode
== Instruction::And
||
556 Opcode
== Instruction::Or
||
557 Opcode
== Instruction::Mul
) {
558 Value
*LL
= LU
->getOperand(0);
559 Value
*LR
= LU
->getOperand(1);
560 // Find a recurrence.
567 // Ok, we have a PHI of the form L op= R. Check for low
569 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
570 ComputeMaskedBits(R
, Mask2
, KnownZero2
, KnownOne2
, TD
, Depth
+1);
571 Mask2
= APInt::getLowBitsSet(BitWidth
,
572 KnownZero2
.countTrailingOnes());
574 // We need to take the minimum number of known bits
575 APInt
KnownZero3(KnownZero
), KnownOne3(KnownOne
);
576 ComputeMaskedBits(L
, Mask2
, KnownZero3
, KnownOne3
, TD
, Depth
+1);
579 APInt::getLowBitsSet(BitWidth
,
580 std::min(KnownZero2
.countTrailingOnes(),
581 KnownZero3
.countTrailingOnes()));
587 // Otherwise take the unions of the known bit sets of the operands,
588 // taking conservative care to avoid excessive recursion.
589 if (Depth
< MaxDepth
- 1 && !KnownZero
&& !KnownOne
) {
590 KnownZero
= APInt::getAllOnesValue(BitWidth
);
591 KnownOne
= APInt::getAllOnesValue(BitWidth
);
592 for (unsigned i
= 0, e
= P
->getNumIncomingValues(); i
!= e
; ++i
) {
593 // Skip direct self references.
594 if (P
->getIncomingValue(i
) == P
) continue;
596 KnownZero2
= APInt(BitWidth
, 0);
597 KnownOne2
= APInt(BitWidth
, 0);
598 // Recurse, but cap the recursion to one level, because we don't
599 // want to waste time spinning around in loops.
600 ComputeMaskedBits(P
->getIncomingValue(i
), KnownZero
| KnownOne
,
601 KnownZero2
, KnownOne2
, TD
, MaxDepth
-1);
602 KnownZero
&= KnownZero2
;
603 KnownOne
&= KnownOne2
;
604 // If all bits have been ruled out, there's no need to check
606 if (!KnownZero
&& !KnownOne
)
612 case Instruction::Call
:
613 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
614 switch (II
->getIntrinsicID()) {
616 case Intrinsic::ctpop
:
617 case Intrinsic::ctlz
:
618 case Intrinsic::cttz
: {
619 unsigned LowBits
= Log2_32(BitWidth
)+1;
620 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
629 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
630 /// this predicate to simplify operations downstream. Mask is known to be zero
631 /// for bits that V cannot have.
633 /// This function is defined on values with integer type, values with pointer
634 /// type (but only if TD is non-null), and vectors of integers. In the case
635 /// where V is a vector, the mask, known zero, and known one values are the
636 /// same width as the vector element, and the bit is set only if it is true
637 /// for all of the elements in the vector.
638 bool llvm::MaskedValueIsZero(Value
*V
, const APInt
&Mask
,
639 const TargetData
*TD
, unsigned Depth
) {
640 APInt
KnownZero(Mask
.getBitWidth(), 0), KnownOne(Mask
.getBitWidth(), 0);
641 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
642 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
643 return (KnownZero
& Mask
) == Mask
;
648 /// ComputeNumSignBits - Return the number of times the sign bit of the
649 /// register is replicated into the other bits. We know that at least 1 bit
650 /// is always equal to the sign bit (itself), but other cases can give us
651 /// information. For example, immediately after an "ashr X, 2", we know that
652 /// the top 3 bits are all equal to each other, so we return 3.
654 /// 'Op' must have a scalar integer type.
656 unsigned llvm::ComputeNumSignBits(Value
*V
, const TargetData
*TD
,
658 assert((TD
|| V
->getType()->isIntOrIntVector()) &&
659 "ComputeNumSignBits requires a TargetData object to operate "
660 "on non-integer values!");
661 const Type
*Ty
= V
->getType();
662 unsigned TyBits
= TD
? TD
->getTypeSizeInBits(V
->getType()->getScalarType()) :
663 Ty
->getScalarSizeInBits();
665 unsigned FirstAnswer
= 1;
667 // Note that ConstantInt is handled by the general ComputeMaskedBits case
671 return 1; // Limit search depth.
673 Operator
*U
= dyn_cast
<Operator
>(V
);
674 switch (Operator::getOpcode(V
)) {
676 case Instruction::SExt
:
677 Tmp
= TyBits
-cast
<IntegerType
>(U
->getOperand(0)->getType())->getBitWidth();
678 return ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1) + Tmp
;
680 case Instruction::AShr
:
681 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
682 // ashr X, C -> adds C sign bits.
683 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
684 Tmp
+= C
->getZExtValue();
685 if (Tmp
> TyBits
) Tmp
= TyBits
;
688 case Instruction::Shl
:
689 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
690 // shl destroys sign bits.
691 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
692 if (C
->getZExtValue() >= TyBits
|| // Bad shift.
693 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
694 return Tmp
- C
->getZExtValue();
697 case Instruction::And
:
698 case Instruction::Or
:
699 case Instruction::Xor
: // NOT is handled here.
700 // Logical binary ops preserve the number of sign bits at the worst.
701 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
703 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
704 FirstAnswer
= std::min(Tmp
, Tmp2
);
705 // We computed what we know about the sign bits as our first
706 // answer. Now proceed to the generic code that uses
707 // ComputeMaskedBits, and pick whichever answer is better.
711 case Instruction::Select
:
712 Tmp
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
713 if (Tmp
== 1) return 1; // Early out.
714 Tmp2
= ComputeNumSignBits(U
->getOperand(2), TD
, Depth
+1);
715 return std::min(Tmp
, Tmp2
);
717 case Instruction::Add
:
718 // Add can have at most one carry bit. Thus we know that the output
719 // is, at worst, one more bit than the inputs.
720 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
721 if (Tmp
== 1) return 1; // Early out.
723 // Special case decrementing a value (ADD X, -1):
724 if (ConstantInt
*CRHS
= dyn_cast
<ConstantInt
>(U
->getOperand(1)))
725 if (CRHS
->isAllOnesValue()) {
726 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
727 APInt Mask
= APInt::getAllOnesValue(TyBits
);
728 ComputeMaskedBits(U
->getOperand(0), Mask
, KnownZero
, KnownOne
, TD
,
731 // If the input is known to be 0 or 1, the output is 0/-1, which is all
733 if ((KnownZero
| APInt(TyBits
, 1)) == Mask
)
736 // If we are subtracting one from a positive number, there is no carry
737 // out of the result.
738 if (KnownZero
.isNegative())
742 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
743 if (Tmp2
== 1) return 1;
744 return std::min(Tmp
, Tmp2
)-1;
747 case Instruction::Sub
:
748 Tmp2
= ComputeNumSignBits(U
->getOperand(1), TD
, Depth
+1);
749 if (Tmp2
== 1) return 1;
752 if (ConstantInt
*CLHS
= dyn_cast
<ConstantInt
>(U
->getOperand(0)))
753 if (CLHS
->isNullValue()) {
754 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
755 APInt Mask
= APInt::getAllOnesValue(TyBits
);
756 ComputeMaskedBits(U
->getOperand(1), Mask
, KnownZero
, KnownOne
,
758 // If the input is known to be 0 or 1, the output is 0/-1, which is all
760 if ((KnownZero
| APInt(TyBits
, 1)) == Mask
)
763 // If the input is known to be positive (the sign bit is known clear),
764 // the output of the NEG has the same number of sign bits as the input.
765 if (KnownZero
.isNegative())
768 // Otherwise, we treat this like a SUB.
771 // Sub can have at most one carry bit. Thus we know that the output
772 // is, at worst, one more bit than the inputs.
773 Tmp
= ComputeNumSignBits(U
->getOperand(0), TD
, Depth
+1);
774 if (Tmp
== 1) return 1; // Early out.
775 return std::min(Tmp
, Tmp2
)-1;
777 case Instruction::Trunc
:
778 // FIXME: it's tricky to do anything useful for this, but it is an important
779 // case for targets like X86.
783 // Finally, if we can prove that the top bits of the result are 0's or 1's,
784 // use this information.
785 APInt
KnownZero(TyBits
, 0), KnownOne(TyBits
, 0);
786 APInt Mask
= APInt::getAllOnesValue(TyBits
);
787 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
789 if (KnownZero
.isNegative()) { // sign bit is 0
791 } else if (KnownOne
.isNegative()) { // sign bit is 1;
798 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
799 // the number of identical bits in the top of the input value.
801 Mask
<<= Mask
.getBitWidth()-TyBits
;
802 // Return # leading zeros. We use 'min' here in case Val was zero before
803 // shifting. We don't want to return '64' as for an i32 "0".
804 return std::max(FirstAnswer
, std::min(TyBits
, Mask
.countLeadingZeros()));
807 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
808 /// value is never equal to -0.0.
810 /// NOTE: this function will need to be revisited when we support non-default
813 bool llvm::CannotBeNegativeZero(const Value
*V
, unsigned Depth
) {
814 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
))
815 return !CFP
->getValueAPF().isNegZero();
818 return 1; // Limit search depth.
820 const Operator
*I
= dyn_cast
<Operator
>(V
);
821 if (I
== 0) return false;
823 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
824 if (I
->getOpcode() == Instruction::FAdd
&&
825 isa
<ConstantFP
>(I
->getOperand(1)) &&
826 cast
<ConstantFP
>(I
->getOperand(1))->isNullValue())
829 // sitofp and uitofp turn into +0.0 for zero.
830 if (isa
<SIToFPInst
>(I
) || isa
<UIToFPInst
>(I
))
833 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
834 // sqrt(-0.0) = -0.0, no other negative results are possible.
835 if (II
->getIntrinsicID() == Intrinsic::sqrt
)
836 return CannotBeNegativeZero(II
->getOperand(1), Depth
+1);
838 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
839 if (const Function
*F
= CI
->getCalledFunction()) {
840 if (F
->isDeclaration()) {
842 if (F
->getName() == "abs") return true;
843 // abs[lf](x) != -0.0
844 if (F
->getName() == "absf") return true;
845 if (F
->getName() == "absl") return true;
852 // This is the recursive version of BuildSubAggregate. It takes a few different
853 // arguments. Idxs is the index within the nested struct From that we are
854 // looking at now (which is of type IndexedType). IdxSkip is the number of
855 // indices from Idxs that should be left out when inserting into the resulting
856 // struct. To is the result struct built so far, new insertvalue instructions
858 static Value
*BuildSubAggregate(Value
*From
, Value
* To
, const Type
*IndexedType
,
859 SmallVector
<unsigned, 10> &Idxs
,
861 LLVMContext
&Context
,
862 Instruction
*InsertBefore
) {
863 const llvm::StructType
*STy
= llvm::dyn_cast
<llvm::StructType
>(IndexedType
);
865 // Save the original To argument so we can modify it
867 // General case, the type indexed by Idxs is a struct
868 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
869 // Process each struct element recursively
872 To
= BuildSubAggregate(From
, To
, STy
->getElementType(i
), Idxs
, IdxSkip
,
873 Context
, InsertBefore
);
876 // Couldn't find any inserted value for this index? Cleanup
877 while (PrevTo
!= OrigTo
) {
878 InsertValueInst
* Del
= cast
<InsertValueInst
>(PrevTo
);
879 PrevTo
= Del
->getAggregateOperand();
880 Del
->eraseFromParent();
882 // Stop processing elements
886 // If we succesfully found a value for each of our subaggregates
890 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
891 // the struct's elements had a value that was inserted directly. In the latter
892 // case, perhaps we can't determine each of the subelements individually, but
893 // we might be able to find the complete struct somewhere.
895 // Find the value that is at that particular spot
896 Value
*V
= FindInsertedValue(From
, Idxs
.begin(), Idxs
.end(), Context
);
901 // Insert the value in the new (sub) aggregrate
902 return llvm::InsertValueInst::Create(To
, V
, Idxs
.begin() + IdxSkip
,
903 Idxs
.end(), "tmp", InsertBefore
);
906 // This helper takes a nested struct and extracts a part of it (which is again a
907 // struct) into a new value. For example, given the struct:
908 // { a, { b, { c, d }, e } }
909 // and the indices "1, 1" this returns
912 // It does this by inserting an insertvalue for each element in the resulting
913 // struct, as opposed to just inserting a single struct. This will only work if
914 // each of the elements of the substruct are known (ie, inserted into From by an
915 // insertvalue instruction somewhere).
917 // All inserted insertvalue instructions are inserted before InsertBefore
918 static Value
*BuildSubAggregate(Value
*From
, const unsigned *idx_begin
,
919 const unsigned *idx_end
, LLVMContext
&Context
,
920 Instruction
*InsertBefore
) {
921 assert(InsertBefore
&& "Must have someplace to insert!");
922 const Type
*IndexedType
= ExtractValueInst::getIndexedType(From
->getType(),
925 Value
*To
= UndefValue::get(IndexedType
);
926 SmallVector
<unsigned, 10> Idxs(idx_begin
, idx_end
);
927 unsigned IdxSkip
= Idxs
.size();
929 return BuildSubAggregate(From
, To
, IndexedType
, Idxs
, IdxSkip
,
930 Context
, InsertBefore
);
933 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
934 /// the scalar value indexed is already around as a register, for example if it
935 /// were inserted directly into the aggregrate.
937 /// If InsertBefore is not null, this function will duplicate (modified)
938 /// insertvalues when a part of a nested struct is extracted.
939 Value
*llvm::FindInsertedValue(Value
*V
, const unsigned *idx_begin
,
940 const unsigned *idx_end
, LLVMContext
&Context
,
941 Instruction
*InsertBefore
) {
942 // Nothing to index? Just return V then (this is useful at the end of our
944 if (idx_begin
== idx_end
)
946 // We have indices, so V should have an indexable type
947 assert((isa
<StructType
>(V
->getType()) || isa
<ArrayType
>(V
->getType()))
948 && "Not looking at a struct or array?");
949 assert(ExtractValueInst::getIndexedType(V
->getType(), idx_begin
, idx_end
)
950 && "Invalid indices for type?");
951 const CompositeType
*PTy
= cast
<CompositeType
>(V
->getType());
953 if (isa
<UndefValue
>(V
))
954 return UndefValue::get(ExtractValueInst::getIndexedType(PTy
,
957 else if (isa
<ConstantAggregateZero
>(V
))
958 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy
,
961 else if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
962 if (isa
<ConstantArray
>(C
) || isa
<ConstantStruct
>(C
))
963 // Recursively process this constant
964 return FindInsertedValue(C
->getOperand(*idx_begin
), idx_begin
+ 1,
965 idx_end
, Context
, InsertBefore
);
966 } else if (InsertValueInst
*I
= dyn_cast
<InsertValueInst
>(V
)) {
967 // Loop the indices for the insertvalue instruction in parallel with the
969 const unsigned *req_idx
= idx_begin
;
970 for (const unsigned *i
= I
->idx_begin(), *e
= I
->idx_end();
971 i
!= e
; ++i
, ++req_idx
) {
972 if (req_idx
== idx_end
) {
974 // The requested index identifies a part of a nested aggregate. Handle
975 // this specially. For example,
976 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
977 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
978 // %C = extractvalue {i32, { i32, i32 } } %B, 1
979 // This can be changed into
980 // %A = insertvalue {i32, i32 } undef, i32 10, 0
981 // %C = insertvalue {i32, i32 } %A, i32 11, 1
982 // which allows the unused 0,0 element from the nested struct to be
984 return BuildSubAggregate(V
, idx_begin
, req_idx
,
985 Context
, InsertBefore
);
987 // We can't handle this without inserting insertvalues
991 // This insert value inserts something else than what we are looking for.
992 // See if the (aggregrate) value inserted into has the value we are
993 // looking for, then.
995 return FindInsertedValue(I
->getAggregateOperand(), idx_begin
, idx_end
,
996 Context
, InsertBefore
);
998 // If we end up here, the indices of the insertvalue match with those
999 // requested (though possibly only partially). Now we recursively look at
1000 // the inserted value, passing any remaining indices.
1001 return FindInsertedValue(I
->getInsertedValueOperand(), req_idx
, idx_end
,
1002 Context
, InsertBefore
);
1003 } else if (ExtractValueInst
*I
= dyn_cast
<ExtractValueInst
>(V
)) {
1004 // If we're extracting a value from an aggregrate that was extracted from
1005 // something else, we can extract from that something else directly instead.
1006 // However, we will need to chain I's indices with the requested indices.
1008 // Calculate the number of indices required
1009 unsigned size
= I
->getNumIndices() + (idx_end
- idx_begin
);
1010 // Allocate some space to put the new indices in
1011 SmallVector
<unsigned, 5> Idxs
;
1013 // Add indices from the extract value instruction
1014 for (const unsigned *i
= I
->idx_begin(), *e
= I
->idx_end();
1018 // Add requested indices
1019 for (const unsigned *i
= idx_begin
, *e
= idx_end
; i
!= e
; ++i
)
1022 assert(Idxs
.size() == size
1023 && "Number of indices added not correct?");
1025 return FindInsertedValue(I
->getAggregateOperand(), Idxs
.begin(), Idxs
.end(),
1026 Context
, InsertBefore
);
1028 // Otherwise, we don't know (such as, extracting from a function return value
1029 // or load instruction)
1033 /// GetConstantStringInfo - This function computes the length of a
1034 /// null-terminated C string pointed to by V. If successful, it returns true
1035 /// and returns the string in Str. If unsuccessful, it returns false.
1036 bool llvm::GetConstantStringInfo(Value
*V
, std::string
&Str
, uint64_t Offset
,
1038 // If V is NULL then return false;
1039 if (V
== NULL
) return false;
1041 // Look through bitcast instructions.
1042 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(V
))
1043 return GetConstantStringInfo(BCI
->getOperand(0), Str
, Offset
, StopAtNul
);
1045 // If the value is not a GEP instruction nor a constant expression with a
1046 // GEP instruction, then return false because ConstantArray can't occur
1049 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(V
)) {
1051 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
1052 if (CE
->getOpcode() == Instruction::BitCast
)
1053 return GetConstantStringInfo(CE
->getOperand(0), Str
, Offset
, StopAtNul
);
1054 if (CE
->getOpcode() != Instruction::GetElementPtr
)
1060 // Make sure the GEP has exactly three arguments.
1061 if (GEP
->getNumOperands() != 3)
1064 // Make sure the index-ee is a pointer to array of i8.
1065 const PointerType
*PT
= cast
<PointerType
>(GEP
->getOperand(0)->getType());
1066 const ArrayType
*AT
= dyn_cast
<ArrayType
>(PT
->getElementType());
1067 if (AT
== 0 || AT
->getElementType() != Type::getInt8Ty(V
->getContext()))
1070 // Check to make sure that the first operand of the GEP is an integer and
1071 // has value 0 so that we are sure we're indexing into the initializer.
1072 ConstantInt
*FirstIdx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(1));
1073 if (FirstIdx
== 0 || !FirstIdx
->isZero())
1076 // If the second index isn't a ConstantInt, then this is a variable index
1077 // into the array. If this occurs, we can't say anything meaningful about
1079 uint64_t StartIdx
= 0;
1080 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(2)))
1081 StartIdx
= CI
->getZExtValue();
1084 return GetConstantStringInfo(GEP
->getOperand(0), Str
, StartIdx
+Offset
,
1088 if (MDString
*MDStr
= dyn_cast
<MDString
>(V
)) {
1089 Str
= MDStr
->getString();
1093 // The GEP instruction, constant or instruction, must reference a global
1094 // variable that is a constant and is initialized. The referenced constant
1095 // initializer is the array that we'll use for optimization.
1096 GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(V
);
1097 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer())
1099 Constant
*GlobalInit
= GV
->getInitializer();
1101 // Handle the ConstantAggregateZero case
1102 if (isa
<ConstantAggregateZero
>(GlobalInit
)) {
1103 // This is a degenerate case. The initializer is constant zero so the
1104 // length of the string must be zero.
1109 // Must be a Constant Array
1110 ConstantArray
*Array
= dyn_cast
<ConstantArray
>(GlobalInit
);
1112 Array
->getType()->getElementType() != Type::getInt8Ty(V
->getContext()))
1115 // Get the number of elements in the array
1116 uint64_t NumElts
= Array
->getType()->getNumElements();
1118 if (Offset
> NumElts
)
1121 // Traverse the constant array from 'Offset' which is the place the GEP refers
1123 Str
.reserve(NumElts
-Offset
);
1124 for (unsigned i
= Offset
; i
!= NumElts
; ++i
) {
1125 Constant
*Elt
= Array
->getOperand(i
);
1126 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
);
1127 if (!CI
) // This array isn't suitable, non-int initializer.
1129 if (StopAtNul
&& CI
->isZero())
1130 return true; // we found end of string, success!
1131 Str
+= (char)CI
->getZExtValue();
1134 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.