remove a dead bool.
[llvm/avr.git] / lib / Analysis / ValueTracking.cpp
blob9494a2f4c53b742eec84bdce6ffd7cc1b617131a
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/GlobalAlias.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Operator.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Support/GetElementPtrTypeIterator.h"
25 #include "llvm/Support/MathExtras.h"
26 #include <cstring>
27 using namespace llvm;
29 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
30 /// known to be either zero or one and return them in the KnownZero/KnownOne
31 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
32 /// processing.
33 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
34 /// we cannot optimize based on the assumption that it is zero without changing
35 /// it to be an explicit zero. If we don't change it to zero, other code could
36 /// optimized based on the contradictory assumption that it is non-zero.
37 /// Because instcombine aggressively folds operations with undef args anyway,
38 /// this won't lose us code quality.
39 ///
40 /// This function is defined on values with integer type, values with pointer
41 /// type (but only if TD is non-null), and vectors of integers. In the case
42 /// where V is a vector, the mask, known zero, and known one values are the
43 /// same width as the vector element, and the bit is set only if it is true
44 /// for all of the elements in the vector.
45 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
46 APInt &KnownZero, APInt &KnownOne,
47 const TargetData *TD, unsigned Depth) {
48 const unsigned MaxDepth = 6;
49 assert(V && "No Value?");
50 assert(Depth <= MaxDepth && "Limit Search Depth");
51 unsigned BitWidth = Mask.getBitWidth();
52 assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) &&
53 "Not integer or pointer type!");
54 assert((!TD ||
55 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
56 (!V->getType()->isIntOrIntVector() ||
57 V->getType()->getScalarSizeInBits() == BitWidth) &&
58 KnownZero.getBitWidth() == BitWidth &&
59 KnownOne.getBitWidth() == BitWidth &&
60 "V, Mask, KnownOne and KnownZero should have same BitWidth");
62 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
63 // We know all of the bits for a constant!
64 KnownOne = CI->getValue() & Mask;
65 KnownZero = ~KnownOne & Mask;
66 return;
68 // Null and aggregate-zero are all-zeros.
69 if (isa<ConstantPointerNull>(V) ||
70 isa<ConstantAggregateZero>(V)) {
71 KnownOne.clear();
72 KnownZero = Mask;
73 return;
75 // Handle a constant vector by taking the intersection of the known bits of
76 // each element.
77 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
78 KnownZero.set(); KnownOne.set();
79 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
80 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
81 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
82 TD, Depth);
83 KnownZero &= KnownZero2;
84 KnownOne &= KnownOne2;
86 return;
88 // The address of an aligned GlobalValue has trailing zeros.
89 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
90 unsigned Align = GV->getAlignment();
91 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
92 const Type *ObjectType = GV->getType()->getElementType();
93 // If the object is defined in the current Module, we'll be giving
94 // it the preferred alignment. Otherwise, we have to assume that it
95 // may only have the minimum ABI alignment.
96 if (!GV->isDeclaration() && !GV->mayBeOverridden())
97 Align = TD->getPrefTypeAlignment(ObjectType);
98 else
99 Align = TD->getABITypeAlignment(ObjectType);
101 if (Align > 0)
102 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
103 CountTrailingZeros_32(Align));
104 else
105 KnownZero.clear();
106 KnownOne.clear();
107 return;
109 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
110 // the bits of its aliasee.
111 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
112 if (GA->mayBeOverridden()) {
113 KnownZero.clear(); KnownOne.clear();
114 } else {
115 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
116 TD, Depth+1);
118 return;
121 KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
123 if (Depth == MaxDepth || Mask == 0)
124 return; // Limit search depth.
126 Operator *I = dyn_cast<Operator>(V);
127 if (!I) return;
129 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
130 switch (I->getOpcode()) {
131 default: break;
132 case Instruction::And: {
133 // If either the LHS or the RHS are Zero, the result is zero.
134 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
135 APInt Mask2(Mask & ~KnownZero);
136 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
137 Depth+1);
138 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
139 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141 // Output known-1 bits are only known if set in both the LHS & RHS.
142 KnownOne &= KnownOne2;
143 // Output known-0 are known to be clear if zero in either the LHS | RHS.
144 KnownZero |= KnownZero2;
145 return;
147 case Instruction::Or: {
148 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
149 APInt Mask2(Mask & ~KnownOne);
150 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
151 Depth+1);
152 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
153 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
155 // Output known-0 bits are only known if clear in both the LHS & RHS.
156 KnownZero &= KnownZero2;
157 // Output known-1 are known to be set if set in either the LHS | RHS.
158 KnownOne |= KnownOne2;
159 return;
161 case Instruction::Xor: {
162 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
163 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
164 Depth+1);
165 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
166 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
168 // Output known-0 bits are known if clear or set in both the LHS & RHS.
169 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
170 // Output known-1 are known to be set if set in only one of the LHS, RHS.
171 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
172 KnownZero = KnownZeroOut;
173 return;
175 case Instruction::Mul: {
176 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
177 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
178 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
179 Depth+1);
180 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
181 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
183 // If low bits are zero in either operand, output low known-0 bits.
184 // Also compute a conserative estimate for high known-0 bits.
185 // More trickiness is possible, but this is sufficient for the
186 // interesting case of alignment computation.
187 KnownOne.clear();
188 unsigned TrailZ = KnownZero.countTrailingOnes() +
189 KnownZero2.countTrailingOnes();
190 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
191 KnownZero2.countLeadingOnes(),
192 BitWidth) - BitWidth;
194 TrailZ = std::min(TrailZ, BitWidth);
195 LeadZ = std::min(LeadZ, BitWidth);
196 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
197 APInt::getHighBitsSet(BitWidth, LeadZ);
198 KnownZero &= Mask;
199 return;
201 case Instruction::UDiv: {
202 // For the purposes of computing leading zeros we can conservatively
203 // treat a udiv as a logical right shift by the power of 2 known to
204 // be less than the denominator.
205 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
206 ComputeMaskedBits(I->getOperand(0),
207 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
208 unsigned LeadZ = KnownZero2.countLeadingOnes();
210 KnownOne2.clear();
211 KnownZero2.clear();
212 ComputeMaskedBits(I->getOperand(1),
213 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
214 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
215 if (RHSUnknownLeadingOnes != BitWidth)
216 LeadZ = std::min(BitWidth,
217 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
219 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
220 return;
222 case Instruction::Select:
223 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
224 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
225 Depth+1);
226 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
227 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
229 // Only known if known in both the LHS and RHS.
230 KnownOne &= KnownOne2;
231 KnownZero &= KnownZero2;
232 return;
233 case Instruction::FPTrunc:
234 case Instruction::FPExt:
235 case Instruction::FPToUI:
236 case Instruction::FPToSI:
237 case Instruction::SIToFP:
238 case Instruction::UIToFP:
239 return; // Can't work with floating point.
240 case Instruction::PtrToInt:
241 case Instruction::IntToPtr:
242 // We can't handle these if we don't know the pointer size.
243 if (!TD) return;
244 // FALL THROUGH and handle them the same as zext/trunc.
245 case Instruction::ZExt:
246 case Instruction::Trunc: {
247 const Type *SrcTy = I->getOperand(0)->getType();
249 unsigned SrcBitWidth;
250 // Note that we handle pointer operands here because of inttoptr/ptrtoint
251 // which fall through here.
252 if (isa<PointerType>(SrcTy))
253 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
254 else
255 SrcBitWidth = SrcTy->getScalarSizeInBits();
257 APInt MaskIn(Mask);
258 MaskIn.zextOrTrunc(SrcBitWidth);
259 KnownZero.zextOrTrunc(SrcBitWidth);
260 KnownOne.zextOrTrunc(SrcBitWidth);
261 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
262 Depth+1);
263 KnownZero.zextOrTrunc(BitWidth);
264 KnownOne.zextOrTrunc(BitWidth);
265 // Any top bits are known to be zero.
266 if (BitWidth > SrcBitWidth)
267 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
268 return;
270 case Instruction::BitCast: {
271 const Type *SrcTy = I->getOperand(0)->getType();
272 if ((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
273 // TODO: For now, not handling conversions like:
274 // (bitcast i64 %x to <2 x i32>)
275 !isa<VectorType>(I->getType())) {
276 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
277 Depth+1);
278 return;
280 break;
282 case Instruction::SExt: {
283 // Compute the bits in the result that are not present in the input.
284 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
286 APInt MaskIn(Mask);
287 MaskIn.trunc(SrcBitWidth);
288 KnownZero.trunc(SrcBitWidth);
289 KnownOne.trunc(SrcBitWidth);
290 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
291 Depth+1);
292 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
293 KnownZero.zext(BitWidth);
294 KnownOne.zext(BitWidth);
296 // If the sign bit of the input is known set or clear, then we know the
297 // top bits of the result.
298 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
299 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
300 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
301 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
302 return;
304 case Instruction::Shl:
305 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
306 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
307 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
308 APInt Mask2(Mask.lshr(ShiftAmt));
309 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
310 Depth+1);
311 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
312 KnownZero <<= ShiftAmt;
313 KnownOne <<= ShiftAmt;
314 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
315 return;
317 break;
318 case Instruction::LShr:
319 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
320 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
321 // Compute the new bits that are at the top now.
322 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
324 // Unsigned shift right.
325 APInt Mask2(Mask.shl(ShiftAmt));
326 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
327 Depth+1);
328 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
329 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
330 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
331 // high bits known zero.
332 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
333 return;
335 break;
336 case Instruction::AShr:
337 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
338 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
339 // Compute the new bits that are at the top now.
340 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
342 // Signed shift right.
343 APInt Mask2(Mask.shl(ShiftAmt));
344 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
345 Depth+1);
346 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
347 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
348 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
350 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
351 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
352 KnownZero |= HighBits;
353 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
354 KnownOne |= HighBits;
355 return;
357 break;
358 case Instruction::Sub: {
359 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
360 // We know that the top bits of C-X are clear if X contains less bits
361 // than C (i.e. no wrap-around can happen). For example, 20-X is
362 // positive if we can prove that X is >= 0 and < 16.
363 if (!CLHS->getValue().isNegative()) {
364 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
365 // NLZ can't be BitWidth with no sign bit
366 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
367 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
368 TD, Depth+1);
370 // If all of the MaskV bits are known to be zero, then we know the
371 // output top bits are zero, because we now know that the output is
372 // from [0-C].
373 if ((KnownZero2 & MaskV) == MaskV) {
374 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
375 // Top bits known zero.
376 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
381 // fall through
382 case Instruction::Add: {
383 // If one of the operands has trailing zeros, than the bits that the
384 // other operand has in those bit positions will be preserved in the
385 // result. For an add, this works with either operand. For a subtract,
386 // this only works if the known zeros are in the right operand.
387 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
388 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
389 BitWidth - Mask.countLeadingZeros());
390 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
391 Depth+1);
392 assert((LHSKnownZero & LHSKnownOne) == 0 &&
393 "Bits known to be one AND zero?");
394 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
396 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
397 Depth+1);
398 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
399 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
401 // Determine which operand has more trailing zeros, and use that
402 // many bits from the other operand.
403 if (LHSKnownZeroOut > RHSKnownZeroOut) {
404 if (I->getOpcode() == Instruction::Add) {
405 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
406 KnownZero |= KnownZero2 & Mask;
407 KnownOne |= KnownOne2 & Mask;
408 } else {
409 // If the known zeros are in the left operand for a subtract,
410 // fall back to the minimum known zeros in both operands.
411 KnownZero |= APInt::getLowBitsSet(BitWidth,
412 std::min(LHSKnownZeroOut,
413 RHSKnownZeroOut));
415 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
416 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
417 KnownZero |= LHSKnownZero & Mask;
418 KnownOne |= LHSKnownOne & Mask;
420 return;
422 case Instruction::SRem:
423 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
424 APInt RA = Rem->getValue();
425 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
426 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
427 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
428 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
429 Depth+1);
431 // If the sign bit of the first operand is zero, the sign bit of
432 // the result is zero. If the first operand has no one bits below
433 // the second operand's single 1 bit, its sign will be zero.
434 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
435 KnownZero2 |= ~LowBits;
437 KnownZero |= KnownZero2 & Mask;
439 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
442 break;
443 case Instruction::URem: {
444 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
445 APInt RA = Rem->getValue();
446 if (RA.isPowerOf2()) {
447 APInt LowBits = (RA - 1);
448 APInt Mask2 = LowBits & Mask;
449 KnownZero |= ~LowBits & Mask;
450 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
451 Depth+1);
452 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
453 break;
457 // Since the result is less than or equal to either operand, any leading
458 // zero bits in either operand must also exist in the result.
459 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
460 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
461 TD, Depth+1);
462 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
463 TD, Depth+1);
465 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
466 KnownZero2.countLeadingOnes());
467 KnownOne.clear();
468 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
469 break;
472 case Instruction::Alloca:
473 case Instruction::Malloc: {
474 AllocationInst *AI = cast<AllocationInst>(V);
475 unsigned Align = AI->getAlignment();
476 if (Align == 0 && TD) {
477 if (isa<AllocaInst>(AI))
478 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
479 else if (isa<MallocInst>(AI)) {
480 // Malloc returns maximally aligned memory.
481 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
482 Align =
483 std::max(Align,
484 (unsigned)TD->getABITypeAlignment(
485 Type::getDoubleTy(V->getContext())));
486 Align =
487 std::max(Align,
488 (unsigned)TD->getABITypeAlignment(
489 Type::getInt64Ty(V->getContext())));
493 if (Align > 0)
494 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
495 CountTrailingZeros_32(Align));
496 break;
498 case Instruction::GetElementPtr: {
499 // Analyze all of the subscripts of this getelementptr instruction
500 // to determine if we can prove known low zero bits.
501 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
502 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
503 ComputeMaskedBits(I->getOperand(0), LocalMask,
504 LocalKnownZero, LocalKnownOne, TD, Depth+1);
505 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
507 gep_type_iterator GTI = gep_type_begin(I);
508 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
509 Value *Index = I->getOperand(i);
510 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
511 // Handle struct member offset arithmetic.
512 if (!TD) return;
513 const StructLayout *SL = TD->getStructLayout(STy);
514 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
515 uint64_t Offset = SL->getElementOffset(Idx);
516 TrailZ = std::min(TrailZ,
517 CountTrailingZeros_64(Offset));
518 } else {
519 // Handle array index arithmetic.
520 const Type *IndexedTy = GTI.getIndexedType();
521 if (!IndexedTy->isSized()) return;
522 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
523 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
524 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
525 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
526 ComputeMaskedBits(Index, LocalMask,
527 LocalKnownZero, LocalKnownOne, TD, Depth+1);
528 TrailZ = std::min(TrailZ,
529 unsigned(CountTrailingZeros_64(TypeSize) +
530 LocalKnownZero.countTrailingOnes()));
534 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
535 break;
537 case Instruction::PHI: {
538 PHINode *P = cast<PHINode>(I);
539 // Handle the case of a simple two-predecessor recurrence PHI.
540 // There's a lot more that could theoretically be done here, but
541 // this is sufficient to catch some interesting cases.
542 if (P->getNumIncomingValues() == 2) {
543 for (unsigned i = 0; i != 2; ++i) {
544 Value *L = P->getIncomingValue(i);
545 Value *R = P->getIncomingValue(!i);
546 Operator *LU = dyn_cast<Operator>(L);
547 if (!LU)
548 continue;
549 unsigned Opcode = LU->getOpcode();
550 // Check for operations that have the property that if
551 // both their operands have low zero bits, the result
552 // will have low zero bits.
553 if (Opcode == Instruction::Add ||
554 Opcode == Instruction::Sub ||
555 Opcode == Instruction::And ||
556 Opcode == Instruction::Or ||
557 Opcode == Instruction::Mul) {
558 Value *LL = LU->getOperand(0);
559 Value *LR = LU->getOperand(1);
560 // Find a recurrence.
561 if (LL == I)
562 L = LR;
563 else if (LR == I)
564 L = LL;
565 else
566 break;
567 // Ok, we have a PHI of the form L op= R. Check for low
568 // zero bits.
569 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
570 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
571 Mask2 = APInt::getLowBitsSet(BitWidth,
572 KnownZero2.countTrailingOnes());
574 // We need to take the minimum number of known bits
575 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
576 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
578 KnownZero = Mask &
579 APInt::getLowBitsSet(BitWidth,
580 std::min(KnownZero2.countTrailingOnes(),
581 KnownZero3.countTrailingOnes()));
582 break;
587 // Otherwise take the unions of the known bit sets of the operands,
588 // taking conservative care to avoid excessive recursion.
589 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
590 KnownZero = APInt::getAllOnesValue(BitWidth);
591 KnownOne = APInt::getAllOnesValue(BitWidth);
592 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
593 // Skip direct self references.
594 if (P->getIncomingValue(i) == P) continue;
596 KnownZero2 = APInt(BitWidth, 0);
597 KnownOne2 = APInt(BitWidth, 0);
598 // Recurse, but cap the recursion to one level, because we don't
599 // want to waste time spinning around in loops.
600 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
601 KnownZero2, KnownOne2, TD, MaxDepth-1);
602 KnownZero &= KnownZero2;
603 KnownOne &= KnownOne2;
604 // If all bits have been ruled out, there's no need to check
605 // more operands.
606 if (!KnownZero && !KnownOne)
607 break;
610 break;
612 case Instruction::Call:
613 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
614 switch (II->getIntrinsicID()) {
615 default: break;
616 case Intrinsic::ctpop:
617 case Intrinsic::ctlz:
618 case Intrinsic::cttz: {
619 unsigned LowBits = Log2_32(BitWidth)+1;
620 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
621 break;
625 break;
629 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
630 /// this predicate to simplify operations downstream. Mask is known to be zero
631 /// for bits that V cannot have.
633 /// This function is defined on values with integer type, values with pointer
634 /// type (but only if TD is non-null), and vectors of integers. In the case
635 /// where V is a vector, the mask, known zero, and known one values are the
636 /// same width as the vector element, and the bit is set only if it is true
637 /// for all of the elements in the vector.
638 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
639 const TargetData *TD, unsigned Depth) {
640 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
641 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
642 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
643 return (KnownZero & Mask) == Mask;
648 /// ComputeNumSignBits - Return the number of times the sign bit of the
649 /// register is replicated into the other bits. We know that at least 1 bit
650 /// is always equal to the sign bit (itself), but other cases can give us
651 /// information. For example, immediately after an "ashr X, 2", we know that
652 /// the top 3 bits are all equal to each other, so we return 3.
654 /// 'Op' must have a scalar integer type.
656 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
657 unsigned Depth) {
658 assert((TD || V->getType()->isIntOrIntVector()) &&
659 "ComputeNumSignBits requires a TargetData object to operate "
660 "on non-integer values!");
661 const Type *Ty = V->getType();
662 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
663 Ty->getScalarSizeInBits();
664 unsigned Tmp, Tmp2;
665 unsigned FirstAnswer = 1;
667 // Note that ConstantInt is handled by the general ComputeMaskedBits case
668 // below.
670 if (Depth == 6)
671 return 1; // Limit search depth.
673 Operator *U = dyn_cast<Operator>(V);
674 switch (Operator::getOpcode(V)) {
675 default: break;
676 case Instruction::SExt:
677 Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
678 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
680 case Instruction::AShr:
681 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
682 // ashr X, C -> adds C sign bits.
683 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
684 Tmp += C->getZExtValue();
685 if (Tmp > TyBits) Tmp = TyBits;
687 return Tmp;
688 case Instruction::Shl:
689 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
690 // shl destroys sign bits.
691 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
692 if (C->getZExtValue() >= TyBits || // Bad shift.
693 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
694 return Tmp - C->getZExtValue();
696 break;
697 case Instruction::And:
698 case Instruction::Or:
699 case Instruction::Xor: // NOT is handled here.
700 // Logical binary ops preserve the number of sign bits at the worst.
701 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
702 if (Tmp != 1) {
703 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
704 FirstAnswer = std::min(Tmp, Tmp2);
705 // We computed what we know about the sign bits as our first
706 // answer. Now proceed to the generic code that uses
707 // ComputeMaskedBits, and pick whichever answer is better.
709 break;
711 case Instruction::Select:
712 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
713 if (Tmp == 1) return 1; // Early out.
714 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
715 return std::min(Tmp, Tmp2);
717 case Instruction::Add:
718 // Add can have at most one carry bit. Thus we know that the output
719 // is, at worst, one more bit than the inputs.
720 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
721 if (Tmp == 1) return 1; // Early out.
723 // Special case decrementing a value (ADD X, -1):
724 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
725 if (CRHS->isAllOnesValue()) {
726 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
727 APInt Mask = APInt::getAllOnesValue(TyBits);
728 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
729 Depth+1);
731 // If the input is known to be 0 or 1, the output is 0/-1, which is all
732 // sign bits set.
733 if ((KnownZero | APInt(TyBits, 1)) == Mask)
734 return TyBits;
736 // If we are subtracting one from a positive number, there is no carry
737 // out of the result.
738 if (KnownZero.isNegative())
739 return Tmp;
742 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
743 if (Tmp2 == 1) return 1;
744 return std::min(Tmp, Tmp2)-1;
745 break;
747 case Instruction::Sub:
748 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
749 if (Tmp2 == 1) return 1;
751 // Handle NEG.
752 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
753 if (CLHS->isNullValue()) {
754 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
755 APInt Mask = APInt::getAllOnesValue(TyBits);
756 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
757 TD, Depth+1);
758 // If the input is known to be 0 or 1, the output is 0/-1, which is all
759 // sign bits set.
760 if ((KnownZero | APInt(TyBits, 1)) == Mask)
761 return TyBits;
763 // If the input is known to be positive (the sign bit is known clear),
764 // the output of the NEG has the same number of sign bits as the input.
765 if (KnownZero.isNegative())
766 return Tmp2;
768 // Otherwise, we treat this like a SUB.
771 // Sub can have at most one carry bit. Thus we know that the output
772 // is, at worst, one more bit than the inputs.
773 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
774 if (Tmp == 1) return 1; // Early out.
775 return std::min(Tmp, Tmp2)-1;
776 break;
777 case Instruction::Trunc:
778 // FIXME: it's tricky to do anything useful for this, but it is an important
779 // case for targets like X86.
780 break;
783 // Finally, if we can prove that the top bits of the result are 0's or 1's,
784 // use this information.
785 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
786 APInt Mask = APInt::getAllOnesValue(TyBits);
787 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
789 if (KnownZero.isNegative()) { // sign bit is 0
790 Mask = KnownZero;
791 } else if (KnownOne.isNegative()) { // sign bit is 1;
792 Mask = KnownOne;
793 } else {
794 // Nothing known.
795 return FirstAnswer;
798 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
799 // the number of identical bits in the top of the input value.
800 Mask = ~Mask;
801 Mask <<= Mask.getBitWidth()-TyBits;
802 // Return # leading zeros. We use 'min' here in case Val was zero before
803 // shifting. We don't want to return '64' as for an i32 "0".
804 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
807 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
808 /// value is never equal to -0.0.
810 /// NOTE: this function will need to be revisited when we support non-default
811 /// rounding modes!
813 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
814 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
815 return !CFP->getValueAPF().isNegZero();
817 if (Depth == 6)
818 return 1; // Limit search depth.
820 const Operator *I = dyn_cast<Operator>(V);
821 if (I == 0) return false;
823 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
824 if (I->getOpcode() == Instruction::FAdd &&
825 isa<ConstantFP>(I->getOperand(1)) &&
826 cast<ConstantFP>(I->getOperand(1))->isNullValue())
827 return true;
829 // sitofp and uitofp turn into +0.0 for zero.
830 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
831 return true;
833 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
834 // sqrt(-0.0) = -0.0, no other negative results are possible.
835 if (II->getIntrinsicID() == Intrinsic::sqrt)
836 return CannotBeNegativeZero(II->getOperand(1), Depth+1);
838 if (const CallInst *CI = dyn_cast<CallInst>(I))
839 if (const Function *F = CI->getCalledFunction()) {
840 if (F->isDeclaration()) {
841 // abs(x) != -0.0
842 if (F->getName() == "abs") return true;
843 // abs[lf](x) != -0.0
844 if (F->getName() == "absf") return true;
845 if (F->getName() == "absl") return true;
849 return false;
852 // This is the recursive version of BuildSubAggregate. It takes a few different
853 // arguments. Idxs is the index within the nested struct From that we are
854 // looking at now (which is of type IndexedType). IdxSkip is the number of
855 // indices from Idxs that should be left out when inserting into the resulting
856 // struct. To is the result struct built so far, new insertvalue instructions
857 // build on that.
858 static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
859 SmallVector<unsigned, 10> &Idxs,
860 unsigned IdxSkip,
861 LLVMContext &Context,
862 Instruction *InsertBefore) {
863 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
864 if (STy) {
865 // Save the original To argument so we can modify it
866 Value *OrigTo = To;
867 // General case, the type indexed by Idxs is a struct
868 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
869 // Process each struct element recursively
870 Idxs.push_back(i);
871 Value *PrevTo = To;
872 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
873 Context, InsertBefore);
874 Idxs.pop_back();
875 if (!To) {
876 // Couldn't find any inserted value for this index? Cleanup
877 while (PrevTo != OrigTo) {
878 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
879 PrevTo = Del->getAggregateOperand();
880 Del->eraseFromParent();
882 // Stop processing elements
883 break;
886 // If we succesfully found a value for each of our subaggregates
887 if (To)
888 return To;
890 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
891 // the struct's elements had a value that was inserted directly. In the latter
892 // case, perhaps we can't determine each of the subelements individually, but
893 // we might be able to find the complete struct somewhere.
895 // Find the value that is at that particular spot
896 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end(), Context);
898 if (!V)
899 return NULL;
901 // Insert the value in the new (sub) aggregrate
902 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
903 Idxs.end(), "tmp", InsertBefore);
906 // This helper takes a nested struct and extracts a part of it (which is again a
907 // struct) into a new value. For example, given the struct:
908 // { a, { b, { c, d }, e } }
909 // and the indices "1, 1" this returns
910 // { c, d }.
912 // It does this by inserting an insertvalue for each element in the resulting
913 // struct, as opposed to just inserting a single struct. This will only work if
914 // each of the elements of the substruct are known (ie, inserted into From by an
915 // insertvalue instruction somewhere).
917 // All inserted insertvalue instructions are inserted before InsertBefore
918 static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
919 const unsigned *idx_end, LLVMContext &Context,
920 Instruction *InsertBefore) {
921 assert(InsertBefore && "Must have someplace to insert!");
922 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
923 idx_begin,
924 idx_end);
925 Value *To = UndefValue::get(IndexedType);
926 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
927 unsigned IdxSkip = Idxs.size();
929 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip,
930 Context, InsertBefore);
933 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
934 /// the scalar value indexed is already around as a register, for example if it
935 /// were inserted directly into the aggregrate.
937 /// If InsertBefore is not null, this function will duplicate (modified)
938 /// insertvalues when a part of a nested struct is extracted.
939 Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
940 const unsigned *idx_end, LLVMContext &Context,
941 Instruction *InsertBefore) {
942 // Nothing to index? Just return V then (this is useful at the end of our
943 // recursion)
944 if (idx_begin == idx_end)
945 return V;
946 // We have indices, so V should have an indexable type
947 assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
948 && "Not looking at a struct or array?");
949 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
950 && "Invalid indices for type?");
951 const CompositeType *PTy = cast<CompositeType>(V->getType());
953 if (isa<UndefValue>(V))
954 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
955 idx_begin,
956 idx_end));
957 else if (isa<ConstantAggregateZero>(V))
958 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
959 idx_begin,
960 idx_end));
961 else if (Constant *C = dyn_cast<Constant>(V)) {
962 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
963 // Recursively process this constant
964 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
965 idx_end, Context, InsertBefore);
966 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
967 // Loop the indices for the insertvalue instruction in parallel with the
968 // requested indices
969 const unsigned *req_idx = idx_begin;
970 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
971 i != e; ++i, ++req_idx) {
972 if (req_idx == idx_end) {
973 if (InsertBefore)
974 // The requested index identifies a part of a nested aggregate. Handle
975 // this specially. For example,
976 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
977 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
978 // %C = extractvalue {i32, { i32, i32 } } %B, 1
979 // This can be changed into
980 // %A = insertvalue {i32, i32 } undef, i32 10, 0
981 // %C = insertvalue {i32, i32 } %A, i32 11, 1
982 // which allows the unused 0,0 element from the nested struct to be
983 // removed.
984 return BuildSubAggregate(V, idx_begin, req_idx,
985 Context, InsertBefore);
986 else
987 // We can't handle this without inserting insertvalues
988 return 0;
991 // This insert value inserts something else than what we are looking for.
992 // See if the (aggregrate) value inserted into has the value we are
993 // looking for, then.
994 if (*req_idx != *i)
995 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
996 Context, InsertBefore);
998 // If we end up here, the indices of the insertvalue match with those
999 // requested (though possibly only partially). Now we recursively look at
1000 // the inserted value, passing any remaining indices.
1001 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
1002 Context, InsertBefore);
1003 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1004 // If we're extracting a value from an aggregrate that was extracted from
1005 // something else, we can extract from that something else directly instead.
1006 // However, we will need to chain I's indices with the requested indices.
1008 // Calculate the number of indices required
1009 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
1010 // Allocate some space to put the new indices in
1011 SmallVector<unsigned, 5> Idxs;
1012 Idxs.reserve(size);
1013 // Add indices from the extract value instruction
1014 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1015 i != e; ++i)
1016 Idxs.push_back(*i);
1018 // Add requested indices
1019 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
1020 Idxs.push_back(*i);
1022 assert(Idxs.size() == size
1023 && "Number of indices added not correct?");
1025 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
1026 Context, InsertBefore);
1028 // Otherwise, we don't know (such as, extracting from a function return value
1029 // or load instruction)
1030 return 0;
1033 /// GetConstantStringInfo - This function computes the length of a
1034 /// null-terminated C string pointed to by V. If successful, it returns true
1035 /// and returns the string in Str. If unsuccessful, it returns false.
1036 bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
1037 bool StopAtNul) {
1038 // If V is NULL then return false;
1039 if (V == NULL) return false;
1041 // Look through bitcast instructions.
1042 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1043 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1045 // If the value is not a GEP instruction nor a constant expression with a
1046 // GEP instruction, then return false because ConstantArray can't occur
1047 // any other way
1048 User *GEP = 0;
1049 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1050 GEP = GEPI;
1051 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1052 if (CE->getOpcode() == Instruction::BitCast)
1053 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1054 if (CE->getOpcode() != Instruction::GetElementPtr)
1055 return false;
1056 GEP = CE;
1059 if (GEP) {
1060 // Make sure the GEP has exactly three arguments.
1061 if (GEP->getNumOperands() != 3)
1062 return false;
1064 // Make sure the index-ee is a pointer to array of i8.
1065 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1066 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1067 if (AT == 0 || AT->getElementType() != Type::getInt8Ty(V->getContext()))
1068 return false;
1070 // Check to make sure that the first operand of the GEP is an integer and
1071 // has value 0 so that we are sure we're indexing into the initializer.
1072 ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1073 if (FirstIdx == 0 || !FirstIdx->isZero())
1074 return false;
1076 // If the second index isn't a ConstantInt, then this is a variable index
1077 // into the array. If this occurs, we can't say anything meaningful about
1078 // the string.
1079 uint64_t StartIdx = 0;
1080 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1081 StartIdx = CI->getZExtValue();
1082 else
1083 return false;
1084 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
1085 StopAtNul);
1088 if (MDString *MDStr = dyn_cast<MDString>(V)) {
1089 Str = MDStr->getString();
1090 return true;
1093 // The GEP instruction, constant or instruction, must reference a global
1094 // variable that is a constant and is initialized. The referenced constant
1095 // initializer is the array that we'll use for optimization.
1096 GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
1097 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1098 return false;
1099 Constant *GlobalInit = GV->getInitializer();
1101 // Handle the ConstantAggregateZero case
1102 if (isa<ConstantAggregateZero>(GlobalInit)) {
1103 // This is a degenerate case. The initializer is constant zero so the
1104 // length of the string must be zero.
1105 Str.clear();
1106 return true;
1109 // Must be a Constant Array
1110 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1111 if (Array == 0 ||
1112 Array->getType()->getElementType() != Type::getInt8Ty(V->getContext()))
1113 return false;
1115 // Get the number of elements in the array
1116 uint64_t NumElts = Array->getType()->getNumElements();
1118 if (Offset > NumElts)
1119 return false;
1121 // Traverse the constant array from 'Offset' which is the place the GEP refers
1122 // to in the array.
1123 Str.reserve(NumElts-Offset);
1124 for (unsigned i = Offset; i != NumElts; ++i) {
1125 Constant *Elt = Array->getOperand(i);
1126 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1127 if (!CI) // This array isn't suitable, non-int initializer.
1128 return false;
1129 if (StopAtNul && CI->isZero())
1130 return true; // we found end of string, success!
1131 Str += (char)CI->getZExtValue();
1134 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
1135 return true;