remove a dead bool.
[llvm/avr.git] / lib / ExecutionEngine / JIT / JITDwarfEmitter.cpp
blob25974cdcde1d825dd3f1644cc4390e2ab9526b4f
1 //===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a JITDwarfEmitter object that is used by the JIT to
11 // write dwarf tables to memory.
13 //===----------------------------------------------------------------------===//
15 #include "JIT.h"
16 #include "JITDwarfEmitter.h"
17 #include "llvm/Function.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/JITCodeEmitter.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineLocation.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/ExecutionEngine/JITMemoryManager.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetFrameInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
31 using namespace llvm;
33 JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : Jit(theJit) {}
36 unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
37 JITCodeEmitter& jce,
38 unsigned char* StartFunction,
39 unsigned char* EndFunction) {
40 const TargetMachine& TM = F.getTarget();
41 TD = TM.getTargetData();
42 needsIndirectEncoding = TM.getMCAsmInfo()->getNeedsIndirectEncoding();
43 stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
44 RI = TM.getRegisterInfo();
45 JCE = &jce;
47 unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction,
48 EndFunction);
50 unsigned char* Result = 0;
51 unsigned char* EHFramePtr = 0;
53 const std::vector<Function *> Personalities = MMI->getPersonalities();
54 EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);
56 Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
57 StartFunction, EndFunction, ExceptionTable);
59 return Result;
63 void
64 JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
65 const std::vector<MachineMove> &Moves) const {
66 unsigned PointerSize = TD->getPointerSize();
67 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
68 PointerSize : -PointerSize;
69 bool IsLocal = false;
70 unsigned BaseLabelID = 0;
72 for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
73 const MachineMove &Move = Moves[i];
74 unsigned LabelID = Move.getLabelID();
76 if (LabelID) {
77 LabelID = MMI->MappedLabel(LabelID);
79 // Throw out move if the label is invalid.
80 if (!LabelID) continue;
83 intptr_t LabelPtr = 0;
84 if (LabelID) LabelPtr = JCE->getLabelAddress(LabelID);
86 const MachineLocation &Dst = Move.getDestination();
87 const MachineLocation &Src = Move.getSource();
89 // Advance row if new location.
90 if (BaseLabelPtr && LabelID && (BaseLabelID != LabelID || !IsLocal)) {
91 JCE->emitByte(dwarf::DW_CFA_advance_loc4);
92 JCE->emitInt32(LabelPtr - BaseLabelPtr);
94 BaseLabelID = LabelID;
95 BaseLabelPtr = LabelPtr;
96 IsLocal = true;
99 // If advancing cfa.
100 if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
101 if (!Src.isReg()) {
102 if (Src.getReg() == MachineLocation::VirtualFP) {
103 JCE->emitByte(dwarf::DW_CFA_def_cfa_offset);
104 } else {
105 JCE->emitByte(dwarf::DW_CFA_def_cfa);
106 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true));
109 JCE->emitULEB128Bytes(-Src.getOffset());
110 } else {
111 llvm_unreachable("Machine move not supported yet.");
113 } else if (Src.isReg() &&
114 Src.getReg() == MachineLocation::VirtualFP) {
115 if (Dst.isReg()) {
116 JCE->emitByte(dwarf::DW_CFA_def_cfa_register);
117 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true));
118 } else {
119 llvm_unreachable("Machine move not supported yet.");
121 } else {
122 unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
123 int Offset = Dst.getOffset() / stackGrowth;
125 if (Offset < 0) {
126 JCE->emitByte(dwarf::DW_CFA_offset_extended_sf);
127 JCE->emitULEB128Bytes(Reg);
128 JCE->emitSLEB128Bytes(Offset);
129 } else if (Reg < 64) {
130 JCE->emitByte(dwarf::DW_CFA_offset + Reg);
131 JCE->emitULEB128Bytes(Offset);
132 } else {
133 JCE->emitByte(dwarf::DW_CFA_offset_extended);
134 JCE->emitULEB128Bytes(Reg);
135 JCE->emitULEB128Bytes(Offset);
141 /// SharedTypeIds - How many leading type ids two landing pads have in common.
142 static unsigned SharedTypeIds(const LandingPadInfo *L,
143 const LandingPadInfo *R) {
144 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
145 unsigned LSize = LIds.size(), RSize = RIds.size();
146 unsigned MinSize = LSize < RSize ? LSize : RSize;
147 unsigned Count = 0;
149 for (; Count != MinSize; ++Count)
150 if (LIds[Count] != RIds[Count])
151 return Count;
153 return Count;
157 /// PadLT - Order landing pads lexicographically by type id.
158 static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
159 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
160 unsigned LSize = LIds.size(), RSize = RIds.size();
161 unsigned MinSize = LSize < RSize ? LSize : RSize;
163 for (unsigned i = 0; i != MinSize; ++i)
164 if (LIds[i] != RIds[i])
165 return LIds[i] < RIds[i];
167 return LSize < RSize;
170 namespace {
172 struct KeyInfo {
173 static inline unsigned getEmptyKey() { return -1U; }
174 static inline unsigned getTombstoneKey() { return -2U; }
175 static unsigned getHashValue(const unsigned &Key) { return Key; }
176 static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
177 static bool isPod() { return true; }
180 /// ActionEntry - Structure describing an entry in the actions table.
181 struct ActionEntry {
182 int ValueForTypeID; // The value to write - may not be equal to the type id.
183 int NextAction;
184 struct ActionEntry *Previous;
187 /// PadRange - Structure holding a try-range and the associated landing pad.
188 struct PadRange {
189 // The index of the landing pad.
190 unsigned PadIndex;
191 // The index of the begin and end labels in the landing pad's label lists.
192 unsigned RangeIndex;
195 typedef DenseMap<unsigned, PadRange, KeyInfo> RangeMapType;
197 /// CallSiteEntry - Structure describing an entry in the call-site table.
198 struct CallSiteEntry {
199 unsigned BeginLabel; // zero indicates the start of the function.
200 unsigned EndLabel; // zero indicates the end of the function.
201 unsigned PadLabel; // zero indicates that there is no landing pad.
202 unsigned Action;
207 unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
208 unsigned char* StartFunction,
209 unsigned char* EndFunction) const {
210 // Map all labels and get rid of any dead landing pads.
211 MMI->TidyLandingPads();
213 const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
214 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
215 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
216 if (PadInfos.empty()) return 0;
218 // Sort the landing pads in order of their type ids. This is used to fold
219 // duplicate actions.
220 SmallVector<const LandingPadInfo *, 64> LandingPads;
221 LandingPads.reserve(PadInfos.size());
222 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
223 LandingPads.push_back(&PadInfos[i]);
224 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
226 // Negative type ids index into FilterIds, positive type ids index into
227 // TypeInfos. The value written for a positive type id is just the type
228 // id itself. For a negative type id, however, the value written is the
229 // (negative) byte offset of the corresponding FilterIds entry. The byte
230 // offset is usually equal to the type id, because the FilterIds entries
231 // are written using a variable width encoding which outputs one byte per
232 // entry as long as the value written is not too large, but can differ.
233 // This kind of complication does not occur for positive type ids because
234 // type infos are output using a fixed width encoding.
235 // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
236 SmallVector<int, 16> FilterOffsets;
237 FilterOffsets.reserve(FilterIds.size());
238 int Offset = -1;
239 for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
240 E = FilterIds.end(); I != E; ++I) {
241 FilterOffsets.push_back(Offset);
242 Offset -= MCAsmInfo::getULEB128Size(*I);
245 // Compute the actions table and gather the first action index for each
246 // landing pad site.
247 SmallVector<ActionEntry, 32> Actions;
248 SmallVector<unsigned, 64> FirstActions;
249 FirstActions.reserve(LandingPads.size());
251 int FirstAction = 0;
252 unsigned SizeActions = 0;
253 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
254 const LandingPadInfo *LP = LandingPads[i];
255 const std::vector<int> &TypeIds = LP->TypeIds;
256 const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
257 unsigned SizeSiteActions = 0;
259 if (NumShared < TypeIds.size()) {
260 unsigned SizeAction = 0;
261 ActionEntry *PrevAction = 0;
263 if (NumShared) {
264 const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
265 assert(Actions.size());
266 PrevAction = &Actions.back();
267 SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
268 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
269 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
270 SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
271 SizeAction += -PrevAction->NextAction;
272 PrevAction = PrevAction->Previous;
276 // Compute the actions.
277 for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
278 int TypeID = TypeIds[I];
279 assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
280 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
281 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
283 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
284 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
285 SizeSiteActions += SizeAction;
287 ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
288 Actions.push_back(Action);
290 PrevAction = &Actions.back();
293 // Record the first action of the landing pad site.
294 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
295 } // else identical - re-use previous FirstAction
297 FirstActions.push_back(FirstAction);
299 // Compute this sites contribution to size.
300 SizeActions += SizeSiteActions;
303 // Compute the call-site table. Entries must be ordered by address.
304 SmallVector<CallSiteEntry, 64> CallSites;
306 RangeMapType PadMap;
307 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
308 const LandingPadInfo *LandingPad = LandingPads[i];
309 for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
310 unsigned BeginLabel = LandingPad->BeginLabels[j];
311 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
312 PadRange P = { i, j };
313 PadMap[BeginLabel] = P;
317 bool MayThrow = false;
318 unsigned LastLabel = 0;
319 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
320 I != E; ++I) {
321 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
322 MI != E; ++MI) {
323 if (!MI->isLabel()) {
324 MayThrow |= MI->getDesc().isCall();
325 continue;
328 unsigned BeginLabel = MI->getOperand(0).getImm();
329 assert(BeginLabel && "Invalid label!");
331 if (BeginLabel == LastLabel)
332 MayThrow = false;
334 RangeMapType::iterator L = PadMap.find(BeginLabel);
336 if (L == PadMap.end())
337 continue;
339 PadRange P = L->second;
340 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
342 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
343 "Inconsistent landing pad map!");
345 // If some instruction between the previous try-range and this one may
346 // throw, create a call-site entry with no landing pad for the region
347 // between the try-ranges.
348 if (MayThrow) {
349 CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
350 CallSites.push_back(Site);
353 LastLabel = LandingPad->EndLabels[P.RangeIndex];
354 CallSiteEntry Site = {BeginLabel, LastLabel,
355 LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
357 assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
358 "Invalid landing pad!");
360 // Try to merge with the previous call-site.
361 if (CallSites.size()) {
362 CallSiteEntry &Prev = CallSites.back();
363 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
364 // Extend the range of the previous entry.
365 Prev.EndLabel = Site.EndLabel;
366 continue;
370 // Otherwise, create a new call-site.
371 CallSites.push_back(Site);
374 // If some instruction between the previous try-range and the end of the
375 // function may throw, create a call-site entry with no landing pad for the
376 // region following the try-range.
377 if (MayThrow) {
378 CallSiteEntry Site = {LastLabel, 0, 0, 0};
379 CallSites.push_back(Site);
382 // Final tallies.
383 unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
384 sizeof(int32_t) + // Site length.
385 sizeof(int32_t)); // Landing pad.
386 for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
387 SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
389 unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
391 unsigned TypeOffset = sizeof(int8_t) + // Call site format
392 // Call-site table length
393 MCAsmInfo::getULEB128Size(SizeSites) +
394 SizeSites + SizeActions + SizeTypes;
396 // Begin the exception table.
397 JCE->emitAlignmentWithFill(4, 0);
398 // Asm->EOL("Padding");
400 unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue();
402 // Emit the header.
403 JCE->emitByte(dwarf::DW_EH_PE_omit);
404 // Asm->EOL("LPStart format (DW_EH_PE_omit)");
405 JCE->emitByte(dwarf::DW_EH_PE_absptr);
406 // Asm->EOL("TType format (DW_EH_PE_absptr)");
407 JCE->emitULEB128Bytes(TypeOffset);
408 // Asm->EOL("TType base offset");
409 JCE->emitByte(dwarf::DW_EH_PE_udata4);
410 // Asm->EOL("Call site format (DW_EH_PE_udata4)");
411 JCE->emitULEB128Bytes(SizeSites);
412 // Asm->EOL("Call-site table length");
414 // Emit the landing pad site information.
415 for (unsigned i = 0; i < CallSites.size(); ++i) {
416 CallSiteEntry &S = CallSites[i];
417 intptr_t BeginLabelPtr = 0;
418 intptr_t EndLabelPtr = 0;
420 if (!S.BeginLabel) {
421 BeginLabelPtr = (intptr_t)StartFunction;
422 JCE->emitInt32(0);
423 } else {
424 BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel);
425 JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
428 // Asm->EOL("Region start");
430 if (!S.EndLabel) {
431 EndLabelPtr = (intptr_t)EndFunction;
432 JCE->emitInt32((intptr_t)EndFunction - BeginLabelPtr);
433 } else {
434 EndLabelPtr = JCE->getLabelAddress(S.EndLabel);
435 JCE->emitInt32(EndLabelPtr - BeginLabelPtr);
437 //Asm->EOL("Region length");
439 if (!S.PadLabel) {
440 JCE->emitInt32(0);
441 } else {
442 unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel);
443 JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
445 // Asm->EOL("Landing pad");
447 JCE->emitULEB128Bytes(S.Action);
448 // Asm->EOL("Action");
451 // Emit the actions.
452 for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
453 ActionEntry &Action = Actions[I];
455 JCE->emitSLEB128Bytes(Action.ValueForTypeID);
456 //Asm->EOL("TypeInfo index");
457 JCE->emitSLEB128Bytes(Action.NextAction);
458 //Asm->EOL("Next action");
461 // Emit the type ids.
462 for (unsigned M = TypeInfos.size(); M; --M) {
463 GlobalVariable *GV = TypeInfos[M - 1];
465 if (GV) {
466 if (TD->getPointerSize() == sizeof(int32_t))
467 JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
468 else
469 JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
470 } else {
471 if (TD->getPointerSize() == sizeof(int32_t))
472 JCE->emitInt32(0);
473 else
474 JCE->emitInt64(0);
476 // Asm->EOL("TypeInfo");
479 // Emit the filter typeids.
480 for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
481 unsigned TypeID = FilterIds[j];
482 JCE->emitULEB128Bytes(TypeID);
483 //Asm->EOL("Filter TypeInfo index");
486 JCE->emitAlignmentWithFill(4, 0);
488 return DwarfExceptionTable;
491 unsigned char*
492 JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
493 unsigned PointerSize = TD->getPointerSize();
494 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
495 PointerSize : -PointerSize;
497 unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue();
498 // EH Common Frame header
499 JCE->allocateSpace(4, 0);
500 unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
501 JCE->emitInt32((int)0);
502 JCE->emitByte(dwarf::DW_CIE_VERSION);
503 JCE->emitString(Personality ? "zPLR" : "zR");
504 JCE->emitULEB128Bytes(1);
505 JCE->emitSLEB128Bytes(stackGrowth);
506 JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));
508 if (Personality) {
509 // Augmentation Size: 3 small ULEBs of one byte each, and the personality
510 // function which size is PointerSize.
511 JCE->emitULEB128Bytes(3 + PointerSize);
513 // We set the encoding of the personality as direct encoding because we use
514 // the function pointer. The encoding is not relative because the current
515 // PC value may be bigger than the personality function pointer.
516 if (PointerSize == 4) {
517 JCE->emitByte(dwarf::DW_EH_PE_sdata4);
518 JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality)));
519 } else {
520 JCE->emitByte(dwarf::DW_EH_PE_sdata8);
521 JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality)));
524 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
525 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
526 } else {
527 JCE->emitULEB128Bytes(1);
528 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
531 std::vector<MachineMove> Moves;
532 RI->getInitialFrameState(Moves);
533 EmitFrameMoves(0, Moves);
535 JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
537 JCE->emitInt32At((uintptr_t*)StartCommonPtr,
538 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
539 FrameCommonBeginPtr));
541 return StartCommonPtr;
545 unsigned char*
546 JITDwarfEmitter::EmitEHFrame(const Function* Personality,
547 unsigned char* StartCommonPtr,
548 unsigned char* StartFunction,
549 unsigned char* EndFunction,
550 unsigned char* ExceptionTable) const {
551 unsigned PointerSize = TD->getPointerSize();
553 // EH frame header.
554 unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue();
555 JCE->allocateSpace(4, 0);
556 unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
557 // FDE CIE Offset
558 JCE->emitInt32(FrameBeginPtr - StartCommonPtr);
559 JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue());
560 JCE->emitInt32(EndFunction - StartFunction);
562 // If there is a personality and landing pads then point to the language
563 // specific data area in the exception table.
564 if (Personality) {
565 JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8);
567 if (PointerSize == 4) {
568 if (!MMI->getLandingPads().empty())
569 JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
570 else
571 JCE->emitInt32((int)0);
572 } else {
573 if (!MMI->getLandingPads().empty())
574 JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
575 else
576 JCE->emitInt64((int)0);
578 } else {
579 JCE->emitULEB128Bytes(0);
582 // Indicate locations of function specific callee saved registers in
583 // frame.
584 EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());
586 JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
588 // Indicate the size of the table
589 JCE->emitInt32At((uintptr_t*)StartEHPtr,
590 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
591 StartEHPtr));
593 // Double zeroes for the unwind runtime
594 if (PointerSize == 8) {
595 JCE->emitInt64(0);
596 JCE->emitInt64(0);
597 } else {
598 JCE->emitInt32(0);
599 JCE->emitInt32(0);
602 return StartEHPtr;
605 unsigned JITDwarfEmitter::GetDwarfTableSizeInBytes(MachineFunction& F,
606 JITCodeEmitter& jce,
607 unsigned char* StartFunction,
608 unsigned char* EndFunction) {
609 const TargetMachine& TM = F.getTarget();
610 TD = TM.getTargetData();
611 needsIndirectEncoding = TM.getMCAsmInfo()->getNeedsIndirectEncoding();
612 stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
613 RI = TM.getRegisterInfo();
614 JCE = &jce;
615 unsigned FinalSize = 0;
617 FinalSize += GetExceptionTableSizeInBytes(&F);
619 const std::vector<Function *> Personalities = MMI->getPersonalities();
620 FinalSize +=
621 GetCommonEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()]);
623 FinalSize += GetEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()],
624 StartFunction);
626 return FinalSize;
629 /// RoundUpToAlign - Add the specified alignment to FinalSize and returns
630 /// the new value.
631 static unsigned RoundUpToAlign(unsigned FinalSize, unsigned Alignment) {
632 if (Alignment == 0) Alignment = 1;
633 // Since we do not know where the buffer will be allocated, be pessimistic.
634 return FinalSize + Alignment;
637 unsigned
638 JITDwarfEmitter::GetEHFrameSizeInBytes(const Function* Personality,
639 unsigned char* StartFunction) const {
640 unsigned PointerSize = TD->getPointerSize();
641 unsigned FinalSize = 0;
642 // EH frame header.
643 FinalSize += PointerSize;
644 // FDE CIE Offset
645 FinalSize += 3 * PointerSize;
646 // If there is a personality and landing pads then point to the language
647 // specific data area in the exception table.
648 if (Personality) {
649 FinalSize += MCAsmInfo::getULEB128Size(4);
650 FinalSize += PointerSize;
651 } else {
652 FinalSize += MCAsmInfo::getULEB128Size(0);
655 // Indicate locations of function specific callee saved registers in
656 // frame.
657 FinalSize += GetFrameMovesSizeInBytes((intptr_t)StartFunction,
658 MMI->getFrameMoves());
660 FinalSize = RoundUpToAlign(FinalSize, 4);
662 // Double zeroes for the unwind runtime
663 FinalSize += 2 * PointerSize;
665 return FinalSize;
668 unsigned JITDwarfEmitter::GetCommonEHFrameSizeInBytes(const Function* Personality)
669 const {
671 unsigned PointerSize = TD->getPointerSize();
672 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
673 PointerSize : -PointerSize;
674 unsigned FinalSize = 0;
675 // EH Common Frame header
676 FinalSize += PointerSize;
677 FinalSize += 4;
678 FinalSize += 1;
679 FinalSize += Personality ? 5 : 3; // "zPLR" or "zR"
680 FinalSize += MCAsmInfo::getULEB128Size(1);
681 FinalSize += MCAsmInfo::getSLEB128Size(stackGrowth);
682 FinalSize += 1;
684 if (Personality) {
685 FinalSize += MCAsmInfo::getULEB128Size(7);
687 // Encoding
688 FinalSize+= 1;
689 //Personality
690 FinalSize += PointerSize;
692 FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
693 FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
695 } else {
696 FinalSize += MCAsmInfo::getULEB128Size(1);
697 FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
700 std::vector<MachineMove> Moves;
701 RI->getInitialFrameState(Moves);
702 FinalSize += GetFrameMovesSizeInBytes(0, Moves);
703 FinalSize = RoundUpToAlign(FinalSize, 4);
704 return FinalSize;
707 unsigned
708 JITDwarfEmitter::GetFrameMovesSizeInBytes(intptr_t BaseLabelPtr,
709 const std::vector<MachineMove> &Moves) const {
710 unsigned PointerSize = TD->getPointerSize();
711 int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
712 PointerSize : -PointerSize;
713 bool IsLocal = BaseLabelPtr;
714 unsigned FinalSize = 0;
716 for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
717 const MachineMove &Move = Moves[i];
718 unsigned LabelID = Move.getLabelID();
720 if (LabelID) {
721 LabelID = MMI->MappedLabel(LabelID);
723 // Throw out move if the label is invalid.
724 if (!LabelID) continue;
727 intptr_t LabelPtr = 0;
728 if (LabelID) LabelPtr = JCE->getLabelAddress(LabelID);
730 const MachineLocation &Dst = Move.getDestination();
731 const MachineLocation &Src = Move.getSource();
733 // Advance row if new location.
734 if (BaseLabelPtr && LabelID && (BaseLabelPtr != LabelPtr || !IsLocal)) {
735 FinalSize++;
736 FinalSize += PointerSize;
737 BaseLabelPtr = LabelPtr;
738 IsLocal = true;
741 // If advancing cfa.
742 if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
743 if (!Src.isReg()) {
744 if (Src.getReg() == MachineLocation::VirtualFP) {
745 ++FinalSize;
746 } else {
747 ++FinalSize;
748 unsigned RegNum = RI->getDwarfRegNum(Src.getReg(), true);
749 FinalSize += MCAsmInfo::getULEB128Size(RegNum);
752 int Offset = -Src.getOffset();
754 FinalSize += MCAsmInfo::getULEB128Size(Offset);
755 } else {
756 llvm_unreachable("Machine move no supported yet.");
758 } else if (Src.isReg() &&
759 Src.getReg() == MachineLocation::VirtualFP) {
760 if (Dst.isReg()) {
761 ++FinalSize;
762 unsigned RegNum = RI->getDwarfRegNum(Dst.getReg(), true);
763 FinalSize += MCAsmInfo::getULEB128Size(RegNum);
764 } else {
765 llvm_unreachable("Machine move no supported yet.");
767 } else {
768 unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
769 int Offset = Dst.getOffset() / stackGrowth;
771 if (Offset < 0) {
772 ++FinalSize;
773 FinalSize += MCAsmInfo::getULEB128Size(Reg);
774 FinalSize += MCAsmInfo::getSLEB128Size(Offset);
775 } else if (Reg < 64) {
776 ++FinalSize;
777 FinalSize += MCAsmInfo::getULEB128Size(Offset);
778 } else {
779 ++FinalSize;
780 FinalSize += MCAsmInfo::getULEB128Size(Reg);
781 FinalSize += MCAsmInfo::getULEB128Size(Offset);
785 return FinalSize;
788 unsigned
789 JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
790 unsigned FinalSize = 0;
792 // Map all labels and get rid of any dead landing pads.
793 MMI->TidyLandingPads();
795 const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
796 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
797 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
798 if (PadInfos.empty()) return 0;
800 // Sort the landing pads in order of their type ids. This is used to fold
801 // duplicate actions.
802 SmallVector<const LandingPadInfo *, 64> LandingPads;
803 LandingPads.reserve(PadInfos.size());
804 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
805 LandingPads.push_back(&PadInfos[i]);
806 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
808 // Negative type ids index into FilterIds, positive type ids index into
809 // TypeInfos. The value written for a positive type id is just the type
810 // id itself. For a negative type id, however, the value written is the
811 // (negative) byte offset of the corresponding FilterIds entry. The byte
812 // offset is usually equal to the type id, because the FilterIds entries
813 // are written using a variable width encoding which outputs one byte per
814 // entry as long as the value written is not too large, but can differ.
815 // This kind of complication does not occur for positive type ids because
816 // type infos are output using a fixed width encoding.
817 // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
818 SmallVector<int, 16> FilterOffsets;
819 FilterOffsets.reserve(FilterIds.size());
820 int Offset = -1;
821 for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
822 E = FilterIds.end(); I != E; ++I) {
823 FilterOffsets.push_back(Offset);
824 Offset -= MCAsmInfo::getULEB128Size(*I);
827 // Compute the actions table and gather the first action index for each
828 // landing pad site.
829 SmallVector<ActionEntry, 32> Actions;
830 SmallVector<unsigned, 64> FirstActions;
831 FirstActions.reserve(LandingPads.size());
833 int FirstAction = 0;
834 unsigned SizeActions = 0;
835 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
836 const LandingPadInfo *LP = LandingPads[i];
837 const std::vector<int> &TypeIds = LP->TypeIds;
838 const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
839 unsigned SizeSiteActions = 0;
841 if (NumShared < TypeIds.size()) {
842 unsigned SizeAction = 0;
843 ActionEntry *PrevAction = 0;
845 if (NumShared) {
846 const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
847 assert(Actions.size());
848 PrevAction = &Actions.back();
849 SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
850 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
851 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
852 SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
853 SizeAction += -PrevAction->NextAction;
854 PrevAction = PrevAction->Previous;
858 // Compute the actions.
859 for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
860 int TypeID = TypeIds[I];
861 assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
862 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
863 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
865 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
866 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
867 SizeSiteActions += SizeAction;
869 ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
870 Actions.push_back(Action);
872 PrevAction = &Actions.back();
875 // Record the first action of the landing pad site.
876 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
877 } // else identical - re-use previous FirstAction
879 FirstActions.push_back(FirstAction);
881 // Compute this sites contribution to size.
882 SizeActions += SizeSiteActions;
885 // Compute the call-site table. Entries must be ordered by address.
886 SmallVector<CallSiteEntry, 64> CallSites;
888 RangeMapType PadMap;
889 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
890 const LandingPadInfo *LandingPad = LandingPads[i];
891 for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
892 unsigned BeginLabel = LandingPad->BeginLabels[j];
893 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
894 PadRange P = { i, j };
895 PadMap[BeginLabel] = P;
899 bool MayThrow = false;
900 unsigned LastLabel = 0;
901 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
902 I != E; ++I) {
903 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
904 MI != E; ++MI) {
905 if (!MI->isLabel()) {
906 MayThrow |= MI->getDesc().isCall();
907 continue;
910 unsigned BeginLabel = MI->getOperand(0).getImm();
911 assert(BeginLabel && "Invalid label!");
913 if (BeginLabel == LastLabel)
914 MayThrow = false;
916 RangeMapType::iterator L = PadMap.find(BeginLabel);
918 if (L == PadMap.end())
919 continue;
921 PadRange P = L->second;
922 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
924 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
925 "Inconsistent landing pad map!");
927 // If some instruction between the previous try-range and this one may
928 // throw, create a call-site entry with no landing pad for the region
929 // between the try-ranges.
930 if (MayThrow) {
931 CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
932 CallSites.push_back(Site);
935 LastLabel = LandingPad->EndLabels[P.RangeIndex];
936 CallSiteEntry Site = {BeginLabel, LastLabel,
937 LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
939 assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
940 "Invalid landing pad!");
942 // Try to merge with the previous call-site.
943 if (CallSites.size()) {
944 CallSiteEntry &Prev = CallSites.back();
945 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
946 // Extend the range of the previous entry.
947 Prev.EndLabel = Site.EndLabel;
948 continue;
952 // Otherwise, create a new call-site.
953 CallSites.push_back(Site);
956 // If some instruction between the previous try-range and the end of the
957 // function may throw, create a call-site entry with no landing pad for the
958 // region following the try-range.
959 if (MayThrow) {
960 CallSiteEntry Site = {LastLabel, 0, 0, 0};
961 CallSites.push_back(Site);
964 // Final tallies.
965 unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
966 sizeof(int32_t) + // Site length.
967 sizeof(int32_t)); // Landing pad.
968 for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
969 SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
971 unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
973 unsigned TypeOffset = sizeof(int8_t) + // Call site format
974 // Call-site table length
975 MCAsmInfo::getULEB128Size(SizeSites) +
976 SizeSites + SizeActions + SizeTypes;
978 unsigned TotalSize = sizeof(int8_t) + // LPStart format
979 sizeof(int8_t) + // TType format
980 MCAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
981 TypeOffset;
983 unsigned SizeAlign = (4 - TotalSize) & 3;
985 // Begin the exception table.
986 FinalSize = RoundUpToAlign(FinalSize, 4);
987 for (unsigned i = 0; i != SizeAlign; ++i) {
988 ++FinalSize;
991 unsigned PointerSize = TD->getPointerSize();
993 // Emit the header.
994 ++FinalSize;
995 // Asm->EOL("LPStart format (DW_EH_PE_omit)");
996 ++FinalSize;
997 // Asm->EOL("TType format (DW_EH_PE_absptr)");
998 ++FinalSize;
999 // Asm->EOL("TType base offset");
1000 ++FinalSize;
1001 // Asm->EOL("Call site format (DW_EH_PE_udata4)");
1002 ++FinalSize;
1003 // Asm->EOL("Call-site table length");
1005 // Emit the landing pad site information.
1006 for (unsigned i = 0; i < CallSites.size(); ++i) {
1007 CallSiteEntry &S = CallSites[i];
1009 // Asm->EOL("Region start");
1010 FinalSize += PointerSize;
1012 //Asm->EOL("Region length");
1013 FinalSize += PointerSize;
1015 // Asm->EOL("Landing pad");
1016 FinalSize += PointerSize;
1018 FinalSize += MCAsmInfo::getULEB128Size(S.Action);
1019 // Asm->EOL("Action");
1022 // Emit the actions.
1023 for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
1024 ActionEntry &Action = Actions[I];
1026 //Asm->EOL("TypeInfo index");
1027 FinalSize += MCAsmInfo::getSLEB128Size(Action.ValueForTypeID);
1028 //Asm->EOL("Next action");
1029 FinalSize += MCAsmInfo::getSLEB128Size(Action.NextAction);
1032 // Emit the type ids.
1033 for (unsigned M = TypeInfos.size(); M; --M) {
1034 // Asm->EOL("TypeInfo");
1035 FinalSize += PointerSize;
1038 // Emit the filter typeids.
1039 for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
1040 unsigned TypeID = FilterIds[j];
1041 FinalSize += MCAsmInfo::getULEB128Size(TypeID);
1042 //Asm->EOL("Filter TypeInfo index");
1045 FinalSize = RoundUpToAlign(FinalSize, 4);
1047 return FinalSize;