1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LLVM module linker.
12 // Specifically, this:
13 // * Merges global variables between the two modules
14 // * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15 // * Merges functions between two modules
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Linker.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Module.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Assembly/Writer.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/System/Path.h"
31 #include "llvm/ADT/DenseMap.h"
34 // Error - Simple wrapper function to conditionally assign to E and return true.
35 // This just makes error return conditions a little bit simpler...
36 static inline bool Error(std::string
*E
, const Twine
&Message
) {
37 if (E
) *E
= Message
.str();
41 // Function: ResolveTypes()
44 // Attempt to link the two specified types together.
47 // DestTy - The type to which we wish to resolve.
48 // SrcTy - The original type which we want to resolve.
51 // DestST - The symbol table in which the new type should be placed.
54 // true - There is an error and the types cannot yet be linked.
57 static bool ResolveTypes(const Type
*DestTy
, const Type
*SrcTy
) {
58 if (DestTy
== SrcTy
) return false; // If already equal, noop
59 assert(DestTy
&& SrcTy
&& "Can't handle null types");
61 if (const OpaqueType
*OT
= dyn_cast
<OpaqueType
>(DestTy
)) {
62 // Type _is_ in module, just opaque...
63 const_cast<OpaqueType
*>(OT
)->refineAbstractTypeTo(SrcTy
);
64 } else if (const OpaqueType
*OT
= dyn_cast
<OpaqueType
>(SrcTy
)) {
65 const_cast<OpaqueType
*>(OT
)->refineAbstractTypeTo(DestTy
);
67 return true; // Cannot link types... not-equal and neither is opaque.
72 /// LinkerTypeMap - This implements a map of types that is stable
73 /// even if types are resolved/refined to other types. This is not a general
74 /// purpose map, it is specific to the linker's use.
76 class LinkerTypeMap
: public AbstractTypeUser
{
77 typedef DenseMap
<const Type
*, PATypeHolder
> TheMapTy
;
80 LinkerTypeMap(const LinkerTypeMap
&); // DO NOT IMPLEMENT
81 void operator=(const LinkerTypeMap
&); // DO NOT IMPLEMENT
85 for (DenseMap
<const Type
*, PATypeHolder
>::iterator I
= TheMap
.begin(),
86 E
= TheMap
.end(); I
!= E
; ++I
)
87 I
->first
->removeAbstractTypeUser(this);
90 /// lookup - Return the value for the specified type or null if it doesn't
92 const Type
*lookup(const Type
*Ty
) const {
93 TheMapTy::const_iterator I
= TheMap
.find(Ty
);
94 if (I
!= TheMap
.end()) return I
->second
;
98 /// erase - Remove the specified type, returning true if it was in the set.
99 bool erase(const Type
*Ty
) {
100 if (!TheMap
.erase(Ty
))
102 if (Ty
->isAbstract())
103 Ty
->removeAbstractTypeUser(this);
107 /// insert - This returns true if the pointer was new to the set, false if it
108 /// was already in the set.
109 bool insert(const Type
*Src
, const Type
*Dst
) {
110 if (!TheMap
.insert(std::make_pair(Src
, PATypeHolder(Dst
))).second
)
111 return false; // Already in map.
112 if (Src
->isAbstract())
113 Src
->addAbstractTypeUser(this);
118 /// refineAbstractType - The callback method invoked when an abstract type is
119 /// resolved to another type. An object must override this method to update
120 /// its internal state to reference NewType instead of OldType.
122 virtual void refineAbstractType(const DerivedType
*OldTy
,
124 TheMapTy::iterator I
= TheMap
.find(OldTy
);
125 const Type
*DstTy
= I
->second
;
128 if (OldTy
->isAbstract())
129 OldTy
->removeAbstractTypeUser(this);
131 // Don't reinsert into the map if the key is concrete now.
132 if (NewTy
->isAbstract())
133 insert(NewTy
, DstTy
);
136 /// The other case which AbstractTypeUsers must be aware of is when a type
137 /// makes the transition from being abstract (where it has clients on it's
138 /// AbstractTypeUsers list) to concrete (where it does not). This method
139 /// notifies ATU's when this occurs for a type.
140 virtual void typeBecameConcrete(const DerivedType
*AbsTy
) {
142 AbsTy
->removeAbstractTypeUser(this);
146 virtual void dump() const {
147 errs() << "AbstractTypeSet!\n";
153 // RecursiveResolveTypes - This is just like ResolveTypes, except that it
154 // recurses down into derived types, merging the used types if the parent types
156 static bool RecursiveResolveTypesI(const Type
*DstTy
, const Type
*SrcTy
,
157 LinkerTypeMap
&Pointers
) {
158 if (DstTy
== SrcTy
) return false; // If already equal, noop
160 // If we found our opaque type, resolve it now!
161 if (isa
<OpaqueType
>(DstTy
) || isa
<OpaqueType
>(SrcTy
))
162 return ResolveTypes(DstTy
, SrcTy
);
164 // Two types cannot be resolved together if they are of different primitive
165 // type. For example, we cannot resolve an int to a float.
166 if (DstTy
->getTypeID() != SrcTy
->getTypeID()) return true;
168 // If neither type is abstract, then they really are just different types.
169 if (!DstTy
->isAbstract() && !SrcTy
->isAbstract())
172 // Otherwise, resolve the used type used by this derived type...
173 switch (DstTy
->getTypeID()) {
176 case Type::FunctionTyID
: {
177 const FunctionType
*DstFT
= cast
<FunctionType
>(DstTy
);
178 const FunctionType
*SrcFT
= cast
<FunctionType
>(SrcTy
);
179 if (DstFT
->isVarArg() != SrcFT
->isVarArg() ||
180 DstFT
->getNumContainedTypes() != SrcFT
->getNumContainedTypes())
183 // Use TypeHolder's so recursive resolution won't break us.
184 PATypeHolder
ST(SrcFT
), DT(DstFT
);
185 for (unsigned i
= 0, e
= DstFT
->getNumContainedTypes(); i
!= e
; ++i
) {
186 const Type
*SE
= ST
->getContainedType(i
), *DE
= DT
->getContainedType(i
);
187 if (SE
!= DE
&& RecursiveResolveTypesI(DE
, SE
, Pointers
))
192 case Type::StructTyID
: {
193 const StructType
*DstST
= cast
<StructType
>(DstTy
);
194 const StructType
*SrcST
= cast
<StructType
>(SrcTy
);
195 if (DstST
->getNumContainedTypes() != SrcST
->getNumContainedTypes())
198 PATypeHolder
ST(SrcST
), DT(DstST
);
199 for (unsigned i
= 0, e
= DstST
->getNumContainedTypes(); i
!= e
; ++i
) {
200 const Type
*SE
= ST
->getContainedType(i
), *DE
= DT
->getContainedType(i
);
201 if (SE
!= DE
&& RecursiveResolveTypesI(DE
, SE
, Pointers
))
206 case Type::ArrayTyID
: {
207 const ArrayType
*DAT
= cast
<ArrayType
>(DstTy
);
208 const ArrayType
*SAT
= cast
<ArrayType
>(SrcTy
);
209 if (DAT
->getNumElements() != SAT
->getNumElements()) return true;
210 return RecursiveResolveTypesI(DAT
->getElementType(), SAT
->getElementType(),
213 case Type::VectorTyID
: {
214 const VectorType
*DVT
= cast
<VectorType
>(DstTy
);
215 const VectorType
*SVT
= cast
<VectorType
>(SrcTy
);
216 if (DVT
->getNumElements() != SVT
->getNumElements()) return true;
217 return RecursiveResolveTypesI(DVT
->getElementType(), SVT
->getElementType(),
220 case Type::PointerTyID
: {
221 const PointerType
*DstPT
= cast
<PointerType
>(DstTy
);
222 const PointerType
*SrcPT
= cast
<PointerType
>(SrcTy
);
224 if (DstPT
->getAddressSpace() != SrcPT
->getAddressSpace())
227 // If this is a pointer type, check to see if we have already seen it. If
228 // so, we are in a recursive branch. Cut off the search now. We cannot use
229 // an associative container for this search, because the type pointers (keys
230 // in the container) change whenever types get resolved.
231 if (SrcPT
->isAbstract())
232 if (const Type
*ExistingDestTy
= Pointers
.lookup(SrcPT
))
233 return ExistingDestTy
!= DstPT
;
235 if (DstPT
->isAbstract())
236 if (const Type
*ExistingSrcTy
= Pointers
.lookup(DstPT
))
237 return ExistingSrcTy
!= SrcPT
;
238 // Otherwise, add the current pointers to the vector to stop recursion on
240 if (DstPT
->isAbstract())
241 Pointers
.insert(DstPT
, SrcPT
);
242 if (SrcPT
->isAbstract())
243 Pointers
.insert(SrcPT
, DstPT
);
245 return RecursiveResolveTypesI(DstPT
->getElementType(),
246 SrcPT
->getElementType(), Pointers
);
251 static bool RecursiveResolveTypes(const Type
*DestTy
, const Type
*SrcTy
) {
252 LinkerTypeMap PointerTypes
;
253 return RecursiveResolveTypesI(DestTy
, SrcTy
, PointerTypes
);
257 // LinkTypes - Go through the symbol table of the Src module and see if any
258 // types are named in the src module that are not named in the Dst module.
259 // Make sure there are no type name conflicts.
260 static bool LinkTypes(Module
*Dest
, const Module
*Src
, std::string
*Err
) {
261 TypeSymbolTable
*DestST
= &Dest
->getTypeSymbolTable();
262 const TypeSymbolTable
*SrcST
= &Src
->getTypeSymbolTable();
264 // Look for a type plane for Type's...
265 TypeSymbolTable::const_iterator TI
= SrcST
->begin();
266 TypeSymbolTable::const_iterator TE
= SrcST
->end();
267 if (TI
== TE
) return false; // No named types, do nothing.
269 // Some types cannot be resolved immediately because they depend on other
270 // types being resolved to each other first. This contains a list of types we
271 // are waiting to recheck.
272 std::vector
<std::string
> DelayedTypesToResolve
;
274 for ( ; TI
!= TE
; ++TI
) {
275 const std::string
&Name
= TI
->first
;
276 const Type
*RHS
= TI
->second
;
278 // Check to see if this type name is already in the dest module.
279 Type
*Entry
= DestST
->lookup(Name
);
281 // If the name is just in the source module, bring it over to the dest.
284 DestST
->insert(Name
, const_cast<Type
*>(RHS
));
285 } else if (ResolveTypes(Entry
, RHS
)) {
286 // They look different, save the types 'till later to resolve.
287 DelayedTypesToResolve
.push_back(Name
);
291 // Iteratively resolve types while we can...
292 while (!DelayedTypesToResolve
.empty()) {
293 // Loop over all of the types, attempting to resolve them if possible...
294 unsigned OldSize
= DelayedTypesToResolve
.size();
296 // Try direct resolution by name...
297 for (unsigned i
= 0; i
!= DelayedTypesToResolve
.size(); ++i
) {
298 const std::string
&Name
= DelayedTypesToResolve
[i
];
299 Type
*T1
= SrcST
->lookup(Name
);
300 Type
*T2
= DestST
->lookup(Name
);
301 if (!ResolveTypes(T2
, T1
)) {
302 // We are making progress!
303 DelayedTypesToResolve
.erase(DelayedTypesToResolve
.begin()+i
);
308 // Did we not eliminate any types?
309 if (DelayedTypesToResolve
.size() == OldSize
) {
310 // Attempt to resolve subelements of types. This allows us to merge these
311 // two types: { int* } and { opaque* }
312 for (unsigned i
= 0, e
= DelayedTypesToResolve
.size(); i
!= e
; ++i
) {
313 const std::string
&Name
= DelayedTypesToResolve
[i
];
314 if (!RecursiveResolveTypes(SrcST
->lookup(Name
), DestST
->lookup(Name
))) {
315 // We are making progress!
316 DelayedTypesToResolve
.erase(DelayedTypesToResolve
.begin()+i
);
318 // Go back to the main loop, perhaps we can resolve directly by name
324 // If we STILL cannot resolve the types, then there is something wrong.
325 if (DelayedTypesToResolve
.size() == OldSize
) {
326 // Remove the symbol name from the destination.
327 DelayedTypesToResolve
.pop_back();
337 static void PrintMap(const std::map
<const Value
*, Value
*> &M
) {
338 for (std::map
<const Value
*, Value
*>::const_iterator I
= M
.begin(), E
=M
.end();
340 errs() << " Fr: " << (void*)I
->first
<< " ";
342 errs() << " To: " << (void*)I
->second
<< " ";
350 // RemapOperand - Use ValueMap to convert constants from one module to another.
351 static Value
*RemapOperand(const Value
*In
,
352 std::map
<const Value
*, Value
*> &ValueMap
,
353 LLVMContext
&Context
) {
354 std::map
<const Value
*,Value
*>::const_iterator I
= ValueMap
.find(In
);
355 if (I
!= ValueMap
.end())
358 // Check to see if it's a constant that we are interested in transforming.
360 if (const Constant
*CPV
= dyn_cast
<Constant
>(In
)) {
361 if ((!isa
<DerivedType
>(CPV
->getType()) && !isa
<ConstantExpr
>(CPV
)) ||
362 isa
<ConstantInt
>(CPV
) || isa
<ConstantAggregateZero
>(CPV
))
363 return const_cast<Constant
*>(CPV
); // Simple constants stay identical.
365 if (const ConstantArray
*CPA
= dyn_cast
<ConstantArray
>(CPV
)) {
366 std::vector
<Constant
*> Operands(CPA
->getNumOperands());
367 for (unsigned i
= 0, e
= CPA
->getNumOperands(); i
!= e
; ++i
)
368 Operands
[i
] =cast
<Constant
>(RemapOperand(CPA
->getOperand(i
), ValueMap
,
371 ConstantArray::get(cast
<ArrayType
>(CPA
->getType()), Operands
);
372 } else if (const ConstantStruct
*CPS
= dyn_cast
<ConstantStruct
>(CPV
)) {
373 std::vector
<Constant
*> Operands(CPS
->getNumOperands());
374 for (unsigned i
= 0, e
= CPS
->getNumOperands(); i
!= e
; ++i
)
375 Operands
[i
] =cast
<Constant
>(RemapOperand(CPS
->getOperand(i
), ValueMap
,
378 ConstantStruct::get(cast
<StructType
>(CPS
->getType()), Operands
);
379 } else if (isa
<ConstantPointerNull
>(CPV
) || isa
<UndefValue
>(CPV
)) {
380 Result
= const_cast<Constant
*>(CPV
);
381 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CPV
)) {
382 std::vector
<Constant
*> Operands(CP
->getNumOperands());
383 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
384 Operands
[i
] = cast
<Constant
>(RemapOperand(CP
->getOperand(i
), ValueMap
,
386 Result
= ConstantVector::get(Operands
);
387 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CPV
)) {
388 std::vector
<Constant
*> Ops
;
389 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
)
390 Ops
.push_back(cast
<Constant
>(RemapOperand(CE
->getOperand(i
),ValueMap
,
392 Result
= CE
->getWithOperands(Ops
);
394 assert(!isa
<GlobalValue
>(CPV
) && "Unmapped global?");
395 llvm_unreachable("Unknown type of derived type constant value!");
397 } else if (isa
<MetadataBase
>(In
)) {
398 Result
= const_cast<Value
*>(In
);
399 } else if (isa
<InlineAsm
>(In
)) {
400 Result
= const_cast<Value
*>(In
);
403 // Cache the mapping in our local map structure
405 ValueMap
[In
] = Result
;
410 errs() << "LinkModules ValueMap: \n";
413 errs() << "Couldn't remap value: " << (void*)In
<< " " << *In
<< "\n";
414 llvm_unreachable("Couldn't remap value!");
419 /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
420 /// in the symbol table. This is good for all clients except for us. Go
421 /// through the trouble to force this back.
422 static void ForceRenaming(GlobalValue
*GV
, const std::string
&Name
) {
423 assert(GV
->getName() != Name
&& "Can't force rename to self");
424 ValueSymbolTable
&ST
= GV
->getParent()->getValueSymbolTable();
426 // If there is a conflict, rename the conflict.
427 if (GlobalValue
*ConflictGV
= cast_or_null
<GlobalValue
>(ST
.lookup(Name
))) {
428 assert(ConflictGV
->hasLocalLinkage() &&
429 "Not conflicting with a static global, should link instead!");
430 GV
->takeName(ConflictGV
);
431 ConflictGV
->setName(Name
); // This will cause ConflictGV to get renamed
432 assert(ConflictGV
->getName() != Name
&& "ForceRenaming didn't work");
434 GV
->setName(Name
); // Force the name back
438 /// CopyGVAttributes - copy additional attributes (those not needed to construct
439 /// a GlobalValue) from the SrcGV to the DestGV.
440 static void CopyGVAttributes(GlobalValue
*DestGV
, const GlobalValue
*SrcGV
) {
441 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
442 unsigned Alignment
= std::max(DestGV
->getAlignment(), SrcGV
->getAlignment());
443 DestGV
->copyAttributesFrom(SrcGV
);
444 DestGV
->setAlignment(Alignment
);
447 /// GetLinkageResult - This analyzes the two global values and determines what
448 /// the result will look like in the destination module. In particular, it
449 /// computes the resultant linkage type, computes whether the global in the
450 /// source should be copied over to the destination (replacing the existing
451 /// one), and computes whether this linkage is an error or not. It also performs
452 /// visibility checks: we cannot link together two symbols with different
454 static bool GetLinkageResult(GlobalValue
*Dest
, const GlobalValue
*Src
,
455 GlobalValue::LinkageTypes
<
, bool &LinkFromSrc
,
457 assert((!Dest
|| !Src
->hasLocalLinkage()) &&
458 "If Src has internal linkage, Dest shouldn't be set!");
460 // Linking something to nothing.
462 LT
= Src
->getLinkage();
463 } else if (Src
->isDeclaration()) {
464 // If Src is external or if both Src & Dest are external.. Just link the
465 // external globals, we aren't adding anything.
466 if (Src
->hasDLLImportLinkage()) {
467 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
468 if (Dest
->isDeclaration()) {
470 LT
= Src
->getLinkage();
472 } else if (Dest
->hasExternalWeakLinkage()) {
473 // If the Dest is weak, use the source linkage.
475 LT
= Src
->getLinkage();
478 LT
= Dest
->getLinkage();
480 } else if (Dest
->isDeclaration() && !Dest
->hasDLLImportLinkage()) {
481 // If Dest is external but Src is not:
483 LT
= Src
->getLinkage();
484 } else if (Src
->hasAppendingLinkage() || Dest
->hasAppendingLinkage()) {
485 if (Src
->getLinkage() != Dest
->getLinkage())
486 return Error(Err
, "Linking globals named '" + Src
->getName() +
487 "': can only link appending global with another appending global!");
488 LinkFromSrc
= true; // Special cased.
489 LT
= Src
->getLinkage();
490 } else if (Src
->isWeakForLinker()) {
491 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
493 if (Dest
->hasExternalWeakLinkage() ||
494 Dest
->hasAvailableExternallyLinkage() ||
495 (Dest
->hasLinkOnceLinkage() &&
496 (Src
->hasWeakLinkage() || Src
->hasCommonLinkage()))) {
498 LT
= Src
->getLinkage();
501 LT
= Dest
->getLinkage();
503 } else if (Dest
->isWeakForLinker()) {
504 // At this point we know that Src has External* or DLL* linkage.
505 if (Src
->hasExternalWeakLinkage()) {
507 LT
= Dest
->getLinkage();
510 LT
= GlobalValue::ExternalLinkage
;
513 assert((Dest
->hasExternalLinkage() ||
514 Dest
->hasDLLImportLinkage() ||
515 Dest
->hasDLLExportLinkage() ||
516 Dest
->hasExternalWeakLinkage()) &&
517 (Src
->hasExternalLinkage() ||
518 Src
->hasDLLImportLinkage() ||
519 Src
->hasDLLExportLinkage() ||
520 Src
->hasExternalWeakLinkage()) &&
521 "Unexpected linkage type!");
522 return Error(Err
, "Linking globals named '" + Src
->getName() +
523 "': symbol multiply defined!");
527 if (Dest
&& Src
->getVisibility() != Dest
->getVisibility())
528 if (!Src
->isDeclaration() && !Dest
->isDeclaration())
529 return Error(Err
, "Linking globals named '" + Src
->getName() +
530 "': symbols have different visibilities!");
534 // Insert all of the named mdnoes in Src into the Dest module.
535 static void LinkNamedMDNodes(Module
*Dest
, Module
*Src
) {
536 for (Module::const_named_metadata_iterator I
= Src
->named_metadata_begin(),
537 E
= Src
->named_metadata_end(); I
!= E
; ++I
) {
538 const NamedMDNode
*SrcNMD
= I
;
539 NamedMDNode
*DestNMD
= Dest
->getNamedMetadata(SrcNMD
->getName());
541 NamedMDNode::Create(SrcNMD
, Dest
);
543 // Add Src elements into Dest node.
544 for (unsigned i
= 0, e
= SrcNMD
->getNumElements(); i
!= e
; ++i
)
545 DestNMD
->addElement(SrcNMD
->getElement(i
));
550 // LinkGlobals - Loop through the global variables in the src module and merge
551 // them into the dest module.
552 static bool LinkGlobals(Module
*Dest
, const Module
*Src
,
553 std::map
<const Value
*, Value
*> &ValueMap
,
554 std::multimap
<std::string
, GlobalVariable
*> &AppendingVars
,
556 ValueSymbolTable
&DestSymTab
= Dest
->getValueSymbolTable();
558 // Loop over all of the globals in the src module, mapping them over as we go
559 for (Module::const_global_iterator I
= Src
->global_begin(),
560 E
= Src
->global_end(); I
!= E
; ++I
) {
561 const GlobalVariable
*SGV
= I
;
562 GlobalValue
*DGV
= 0;
564 // Check to see if may have to link the global with the global, alias or
566 if (SGV
->hasName() && !SGV
->hasLocalLinkage())
567 DGV
= cast_or_null
<GlobalValue
>(DestSymTab
.lookup(SGV
->getName()));
569 // If we found a global with the same name in the dest module, but it has
570 // internal linkage, we are really not doing any linkage here.
571 if (DGV
&& DGV
->hasLocalLinkage())
574 // If types don't agree due to opaque types, try to resolve them.
575 if (DGV
&& DGV
->getType() != SGV
->getType())
576 RecursiveResolveTypes(SGV
->getType(), DGV
->getType());
578 assert((SGV
->hasInitializer() || SGV
->hasExternalWeakLinkage() ||
579 SGV
->hasExternalLinkage() || SGV
->hasDLLImportLinkage()) &&
580 "Global must either be external or have an initializer!");
582 GlobalValue::LinkageTypes NewLinkage
= GlobalValue::InternalLinkage
;
583 bool LinkFromSrc
= false;
584 if (GetLinkageResult(DGV
, SGV
, NewLinkage
, LinkFromSrc
, Err
))
588 // No linking to be performed, simply create an identical version of the
589 // symbol over in the dest module... the initializer will be filled in
590 // later by LinkGlobalInits.
591 GlobalVariable
*NewDGV
=
592 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
593 SGV
->isConstant(), SGV
->getLinkage(), /*init*/0,
594 SGV
->getName(), 0, false,
595 SGV
->getType()->getAddressSpace());
596 // Propagate alignment, visibility and section info.
597 CopyGVAttributes(NewDGV
, SGV
);
599 // If the LLVM runtime renamed the global, but it is an externally visible
600 // symbol, DGV must be an existing global with internal linkage. Rename
602 if (!NewDGV
->hasLocalLinkage() && NewDGV
->getName() != SGV
->getName())
603 ForceRenaming(NewDGV
, SGV
->getName());
605 // Make sure to remember this mapping.
606 ValueMap
[SGV
] = NewDGV
;
608 // Keep track that this is an appending variable.
609 if (SGV
->hasAppendingLinkage())
610 AppendingVars
.insert(std::make_pair(SGV
->getName(), NewDGV
));
614 // If the visibilities of the symbols disagree and the destination is a
615 // prototype, take the visibility of its input.
616 if (DGV
->isDeclaration())
617 DGV
->setVisibility(SGV
->getVisibility());
619 if (DGV
->hasAppendingLinkage()) {
620 // No linking is performed yet. Just insert a new copy of the global, and
621 // keep track of the fact that it is an appending variable in the
622 // AppendingVars map. The name is cleared out so that no linkage is
624 GlobalVariable
*NewDGV
=
625 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
626 SGV
->isConstant(), SGV
->getLinkage(), /*init*/0,
628 SGV
->getType()->getAddressSpace());
630 // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
631 NewDGV
->setAlignment(DGV
->getAlignment());
632 // Propagate alignment, section and visibility info.
633 CopyGVAttributes(NewDGV
, SGV
);
635 // Make sure to remember this mapping...
636 ValueMap
[SGV
] = NewDGV
;
638 // Keep track that this is an appending variable...
639 AppendingVars
.insert(std::make_pair(SGV
->getName(), NewDGV
));
644 if (isa
<GlobalAlias
>(DGV
))
645 return Error(Err
, "Global-Alias Collision on '" + SGV
->getName() +
646 "': symbol multiple defined");
648 // If the types don't match, and if we are to link from the source, nuke
649 // DGV and create a new one of the appropriate type. Note that the thing
650 // we are replacing may be a function (if a prototype, weak, etc) or a
652 GlobalVariable
*NewDGV
=
653 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
654 SGV
->isConstant(), NewLinkage
, /*init*/0,
655 DGV
->getName(), 0, false,
656 SGV
->getType()->getAddressSpace());
658 // Propagate alignment, section, and visibility info.
659 CopyGVAttributes(NewDGV
, SGV
);
660 DGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV
,
663 // DGV will conflict with NewDGV because they both had the same
664 // name. We must erase this now so ForceRenaming doesn't assert
665 // because DGV might not have internal linkage.
666 if (GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(DGV
))
667 Var
->eraseFromParent();
669 cast
<Function
>(DGV
)->eraseFromParent();
672 // If the symbol table renamed the global, but it is an externally visible
673 // symbol, DGV must be an existing global with internal linkage. Rename.
674 if (NewDGV
->getName() != SGV
->getName() && !NewDGV
->hasLocalLinkage())
675 ForceRenaming(NewDGV
, SGV
->getName());
677 // Inherit const as appropriate.
678 NewDGV
->setConstant(SGV
->isConstant());
680 // Make sure to remember this mapping.
681 ValueMap
[SGV
] = NewDGV
;
685 // Not "link from source", keep the one in the DestModule and remap the
688 // Special case for const propagation.
689 if (GlobalVariable
*DGVar
= dyn_cast
<GlobalVariable
>(DGV
))
690 if (DGVar
->isDeclaration() && SGV
->isConstant() && !DGVar
->isConstant())
691 DGVar
->setConstant(true);
693 // SGV is global, but DGV is alias.
694 if (isa
<GlobalAlias
>(DGV
)) {
695 // The only valid mappings are:
696 // - SGV is external declaration, which is effectively a no-op.
697 // - SGV is weak, when we just need to throw SGV out.
698 if (!SGV
->isDeclaration() && !SGV
->isWeakForLinker())
699 return Error(Err
, "Global-Alias Collision on '" + SGV
->getName() +
700 "': symbol multiple defined");
703 // Set calculated linkage
704 DGV
->setLinkage(NewLinkage
);
706 // Make sure to remember this mapping...
707 ValueMap
[SGV
] = ConstantExpr::getBitCast(DGV
, SGV
->getType());
712 static GlobalValue::LinkageTypes
713 CalculateAliasLinkage(const GlobalValue
*SGV
, const GlobalValue
*DGV
) {
714 GlobalValue::LinkageTypes SL
= SGV
->getLinkage();
715 GlobalValue::LinkageTypes DL
= DGV
->getLinkage();
716 if (SL
== GlobalValue::ExternalLinkage
|| DL
== GlobalValue::ExternalLinkage
)
717 return GlobalValue::ExternalLinkage
;
718 else if (SL
== GlobalValue::WeakAnyLinkage
||
719 DL
== GlobalValue::WeakAnyLinkage
)
720 return GlobalValue::WeakAnyLinkage
;
721 else if (SL
== GlobalValue::WeakODRLinkage
||
722 DL
== GlobalValue::WeakODRLinkage
)
723 return GlobalValue::WeakODRLinkage
;
724 else if (SL
== GlobalValue::InternalLinkage
&&
725 DL
== GlobalValue::InternalLinkage
)
726 return GlobalValue::InternalLinkage
;
727 else if (SL
== GlobalValue::LinkerPrivateLinkage
&&
728 DL
== GlobalValue::LinkerPrivateLinkage
)
729 return GlobalValue::LinkerPrivateLinkage
;
731 assert (SL
== GlobalValue::PrivateLinkage
&&
732 DL
== GlobalValue::PrivateLinkage
&& "Unexpected linkage type");
733 return GlobalValue::PrivateLinkage
;
737 // LinkAlias - Loop through the alias in the src module and link them into the
738 // dest module. We're assuming, that all functions/global variables were already
740 static bool LinkAlias(Module
*Dest
, const Module
*Src
,
741 std::map
<const Value
*, Value
*> &ValueMap
,
743 // Loop over all alias in the src module
744 for (Module::const_alias_iterator I
= Src
->alias_begin(),
745 E
= Src
->alias_end(); I
!= E
; ++I
) {
746 const GlobalAlias
*SGA
= I
;
747 const GlobalValue
*SAliasee
= SGA
->getAliasedGlobal();
748 GlobalAlias
*NewGA
= NULL
;
750 // Globals were already linked, thus we can just query ValueMap for variant
751 // of SAliasee in Dest.
752 std::map
<const Value
*,Value
*>::const_iterator VMI
= ValueMap
.find(SAliasee
);
753 assert(VMI
!= ValueMap
.end() && "Aliasee not linked");
754 GlobalValue
* DAliasee
= cast
<GlobalValue
>(VMI
->second
);
755 GlobalValue
* DGV
= NULL
;
757 // Try to find something 'similar' to SGA in destination module.
758 if (!DGV
&& !SGA
->hasLocalLinkage()) {
759 DGV
= Dest
->getNamedAlias(SGA
->getName());
761 // If types don't agree due to opaque types, try to resolve them.
762 if (DGV
&& DGV
->getType() != SGA
->getType())
763 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
766 if (!DGV
&& !SGA
->hasLocalLinkage()) {
767 DGV
= Dest
->getGlobalVariable(SGA
->getName());
769 // If types don't agree due to opaque types, try to resolve them.
770 if (DGV
&& DGV
->getType() != SGA
->getType())
771 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
774 if (!DGV
&& !SGA
->hasLocalLinkage()) {
775 DGV
= Dest
->getFunction(SGA
->getName());
777 // If types don't agree due to opaque types, try to resolve them.
778 if (DGV
&& DGV
->getType() != SGA
->getType())
779 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
782 // No linking to be performed on internal stuff.
783 if (DGV
&& DGV
->hasLocalLinkage())
786 if (GlobalAlias
*DGA
= dyn_cast_or_null
<GlobalAlias
>(DGV
)) {
787 // Types are known to be the same, check whether aliasees equal. As
788 // globals are already linked we just need query ValueMap to find the
790 if (DAliasee
== DGA
->getAliasedGlobal()) {
791 // This is just two copies of the same alias. Propagate linkage, if
793 DGA
->setLinkage(CalculateAliasLinkage(SGA
, DGA
));
796 // Proceed to 'common' steps
798 return Error(Err
, "Alias Collision on '" + SGA
->getName()+
799 "': aliases have different aliasees");
800 } else if (GlobalVariable
*DGVar
= dyn_cast_or_null
<GlobalVariable
>(DGV
)) {
801 // The only allowed way is to link alias with external declaration or weak
803 if (DGVar
->isDeclaration() || DGVar
->isWeakForLinker()) {
804 // But only if aliasee is global too...
805 if (!isa
<GlobalVariable
>(DAliasee
))
806 return Error(Err
, "Global-Alias Collision on '" + SGA
->getName() +
807 "': aliasee is not global variable");
809 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
810 SGA
->getName(), DAliasee
, Dest
);
811 CopyGVAttributes(NewGA
, SGA
);
813 // Any uses of DGV need to change to NewGA, with cast, if needed.
814 if (SGA
->getType() != DGVar
->getType())
815 DGVar
->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA
,
818 DGVar
->replaceAllUsesWith(NewGA
);
820 // DGVar will conflict with NewGA because they both had the same
821 // name. We must erase this now so ForceRenaming doesn't assert
822 // because DGV might not have internal linkage.
823 DGVar
->eraseFromParent();
825 // Proceed to 'common' steps
827 return Error(Err
, "Global-Alias Collision on '" + SGA
->getName() +
828 "': symbol multiple defined");
829 } else if (Function
*DF
= dyn_cast_or_null
<Function
>(DGV
)) {
830 // The only allowed way is to link alias with external declaration or weak
832 if (DF
->isDeclaration() || DF
->isWeakForLinker()) {
833 // But only if aliasee is function too...
834 if (!isa
<Function
>(DAliasee
))
835 return Error(Err
, "Function-Alias Collision on '" + SGA
->getName() +
836 "': aliasee is not function");
838 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
839 SGA
->getName(), DAliasee
, Dest
);
840 CopyGVAttributes(NewGA
, SGA
);
842 // Any uses of DF need to change to NewGA, with cast, if needed.
843 if (SGA
->getType() != DF
->getType())
844 DF
->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA
,
847 DF
->replaceAllUsesWith(NewGA
);
849 // DF will conflict with NewGA because they both had the same
850 // name. We must erase this now so ForceRenaming doesn't assert
851 // because DF might not have internal linkage.
852 DF
->eraseFromParent();
854 // Proceed to 'common' steps
856 return Error(Err
, "Function-Alias Collision on '" + SGA
->getName() +
857 "': symbol multiple defined");
859 // No linking to be performed, simply create an identical version of the
860 // alias over in the dest module...
862 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
863 SGA
->getName(), DAliasee
, Dest
);
864 CopyGVAttributes(NewGA
, SGA
);
866 // Proceed to 'common' steps
869 assert(NewGA
&& "No alias was created in destination module!");
871 // If the symbol table renamed the alias, but it is an externally visible
872 // symbol, DGA must be an global value with internal linkage. Rename it.
873 if (NewGA
->getName() != SGA
->getName() &&
874 !NewGA
->hasLocalLinkage())
875 ForceRenaming(NewGA
, SGA
->getName());
877 // Remember this mapping so uses in the source module get remapped
878 // later by RemapOperand.
879 ValueMap
[SGA
] = NewGA
;
886 // LinkGlobalInits - Update the initializers in the Dest module now that all
887 // globals that may be referenced are in Dest.
888 static bool LinkGlobalInits(Module
*Dest
, const Module
*Src
,
889 std::map
<const Value
*, Value
*> &ValueMap
,
891 // Loop over all of the globals in the src module, mapping them over as we go
892 for (Module::const_global_iterator I
= Src
->global_begin(),
893 E
= Src
->global_end(); I
!= E
; ++I
) {
894 const GlobalVariable
*SGV
= I
;
896 if (SGV
->hasInitializer()) { // Only process initialized GV's
897 // Figure out what the initializer looks like in the dest module...
899 cast
<Constant
>(RemapOperand(SGV
->getInitializer(), ValueMap
,
900 Dest
->getContext()));
901 // Grab destination global variable or alias.
902 GlobalValue
*DGV
= cast
<GlobalValue
>(ValueMap
[SGV
]->stripPointerCasts());
904 // If dest if global variable, check that initializers match.
905 if (GlobalVariable
*DGVar
= dyn_cast
<GlobalVariable
>(DGV
)) {
906 if (DGVar
->hasInitializer()) {
907 if (SGV
->hasExternalLinkage()) {
908 if (DGVar
->getInitializer() != SInit
)
909 return Error(Err
, "Global Variable Collision on '" +
911 "': global variables have different initializers");
912 } else if (DGVar
->isWeakForLinker()) {
913 // Nothing is required, mapped values will take the new global
915 } else if (SGV
->isWeakForLinker()) {
916 // Nothing is required, mapped values will take the new global
918 } else if (DGVar
->hasAppendingLinkage()) {
919 llvm_unreachable("Appending linkage unimplemented!");
921 llvm_unreachable("Unknown linkage!");
924 // Copy the initializer over now...
925 DGVar
->setInitializer(SInit
);
928 // Destination is alias, the only valid situation is when source is
929 // weak. Also, note, that we already checked linkage in LinkGlobals(),
930 // thus we assert here.
931 // FIXME: Should we weaken this assumption, 'dereference' alias and
932 // check for initializer of aliasee?
933 assert(SGV
->isWeakForLinker());
940 // LinkFunctionProtos - Link the functions together between the two modules,
941 // without doing function bodies... this just adds external function prototypes
942 // to the Dest function...
944 static bool LinkFunctionProtos(Module
*Dest
, const Module
*Src
,
945 std::map
<const Value
*, Value
*> &ValueMap
,
947 ValueSymbolTable
&DestSymTab
= Dest
->getValueSymbolTable();
949 // Loop over all of the functions in the src module, mapping them over
950 for (Module::const_iterator I
= Src
->begin(), E
= Src
->end(); I
!= E
; ++I
) {
951 const Function
*SF
= I
; // SrcFunction
952 GlobalValue
*DGV
= 0;
954 // Check to see if may have to link the function with the global, alias or
956 if (SF
->hasName() && !SF
->hasLocalLinkage())
957 DGV
= cast_or_null
<GlobalValue
>(DestSymTab
.lookup(SF
->getName()));
959 // If we found a global with the same name in the dest module, but it has
960 // internal linkage, we are really not doing any linkage here.
961 if (DGV
&& DGV
->hasLocalLinkage())
964 // If types don't agree due to opaque types, try to resolve them.
965 if (DGV
&& DGV
->getType() != SF
->getType())
966 RecursiveResolveTypes(SF
->getType(), DGV
->getType());
968 GlobalValue::LinkageTypes NewLinkage
= GlobalValue::InternalLinkage
;
969 bool LinkFromSrc
= false;
970 if (GetLinkageResult(DGV
, SF
, NewLinkage
, LinkFromSrc
, Err
))
973 // If there is no linkage to be performed, just bring over SF without
976 // Function does not already exist, simply insert an function signature
977 // identical to SF into the dest module.
978 Function
*NewDF
= Function::Create(SF
->getFunctionType(),
980 SF
->getName(), Dest
);
981 CopyGVAttributes(NewDF
, SF
);
983 // If the LLVM runtime renamed the function, but it is an externally
984 // visible symbol, DF must be an existing function with internal linkage.
986 if (!NewDF
->hasLocalLinkage() && NewDF
->getName() != SF
->getName())
987 ForceRenaming(NewDF
, SF
->getName());
989 // ... and remember this mapping...
990 ValueMap
[SF
] = NewDF
;
994 // If the visibilities of the symbols disagree and the destination is a
995 // prototype, take the visibility of its input.
996 if (DGV
->isDeclaration())
997 DGV
->setVisibility(SF
->getVisibility());
1000 if (isa
<GlobalAlias
>(DGV
))
1001 return Error(Err
, "Function-Alias Collision on '" + SF
->getName() +
1002 "': symbol multiple defined");
1004 // We have a definition of the same name but different type in the
1005 // source module. Copy the prototype to the destination and replace
1006 // uses of the destination's prototype with the new prototype.
1007 Function
*NewDF
= Function::Create(SF
->getFunctionType(), NewLinkage
,
1008 SF
->getName(), Dest
);
1009 CopyGVAttributes(NewDF
, SF
);
1011 // Any uses of DF need to change to NewDF, with cast
1012 DGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF
,
1015 // DF will conflict with NewDF because they both had the same. We must
1016 // erase this now so ForceRenaming doesn't assert because DF might
1017 // not have internal linkage.
1018 if (GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(DGV
))
1019 Var
->eraseFromParent();
1021 cast
<Function
>(DGV
)->eraseFromParent();
1023 // If the symbol table renamed the function, but it is an externally
1024 // visible symbol, DF must be an existing function with internal
1025 // linkage. Rename it.
1026 if (NewDF
->getName() != SF
->getName() && !NewDF
->hasLocalLinkage())
1027 ForceRenaming(NewDF
, SF
->getName());
1029 // Remember this mapping so uses in the source module get remapped
1030 // later by RemapOperand.
1031 ValueMap
[SF
] = NewDF
;
1035 // Not "link from source", keep the one in the DestModule and remap the
1038 if (isa
<GlobalAlias
>(DGV
)) {
1039 // The only valid mappings are:
1040 // - SF is external declaration, which is effectively a no-op.
1041 // - SF is weak, when we just need to throw SF out.
1042 if (!SF
->isDeclaration() && !SF
->isWeakForLinker())
1043 return Error(Err
, "Function-Alias Collision on '" + SF
->getName() +
1044 "': symbol multiple defined");
1047 // Set calculated linkage
1048 DGV
->setLinkage(NewLinkage
);
1050 // Make sure to remember this mapping.
1051 ValueMap
[SF
] = ConstantExpr::getBitCast(DGV
, SF
->getType());
1056 // LinkFunctionBody - Copy the source function over into the dest function and
1057 // fix up references to values. At this point we know that Dest is an external
1058 // function, and that Src is not.
1059 static bool LinkFunctionBody(Function
*Dest
, Function
*Src
,
1060 std::map
<const Value
*, Value
*> &ValueMap
,
1062 assert(Src
&& Dest
&& Dest
->isDeclaration() && !Src
->isDeclaration());
1064 // Go through and convert function arguments over, remembering the mapping.
1065 Function::arg_iterator DI
= Dest
->arg_begin();
1066 for (Function::arg_iterator I
= Src
->arg_begin(), E
= Src
->arg_end();
1067 I
!= E
; ++I
, ++DI
) {
1068 DI
->setName(I
->getName()); // Copy the name information over...
1070 // Add a mapping to our local map
1074 // Splice the body of the source function into the dest function.
1075 Dest
->getBasicBlockList().splice(Dest
->end(), Src
->getBasicBlockList());
1077 // At this point, all of the instructions and values of the function are now
1078 // copied over. The only problem is that they are still referencing values in
1079 // the Source function as operands. Loop through all of the operands of the
1080 // functions and patch them up to point to the local versions...
1082 for (Function::iterator BB
= Dest
->begin(), BE
= Dest
->end(); BB
!= BE
; ++BB
)
1083 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
1084 for (Instruction::op_iterator OI
= I
->op_begin(), OE
= I
->op_end();
1086 if (!isa
<Instruction
>(*OI
) && !isa
<BasicBlock
>(*OI
))
1087 *OI
= RemapOperand(*OI
, ValueMap
, Dest
->getContext());
1089 // There is no need to map the arguments anymore.
1090 for (Function::arg_iterator I
= Src
->arg_begin(), E
= Src
->arg_end();
1098 // LinkFunctionBodies - Link in the function bodies that are defined in the
1099 // source module into the DestModule. This consists basically of copying the
1100 // function over and fixing up references to values.
1101 static bool LinkFunctionBodies(Module
*Dest
, Module
*Src
,
1102 std::map
<const Value
*, Value
*> &ValueMap
,
1105 // Loop over all of the functions in the src module, mapping them over as we
1107 for (Module::iterator SF
= Src
->begin(), E
= Src
->end(); SF
!= E
; ++SF
) {
1108 if (!SF
->isDeclaration()) { // No body if function is external
1109 Function
*DF
= dyn_cast
<Function
>(ValueMap
[SF
]); // Destination function
1111 // DF not external SF external?
1112 if (DF
&& DF
->isDeclaration())
1113 // Only provide the function body if there isn't one already.
1114 if (LinkFunctionBody(DF
, SF
, ValueMap
, Err
))
1121 // LinkAppendingVars - If there were any appending global variables, link them
1122 // together now. Return true on error.
1123 static bool LinkAppendingVars(Module
*M
,
1124 std::multimap
<std::string
, GlobalVariable
*> &AppendingVars
,
1125 std::string
*ErrorMsg
) {
1126 if (AppendingVars
.empty()) return false; // Nothing to do.
1128 // Loop over the multimap of appending vars, processing any variables with the
1129 // same name, forming a new appending global variable with both of the
1130 // initializers merged together, then rewrite references to the old variables
1132 std::vector
<Constant
*> Inits
;
1133 while (AppendingVars
.size() > 1) {
1134 // Get the first two elements in the map...
1135 std::multimap
<std::string
,
1136 GlobalVariable
*>::iterator Second
= AppendingVars
.begin(), First
=Second
++;
1138 // If the first two elements are for different names, there is no pair...
1139 // Otherwise there is a pair, so link them together...
1140 if (First
->first
== Second
->first
) {
1141 GlobalVariable
*G1
= First
->second
, *G2
= Second
->second
;
1142 const ArrayType
*T1
= cast
<ArrayType
>(G1
->getType()->getElementType());
1143 const ArrayType
*T2
= cast
<ArrayType
>(G2
->getType()->getElementType());
1145 // Check to see that they two arrays agree on type...
1146 if (T1
->getElementType() != T2
->getElementType())
1147 return Error(ErrorMsg
,
1148 "Appending variables with different element types need to be linked!");
1149 if (G1
->isConstant() != G2
->isConstant())
1150 return Error(ErrorMsg
,
1151 "Appending variables linked with different const'ness!");
1153 if (G1
->getAlignment() != G2
->getAlignment())
1154 return Error(ErrorMsg
,
1155 "Appending variables with different alignment need to be linked!");
1157 if (G1
->getVisibility() != G2
->getVisibility())
1158 return Error(ErrorMsg
,
1159 "Appending variables with different visibility need to be linked!");
1161 if (G1
->getSection() != G2
->getSection())
1162 return Error(ErrorMsg
,
1163 "Appending variables with different section name need to be linked!");
1165 unsigned NewSize
= T1
->getNumElements() + T2
->getNumElements();
1166 ArrayType
*NewType
= ArrayType::get(T1
->getElementType(),
1169 G1
->setName(""); // Clear G1's name in case of a conflict!
1171 // Create the new global variable...
1172 GlobalVariable
*NG
=
1173 new GlobalVariable(*M
, NewType
, G1
->isConstant(), G1
->getLinkage(),
1174 /*init*/0, First
->first
, 0, G1
->isThreadLocal(),
1175 G1
->getType()->getAddressSpace());
1177 // Propagate alignment, visibility and section info.
1178 CopyGVAttributes(NG
, G1
);
1180 // Merge the initializer...
1181 Inits
.reserve(NewSize
);
1182 if (ConstantArray
*I
= dyn_cast
<ConstantArray
>(G1
->getInitializer())) {
1183 for (unsigned i
= 0, e
= T1
->getNumElements(); i
!= e
; ++i
)
1184 Inits
.push_back(I
->getOperand(i
));
1186 assert(isa
<ConstantAggregateZero
>(G1
->getInitializer()));
1187 Constant
*CV
= Constant::getNullValue(T1
->getElementType());
1188 for (unsigned i
= 0, e
= T1
->getNumElements(); i
!= e
; ++i
)
1189 Inits
.push_back(CV
);
1191 if (ConstantArray
*I
= dyn_cast
<ConstantArray
>(G2
->getInitializer())) {
1192 for (unsigned i
= 0, e
= T2
->getNumElements(); i
!= e
; ++i
)
1193 Inits
.push_back(I
->getOperand(i
));
1195 assert(isa
<ConstantAggregateZero
>(G2
->getInitializer()));
1196 Constant
*CV
= Constant::getNullValue(T2
->getElementType());
1197 for (unsigned i
= 0, e
= T2
->getNumElements(); i
!= e
; ++i
)
1198 Inits
.push_back(CV
);
1200 NG
->setInitializer(ConstantArray::get(NewType
, Inits
));
1203 // Replace any uses of the two global variables with uses of the new
1206 // FIXME: This should rewrite simple/straight-forward uses such as
1207 // getelementptr instructions to not use the Cast!
1208 G1
->replaceAllUsesWith(ConstantExpr::getBitCast(NG
,
1210 G2
->replaceAllUsesWith(ConstantExpr::getBitCast(NG
,
1213 // Remove the two globals from the module now...
1214 M
->getGlobalList().erase(G1
);
1215 M
->getGlobalList().erase(G2
);
1217 // Put the new global into the AppendingVars map so that we can handle
1218 // linking of more than two vars...
1219 Second
->second
= NG
;
1221 AppendingVars
.erase(First
);
1227 static bool ResolveAliases(Module
*Dest
) {
1228 for (Module::alias_iterator I
= Dest
->alias_begin(), E
= Dest
->alias_end();
1230 if (const GlobalValue
*GV
= I
->resolveAliasedGlobal())
1231 if (GV
!= I
&& !GV
->isDeclaration())
1232 I
->replaceAllUsesWith(const_cast<GlobalValue
*>(GV
));
1237 // LinkModules - This function links two modules together, with the resulting
1238 // left module modified to be the composite of the two input modules. If an
1239 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1240 // the problem. Upon failure, the Dest module could be in a modified state, and
1241 // shouldn't be relied on to be consistent.
1243 Linker::LinkModules(Module
*Dest
, Module
*Src
, std::string
*ErrorMsg
) {
1244 assert(Dest
!= 0 && "Invalid Destination module");
1245 assert(Src
!= 0 && "Invalid Source Module");
1247 if (Dest
->getDataLayout().empty()) {
1248 if (!Src
->getDataLayout().empty()) {
1249 Dest
->setDataLayout(Src
->getDataLayout());
1251 std::string DataLayout
;
1253 if (Dest
->getEndianness() == Module::AnyEndianness
) {
1254 if (Src
->getEndianness() == Module::BigEndian
)
1255 DataLayout
.append("E");
1256 else if (Src
->getEndianness() == Module::LittleEndian
)
1257 DataLayout
.append("e");
1260 if (Dest
->getPointerSize() == Module::AnyPointerSize
) {
1261 if (Src
->getPointerSize() == Module::Pointer64
)
1262 DataLayout
.append(DataLayout
.length() == 0 ? "p:64:64" : "-p:64:64");
1263 else if (Src
->getPointerSize() == Module::Pointer32
)
1264 DataLayout
.append(DataLayout
.length() == 0 ? "p:32:32" : "-p:32:32");
1266 Dest
->setDataLayout(DataLayout
);
1270 // Copy the target triple from the source to dest if the dest's is empty.
1271 if (Dest
->getTargetTriple().empty() && !Src
->getTargetTriple().empty())
1272 Dest
->setTargetTriple(Src
->getTargetTriple());
1274 if (!Src
->getDataLayout().empty() && !Dest
->getDataLayout().empty() &&
1275 Src
->getDataLayout() != Dest
->getDataLayout())
1276 errs() << "WARNING: Linking two modules of different data layouts!\n";
1277 if (!Src
->getTargetTriple().empty() &&
1278 Dest
->getTargetTriple() != Src
->getTargetTriple())
1279 errs() << "WARNING: Linking two modules of different target triples!\n";
1281 // Append the module inline asm string.
1282 if (!Src
->getModuleInlineAsm().empty()) {
1283 if (Dest
->getModuleInlineAsm().empty())
1284 Dest
->setModuleInlineAsm(Src
->getModuleInlineAsm());
1286 Dest
->setModuleInlineAsm(Dest
->getModuleInlineAsm()+"\n"+
1287 Src
->getModuleInlineAsm());
1290 // Update the destination module's dependent libraries list with the libraries
1291 // from the source module. There's no opportunity for duplicates here as the
1292 // Module ensures that duplicate insertions are discarded.
1293 for (Module::lib_iterator SI
= Src
->lib_begin(), SE
= Src
->lib_end();
1295 Dest
->addLibrary(*SI
);
1297 // LinkTypes - Go through the symbol table of the Src module and see if any
1298 // types are named in the src module that are not named in the Dst module.
1299 // Make sure there are no type name conflicts.
1300 if (LinkTypes(Dest
, Src
, ErrorMsg
))
1303 // ValueMap - Mapping of values from what they used to be in Src, to what they
1305 std::map
<const Value
*, Value
*> ValueMap
;
1307 // AppendingVars - Keep track of global variables in the destination module
1308 // with appending linkage. After the module is linked together, they are
1309 // appended and the module is rewritten.
1310 std::multimap
<std::string
, GlobalVariable
*> AppendingVars
;
1311 for (Module::global_iterator I
= Dest
->global_begin(), E
= Dest
->global_end();
1313 // Add all of the appending globals already in the Dest module to
1315 if (I
->hasAppendingLinkage())
1316 AppendingVars
.insert(std::make_pair(I
->getName(), I
));
1319 // Insert all of the named mdnoes in Src into the Dest module.
1320 LinkNamedMDNodes(Dest
, Src
);
1322 // Insert all of the globals in src into the Dest module... without linking
1323 // initializers (which could refer to functions not yet mapped over).
1324 if (LinkGlobals(Dest
, Src
, ValueMap
, AppendingVars
, ErrorMsg
))
1327 // Link the functions together between the two modules, without doing function
1328 // bodies... this just adds external function prototypes to the Dest
1329 // function... We do this so that when we begin processing function bodies,
1330 // all of the global values that may be referenced are available in our
1332 if (LinkFunctionProtos(Dest
, Src
, ValueMap
, ErrorMsg
))
1335 // If there were any alias, link them now. We really need to do this now,
1336 // because all of the aliases that may be referenced need to be available in
1338 if (LinkAlias(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1340 // Update the initializers in the Dest module now that all globals that may
1341 // be referenced are in Dest.
1342 if (LinkGlobalInits(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1344 // Link in the function bodies that are defined in the source module into the
1345 // DestModule. This consists basically of copying the function over and
1346 // fixing up references to values.
1347 if (LinkFunctionBodies(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1349 // If there were any appending global variables, link them together now.
1350 if (LinkAppendingVars(Dest
, AppendingVars
, ErrorMsg
)) return true;
1352 // Resolve all uses of aliases with aliasees
1353 if (ResolveAliases(Dest
)) return true;
1355 // If the source library's module id is in the dependent library list of the
1356 // destination library, remove it since that module is now linked in.
1358 modId
.set(Src
->getModuleIdentifier());
1359 if (!modId
.isEmpty())
1360 Dest
->removeLibrary(modId
.getBasename());