remove a dead bool.
[llvm/avr.git] / lib / Target / CppBackend / CPPBackend.cpp
blob14ad451074a53f2f4e5bc4dbcb44bc93c4354997
1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
13 //===----------------------------------------------------------------------===//
15 #include "CPPTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instruction.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/PassManager.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/FormattedStream.h"
30 #include "llvm/Target/TargetRegistry.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Config/config.h"
33 #include <algorithm>
34 #include <set>
36 using namespace llvm;
38 static cl::opt<std::string>
39 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
40 cl::value_desc("function name"));
42 enum WhatToGenerate {
43 GenProgram,
44 GenModule,
45 GenContents,
46 GenFunction,
47 GenFunctions,
48 GenInline,
49 GenVariable,
50 GenType
53 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
54 cl::desc("Choose what kind of output to generate"),
55 cl::init(GenProgram),
56 cl::values(
57 clEnumValN(GenProgram, "program", "Generate a complete program"),
58 clEnumValN(GenModule, "module", "Generate a module definition"),
59 clEnumValN(GenContents, "contents", "Generate contents of a module"),
60 clEnumValN(GenFunction, "function", "Generate a function definition"),
61 clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
62 clEnumValN(GenInline, "inline", "Generate an inline function"),
63 clEnumValN(GenVariable, "variable", "Generate a variable definition"),
64 clEnumValN(GenType, "type", "Generate a type definition"),
65 clEnumValEnd
69 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
70 cl::desc("Specify the name of the thing to generate"),
71 cl::init("!bad!"));
73 extern "C" void LLVMInitializeCppBackendTarget() {
74 // Register the target.
75 RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
78 namespace {
79 typedef std::vector<const Type*> TypeList;
80 typedef std::map<const Type*,std::string> TypeMap;
81 typedef std::map<const Value*,std::string> ValueMap;
82 typedef std::set<std::string> NameSet;
83 typedef std::set<const Type*> TypeSet;
84 typedef std::set<const Value*> ValueSet;
85 typedef std::map<const Value*,std::string> ForwardRefMap;
87 /// CppWriter - This class is the main chunk of code that converts an LLVM
88 /// module to a C++ translation unit.
89 class CppWriter : public ModulePass {
90 formatted_raw_ostream &Out;
91 const Module *TheModule;
92 uint64_t uniqueNum;
93 TypeMap TypeNames;
94 ValueMap ValueNames;
95 TypeMap UnresolvedTypes;
96 TypeList TypeStack;
97 NameSet UsedNames;
98 TypeSet DefinedTypes;
99 ValueSet DefinedValues;
100 ForwardRefMap ForwardRefs;
101 bool is_inline;
103 public:
104 static char ID;
105 explicit CppWriter(formatted_raw_ostream &o) :
106 ModulePass(&ID), Out(o), uniqueNum(0), is_inline(false) {}
108 virtual const char *getPassName() const { return "C++ backend"; }
110 bool runOnModule(Module &M);
112 void printProgram(const std::string& fname, const std::string& modName );
113 void printModule(const std::string& fname, const std::string& modName );
114 void printContents(const std::string& fname, const std::string& modName );
115 void printFunction(const std::string& fname, const std::string& funcName );
116 void printFunctions();
117 void printInline(const std::string& fname, const std::string& funcName );
118 void printVariable(const std::string& fname, const std::string& varName );
119 void printType(const std::string& fname, const std::string& typeName );
121 void error(const std::string& msg);
123 private:
124 void printLinkageType(GlobalValue::LinkageTypes LT);
125 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
126 void printCallingConv(CallingConv::ID cc);
127 void printEscapedString(const std::string& str);
128 void printCFP(const ConstantFP* CFP);
130 std::string getCppName(const Type* val);
131 inline void printCppName(const Type* val);
133 std::string getCppName(const Value* val);
134 inline void printCppName(const Value* val);
136 void printAttributes(const AttrListPtr &PAL, const std::string &name);
137 bool printTypeInternal(const Type* Ty);
138 inline void printType(const Type* Ty);
139 void printTypes(const Module* M);
141 void printConstant(const Constant *CPV);
142 void printConstants(const Module* M);
144 void printVariableUses(const GlobalVariable *GV);
145 void printVariableHead(const GlobalVariable *GV);
146 void printVariableBody(const GlobalVariable *GV);
148 void printFunctionUses(const Function *F);
149 void printFunctionHead(const Function *F);
150 void printFunctionBody(const Function *F);
151 void printInstruction(const Instruction *I, const std::string& bbname);
152 std::string getOpName(Value*);
154 void printModuleBody();
157 static unsigned indent_level = 0;
158 inline formatted_raw_ostream& nl(formatted_raw_ostream& Out, int delta = 0) {
159 Out << "\n";
160 if (delta >= 0 || indent_level >= unsigned(-delta))
161 indent_level += delta;
162 for (unsigned i = 0; i < indent_level; ++i)
163 Out << " ";
164 return Out;
167 inline void in() { indent_level++; }
168 inline void out() { if (indent_level >0) indent_level--; }
170 inline void
171 sanitize(std::string& str) {
172 for (size_t i = 0; i < str.length(); ++i)
173 if (!isalnum(str[i]) && str[i] != '_')
174 str[i] = '_';
177 inline std::string
178 getTypePrefix(const Type* Ty ) {
179 switch (Ty->getTypeID()) {
180 case Type::VoidTyID: return "void_";
181 case Type::IntegerTyID:
182 return std::string("int") + utostr(cast<IntegerType>(Ty)->getBitWidth()) +
183 "_";
184 case Type::FloatTyID: return "float_";
185 case Type::DoubleTyID: return "double_";
186 case Type::LabelTyID: return "label_";
187 case Type::FunctionTyID: return "func_";
188 case Type::StructTyID: return "struct_";
189 case Type::ArrayTyID: return "array_";
190 case Type::PointerTyID: return "ptr_";
191 case Type::VectorTyID: return "packed_";
192 case Type::OpaqueTyID: return "opaque_";
193 default: return "other_";
195 return "unknown_";
198 // Looks up the type in the symbol table and returns a pointer to its name or
199 // a null pointer if it wasn't found. Note that this isn't the same as the
200 // Mode::getTypeName function which will return an empty string, not a null
201 // pointer if the name is not found.
202 inline const std::string*
203 findTypeName(const TypeSymbolTable& ST, const Type* Ty) {
204 TypeSymbolTable::const_iterator TI = ST.begin();
205 TypeSymbolTable::const_iterator TE = ST.end();
206 for (;TI != TE; ++TI)
207 if (TI->second == Ty)
208 return &(TI->first);
209 return 0;
212 void CppWriter::error(const std::string& msg) {
213 llvm_report_error(msg);
216 // printCFP - Print a floating point constant .. very carefully :)
217 // This makes sure that conversion to/from floating yields the same binary
218 // result so that we don't lose precision.
219 void CppWriter::printCFP(const ConstantFP *CFP) {
220 bool ignored;
221 APFloat APF = APFloat(CFP->getValueAPF()); // copy
222 if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
223 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
224 Out << "ConstantFP::get(getGlobalContext(), ";
225 Out << "APFloat(";
226 #if HAVE_PRINTF_A
227 char Buffer[100];
228 sprintf(Buffer, "%A", APF.convertToDouble());
229 if ((!strncmp(Buffer, "0x", 2) ||
230 !strncmp(Buffer, "-0x", 3) ||
231 !strncmp(Buffer, "+0x", 3)) &&
232 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
233 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
234 Out << "BitsToDouble(" << Buffer << ")";
235 else
236 Out << "BitsToFloat((float)" << Buffer << ")";
237 Out << ")";
238 } else {
239 #endif
240 std::string StrVal = ftostr(CFP->getValueAPF());
242 while (StrVal[0] == ' ')
243 StrVal.erase(StrVal.begin());
245 // Check to make sure that the stringized number is not some string like
246 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
247 if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
248 ((StrVal[0] == '-' || StrVal[0] == '+') &&
249 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
250 (CFP->isExactlyValue(atof(StrVal.c_str())))) {
251 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
252 Out << StrVal;
253 else
254 Out << StrVal << "f";
255 } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
256 Out << "BitsToDouble(0x"
257 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
258 << "ULL) /* " << StrVal << " */";
259 else
260 Out << "BitsToFloat(0x"
261 << utohexstr((uint32_t)CFP->getValueAPF().
262 bitcastToAPInt().getZExtValue())
263 << "U) /* " << StrVal << " */";
264 Out << ")";
265 #if HAVE_PRINTF_A
267 #endif
268 Out << ")";
271 void CppWriter::printCallingConv(CallingConv::ID cc){
272 // Print the calling convention.
273 switch (cc) {
274 case CallingConv::C: Out << "CallingConv::C"; break;
275 case CallingConv::Fast: Out << "CallingConv::Fast"; break;
276 case CallingConv::Cold: Out << "CallingConv::Cold"; break;
277 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
278 default: Out << cc; break;
282 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
283 switch (LT) {
284 case GlobalValue::InternalLinkage:
285 Out << "GlobalValue::InternalLinkage"; break;
286 case GlobalValue::PrivateLinkage:
287 Out << "GlobalValue::PrivateLinkage"; break;
288 case GlobalValue::LinkerPrivateLinkage:
289 Out << "GlobalValue::LinkerPrivateLinkage"; break;
290 case GlobalValue::AvailableExternallyLinkage:
291 Out << "GlobalValue::AvailableExternallyLinkage "; break;
292 case GlobalValue::LinkOnceAnyLinkage:
293 Out << "GlobalValue::LinkOnceAnyLinkage "; break;
294 case GlobalValue::LinkOnceODRLinkage:
295 Out << "GlobalValue::LinkOnceODRLinkage "; break;
296 case GlobalValue::WeakAnyLinkage:
297 Out << "GlobalValue::WeakAnyLinkage"; break;
298 case GlobalValue::WeakODRLinkage:
299 Out << "GlobalValue::WeakODRLinkage"; break;
300 case GlobalValue::AppendingLinkage:
301 Out << "GlobalValue::AppendingLinkage"; break;
302 case GlobalValue::ExternalLinkage:
303 Out << "GlobalValue::ExternalLinkage"; break;
304 case GlobalValue::DLLImportLinkage:
305 Out << "GlobalValue::DLLImportLinkage"; break;
306 case GlobalValue::DLLExportLinkage:
307 Out << "GlobalValue::DLLExportLinkage"; break;
308 case GlobalValue::ExternalWeakLinkage:
309 Out << "GlobalValue::ExternalWeakLinkage"; break;
310 case GlobalValue::GhostLinkage:
311 Out << "GlobalValue::GhostLinkage"; break;
312 case GlobalValue::CommonLinkage:
313 Out << "GlobalValue::CommonLinkage"; break;
317 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
318 switch (VisType) {
319 default: llvm_unreachable("Unknown GVar visibility");
320 case GlobalValue::DefaultVisibility:
321 Out << "GlobalValue::DefaultVisibility";
322 break;
323 case GlobalValue::HiddenVisibility:
324 Out << "GlobalValue::HiddenVisibility";
325 break;
326 case GlobalValue::ProtectedVisibility:
327 Out << "GlobalValue::ProtectedVisibility";
328 break;
332 // printEscapedString - Print each character of the specified string, escaping
333 // it if it is not printable or if it is an escape char.
334 void CppWriter::printEscapedString(const std::string &Str) {
335 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
336 unsigned char C = Str[i];
337 if (isprint(C) && C != '"' && C != '\\') {
338 Out << C;
339 } else {
340 Out << "\\x"
341 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
342 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
347 std::string CppWriter::getCppName(const Type* Ty) {
348 // First, handle the primitive types .. easy
349 if (Ty->isPrimitiveType() || Ty->isInteger()) {
350 switch (Ty->getTypeID()) {
351 case Type::VoidTyID: return "Type::getVoidTy(getGlobalContext())";
352 case Type::IntegerTyID: {
353 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
354 return "IntegerType::get(getGlobalContext(), " + utostr(BitWidth) + ")";
356 case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(getGlobalContext())";
357 case Type::FloatTyID: return "Type::getFloatTy(getGlobalContext())";
358 case Type::DoubleTyID: return "Type::getDoubleTy(getGlobalContext())";
359 case Type::LabelTyID: return "Type::getLabelTy(getGlobalContext())";
360 default:
361 error("Invalid primitive type");
362 break;
364 // shouldn't be returned, but make it sensible
365 return "Type::getVoidTy(getGlobalContext())";
368 // Now, see if we've seen the type before and return that
369 TypeMap::iterator I = TypeNames.find(Ty);
370 if (I != TypeNames.end())
371 return I->second;
373 // Okay, let's build a new name for this type. Start with a prefix
374 const char* prefix = 0;
375 switch (Ty->getTypeID()) {
376 case Type::FunctionTyID: prefix = "FuncTy_"; break;
377 case Type::StructTyID: prefix = "StructTy_"; break;
378 case Type::ArrayTyID: prefix = "ArrayTy_"; break;
379 case Type::PointerTyID: prefix = "PointerTy_"; break;
380 case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
381 case Type::VectorTyID: prefix = "VectorTy_"; break;
382 default: prefix = "OtherTy_"; break; // prevent breakage
385 // See if the type has a name in the symboltable and build accordingly
386 const std::string* tName = findTypeName(TheModule->getTypeSymbolTable(), Ty);
387 std::string name;
388 if (tName)
389 name = std::string(prefix) + *tName;
390 else
391 name = std::string(prefix) + utostr(uniqueNum++);
392 sanitize(name);
394 // Save the name
395 return TypeNames[Ty] = name;
398 void CppWriter::printCppName(const Type* Ty) {
399 printEscapedString(getCppName(Ty));
402 std::string CppWriter::getCppName(const Value* val) {
403 std::string name;
404 ValueMap::iterator I = ValueNames.find(val);
405 if (I != ValueNames.end() && I->first == val)
406 return I->second;
408 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
409 name = std::string("gvar_") +
410 getTypePrefix(GV->getType()->getElementType());
411 } else if (isa<Function>(val)) {
412 name = std::string("func_");
413 } else if (const Constant* C = dyn_cast<Constant>(val)) {
414 name = std::string("const_") + getTypePrefix(C->getType());
415 } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
416 if (is_inline) {
417 unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
418 Function::const_arg_iterator(Arg)) + 1;
419 name = std::string("arg_") + utostr(argNum);
420 NameSet::iterator NI = UsedNames.find(name);
421 if (NI != UsedNames.end())
422 name += std::string("_") + utostr(uniqueNum++);
423 UsedNames.insert(name);
424 return ValueNames[val] = name;
425 } else {
426 name = getTypePrefix(val->getType());
428 } else {
429 name = getTypePrefix(val->getType());
431 if (val->hasName())
432 name += val->getName();
433 else
434 name += utostr(uniqueNum++);
435 sanitize(name);
436 NameSet::iterator NI = UsedNames.find(name);
437 if (NI != UsedNames.end())
438 name += std::string("_") + utostr(uniqueNum++);
439 UsedNames.insert(name);
440 return ValueNames[val] = name;
443 void CppWriter::printCppName(const Value* val) {
444 printEscapedString(getCppName(val));
447 void CppWriter::printAttributes(const AttrListPtr &PAL,
448 const std::string &name) {
449 Out << "AttrListPtr " << name << "_PAL;";
450 nl(Out);
451 if (!PAL.isEmpty()) {
452 Out << '{'; in(); nl(Out);
453 Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
454 Out << "AttributeWithIndex PAWI;"; nl(Out);
455 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
456 unsigned index = PAL.getSlot(i).Index;
457 Attributes attrs = PAL.getSlot(i).Attrs;
458 Out << "PAWI.Index = " << index << "U; PAWI.Attrs = 0 ";
459 #define HANDLE_ATTR(X) \
460 if (attrs & Attribute::X) \
461 Out << " | Attribute::" #X; \
462 attrs &= ~Attribute::X;
464 HANDLE_ATTR(SExt);
465 HANDLE_ATTR(ZExt);
466 HANDLE_ATTR(NoReturn);
467 HANDLE_ATTR(InReg);
468 HANDLE_ATTR(StructRet);
469 HANDLE_ATTR(NoUnwind);
470 HANDLE_ATTR(NoAlias);
471 HANDLE_ATTR(ByVal);
472 HANDLE_ATTR(Nest);
473 HANDLE_ATTR(ReadNone);
474 HANDLE_ATTR(ReadOnly);
475 HANDLE_ATTR(InlineHint);
476 HANDLE_ATTR(NoInline);
477 HANDLE_ATTR(AlwaysInline);
478 HANDLE_ATTR(OptimizeForSize);
479 HANDLE_ATTR(StackProtect);
480 HANDLE_ATTR(StackProtectReq);
481 HANDLE_ATTR(NoCapture);
482 #undef HANDLE_ATTR
483 assert(attrs == 0 && "Unhandled attribute!");
484 Out << ";";
485 nl(Out);
486 Out << "Attrs.push_back(PAWI);";
487 nl(Out);
489 Out << name << "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
490 nl(Out);
491 out(); nl(Out);
492 Out << '}'; nl(Out);
496 bool CppWriter::printTypeInternal(const Type* Ty) {
497 // We don't print definitions for primitive types
498 if (Ty->isPrimitiveType() || Ty->isInteger())
499 return false;
501 // If we already defined this type, we don't need to define it again.
502 if (DefinedTypes.find(Ty) != DefinedTypes.end())
503 return false;
505 // Everything below needs the name for the type so get it now.
506 std::string typeName(getCppName(Ty));
508 // Search the type stack for recursion. If we find it, then generate this
509 // as an OpaqueType, but make sure not to do this multiple times because
510 // the type could appear in multiple places on the stack. Once the opaque
511 // definition is issued, it must not be re-issued. Consequently we have to
512 // check the UnresolvedTypes list as well.
513 TypeList::const_iterator TI = std::find(TypeStack.begin(), TypeStack.end(),
514 Ty);
515 if (TI != TypeStack.end()) {
516 TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
517 if (I == UnresolvedTypes.end()) {
518 Out << "PATypeHolder " << typeName;
519 Out << "_fwd = OpaqueType::get(getGlobalContext());";
520 nl(Out);
521 UnresolvedTypes[Ty] = typeName;
523 return true;
526 // We're going to print a derived type which, by definition, contains other
527 // types. So, push this one we're printing onto the type stack to assist with
528 // recursive definitions.
529 TypeStack.push_back(Ty);
531 // Print the type definition
532 switch (Ty->getTypeID()) {
533 case Type::FunctionTyID: {
534 const FunctionType* FT = cast<FunctionType>(Ty);
535 Out << "std::vector<const Type*>" << typeName << "_args;";
536 nl(Out);
537 FunctionType::param_iterator PI = FT->param_begin();
538 FunctionType::param_iterator PE = FT->param_end();
539 for (; PI != PE; ++PI) {
540 const Type* argTy = static_cast<const Type*>(*PI);
541 bool isForward = printTypeInternal(argTy);
542 std::string argName(getCppName(argTy));
543 Out << typeName << "_args.push_back(" << argName;
544 if (isForward)
545 Out << "_fwd";
546 Out << ");";
547 nl(Out);
549 bool isForward = printTypeInternal(FT->getReturnType());
550 std::string retTypeName(getCppName(FT->getReturnType()));
551 Out << "FunctionType* " << typeName << " = FunctionType::get(";
552 in(); nl(Out) << "/*Result=*/" << retTypeName;
553 if (isForward)
554 Out << "_fwd";
555 Out << ",";
556 nl(Out) << "/*Params=*/" << typeName << "_args,";
557 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
558 out();
559 nl(Out);
560 break;
562 case Type::StructTyID: {
563 const StructType* ST = cast<StructType>(Ty);
564 Out << "std::vector<const Type*>" << typeName << "_fields;";
565 nl(Out);
566 StructType::element_iterator EI = ST->element_begin();
567 StructType::element_iterator EE = ST->element_end();
568 for (; EI != EE; ++EI) {
569 const Type* fieldTy = static_cast<const Type*>(*EI);
570 bool isForward = printTypeInternal(fieldTy);
571 std::string fieldName(getCppName(fieldTy));
572 Out << typeName << "_fields.push_back(" << fieldName;
573 if (isForward)
574 Out << "_fwd";
575 Out << ");";
576 nl(Out);
578 Out << "StructType* " << typeName << " = StructType::get("
579 << "mod->getContext(), "
580 << typeName << "_fields, /*isPacked=*/"
581 << (ST->isPacked() ? "true" : "false") << ");";
582 nl(Out);
583 break;
585 case Type::ArrayTyID: {
586 const ArrayType* AT = cast<ArrayType>(Ty);
587 const Type* ET = AT->getElementType();
588 bool isForward = printTypeInternal(ET);
589 std::string elemName(getCppName(ET));
590 Out << "ArrayType* " << typeName << " = ArrayType::get("
591 << elemName << (isForward ? "_fwd" : "")
592 << ", " << utostr(AT->getNumElements()) << ");";
593 nl(Out);
594 break;
596 case Type::PointerTyID: {
597 const PointerType* PT = cast<PointerType>(Ty);
598 const Type* ET = PT->getElementType();
599 bool isForward = printTypeInternal(ET);
600 std::string elemName(getCppName(ET));
601 Out << "PointerType* " << typeName << " = PointerType::get("
602 << elemName << (isForward ? "_fwd" : "")
603 << ", " << utostr(PT->getAddressSpace()) << ");";
604 nl(Out);
605 break;
607 case Type::VectorTyID: {
608 const VectorType* PT = cast<VectorType>(Ty);
609 const Type* ET = PT->getElementType();
610 bool isForward = printTypeInternal(ET);
611 std::string elemName(getCppName(ET));
612 Out << "VectorType* " << typeName << " = VectorType::get("
613 << elemName << (isForward ? "_fwd" : "")
614 << ", " << utostr(PT->getNumElements()) << ");";
615 nl(Out);
616 break;
618 case Type::OpaqueTyID: {
619 Out << "OpaqueType* " << typeName;
620 Out << " = OpaqueType::get(getGlobalContext());";
621 nl(Out);
622 break;
624 default:
625 error("Invalid TypeID");
628 // If the type had a name, make sure we recreate it.
629 const std::string* progTypeName =
630 findTypeName(TheModule->getTypeSymbolTable(),Ty);
631 if (progTypeName) {
632 Out << "mod->addTypeName(\"" << *progTypeName << "\", "
633 << typeName << ");";
634 nl(Out);
637 // Pop us off the type stack
638 TypeStack.pop_back();
640 // Indicate that this type is now defined.
641 DefinedTypes.insert(Ty);
643 // Early resolve as many unresolved types as possible. Search the unresolved
644 // types map for the type we just printed. Now that its definition is complete
645 // we can resolve any previous references to it. This prevents a cascade of
646 // unresolved types.
647 TypeMap::iterator I = UnresolvedTypes.find(Ty);
648 if (I != UnresolvedTypes.end()) {
649 Out << "cast<OpaqueType>(" << I->second
650 << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");";
651 nl(Out);
652 Out << I->second << " = cast<";
653 switch (Ty->getTypeID()) {
654 case Type::FunctionTyID: Out << "FunctionType"; break;
655 case Type::ArrayTyID: Out << "ArrayType"; break;
656 case Type::StructTyID: Out << "StructType"; break;
657 case Type::VectorTyID: Out << "VectorType"; break;
658 case Type::PointerTyID: Out << "PointerType"; break;
659 case Type::OpaqueTyID: Out << "OpaqueType"; break;
660 default: Out << "NoSuchDerivedType"; break;
662 Out << ">(" << I->second << "_fwd.get());";
663 nl(Out); nl(Out);
664 UnresolvedTypes.erase(I);
667 // Finally, separate the type definition from other with a newline.
668 nl(Out);
670 // We weren't a recursive type
671 return false;
674 // Prints a type definition. Returns true if it could not resolve all the
675 // types in the definition but had to use a forward reference.
676 void CppWriter::printType(const Type* Ty) {
677 assert(TypeStack.empty());
678 TypeStack.clear();
679 printTypeInternal(Ty);
680 assert(TypeStack.empty());
683 void CppWriter::printTypes(const Module* M) {
684 // Walk the symbol table and print out all its types
685 const TypeSymbolTable& symtab = M->getTypeSymbolTable();
686 for (TypeSymbolTable::const_iterator TI = symtab.begin(), TE = symtab.end();
687 TI != TE; ++TI) {
689 // For primitive types and types already defined, just add a name
690 TypeMap::const_iterator TNI = TypeNames.find(TI->second);
691 if (TI->second->isInteger() || TI->second->isPrimitiveType() ||
692 TNI != TypeNames.end()) {
693 Out << "mod->addTypeName(\"";
694 printEscapedString(TI->first);
695 Out << "\", " << getCppName(TI->second) << ");";
696 nl(Out);
697 // For everything else, define the type
698 } else {
699 printType(TI->second);
703 // Add all of the global variables to the value table...
704 for (Module::const_global_iterator I = TheModule->global_begin(),
705 E = TheModule->global_end(); I != E; ++I) {
706 if (I->hasInitializer())
707 printType(I->getInitializer()->getType());
708 printType(I->getType());
711 // Add all the functions to the table
712 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
713 FI != FE; ++FI) {
714 printType(FI->getReturnType());
715 printType(FI->getFunctionType());
716 // Add all the function arguments
717 for (Function::const_arg_iterator AI = FI->arg_begin(),
718 AE = FI->arg_end(); AI != AE; ++AI) {
719 printType(AI->getType());
722 // Add all of the basic blocks and instructions
723 for (Function::const_iterator BB = FI->begin(),
724 E = FI->end(); BB != E; ++BB) {
725 printType(BB->getType());
726 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
727 ++I) {
728 printType(I->getType());
729 for (unsigned i = 0; i < I->getNumOperands(); ++i)
730 printType(I->getOperand(i)->getType());
737 // printConstant - Print out a constant pool entry...
738 void CppWriter::printConstant(const Constant *CV) {
739 // First, if the constant is actually a GlobalValue (variable or function)
740 // or its already in the constant list then we've printed it already and we
741 // can just return.
742 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
743 return;
745 std::string constName(getCppName(CV));
746 std::string typeName(getCppName(CV->getType()));
748 if (isa<GlobalValue>(CV)) {
749 // Skip variables and functions, we emit them elsewhere
750 return;
753 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
754 std::string constValue = CI->getValue().toString(10, true);
755 Out << "ConstantInt* " << constName
756 << " = ConstantInt::get(getGlobalContext(), APInt("
757 << cast<IntegerType>(CI->getType())->getBitWidth()
758 << ", StringRef(\"" << constValue << "\"), 10));";
759 } else if (isa<ConstantAggregateZero>(CV)) {
760 Out << "ConstantAggregateZero* " << constName
761 << " = ConstantAggregateZero::get(" << typeName << ");";
762 } else if (isa<ConstantPointerNull>(CV)) {
763 Out << "ConstantPointerNull* " << constName
764 << " = ConstantPointerNull::get(" << typeName << ");";
765 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
766 Out << "ConstantFP* " << constName << " = ";
767 printCFP(CFP);
768 Out << ";";
769 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
770 if (CA->isString() &&
771 CA->getType()->getElementType() ==
772 Type::getInt8Ty(CA->getContext())) {
773 Out << "Constant* " << constName <<
774 " = ConstantArray::get(getGlobalContext(), \"";
775 std::string tmp = CA->getAsString();
776 bool nullTerminate = false;
777 if (tmp[tmp.length()-1] == 0) {
778 tmp.erase(tmp.length()-1);
779 nullTerminate = true;
781 printEscapedString(tmp);
782 // Determine if we want null termination or not.
783 if (nullTerminate)
784 Out << "\", true"; // Indicate that the null terminator should be
785 // added.
786 else
787 Out << "\", false";// No null terminator
788 Out << ");";
789 } else {
790 Out << "std::vector<Constant*> " << constName << "_elems;";
791 nl(Out);
792 unsigned N = CA->getNumOperands();
793 for (unsigned i = 0; i < N; ++i) {
794 printConstant(CA->getOperand(i)); // recurse to print operands
795 Out << constName << "_elems.push_back("
796 << getCppName(CA->getOperand(i)) << ");";
797 nl(Out);
799 Out << "Constant* " << constName << " = ConstantArray::get("
800 << typeName << ", " << constName << "_elems);";
802 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
803 Out << "std::vector<Constant*> " << constName << "_fields;";
804 nl(Out);
805 unsigned N = CS->getNumOperands();
806 for (unsigned i = 0; i < N; i++) {
807 printConstant(CS->getOperand(i));
808 Out << constName << "_fields.push_back("
809 << getCppName(CS->getOperand(i)) << ");";
810 nl(Out);
812 Out << "Constant* " << constName << " = ConstantStruct::get("
813 << typeName << ", " << constName << "_fields);";
814 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
815 Out << "std::vector<Constant*> " << constName << "_elems;";
816 nl(Out);
817 unsigned N = CP->getNumOperands();
818 for (unsigned i = 0; i < N; ++i) {
819 printConstant(CP->getOperand(i));
820 Out << constName << "_elems.push_back("
821 << getCppName(CP->getOperand(i)) << ");";
822 nl(Out);
824 Out << "Constant* " << constName << " = ConstantVector::get("
825 << typeName << ", " << constName << "_elems);";
826 } else if (isa<UndefValue>(CV)) {
827 Out << "UndefValue* " << constName << " = UndefValue::get("
828 << typeName << ");";
829 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
830 if (CE->getOpcode() == Instruction::GetElementPtr) {
831 Out << "std::vector<Constant*> " << constName << "_indices;";
832 nl(Out);
833 printConstant(CE->getOperand(0));
834 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
835 printConstant(CE->getOperand(i));
836 Out << constName << "_indices.push_back("
837 << getCppName(CE->getOperand(i)) << ");";
838 nl(Out);
840 Out << "Constant* " << constName
841 << " = ConstantExpr::getGetElementPtr("
842 << getCppName(CE->getOperand(0)) << ", "
843 << "&" << constName << "_indices[0], "
844 << constName << "_indices.size()"
845 << ");";
846 } else if (CE->isCast()) {
847 printConstant(CE->getOperand(0));
848 Out << "Constant* " << constName << " = ConstantExpr::getCast(";
849 switch (CE->getOpcode()) {
850 default: llvm_unreachable("Invalid cast opcode");
851 case Instruction::Trunc: Out << "Instruction::Trunc"; break;
852 case Instruction::ZExt: Out << "Instruction::ZExt"; break;
853 case Instruction::SExt: Out << "Instruction::SExt"; break;
854 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
855 case Instruction::FPExt: Out << "Instruction::FPExt"; break;
856 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
857 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
858 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
859 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
860 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
861 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
862 case Instruction::BitCast: Out << "Instruction::BitCast"; break;
864 Out << ", " << getCppName(CE->getOperand(0)) << ", "
865 << getCppName(CE->getType()) << ");";
866 } else {
867 unsigned N = CE->getNumOperands();
868 for (unsigned i = 0; i < N; ++i ) {
869 printConstant(CE->getOperand(i));
871 Out << "Constant* " << constName << " = ConstantExpr::";
872 switch (CE->getOpcode()) {
873 case Instruction::Add: Out << "getAdd("; break;
874 case Instruction::FAdd: Out << "getFAdd("; break;
875 case Instruction::Sub: Out << "getSub("; break;
876 case Instruction::FSub: Out << "getFSub("; break;
877 case Instruction::Mul: Out << "getMul("; break;
878 case Instruction::FMul: Out << "getFMul("; break;
879 case Instruction::UDiv: Out << "getUDiv("; break;
880 case Instruction::SDiv: Out << "getSDiv("; break;
881 case Instruction::FDiv: Out << "getFDiv("; break;
882 case Instruction::URem: Out << "getURem("; break;
883 case Instruction::SRem: Out << "getSRem("; break;
884 case Instruction::FRem: Out << "getFRem("; break;
885 case Instruction::And: Out << "getAnd("; break;
886 case Instruction::Or: Out << "getOr("; break;
887 case Instruction::Xor: Out << "getXor("; break;
888 case Instruction::ICmp:
889 Out << "getICmp(ICmpInst::ICMP_";
890 switch (CE->getPredicate()) {
891 case ICmpInst::ICMP_EQ: Out << "EQ"; break;
892 case ICmpInst::ICMP_NE: Out << "NE"; break;
893 case ICmpInst::ICMP_SLT: Out << "SLT"; break;
894 case ICmpInst::ICMP_ULT: Out << "ULT"; break;
895 case ICmpInst::ICMP_SGT: Out << "SGT"; break;
896 case ICmpInst::ICMP_UGT: Out << "UGT"; break;
897 case ICmpInst::ICMP_SLE: Out << "SLE"; break;
898 case ICmpInst::ICMP_ULE: Out << "ULE"; break;
899 case ICmpInst::ICMP_SGE: Out << "SGE"; break;
900 case ICmpInst::ICMP_UGE: Out << "UGE"; break;
901 default: error("Invalid ICmp Predicate");
903 break;
904 case Instruction::FCmp:
905 Out << "getFCmp(FCmpInst::FCMP_";
906 switch (CE->getPredicate()) {
907 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
908 case FCmpInst::FCMP_ORD: Out << "ORD"; break;
909 case FCmpInst::FCMP_UNO: Out << "UNO"; break;
910 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
911 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
912 case FCmpInst::FCMP_ONE: Out << "ONE"; break;
913 case FCmpInst::FCMP_UNE: Out << "UNE"; break;
914 case FCmpInst::FCMP_OLT: Out << "OLT"; break;
915 case FCmpInst::FCMP_ULT: Out << "ULT"; break;
916 case FCmpInst::FCMP_OGT: Out << "OGT"; break;
917 case FCmpInst::FCMP_UGT: Out << "UGT"; break;
918 case FCmpInst::FCMP_OLE: Out << "OLE"; break;
919 case FCmpInst::FCMP_ULE: Out << "ULE"; break;
920 case FCmpInst::FCMP_OGE: Out << "OGE"; break;
921 case FCmpInst::FCMP_UGE: Out << "UGE"; break;
922 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
923 default: error("Invalid FCmp Predicate");
925 break;
926 case Instruction::Shl: Out << "getShl("; break;
927 case Instruction::LShr: Out << "getLShr("; break;
928 case Instruction::AShr: Out << "getAShr("; break;
929 case Instruction::Select: Out << "getSelect("; break;
930 case Instruction::ExtractElement: Out << "getExtractElement("; break;
931 case Instruction::InsertElement: Out << "getInsertElement("; break;
932 case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
933 default:
934 error("Invalid constant expression");
935 break;
937 Out << getCppName(CE->getOperand(0));
938 for (unsigned i = 1; i < CE->getNumOperands(); ++i)
939 Out << ", " << getCppName(CE->getOperand(i));
940 Out << ");";
942 } else {
943 error("Bad Constant");
944 Out << "Constant* " << constName << " = 0; ";
946 nl(Out);
949 void CppWriter::printConstants(const Module* M) {
950 // Traverse all the global variables looking for constant initializers
951 for (Module::const_global_iterator I = TheModule->global_begin(),
952 E = TheModule->global_end(); I != E; ++I)
953 if (I->hasInitializer())
954 printConstant(I->getInitializer());
956 // Traverse the LLVM functions looking for constants
957 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
958 FI != FE; ++FI) {
959 // Add all of the basic blocks and instructions
960 for (Function::const_iterator BB = FI->begin(),
961 E = FI->end(); BB != E; ++BB) {
962 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
963 ++I) {
964 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
965 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
966 printConstant(C);
974 void CppWriter::printVariableUses(const GlobalVariable *GV) {
975 nl(Out) << "// Type Definitions";
976 nl(Out);
977 printType(GV->getType());
978 if (GV->hasInitializer()) {
979 Constant* Init = GV->getInitializer();
980 printType(Init->getType());
981 if (Function* F = dyn_cast<Function>(Init)) {
982 nl(Out)<< "/ Function Declarations"; nl(Out);
983 printFunctionHead(F);
984 } else if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
985 nl(Out) << "// Global Variable Declarations"; nl(Out);
986 printVariableHead(gv);
987 } else {
988 nl(Out) << "// Constant Definitions"; nl(Out);
989 printConstant(gv);
991 if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
992 nl(Out) << "// Global Variable Definitions"; nl(Out);
993 printVariableBody(gv);
998 void CppWriter::printVariableHead(const GlobalVariable *GV) {
999 nl(Out) << "GlobalVariable* " << getCppName(GV);
1000 if (is_inline) {
1001 Out << " = mod->getGlobalVariable(getGlobalContext(), ";
1002 printEscapedString(GV->getName());
1003 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
1004 nl(Out) << "if (!" << getCppName(GV) << ") {";
1005 in(); nl(Out) << getCppName(GV);
1007 Out << " = new GlobalVariable(/*Module=*/*mod, ";
1008 nl(Out) << "/*Type=*/";
1009 printCppName(GV->getType()->getElementType());
1010 Out << ",";
1011 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
1012 Out << ",";
1013 nl(Out) << "/*Linkage=*/";
1014 printLinkageType(GV->getLinkage());
1015 Out << ",";
1016 nl(Out) << "/*Initializer=*/0, ";
1017 if (GV->hasInitializer()) {
1018 Out << "// has initializer, specified below";
1020 nl(Out) << "/*Name=*/\"";
1021 printEscapedString(GV->getName());
1022 Out << "\");";
1023 nl(Out);
1025 if (GV->hasSection()) {
1026 printCppName(GV);
1027 Out << "->setSection(\"";
1028 printEscapedString(GV->getSection());
1029 Out << "\");";
1030 nl(Out);
1032 if (GV->getAlignment()) {
1033 printCppName(GV);
1034 Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1035 nl(Out);
1037 if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1038 printCppName(GV);
1039 Out << "->setVisibility(";
1040 printVisibilityType(GV->getVisibility());
1041 Out << ");";
1042 nl(Out);
1044 if (is_inline) {
1045 out(); Out << "}"; nl(Out);
1049 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1050 if (GV->hasInitializer()) {
1051 printCppName(GV);
1052 Out << "->setInitializer(";
1053 Out << getCppName(GV->getInitializer()) << ");";
1054 nl(Out);
1058 std::string CppWriter::getOpName(Value* V) {
1059 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1060 return getCppName(V);
1062 // See if its alread in the map of forward references, if so just return the
1063 // name we already set up for it
1064 ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1065 if (I != ForwardRefs.end())
1066 return I->second;
1068 // This is a new forward reference. Generate a unique name for it
1069 std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1071 // Yes, this is a hack. An Argument is the smallest instantiable value that
1072 // we can make as a placeholder for the real value. We'll replace these
1073 // Argument instances later.
1074 Out << "Argument* " << result << " = new Argument("
1075 << getCppName(V->getType()) << ");";
1076 nl(Out);
1077 ForwardRefs[V] = result;
1078 return result;
1081 // printInstruction - This member is called for each Instruction in a function.
1082 void CppWriter::printInstruction(const Instruction *I,
1083 const std::string& bbname) {
1084 std::string iName(getCppName(I));
1086 // Before we emit this instruction, we need to take care of generating any
1087 // forward references. So, we get the names of all the operands in advance
1088 std::string* opNames = new std::string[I->getNumOperands()];
1089 for (unsigned i = 0; i < I->getNumOperands(); i++) {
1090 opNames[i] = getOpName(I->getOperand(i));
1093 switch (I->getOpcode()) {
1094 default:
1095 error("Invalid instruction");
1096 break;
1098 case Instruction::Ret: {
1099 const ReturnInst* ret = cast<ReturnInst>(I);
1100 Out << "ReturnInst::Create(getGlobalContext(), "
1101 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1102 break;
1104 case Instruction::Br: {
1105 const BranchInst* br = cast<BranchInst>(I);
1106 Out << "BranchInst::Create(" ;
1107 if (br->getNumOperands() == 3 ) {
1108 Out << opNames[2] << ", "
1109 << opNames[1] << ", "
1110 << opNames[0] << ", ";
1112 } else if (br->getNumOperands() == 1) {
1113 Out << opNames[0] << ", ";
1114 } else {
1115 error("Branch with 2 operands?");
1117 Out << bbname << ");";
1118 break;
1120 case Instruction::Switch: {
1121 const SwitchInst* sw = cast<SwitchInst>(I);
1122 Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1123 << opNames[0] << ", "
1124 << opNames[1] << ", "
1125 << sw->getNumCases() << ", " << bbname << ");";
1126 nl(Out);
1127 for (unsigned i = 2; i < sw->getNumOperands(); i += 2 ) {
1128 Out << iName << "->addCase("
1129 << opNames[i] << ", "
1130 << opNames[i+1] << ");";
1131 nl(Out);
1133 break;
1135 case Instruction::Invoke: {
1136 const InvokeInst* inv = cast<InvokeInst>(I);
1137 Out << "std::vector<Value*> " << iName << "_params;";
1138 nl(Out);
1139 for (unsigned i = 3; i < inv->getNumOperands(); ++i) {
1140 Out << iName << "_params.push_back("
1141 << opNames[i] << ");";
1142 nl(Out);
1144 Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1145 << opNames[0] << ", "
1146 << opNames[1] << ", "
1147 << opNames[2] << ", "
1148 << iName << "_params.begin(), " << iName << "_params.end(), \"";
1149 printEscapedString(inv->getName());
1150 Out << "\", " << bbname << ");";
1151 nl(Out) << iName << "->setCallingConv(";
1152 printCallingConv(inv->getCallingConv());
1153 Out << ");";
1154 printAttributes(inv->getAttributes(), iName);
1155 Out << iName << "->setAttributes(" << iName << "_PAL);";
1156 nl(Out);
1157 break;
1159 case Instruction::Unwind: {
1160 Out << "new UnwindInst("
1161 << bbname << ");";
1162 break;
1164 case Instruction::Unreachable: {
1165 Out << "new UnreachableInst("
1166 << "getGlobalContext(), "
1167 << bbname << ");";
1168 break;
1170 case Instruction::Add:
1171 case Instruction::FAdd:
1172 case Instruction::Sub:
1173 case Instruction::FSub:
1174 case Instruction::Mul:
1175 case Instruction::FMul:
1176 case Instruction::UDiv:
1177 case Instruction::SDiv:
1178 case Instruction::FDiv:
1179 case Instruction::URem:
1180 case Instruction::SRem:
1181 case Instruction::FRem:
1182 case Instruction::And:
1183 case Instruction::Or:
1184 case Instruction::Xor:
1185 case Instruction::Shl:
1186 case Instruction::LShr:
1187 case Instruction::AShr:{
1188 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1189 switch (I->getOpcode()) {
1190 case Instruction::Add: Out << "Instruction::Add"; break;
1191 case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1192 case Instruction::Sub: Out << "Instruction::Sub"; break;
1193 case Instruction::FSub: Out << "Instruction::FSub"; break;
1194 case Instruction::Mul: Out << "Instruction::Mul"; break;
1195 case Instruction::FMul: Out << "Instruction::FMul"; break;
1196 case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1197 case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1198 case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1199 case Instruction::URem:Out << "Instruction::URem"; break;
1200 case Instruction::SRem:Out << "Instruction::SRem"; break;
1201 case Instruction::FRem:Out << "Instruction::FRem"; break;
1202 case Instruction::And: Out << "Instruction::And"; break;
1203 case Instruction::Or: Out << "Instruction::Or"; break;
1204 case Instruction::Xor: Out << "Instruction::Xor"; break;
1205 case Instruction::Shl: Out << "Instruction::Shl"; break;
1206 case Instruction::LShr:Out << "Instruction::LShr"; break;
1207 case Instruction::AShr:Out << "Instruction::AShr"; break;
1208 default: Out << "Instruction::BadOpCode"; break;
1210 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1211 printEscapedString(I->getName());
1212 Out << "\", " << bbname << ");";
1213 break;
1215 case Instruction::FCmp: {
1216 Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1217 switch (cast<FCmpInst>(I)->getPredicate()) {
1218 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1219 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
1220 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
1221 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
1222 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
1223 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
1224 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
1225 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
1226 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
1227 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
1228 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
1229 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
1230 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
1231 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
1232 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
1233 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1234 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1236 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1237 printEscapedString(I->getName());
1238 Out << "\");";
1239 break;
1241 case Instruction::ICmp: {
1242 Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1243 switch (cast<ICmpInst>(I)->getPredicate()) {
1244 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
1245 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
1246 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1247 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1248 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1249 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1250 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1251 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1252 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1253 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1254 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1256 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1257 printEscapedString(I->getName());
1258 Out << "\");";
1259 break;
1261 case Instruction::Malloc: {
1262 const MallocInst* mallocI = cast<MallocInst>(I);
1263 Out << "MallocInst* " << iName << " = new MallocInst("
1264 << getCppName(mallocI->getAllocatedType()) << ", ";
1265 if (mallocI->isArrayAllocation())
1266 Out << opNames[0] << ", " ;
1267 Out << "\"";
1268 printEscapedString(mallocI->getName());
1269 Out << "\", " << bbname << ");";
1270 if (mallocI->getAlignment())
1271 nl(Out) << iName << "->setAlignment("
1272 << mallocI->getAlignment() << ");";
1273 break;
1275 case Instruction::Free: {
1276 Out << "FreeInst* " << iName << " = new FreeInst("
1277 << getCppName(I->getOperand(0)) << ", " << bbname << ");";
1278 break;
1280 case Instruction::Alloca: {
1281 const AllocaInst* allocaI = cast<AllocaInst>(I);
1282 Out << "AllocaInst* " << iName << " = new AllocaInst("
1283 << getCppName(allocaI->getAllocatedType()) << ", ";
1284 if (allocaI->isArrayAllocation())
1285 Out << opNames[0] << ", ";
1286 Out << "\"";
1287 printEscapedString(allocaI->getName());
1288 Out << "\", " << bbname << ");";
1289 if (allocaI->getAlignment())
1290 nl(Out) << iName << "->setAlignment("
1291 << allocaI->getAlignment() << ");";
1292 break;
1294 case Instruction::Load:{
1295 const LoadInst* load = cast<LoadInst>(I);
1296 Out << "LoadInst* " << iName << " = new LoadInst("
1297 << opNames[0] << ", \"";
1298 printEscapedString(load->getName());
1299 Out << "\", " << (load->isVolatile() ? "true" : "false" )
1300 << ", " << bbname << ");";
1301 break;
1303 case Instruction::Store: {
1304 const StoreInst* store = cast<StoreInst>(I);
1305 Out << " new StoreInst("
1306 << opNames[0] << ", "
1307 << opNames[1] << ", "
1308 << (store->isVolatile() ? "true" : "false")
1309 << ", " << bbname << ");";
1310 break;
1312 case Instruction::GetElementPtr: {
1313 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1314 if (gep->getNumOperands() <= 2) {
1315 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1316 << opNames[0];
1317 if (gep->getNumOperands() == 2)
1318 Out << ", " << opNames[1];
1319 } else {
1320 Out << "std::vector<Value*> " << iName << "_indices;";
1321 nl(Out);
1322 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1323 Out << iName << "_indices.push_back("
1324 << opNames[i] << ");";
1325 nl(Out);
1327 Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1328 << opNames[0] << ", " << iName << "_indices.begin(), "
1329 << iName << "_indices.end()";
1331 Out << ", \"";
1332 printEscapedString(gep->getName());
1333 Out << "\", " << bbname << ");";
1334 break;
1336 case Instruction::PHI: {
1337 const PHINode* phi = cast<PHINode>(I);
1339 Out << "PHINode* " << iName << " = PHINode::Create("
1340 << getCppName(phi->getType()) << ", \"";
1341 printEscapedString(phi->getName());
1342 Out << "\", " << bbname << ");";
1343 nl(Out) << iName << "->reserveOperandSpace("
1344 << phi->getNumIncomingValues()
1345 << ");";
1346 nl(Out);
1347 for (unsigned i = 0; i < phi->getNumOperands(); i+=2) {
1348 Out << iName << "->addIncoming("
1349 << opNames[i] << ", " << opNames[i+1] << ");";
1350 nl(Out);
1352 break;
1354 case Instruction::Trunc:
1355 case Instruction::ZExt:
1356 case Instruction::SExt:
1357 case Instruction::FPTrunc:
1358 case Instruction::FPExt:
1359 case Instruction::FPToUI:
1360 case Instruction::FPToSI:
1361 case Instruction::UIToFP:
1362 case Instruction::SIToFP:
1363 case Instruction::PtrToInt:
1364 case Instruction::IntToPtr:
1365 case Instruction::BitCast: {
1366 const CastInst* cst = cast<CastInst>(I);
1367 Out << "CastInst* " << iName << " = new ";
1368 switch (I->getOpcode()) {
1369 case Instruction::Trunc: Out << "TruncInst"; break;
1370 case Instruction::ZExt: Out << "ZExtInst"; break;
1371 case Instruction::SExt: Out << "SExtInst"; break;
1372 case Instruction::FPTrunc: Out << "FPTruncInst"; break;
1373 case Instruction::FPExt: Out << "FPExtInst"; break;
1374 case Instruction::FPToUI: Out << "FPToUIInst"; break;
1375 case Instruction::FPToSI: Out << "FPToSIInst"; break;
1376 case Instruction::UIToFP: Out << "UIToFPInst"; break;
1377 case Instruction::SIToFP: Out << "SIToFPInst"; break;
1378 case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1379 case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1380 case Instruction::BitCast: Out << "BitCastInst"; break;
1381 default: assert(!"Unreachable"); break;
1383 Out << "(" << opNames[0] << ", "
1384 << getCppName(cst->getType()) << ", \"";
1385 printEscapedString(cst->getName());
1386 Out << "\", " << bbname << ");";
1387 break;
1389 case Instruction::Call:{
1390 const CallInst* call = cast<CallInst>(I);
1391 if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1392 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1393 << getCppName(ila->getFunctionType()) << ", \""
1394 << ila->getAsmString() << "\", \""
1395 << ila->getConstraintString() << "\","
1396 << (ila->hasSideEffects() ? "true" : "false") << ");";
1397 nl(Out);
1399 if (call->getNumOperands() > 2) {
1400 Out << "std::vector<Value*> " << iName << "_params;";
1401 nl(Out);
1402 for (unsigned i = 1; i < call->getNumOperands(); ++i) {
1403 Out << iName << "_params.push_back(" << opNames[i] << ");";
1404 nl(Out);
1406 Out << "CallInst* " << iName << " = CallInst::Create("
1407 << opNames[0] << ", " << iName << "_params.begin(), "
1408 << iName << "_params.end(), \"";
1409 } else if (call->getNumOperands() == 2) {
1410 Out << "CallInst* " << iName << " = CallInst::Create("
1411 << opNames[0] << ", " << opNames[1] << ", \"";
1412 } else {
1413 Out << "CallInst* " << iName << " = CallInst::Create(" << opNames[0]
1414 << ", \"";
1416 printEscapedString(call->getName());
1417 Out << "\", " << bbname << ");";
1418 nl(Out) << iName << "->setCallingConv(";
1419 printCallingConv(call->getCallingConv());
1420 Out << ");";
1421 nl(Out) << iName << "->setTailCall("
1422 << (call->isTailCall() ? "true":"false");
1423 Out << ");";
1424 printAttributes(call->getAttributes(), iName);
1425 Out << iName << "->setAttributes(" << iName << "_PAL);";
1426 nl(Out);
1427 break;
1429 case Instruction::Select: {
1430 const SelectInst* sel = cast<SelectInst>(I);
1431 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1432 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1433 printEscapedString(sel->getName());
1434 Out << "\", " << bbname << ");";
1435 break;
1437 case Instruction::UserOp1:
1438 /// FALL THROUGH
1439 case Instruction::UserOp2: {
1440 /// FIXME: What should be done here?
1441 break;
1443 case Instruction::VAArg: {
1444 const VAArgInst* va = cast<VAArgInst>(I);
1445 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1446 << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1447 printEscapedString(va->getName());
1448 Out << "\", " << bbname << ");";
1449 break;
1451 case Instruction::ExtractElement: {
1452 const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1453 Out << "ExtractElementInst* " << getCppName(eei)
1454 << " = new ExtractElementInst(" << opNames[0]
1455 << ", " << opNames[1] << ", \"";
1456 printEscapedString(eei->getName());
1457 Out << "\", " << bbname << ");";
1458 break;
1460 case Instruction::InsertElement: {
1461 const InsertElementInst* iei = cast<InsertElementInst>(I);
1462 Out << "InsertElementInst* " << getCppName(iei)
1463 << " = InsertElementInst::Create(" << opNames[0]
1464 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1465 printEscapedString(iei->getName());
1466 Out << "\", " << bbname << ");";
1467 break;
1469 case Instruction::ShuffleVector: {
1470 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1471 Out << "ShuffleVectorInst* " << getCppName(svi)
1472 << " = new ShuffleVectorInst(" << opNames[0]
1473 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1474 printEscapedString(svi->getName());
1475 Out << "\", " << bbname << ");";
1476 break;
1478 case Instruction::ExtractValue: {
1479 const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1480 Out << "std::vector<unsigned> " << iName << "_indices;";
1481 nl(Out);
1482 for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1483 Out << iName << "_indices.push_back("
1484 << evi->idx_begin()[i] << ");";
1485 nl(Out);
1487 Out << "ExtractValueInst* " << getCppName(evi)
1488 << " = ExtractValueInst::Create(" << opNames[0]
1489 << ", "
1490 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1491 printEscapedString(evi->getName());
1492 Out << "\", " << bbname << ");";
1493 break;
1495 case Instruction::InsertValue: {
1496 const InsertValueInst *ivi = cast<InsertValueInst>(I);
1497 Out << "std::vector<unsigned> " << iName << "_indices;";
1498 nl(Out);
1499 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1500 Out << iName << "_indices.push_back("
1501 << ivi->idx_begin()[i] << ");";
1502 nl(Out);
1504 Out << "InsertValueInst* " << getCppName(ivi)
1505 << " = InsertValueInst::Create(" << opNames[0]
1506 << ", " << opNames[1] << ", "
1507 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1508 printEscapedString(ivi->getName());
1509 Out << "\", " << bbname << ");";
1510 break;
1513 DefinedValues.insert(I);
1514 nl(Out);
1515 delete [] opNames;
1518 // Print out the types, constants and declarations needed by one function
1519 void CppWriter::printFunctionUses(const Function* F) {
1520 nl(Out) << "// Type Definitions"; nl(Out);
1521 if (!is_inline) {
1522 // Print the function's return type
1523 printType(F->getReturnType());
1525 // Print the function's function type
1526 printType(F->getFunctionType());
1528 // Print the types of each of the function's arguments
1529 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1530 AI != AE; ++AI) {
1531 printType(AI->getType());
1535 // Print type definitions for every type referenced by an instruction and
1536 // make a note of any global values or constants that are referenced
1537 SmallPtrSet<GlobalValue*,64> gvs;
1538 SmallPtrSet<Constant*,64> consts;
1539 for (Function::const_iterator BB = F->begin(), BE = F->end();
1540 BB != BE; ++BB){
1541 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1542 I != E; ++I) {
1543 // Print the type of the instruction itself
1544 printType(I->getType());
1546 // Print the type of each of the instruction's operands
1547 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1548 Value* operand = I->getOperand(i);
1549 printType(operand->getType());
1551 // If the operand references a GVal or Constant, make a note of it
1552 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1553 gvs.insert(GV);
1554 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1555 if (GVar->hasInitializer())
1556 consts.insert(GVar->getInitializer());
1557 } else if (Constant* C = dyn_cast<Constant>(operand))
1558 consts.insert(C);
1563 // Print the function declarations for any functions encountered
1564 nl(Out) << "// Function Declarations"; nl(Out);
1565 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1566 I != E; ++I) {
1567 if (Function* Fun = dyn_cast<Function>(*I)) {
1568 if (!is_inline || Fun != F)
1569 printFunctionHead(Fun);
1573 // Print the global variable declarations for any variables encountered
1574 nl(Out) << "// Global Variable Declarations"; nl(Out);
1575 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1576 I != E; ++I) {
1577 if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1578 printVariableHead(F);
1581 // Print the constants found
1582 nl(Out) << "// Constant Definitions"; nl(Out);
1583 for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1584 E = consts.end(); I != E; ++I) {
1585 printConstant(*I);
1588 // Process the global variables definitions now that all the constants have
1589 // been emitted. These definitions just couple the gvars with their constant
1590 // initializers.
1591 nl(Out) << "// Global Variable Definitions"; nl(Out);
1592 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1593 I != E; ++I) {
1594 if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1595 printVariableBody(GV);
1599 void CppWriter::printFunctionHead(const Function* F) {
1600 nl(Out) << "Function* " << getCppName(F);
1601 if (is_inline) {
1602 Out << " = mod->getFunction(\"";
1603 printEscapedString(F->getName());
1604 Out << "\", " << getCppName(F->getFunctionType()) << ");";
1605 nl(Out) << "if (!" << getCppName(F) << ") {";
1606 nl(Out) << getCppName(F);
1608 Out<< " = Function::Create(";
1609 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1610 nl(Out) << "/*Linkage=*/";
1611 printLinkageType(F->getLinkage());
1612 Out << ",";
1613 nl(Out) << "/*Name=*/\"";
1614 printEscapedString(F->getName());
1615 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1616 nl(Out,-1);
1617 printCppName(F);
1618 Out << "->setCallingConv(";
1619 printCallingConv(F->getCallingConv());
1620 Out << ");";
1621 nl(Out);
1622 if (F->hasSection()) {
1623 printCppName(F);
1624 Out << "->setSection(\"" << F->getSection() << "\");";
1625 nl(Out);
1627 if (F->getAlignment()) {
1628 printCppName(F);
1629 Out << "->setAlignment(" << F->getAlignment() << ");";
1630 nl(Out);
1632 if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1633 printCppName(F);
1634 Out << "->setVisibility(";
1635 printVisibilityType(F->getVisibility());
1636 Out << ");";
1637 nl(Out);
1639 if (F->hasGC()) {
1640 printCppName(F);
1641 Out << "->setGC(\"" << F->getGC() << "\");";
1642 nl(Out);
1644 if (is_inline) {
1645 Out << "}";
1646 nl(Out);
1648 printAttributes(F->getAttributes(), getCppName(F));
1649 printCppName(F);
1650 Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1651 nl(Out);
1654 void CppWriter::printFunctionBody(const Function *F) {
1655 if (F->isDeclaration())
1656 return; // external functions have no bodies.
1658 // Clear the DefinedValues and ForwardRefs maps because we can't have
1659 // cross-function forward refs
1660 ForwardRefs.clear();
1661 DefinedValues.clear();
1663 // Create all the argument values
1664 if (!is_inline) {
1665 if (!F->arg_empty()) {
1666 Out << "Function::arg_iterator args = " << getCppName(F)
1667 << "->arg_begin();";
1668 nl(Out);
1670 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1671 AI != AE; ++AI) {
1672 Out << "Value* " << getCppName(AI) << " = args++;";
1673 nl(Out);
1674 if (AI->hasName()) {
1675 Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
1676 nl(Out);
1681 // Create all the basic blocks
1682 nl(Out);
1683 for (Function::const_iterator BI = F->begin(), BE = F->end();
1684 BI != BE; ++BI) {
1685 std::string bbname(getCppName(BI));
1686 Out << "BasicBlock* " << bbname <<
1687 " = BasicBlock::Create(getGlobalContext(), \"";
1688 if (BI->hasName())
1689 printEscapedString(BI->getName());
1690 Out << "\"," << getCppName(BI->getParent()) << ",0);";
1691 nl(Out);
1694 // Output all of its basic blocks... for the function
1695 for (Function::const_iterator BI = F->begin(), BE = F->end();
1696 BI != BE; ++BI) {
1697 std::string bbname(getCppName(BI));
1698 nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1699 nl(Out);
1701 // Output all of the instructions in the basic block...
1702 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1703 I != E; ++I) {
1704 printInstruction(I,bbname);
1708 // Loop over the ForwardRefs and resolve them now that all instructions
1709 // are generated.
1710 if (!ForwardRefs.empty()) {
1711 nl(Out) << "// Resolve Forward References";
1712 nl(Out);
1715 while (!ForwardRefs.empty()) {
1716 ForwardRefMap::iterator I = ForwardRefs.begin();
1717 Out << I->second << "->replaceAllUsesWith("
1718 << getCppName(I->first) << "); delete " << I->second << ";";
1719 nl(Out);
1720 ForwardRefs.erase(I);
1724 void CppWriter::printInline(const std::string& fname,
1725 const std::string& func) {
1726 const Function* F = TheModule->getFunction(func);
1727 if (!F) {
1728 error(std::string("Function '") + func + "' not found in input module");
1729 return;
1731 if (F->isDeclaration()) {
1732 error(std::string("Function '") + func + "' is external!");
1733 return;
1735 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1736 << getCppName(F);
1737 unsigned arg_count = 1;
1738 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1739 AI != AE; ++AI) {
1740 Out << ", Value* arg_" << arg_count;
1742 Out << ") {";
1743 nl(Out);
1744 is_inline = true;
1745 printFunctionUses(F);
1746 printFunctionBody(F);
1747 is_inline = false;
1748 Out << "return " << getCppName(F->begin()) << ";";
1749 nl(Out) << "}";
1750 nl(Out);
1753 void CppWriter::printModuleBody() {
1754 // Print out all the type definitions
1755 nl(Out) << "// Type Definitions"; nl(Out);
1756 printTypes(TheModule);
1758 // Functions can call each other and global variables can reference them so
1759 // define all the functions first before emitting their function bodies.
1760 nl(Out) << "// Function Declarations"; nl(Out);
1761 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1762 I != E; ++I)
1763 printFunctionHead(I);
1765 // Process the global variables declarations. We can't initialze them until
1766 // after the constants are printed so just print a header for each global
1767 nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1768 for (Module::const_global_iterator I = TheModule->global_begin(),
1769 E = TheModule->global_end(); I != E; ++I) {
1770 printVariableHead(I);
1773 // Print out all the constants definitions. Constants don't recurse except
1774 // through GlobalValues. All GlobalValues have been declared at this point
1775 // so we can proceed to generate the constants.
1776 nl(Out) << "// Constant Definitions"; nl(Out);
1777 printConstants(TheModule);
1779 // Process the global variables definitions now that all the constants have
1780 // been emitted. These definitions just couple the gvars with their constant
1781 // initializers.
1782 nl(Out) << "// Global Variable Definitions"; nl(Out);
1783 for (Module::const_global_iterator I = TheModule->global_begin(),
1784 E = TheModule->global_end(); I != E; ++I) {
1785 printVariableBody(I);
1788 // Finally, we can safely put out all of the function bodies.
1789 nl(Out) << "// Function Definitions"; nl(Out);
1790 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1791 I != E; ++I) {
1792 if (!I->isDeclaration()) {
1793 nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1794 << ")";
1795 nl(Out) << "{";
1796 nl(Out,1);
1797 printFunctionBody(I);
1798 nl(Out,-1) << "}";
1799 nl(Out);
1804 void CppWriter::printProgram(const std::string& fname,
1805 const std::string& mName) {
1806 Out << "#include <llvm/LLVMContext.h>\n";
1807 Out << "#include <llvm/Module.h>\n";
1808 Out << "#include <llvm/DerivedTypes.h>\n";
1809 Out << "#include <llvm/Constants.h>\n";
1810 Out << "#include <llvm/GlobalVariable.h>\n";
1811 Out << "#include <llvm/Function.h>\n";
1812 Out << "#include <llvm/CallingConv.h>\n";
1813 Out << "#include <llvm/BasicBlock.h>\n";
1814 Out << "#include <llvm/Instructions.h>\n";
1815 Out << "#include <llvm/InlineAsm.h>\n";
1816 Out << "#include <llvm/Support/FormattedStream.h>\n";
1817 Out << "#include <llvm/Support/MathExtras.h>\n";
1818 Out << "#include <llvm/Pass.h>\n";
1819 Out << "#include <llvm/PassManager.h>\n";
1820 Out << "#include <llvm/ADT/SmallVector.h>\n";
1821 Out << "#include <llvm/Analysis/Verifier.h>\n";
1822 Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1823 Out << "#include <algorithm>\n";
1824 Out << "using namespace llvm;\n\n";
1825 Out << "Module* " << fname << "();\n\n";
1826 Out << "int main(int argc, char**argv) {\n";
1827 Out << " Module* Mod = " << fname << "();\n";
1828 Out << " verifyModule(*Mod, PrintMessageAction);\n";
1829 Out << " PassManager PM;\n";
1830 Out << " PM.add(createPrintModulePass(&outs()));\n";
1831 Out << " PM.run(*Mod);\n";
1832 Out << " return 0;\n";
1833 Out << "}\n\n";
1834 printModule(fname,mName);
1837 void CppWriter::printModule(const std::string& fname,
1838 const std::string& mName) {
1839 nl(Out) << "Module* " << fname << "() {";
1840 nl(Out,1) << "// Module Construction";
1841 nl(Out) << "Module* mod = new Module(\"";
1842 printEscapedString(mName);
1843 Out << "\", getGlobalContext());";
1844 if (!TheModule->getTargetTriple().empty()) {
1845 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1847 if (!TheModule->getTargetTriple().empty()) {
1848 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1849 << "\");";
1852 if (!TheModule->getModuleInlineAsm().empty()) {
1853 nl(Out) << "mod->setModuleInlineAsm(\"";
1854 printEscapedString(TheModule->getModuleInlineAsm());
1855 Out << "\");";
1857 nl(Out);
1859 // Loop over the dependent libraries and emit them.
1860 Module::lib_iterator LI = TheModule->lib_begin();
1861 Module::lib_iterator LE = TheModule->lib_end();
1862 while (LI != LE) {
1863 Out << "mod->addLibrary(\"" << *LI << "\");";
1864 nl(Out);
1865 ++LI;
1867 printModuleBody();
1868 nl(Out) << "return mod;";
1869 nl(Out,-1) << "}";
1870 nl(Out);
1873 void CppWriter::printContents(const std::string& fname,
1874 const std::string& mName) {
1875 Out << "\nModule* " << fname << "(Module *mod) {\n";
1876 Out << "\nmod->setModuleIdentifier(\"";
1877 printEscapedString(mName);
1878 Out << "\");\n";
1879 printModuleBody();
1880 Out << "\nreturn mod;\n";
1881 Out << "\n}\n";
1884 void CppWriter::printFunction(const std::string& fname,
1885 const std::string& funcName) {
1886 const Function* F = TheModule->getFunction(funcName);
1887 if (!F) {
1888 error(std::string("Function '") + funcName + "' not found in input module");
1889 return;
1891 Out << "\nFunction* " << fname << "(Module *mod) {\n";
1892 printFunctionUses(F);
1893 printFunctionHead(F);
1894 printFunctionBody(F);
1895 Out << "return " << getCppName(F) << ";\n";
1896 Out << "}\n";
1899 void CppWriter::printFunctions() {
1900 const Module::FunctionListType &funcs = TheModule->getFunctionList();
1901 Module::const_iterator I = funcs.begin();
1902 Module::const_iterator IE = funcs.end();
1904 for (; I != IE; ++I) {
1905 const Function &func = *I;
1906 if (!func.isDeclaration()) {
1907 std::string name("define_");
1908 name += func.getName();
1909 printFunction(name, func.getName());
1914 void CppWriter::printVariable(const std::string& fname,
1915 const std::string& varName) {
1916 const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
1918 if (!GV) {
1919 error(std::string("Variable '") + varName + "' not found in input module");
1920 return;
1922 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
1923 printVariableUses(GV);
1924 printVariableHead(GV);
1925 printVariableBody(GV);
1926 Out << "return " << getCppName(GV) << ";\n";
1927 Out << "}\n";
1930 void CppWriter::printType(const std::string& fname,
1931 const std::string& typeName) {
1932 const Type* Ty = TheModule->getTypeByName(typeName);
1933 if (!Ty) {
1934 error(std::string("Type '") + typeName + "' not found in input module");
1935 return;
1937 Out << "\nType* " << fname << "(Module *mod) {\n";
1938 printType(Ty);
1939 Out << "return " << getCppName(Ty) << ";\n";
1940 Out << "}\n";
1943 bool CppWriter::runOnModule(Module &M) {
1944 TheModule = &M;
1946 // Emit a header
1947 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
1949 // Get the name of the function we're supposed to generate
1950 std::string fname = FuncName.getValue();
1952 // Get the name of the thing we are to generate
1953 std::string tgtname = NameToGenerate.getValue();
1954 if (GenerationType == GenModule ||
1955 GenerationType == GenContents ||
1956 GenerationType == GenProgram ||
1957 GenerationType == GenFunctions) {
1958 if (tgtname == "!bad!") {
1959 if (M.getModuleIdentifier() == "-")
1960 tgtname = "<stdin>";
1961 else
1962 tgtname = M.getModuleIdentifier();
1964 } else if (tgtname == "!bad!")
1965 error("You must use the -for option with -gen-{function,variable,type}");
1967 switch (WhatToGenerate(GenerationType)) {
1968 case GenProgram:
1969 if (fname.empty())
1970 fname = "makeLLVMModule";
1971 printProgram(fname,tgtname);
1972 break;
1973 case GenModule:
1974 if (fname.empty())
1975 fname = "makeLLVMModule";
1976 printModule(fname,tgtname);
1977 break;
1978 case GenContents:
1979 if (fname.empty())
1980 fname = "makeLLVMModuleContents";
1981 printContents(fname,tgtname);
1982 break;
1983 case GenFunction:
1984 if (fname.empty())
1985 fname = "makeLLVMFunction";
1986 printFunction(fname,tgtname);
1987 break;
1988 case GenFunctions:
1989 printFunctions();
1990 break;
1991 case GenInline:
1992 if (fname.empty())
1993 fname = "makeLLVMInline";
1994 printInline(fname,tgtname);
1995 break;
1996 case GenVariable:
1997 if (fname.empty())
1998 fname = "makeLLVMVariable";
1999 printVariable(fname,tgtname);
2000 break;
2001 case GenType:
2002 if (fname.empty())
2003 fname = "makeLLVMType";
2004 printType(fname,tgtname);
2005 break;
2006 default:
2007 error("Invalid generation option");
2010 return false;
2014 char CppWriter::ID = 0;
2016 //===----------------------------------------------------------------------===//
2017 // External Interface declaration
2018 //===----------------------------------------------------------------------===//
2020 bool CPPTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
2021 formatted_raw_ostream &o,
2022 CodeGenFileType FileType,
2023 CodeGenOpt::Level OptLevel) {
2024 if (FileType != TargetMachine::AssemblyFile) return true;
2025 PM.add(new CppWriter(o));
2026 return false;